Knowledge of Future Job Loss and Implications for Unemployment Insurance

Nathaniel Hendren

Harvard and NBER

November, 2015

Private Markets for Job Loss / Unemployment

• Job loss is one of most salient risks faced by working-age adults

- Job loss is one of most salient risks faced by working-age adults
- Why is there not a robust private market for unemployment/job loss insurance?
 - Like health, life, disability, car, home, pet health, iPhone water damage, etc...
 - Why doesn't Aetna sell UI?

- Job loss is one of most salient risks faced by working-age adults
- Why is there not a robust private market for unemployment/job loss insurance?
 - Like health, life, disability, car, home, pet health, iPhone water damage, etc...
 - Why doesn't Aetna sell UI?
- Large literature studying "optimal" government provision of UI
 - Absence of private market not micro-founded
 - If a private market doesn't exist, doesn't that mean no one's willing to pay for UI?
 - Does providing a microfoundation change how we should think about optimal benefits?

• Private information is the reason the private market doesn't exist

- Private information is the reason the private market doesn't exist
 - Estimate cost of adverse selection if contracts were offered
 - Use information contained in subjective probability elicitations as noisy and biased measures of beliefs (Hendren 2013)

- Private information is the reason the private market doesn't exist
 - Estimate cost of adverse selection if contracts were offered
 - Use information contained in subjective probability elicitations as noisy and biased measures of beliefs (Hendren 2013)
 - Estimate demand for UI
 - In response to *potential* job loss, individuals reduce consumption and increase spousal labor supply
 - Suggests existing approaches under-estimate UI demand
 - Provide "2-sample IV" corrections to account for realized information

- Private information is the reason the private market doesn't exist
 - Estimate cost of adverse selection if contracts were offered
 - Use information contained in subjective probability elicitations as noisy and biased measures of beliefs (Hendren 2013)
 - Estimate demand for UI
 - In response to *potential* job loss, individuals reduce consumption and increase spousal labor supply
 - Suggests existing approaches under-estimate UI demand
 - Provide "2-sample IV" corrections to account for realized information
- Willingness to pay below cost of adverse selection

- Private information is the reason the private market doesn't exist
 - Estimate cost of adverse selection if contracts were offered
 - Use information contained in subjective probability elicitations as noisy and biased measures of beliefs (Hendren 2013)
 - Estimate demand for UI
 - In response to *potential* job loss, individuals reduce consumption and increase spousal labor supply
 - Suggests existing approaches under-estimate UI demand
 - Provide "2-sample IV" corrections to account for realized information
- Willingness to pay below cost of adverse selection
- Characterize optimal UI
 - Previous approaches miss the ex-ante value of social insurance
 - Insurance against learning you might lose your job
 - Exploit ex-ante responses to measure this value



- Quantification of Private Information
- 3 Estimates of Willingness to Pay
- Optimal UI and Ex-Ante WTP

3 Estimates of Willingness to Pay

• Individual faces risk of becoming unemployed

- Individual faces risk of becoming unemployed
- Potential insurance product pays b if unemployed, costs au if employed

- Individual faces risk of becoming unemployed
- Potential insurance product pays b if unemployed, costs au if employed
 - On top of existing insurance arrangements (govt UI, family, savings, etc.)
 - Later: What if govt UI changed?

- Individual faces risk of becoming unemployed
- Potential insurance product pays b if unemployed, costs au if employed
 - On top of existing insurance arrangements (govt UI, family, savings, etc.)
 - Later: What if govt UI changed?
- Individuals indexed by unobservable θ choose:
 - Probability p of being unemployed, p
 - Consumption when employed, c_e , and unemployed, c_u (incl b, τ)
 - Other actions, a

- Individual faces risk of becoming unemployed
- Potential insurance product pays b if unemployed, costs au if employed
 - On top of existing insurance arrangements (govt UI, family, savings, etc.)
 - Later: What if govt UI changed?
- Individuals indexed by unobservable θ choose:
 - Probability p of being unemployed, p
 - Consumption when employed, c_e , and unemployed, c_u (incl b, τ)
 - Other actions, a
 - Maximize:

$$\max_{p,c_{e},c_{u},a\in\Omega\left(\theta\right)}\left\{ \left(1-p\right)v\left(c_{e}\right)+pu\left(c_{u}\right)+\Psi\left(p,a;\theta\right)\right\}$$

- Individual faces risk of becoming unemployed
- Potential insurance product pays b if unemployed, costs au if employed
 - On top of existing insurance arrangements (govt UI, family, savings, etc.)
 - Later: What if govt UI changed?
- Individuals indexed by unobservable θ choose:
 - Probability p of being unemployed, p
 - Consumption when employed, c_e , and unemployed, c_u (incl b, τ)
 - Other actions, a
 - Maximize:

$$\max_{p,c_{e},c_{u},a\in\Omega\left(\theta\right)}\left\{\left(1-p\right)v\left(c_{e}\right)+pu\left(c_{u}\right)+\Psi\left(p,a;\theta\right)\right\}$$

 When can private markets profitably provide positive benefits, b, financed by premiums, τ?

• Define *P* to be a random variable of choices of *p* with no additional private insurance: $b = \tau = 0$.

- Define *P* to be a random variable of choices of *p* with no additional private insurance: $b = \tau = 0$.
 - Simplification: the choice of p summarizes the heterogeneity in types (i.e. $\theta \rightarrow p$ is 1-1).

- Define P to be a random variable of choices of p with no additional private insurance: b = τ = 0.
 - Simplification: the choice of *p* summarizes the heterogeneity in types (i.e. $\theta \rightarrow p$ is 1-1).
- No profitable trade is feasible whenever

$$\frac{u'\left(c_{u}\left(p\right)\right)}{v'\left(c_{e}\left(p\right)\right)} \leq T\left(p\right) \quad \forall p$$

where

$$T(p) = \frac{E[P|P \ge p]}{E[1-P|P \ge p]} \frac{1-p}{p}$$

is the "pooled price ratio" in Hendren (2013)

- Define *P* to be a random variable of choices of *p* with no additional private insurance: $b = \tau = 0$.
 - Simplification: the choice of *p* summarizes the heterogeneity in types (i.e. $\theta \rightarrow p$ is 1-1).
- No profitable trade is feasible whenever

$$\frac{u'\left(c_{u}\left(p\right)\right)}{v'\left(c_{e}\left(p\right)\right)} \leq T\left(p\right) \quad \forall p$$

where

$$T(p) = \frac{E[P|P \ge p]}{E[1-P|P \ge p]} \frac{1-p}{p}$$

is the "pooled price ratio" in Hendren (2013)

 Generalizes no trade condition in Hendren (2013) to allow for moral hazard

- Define *P* to be a random variable of choices of *p* with no additional private insurance: $b = \tau = 0$.
 - Simplification: the choice of *p* summarizes the heterogeneity in types (i.e. $\theta \rightarrow p$ is 1-1).
- No profitable trade is feasible whenever

$$\frac{u'\left(c_{u}\left(p\right)\right)}{v'\left(c_{e}\left(p\right)\right)} \leq T\left(p\right) \quad \forall p$$

where

$$T(p) = \frac{E[P|P \ge p]}{E[1-P|P \ge p]} \frac{1-p}{p}$$

is the "pooled price ratio" in Hendren (2013)

- Generalizes no trade condition in Hendren (2013) to allow for moral hazard
 - Market existence is independent of moral hazard problem (Shavell, 1979)

• Two measures of *T* (*p*):

Estimand: Minimum Pooled Price Ratio

- Two measures of T(p):
 - Minimum pooled price ratio, $\inf_{p} T(p)$
 - Relevant if insurers know T(p)

Estimand: Minimum Pooled Price Ratio

- Two measures of T(p):
 - Minimum pooled price ratio, $\inf_{p} T(p)$
 - Relevant if insurers know T(p)
 - Average pooled price ratio, $E\left[T\left(P
 ight)
 ight]$
 - Average pooled price ratio provides measure of frictions imposed on insurance company that needs to experiment to open up the market

- Two measures of *T* (*p*):
 - Minimum pooled price ratio, $\inf_{p} T(p)$
 - Relevant if insurers know T(p)
 - Average pooled price ratio, $E\left[T\left(P
 ight)
 ight]$
 - Average pooled price ratio provides measure of frictions imposed on insurance company that needs to experiment to open up the market
- Will estimate lower bounds for E[T(P)] using fewer assumptions than inf T(p)

Quantification of Private Information

3 Estimates of Willingness to Pay

- Difficult to identify presence of private information for UI
 - Standard approach uses revealed preference (Chiappori and Salanie, 2000; Finkelstein and Poterba, 2002; Einav et. al., 2010)

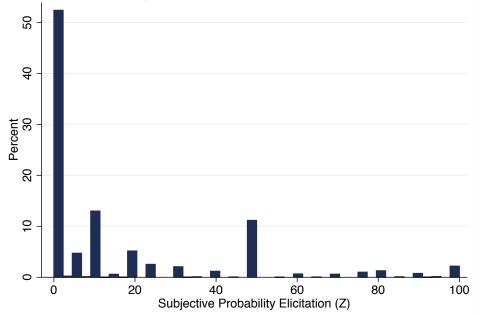
- Difficult to identify presence of private information for UI
 - Standard approach uses revealed preference (Chiappori and Salanie, 2000; Finkelstein and Poterba, 2002; Einav et. al., 2010)
- Build on approach in Hendren (2013) using subjective probability elicitations
 - For time, will skip many details covered in Hendren (2013)

- Difficult to identify presence of private information for UI
 - Standard approach uses revealed preference (Chiappori and Salanie, 2000; Finkelstein and Poterba, 2002; Einav et. al., 2010)
- Build on approach in Hendren (2013) using subjective probability elicitations
 - For time, will skip many details covered in Hendren (2013)
- Use data from Health and Retirement Study (1993-2013)

- Difficult to identify presence of private information for UI
 - Standard approach uses revealed preference (Chiappori and Salanie, 2000; Finkelstein and Poterba, 2002; Einav et. al., 2010)
- Build on approach in Hendren (2013) using subjective probability elicitations
 - For time, will skip many details covered in Hendren (2013)
- Use data from Health and Retirement Study (1993-2013)
 - Survey asks subjective probability elicitations, Z

- Difficult to identify presence of private information for UI
 - Standard approach uses revealed preference (Chiappori and Salanie, 2000; Finkelstein and Poterba, 2002; Einav et. al., 2010)
- Build on approach in Hendren (2013) using subjective probability elicitations
 - For time, will skip many details covered in Hendren (2013)
- Use data from Health and Retirement Study (1993-2013)
 - Survey asks subjective probability elicitations, Z
 - "What is percent chance (0-100) that you will lose your job in the next 12 months?"

Histogram of Subjective Probability Elicitations



Elicitations as Noisy Measures of Beliefs

• Z may not express an agents' true beliefs ($Z \neq P$)

Elicitations as Noisy Measures of Beliefs

- Z may not express an agents' true beliefs ($Z \neq P$)
- Use information in joint distribution of elicitation and event

Elicitations as Noisy Measures of Beliefs

- Z may not express an agents' true beliefs ($Z \neq P$)
- Use information in joint distribution of elicitation and event
 - Define U as indicator for involuntary job loss in next 12 months

- Z may not express an agents' true beliefs $(Z \neq P)$
- Use information in joint distribution of elicitation and event
 - Define U as indicator for involuntary job loss in next 12 months
- Does Z predict U conditional on X?

- Z may not express an agents' true beliefs $(Z \neq P)$
- Use information in joint distribution of elicitation and event
 - Define U as indicator for involuntary job loss in next 12 months
- Does Z predict U conditional on X?
 - Sets of controls simulate different underwriting strategies

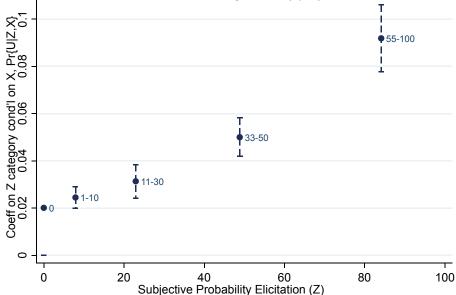
- Z may not express an agents' true beliefs $(Z \neq P)$
- Use information in joint distribution of elicitation and event
 - Define U as indicator for involuntary job loss in next 12 months
- Does Z predict U conditional on X?
 - Sets of controls simulate different underwriting strategies
 - Start with controls for demographics + job characteristics
 - Demographics (gender, age quadratic, census division, year)
 - Job characteristics (tenure quadratic, occupation dummies, industry dummies, log wage quadratic)
 - Add additional controls for health, unemployment history, etc.

- Z may not express an agents' true beliefs $(Z \neq P)$
- Use information in joint distribution of elicitation and event
 - Define U as indicator for involuntary job loss in next 12 months
- Does Z predict U conditional on X?
 - Sets of controls simulate different underwriting strategies
 - $\bullet\,$ Start with controls for demographics + job characteristics
 - Demographics (gender, age quadratic, census division, year)
 - Job characteristics (tenure quadratic, occupation dummies, industry dummies, log wage quadratic)
 - Add additional controls for health, unemployment history, etc.
- Bin Z into groups, χ_j , (0, 1-10, ...)
 - Regress U on X and bins to construct:

$$P_Z = \Pr\{U|X, Z\} = \beta X + \sum_j \zeta_j \mathbb{1}\{Z \in \chi_j\}$$

Predictive Content of Elicitations about Future Unemployment

Coefficients on Z categories in Pr{U|Z,X}



- Let $P_Z = \Pr \{ U | Z, X \}$
 - P_Z is related to distribution of true beliefs, P

- Let $P_Z = \Pr \{ U | Z, X \}$
 - P_Z is related to distribution of true beliefs, P
- Two assumptions:

• Let $P_Z = \Pr \{ U | Z, X \}$

- P_Z is related to distribution of true beliefs, P
- Two assumptions:

Elicitations not more informative than true beliefs

 $\Pr\{U|Z, X, P\} = \Pr\{U|X, P\}$

• Let $P_Z = \Pr \{ U | Z, X \}$

- P_Z is related to distribution of true beliefs, P
- Two assumptions:

Elicitations not more informative than true beliefs

 $\Pr\{U|Z, X, P\} = \Pr\{U|X, P\}$

Irue beliefs (not elicitations) are unbiased

 $\Pr\left\{U|X,P\right\} = P$

• Let $P_Z = \Pr \{ U | Z, X \}$

- P_Z is related to distribution of true beliefs, P
- Two assumptions:

Elicitations not more informative than true beliefs

$$\Pr\{U|Z, X, P\} = \Pr\{U|X, P\}$$

Irue beliefs (not elicitations) are unbiased

$$\Pr\left\{U|X,P\right\} = P$$

• Assumptions 1+2 imply:

$$P_Z = E\left[P|X, Z\right]$$



• Can use distribution of predicted values to provide non-parametric lower bound on E[T(P)]

• Can use distribution of predicted values to provide non-parametric lower bound on E[T(P)]

Define

$$T_{Z}(p) = 1 + \frac{E\left[P_{Z} - p | P_{Z} \ge p\right]}{\Pr\left\{U\right\}}$$

• Can use distribution of predicted values to provide non-parametric lower bound on E[T(P)]

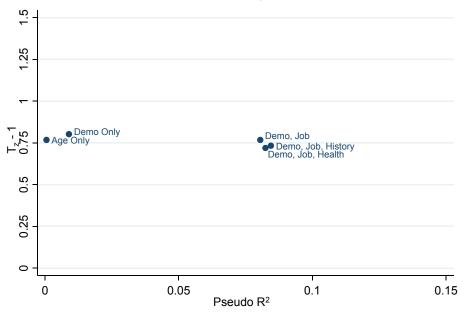
Define

$$T_{Z}(p) = 1 + \frac{E\left[P_{Z} - p | P_{Z} \ge p\right]}{\Pr\left\{U\right\}}$$

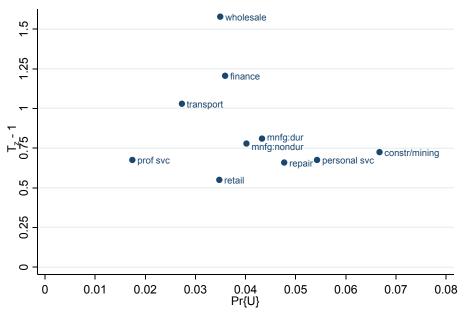
• Proposition 1: Assumptions 1 and 2 imply:

 $E\left[T_{Z}\left(P_{Z}\right)\right] \leq E\left[T\left(P\right)\right]$

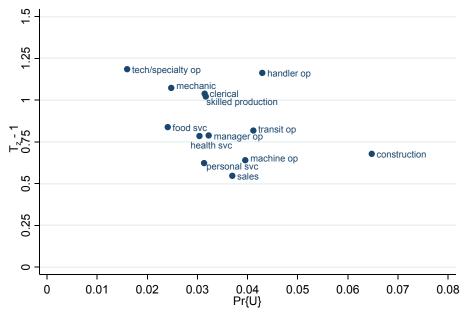
Lower Bounds for E[T(P)]-1 using Alternative Controls



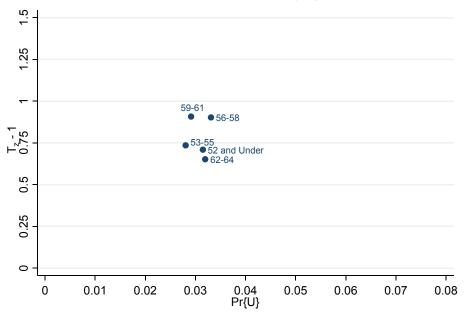
Lower Bounds for E[T(P)]-1 by Industry



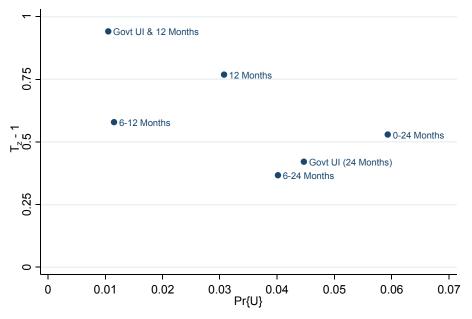
Lower Bounds for E[T(P)]-1 by Occupation



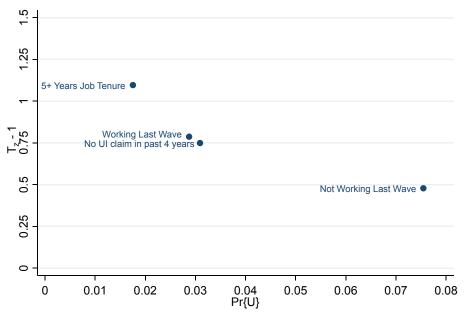
Lower Bounds for E[T(P)]-1 by Age



Lower Bounds on E[T(P)]-1 using Alternative U Definitions



Lower Bounds for E[T(P)]-1 for Low Risk Sub-samples



• Add parametric assumption to $f_{Z|P}(Z|P) = f_{Z|P}(Z|P;\eta)$ to reduce dimensionality

- Add parametric assumption to $f_{Z|P}\left(Z|P\right) = f_{Z|P}\left(Z|P;\eta\right)$ to reduce dimensionality
 - Approach discussed in detail in Hendren (2013)

- Add parametric assumption to $f_{Z|P}(Z|P) = f_{Z|P}(Z|P;\eta)$ to reduce dimensionality
 - Approach discussed in detail in Hendren (2013)
 - Expand observed density (cond'l on X = x)

$$f_{Z,U}(Z, U) = \int f_{Z,U}(Z, U|p) f_P(p) dp$$

= $\int \Pr \{ U = 1 | Z, P = p \}^U (1 - \Pr \{ U = 1 | Z, P = p \}$
 $* f_{Z|P}(Z|P = p; \eta) f_P(p) dp$
= $\int p^U (1 - p)^{1 - U} \underbrace{f_{Z|P}(Z|P; \eta)}_{Parametric} \underbrace{f_P(p)}_{Flexible} dp$

- Add parametric assumption to $f_{Z|P}\left(Z|P\right) = f_{Z|P}\left(Z|P;\eta\right)$ to reduce dimensionality
 - Approach discussed in detail in Hendren (2013)
 - Expand observed density (cond'l on X = x)

$$f_{Z,U}(Z,U) = \int f_{Z,U}(Z,U|p) f_P(p) dp$$

= $\int \Pr \{U = 1|Z, P = p\}^U (1 - \Pr \{U = 1|Z, P = p\}$
 $*f_{Z|P}(Z|P = p;\eta) f_P(p) dp$
= $\int p^U (1-p)^{1-U} \underbrace{f_{Z|P}(Z|P;\eta)}_{Parametric} \underbrace{f_P(p)}_{Flexible} dp$

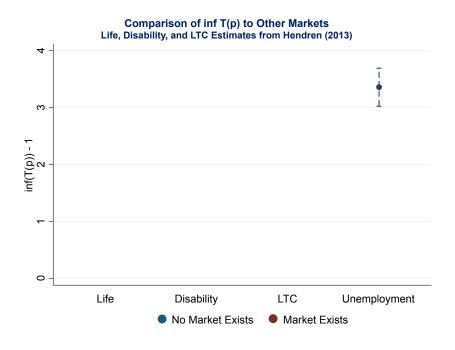
- Approximate f_p (p) using point-mass and f_{Z|P} using normal + ordered probit (as in Hendren 2013)
- Construct T(p) and its minimum (excluding top point mass)

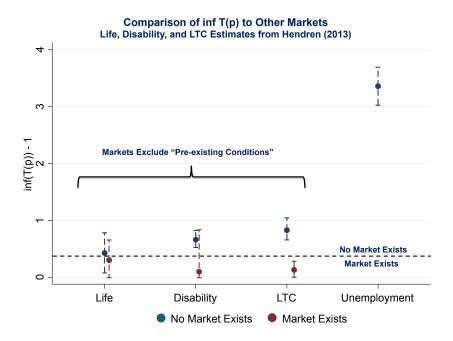
Minimum Pooled Price Ratio

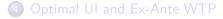
		Alternative Controls			
Specification	Baseline	Demo	Health		
	(1)	(2)	(3)		
Inf T(p) - 1	3.360	5.301	3.228		
s.e.	(0.203)	(0.655)	(0.268)		
Controls					
Demographics	Х	Х	Х		
Job Characteristics	Х		Х		
Health Characteristics			Х		
Num of Obs.	26,640	26,640	22,831		
Num of HHs	3,467	3,467	3,180		

Minimum Pooled Price Ratio

	Sub-Samples								
Specification	Age <= 55	Age > 55	Below Median Wage	Above Median Wage	Tenure > 5 yrs	Tenure <= 5 yrs			
Inf T(p) - 1 s.e.	3.325 (0.306)	3.442 (0.279)	4.217 (0.417)	3.223 (0.268)	4.736 (0.392)	3.739 (0.336)			
Controls									
Demographics	Х	Х	Х	Х	Х	Х			
Job Characteristics	Х	Х	Х	Х	Х	Х			
Num of Obs.	11,134	15,506	13,320	13,320	17,850	8,790			
Num of HHs	2,255	3,231	2,916	2,259	2,952	2,437			







Willingness to Pay

• How much of a markup are individuals willing to pay, $\frac{u'(c_u(p))}{v'(c_e(p))}$?

Willingness to Pay

- How much of a markup are individuals willing to pay, $\frac{u'(c_u(p))}{v'(c_e(p))}$?
- Follow previous literature (Baily 1978, Chetty 2006,...) by assuming:

$$\frac{u'(c_{u}(p))}{v'(c_{e}(p))} \approx 1 + \sigma \frac{\Delta c}{c}(p)$$

where

$$\frac{\Delta c}{c}\left(p\right) = \frac{c_{e}\left(p\right) - c_{u}\left(p\right)}{c_{e}\left(p\right)} \approx \log\left(c_{e}\left(p\right)\right) - \log\left(c_{u}\left(p\right)\right)$$

Willingness to Pay

- How much of a markup are individuals willing to pay, $\frac{u'(c_u(p))}{v'(c_e(p))}$?
- Follow previous literature (Baily 1978, Chetty 2006,...) by assuming:

$$\frac{u'(c_{u}(p))}{v'(c_{e}(p))} \approx 1 + \sigma \frac{\Delta c}{c}(p)$$

where

$$\frac{\Delta c}{c}\left(p\right) = \frac{c_{e}\left(p\right) - c_{u}\left(p\right)}{c_{e}\left(p\right)} \approx \log\left(c_{e}\left(p\right)\right) - \log\left(c_{u}\left(p\right)\right)$$

- $\sigma = \frac{u''c}{u'}$ is the coeff of relative risk aversion
- Assumes no state dependence: u = v
- " \approx " denotes:
 - 2nd order Taylor approximation $(u''' \approx 0)$
 - $log(1+x) \approx x$

• Start by estimating the average causal effect: $E\left[\frac{\Delta c}{c}\right]$

- Start by estimating the average causal effect: $E\left[\frac{\Delta c}{c}\right]$
- Regression of c on U would be biased

- Start by estimating the average causal effect: $E\left[\frac{\Delta c}{c}\right]$
- Regression of c on U would be biased
- Common to use 1-year first differences:

 $\Delta^{\textit{FD}} = \textit{E}\left[\textit{log}\left(\textit{c}_{t}\right) - \textit{log}\left(\textit{c}_{t-1}\right) | \textit{U}_{t} = 1\right] - \textit{E}\left[\textit{log}\left(\textit{c}_{t}\right) - \textit{log}\left(\textit{c}_{t-1}\right) | \textit{U}_{t} = 0\right]$

- Start by estimating the average causal effect: $E\left[\frac{\Delta c}{c}\right]$
- Regression of c on U would be biased
- Common to use 1-year first differences:

 $\Delta^{FD} = E\left[\log\left(c_{t}\right) - \log\left(c_{t-1}\right) | U_{t} = 1\right] - E\left[\log\left(c_{t}\right) - \log\left(c_{t-1}\right) | U_{t} = 0\right]$

- Use food expenditure in PSID
 - Following Gruber (1997) and Chetty and Szeidl (2007)
 - Previous literature finds $\Delta^{FD} \approx 6 10\%$

Specification:	Employed	Controls for Needs	Job Loss
Impact on $log(c_{t-l})$ - $log(c_t)$ Unemp s.e.	-0.0753*** (0.00857)	-0.0720*** (0.00891)	-0.0509*** (0.00772)
Specification Details Sample Employed in t-1 Controls for change in log needs	Х	X X	X X

• If individuals learn about unemployment, lagged consumption may respond to future unemployment

$$\Delta^{FD} = \underbrace{E\left[log\left(c_{e}\right) - log\left(c_{u}\right)\right]}_{\text{Causal Effect}} - \underbrace{\left(E\left[log\left(c_{pre}\right) | U=0\right] - E\left[log\left(c_{pre}\right) | U=1\right]\right)}_{\text{Bias from ex-ante response}}$$

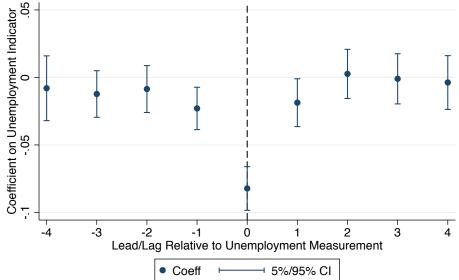
• Can be biased from correlated income shocks or savings responses

• If individuals learn about unemployment, lagged consumption may respond to future unemployment

$$\Delta^{FD} = \underbrace{E\left[log\left(c_{e}\right) - log\left(c_{u}\right)\right]}_{\text{Causal Effect}} - \underbrace{\left(E\left[log\left(c_{pre}\right) | U=0\right] - E\left[log\left(c_{pre}\right) | U=1\right]\right)}_{\text{Bias from ex-ante response}}$$

- Can be biased from correlated income shocks or savings responses
- Event study using leads/lags:
 - Regress $g_t = log(c_t) log(c_{t-1})$ on U_{t+j}
 - Control for age cubic and year dummies

Impact of Unemployment on Consumption Growth Employed in t-2 and t-1 Sample



Impact of Future Job Loss on Consumption

Specification:	Employed	Controls for Needs	Job Loss
Impact of Unemployment on $log(c_{i-2})$ - $log(c_{i-1})$ Unemp s.e.	-0.0230** (0.00954)	-0.0232** (0.0101)	-0.0182** (0.00854)
Specification Details Sample Employed in t-2 and t-1 Controls for change in log needs (t-2 vs t-1)	Х	X X	X X

• How to recover causal effect from Δ^{FD} ?

► Inc Change

- How to recover causal effect from Δ^{FD} ?
- ▶ Inc Change

• Two assumptions:

- How to recover causal effect from Δ^{FD} ?
 - ► Inc Change

- Two assumptions:
 - Euler equation holds

$$v'\left(c_{\textit{pre}}\left(p\right)\right) = pu'\left(c_{u}\left(p\right)\right) + \left(1 - p\right)v'\left(c_{e}\left(p\right)\right)$$

- How to recover causal effect from Δ^{FD} ? Inc Change
- Two assumptions:
 - Euler equation holds

$$v'\left(c_{\textit{pre}}\left(p\right)\right) = pu'\left(c_{u}\left(p\right)\right) + \left(1 - p\right)v'\left(c_{e}\left(p\right)\right)$$

⁽²⁾ Causal effect doesn't vary with $p: \frac{d[log(c_e) - log(c_u)]}{dp} = 0$ (allows heterogeneity in $\frac{dlog(c_e)}{dp}$)

- How to recover causal effect from Δ^{FD} ? Inc Change
- Two assumptions:
 - Euler equation holds

$$v'\left(c_{\textit{pre}}\left(p\right)\right) = pu'\left(c_{u}\left(p\right)\right) + \left(1 - p\right)v'\left(c_{e}\left(p\right)\right)$$

2 Causal effect doesn't vary with $p: \frac{d[log(c_e) - log(c_u)]}{dp} = 0$ (allows heterogeneity in $\frac{dlog(c_e)}{dp}$)

• Proposition: Suppose (1) and (2) hold. Then,

$$E\left[\log\left(c_{e}\left(p\right)\right) - \log\left(c_{u}\left(p\right)\right)\right] = \frac{\Delta^{FD}}{1 - \left(E\left[P|U=1\right] - E\left[P|U=0\right]\right)}$$

- How to recover causal effect from Δ^{FD} ? Inc Change
- Two assumptions:
 - Euler equation holds

$$v'\left(c_{pre}\left(p
ight)
ight)=pu'\left(c_{u}\left(p
ight)
ight)+\left(1-p
ight)v'\left(c_{e}\left(p
ight)
ight)$$

2 Causal effect doesn't vary with $p: \frac{d[log(c_e) - log(c_u)]}{dp} = 0$ (allows heterogeneity in $\frac{dlog(c_e)}{dp}$)

• Proposition: Suppose (1) and (2) hold. Then,

$$E\left[\log\left(c_{e}\left(p\right)\right) - \log\left(c_{u}\left(p\right)\right)\right] = \frac{\Delta^{FD}}{1 - (E\left[P|U=1\right] - E\left[P|U=0\right])}$$

• Scale by information revealed between t-1 and t

$$\frac{\operatorname{var}\left(P\right)}{\operatorname{var}\left(U\right)} = E\left[P|U=1\right] - E\left[P|U=0\right]$$

- Don't observe beliefs in PSID
 - Use HRS to obtain E[P|U=1] E[P|U=0]

- Don't observe beliefs in PSID
 - Use HRS to obtain E[P|U=1] E[P|U=0]
 - Regress Z on U:

$$E[P|U=1] - E[P|U=0] \approx E[Z|U=1] - E[Z|U=0]$$

- Recovers first stage under classical measurement error (noisy and biased Z)
- Biased if measurement error is correlated with \boldsymbol{U}

- Don't observe beliefs in PSID
 - Use HRS to obtain E[P|U=1] E[P|U=0]
 - Regress Z on U:

$$E[P|U=1] - E[P|U=0] \approx E[Z|U=1] - E[Z|U=0]$$

- Recovers first stage under classical measurement error (noisy and biased Z)
- Biased if measurement error is correlated with \boldsymbol{U}
- Yields E [Z|U = 1] − E [Z|U = 0] ≈ 0.20
 Implies 1 − (E [P|U = 1] − E [P|U = 0]) ≈ 0.8

Impact of Job Loss on Consumption

Specification:	Employed	Controls for Needs	Job Loss
Impact on $log(c_{t-l})$ - $log(c_t)$			
Unemp	-0.0753***	-0.0720***	-0.0509***
s.e.	(0.00857)	(0.00891)	(0.00772)
First Stage Impact on P	0.803***	0.803***	0.803***
s.e.	(0.0123)	(0.0123)	(0.0123)
IV Impact of U on log(c _t)	-0.094***	-0.09***	-0.063***
s.e.	(0.0107)	(0.0111)	(0.0096)
Markup WTP for UI ($\sigma = 2$)	18.7%	17.9%	12.7%

 $\bullet\,$ Range of specifications / robustness tests yield WTP between 15-50%

- $\bullet\,$ Range of specifications / robustness tests yield WTP between 15-50%
- Private information provides micro-foundation for absence of market:

$$rac{u'}{v'} - 1 \le \inf T(p) - 1$$

15%, 50%] \le 300%

- Range of specifications / robustness tests yield WTP between 15-50%
- Private information provides micro-foundation for absence of market:

$$\frac{u'}{v'} - 1 \le \inf T(p) - 1$$
15%, 50%] \le 300%

- What if government decreased UI benefits?
 - Gruber (1997): Consumption drop would increase 2-3x
 - Suggests private market would likely not arise even if government stopped providing UI

- Range of specifications / robustness tests yield WTP between 15-50%
- Private information provides micro-foundation for absence of market:

$$\frac{u'}{v'} - 1 \le \inf T(p) - 1$$
15%, 50%] \le 300%

- What if government decreased UI benefits?
 - Gruber (1997): Consumption drop would increase 2-3x
 - Suggests private market would likely not arise even if government stopped providing UI
- Does this change the calculus for optimal UI policy?

3 Estimates of Willingness to Pay

ullet Return to theoretical model; solve for optimal b and τ

- Return to theoretical model; solve for optimal b and au
- Optimality formula:

$$W^{Social} = \frac{E\left[\frac{p}{E[p]}u'\left(c_{u}\left(p\right)\right)\right] - E\left[\frac{1-p}{E[1-p]}v'\left(c_{e}\left(p\right)\right)\right]}{E\left[\frac{1-p}{E[1-p]}v'\left(c_{e}\left(p\right)\right)\right]} = FE$$

where W^{Social} is the markup individuals are willing to pay before learning p

• FE is the aggregate fiscal externality from increasing benefits

- Return to theoretical model; solve for optimal b and au
- Optimality formula:

$$W^{Social} = \frac{E\left[\frac{p}{E[p]}u'\left(c_{u}\left(p\right)\right)\right] - E\left[\frac{1-p}{E[1-p]}v'\left(c_{e}\left(p\right)\right)\right]}{E\left[\frac{1-p}{E[1-p]}v'\left(c_{e}\left(p\right)\right)\right]} = FE$$

where W^{Social} is the markup individuals are willing to pay before learning p

- FE is the aggregate fiscal externality from increasing benefits
- Recovers Baily-Chetty formula if p = E[p]
 - Causal effect of unemployment would be sufficient

- Return to theoretical model; solve for optimal b and au
- Optimality formula:

$$W^{Social} = \frac{E\left[\frac{p}{E[p]}u'\left(c_{u}\left(p\right)\right)\right] - E\left[\frac{1-p}{E[1-p]}v'\left(c_{e}\left(p\right)\right)\right]}{E\left[\frac{1-p}{E[1-p]}v'\left(c_{e}\left(p\right)\right)\right]} = FE$$

where W^{Social} is the markup individuals are willing to pay before learning p

- FE is the aggregate fiscal externality from increasing benefits
- Recovers Baily-Chetty formula if p = E[p]
 - Causal effect of unemployment would be sufficient
- More generally, insurance moves resources across people with different ex-ante beliefs p

• Consider welfare experiment:

$$W^{ex-ante} = \frac{v'(c_{pre}(1)) - v'(c_{pre}(0))}{v'(c_{pre}(0))}$$
$$\approx \frac{\frac{d}{dp}v'}{v'} \approx \frac{dlog(v')}{dp}$$

• Consider welfare experiment:

$$\begin{split} W^{ex-ante} &= \frac{v'\left(c_{pre}\left(1\right)\right) - v'\left(c_{pre}\left(0\right)\right)}{v'\left(c_{pre}\left(0\right)\right)} \\ &\approx \frac{\frac{d}{dp}v'}{v'} \approx \frac{dlog\left(v'\right)}{dp} \end{split}$$

• Suppose Assumptions 1 + 2 hold. Then:

$$W^{Social} \approx \underbrace{\frac{var(P)}{var(U)}}_{\text{Ex-ante}} W^{\text{Ex-ante}} + \underbrace{\left(1 - \frac{var(P)}{var(U)}\right)}_{\sigma\Delta^{FD}} W^{\text{Ex-post}} \underbrace{\frac{var(P)}{var(U)}}_{\sigma\Delta^{FD}} \underbrace{\frac{var(P)}{var(U)}}_{\sigma\Delta^{$$

• Social value of insurance includes ex-ante value

• Paper provides two methods to estimate $W^{Ex-ante}$

$$W^{Ex-ante} = \frac{dlog(v')}{dp} \approx \sigma \frac{dlog(c_{pre})}{dp} \approx \frac{1}{\epsilon^{semi}} \frac{dLFP^{Spouse}}{dp}$$

• Paper provides two methods to estimate $W^{Ex-ante}$

$$W^{E_{x-ante}} = \frac{dlog(v')}{dp} \approx \sigma \frac{dlog(c_{pre})}{dp} \approx \frac{1}{\epsilon^{semi}} \frac{dLFP^{Spouse}}{dp}$$

• Estimate $\frac{dlog(c_{pre})}{dp}$ using 2-Sample IV:
 $\frac{dlog(c_{pre})}{dp} = \frac{\Delta_{-1}^{FD}}{\Delta_{-1}^{P}}$

• Allows θ to move both *c* and *p* (e.g. income shocks)

• Paper provides two methods to estimate $W^{Ex-ante}$

$$W^{E_{x-ante}} = \frac{dlog(v')}{dp} \approx \sigma \frac{dlog(c_{pre})}{dp} \approx \frac{1}{\epsilon^{semi}} \frac{dLFP^{Spouse}}{dp}$$
• Estimate $\frac{dlog(c_{pre})}{dp}$ using 2-Sample IV:
 $\frac{dlog(c_{pre})}{dp} = \frac{\Delta_{-1}^{FD}}{\Delta_{-1}^{P}}$

Allows θ to move both c and p (e.g. income shocks)
 Δ^{FD}₋₁ ≈ 2.5% is the lagged first difference estimate

• Paper provides two methods to estimate $W^{Ex-ante}$

$$W^{E_{X-ante}} = \frac{dlog(v')}{dp} \approx \sigma \frac{dlog(c_{pre})}{dp} \approx \frac{1}{\epsilon^{semi}} \frac{dLFP^{Spouse}}{dp}$$

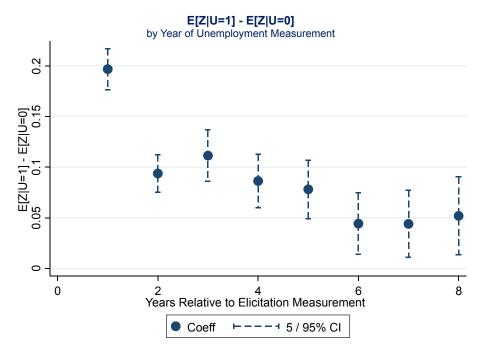
Estimate $\frac{dlog(c_{pre})}{dp}$ using 2-Sample IV:
 $\frac{dlog(c_{pre})}{dp} = \frac{\Delta_{-1}^{FD}}{\Delta_{-1}^{P}}$

• Allows θ to move both c and p (e.g. income shocks)

• $\Delta_{-1}^{FD} \approx 2.5\%$ is the lagged first difference estimate • Δ_{-1}^{P} is lagged first difference in beliefs

$$\Delta_{-1}^{P} = E[P|U_{t} = 1] - E[P|U_{t} = 0] - (E[P_{-1}|U_{t} = 1] - E[P_{-1}|U_{t} = 0]$$

• Approximate
$$\Delta_{-1}^P$$
 by regressing Z_t on U_{t+j}



Impact of Future Job Loss on Consumption

Specification:	Employed	Controls for Needs	Job Loss
Impact of Unemployment on $log(c_{i-2})$ - $log(c_{i-1})$ Unemp s.e.	-0.0230** (0.00954)	-0.0232** (0.0101)	-0.0182** (0.00854)
2-Sample IV Welfare Calculation Coefficient on U ("First Stage") s.e.	0.103 (0.012)	0.103 (0.012)	0.103 (0.012)
Consumption Drop Equivalent s.e.	0.22*** (0.093)	0.23** (0.098)	0.18** (0.083)
Implied WTP (CRRA = 2) s.e.	0.45*** (0.185)	0.45** (0.195)	0.35** (0.166)

 Paper also provides evidence based on ex-ante spousal labor supply responses
 Spousal Labor Supply

$$W^{Ex-ante} = \frac{dlog(v')}{dp} \approx \frac{1}{\epsilon^{semi}} \frac{d[LFP^{Spouse}]}{dp}$$

• Suggests WTP of 50-60%

Social WTP for UI

Ex-ante Valuation Method:	Consumption Drop			Labor Supply
	(1)	(2)	(3)	(4)
Social WTP, W ^{social}	23.8%	11.9%	35.7%	27.3%
Only using ∆ ^{FD} (Gruber 1997) % Not Captured	15.1% 36.8%	7.5% 36.8%	22.6% 36.8%	15.1% 44.7%
Insurance against p, $W^{ex-ante}$ Weight, $E[P U=1] - E[P U=0]$	44.5% 0.197	22.3% 0.197	66.8% 0.197	62.0% 0.197
Insurance against U (given p), W ^{ex-post} Weight, 1 - (E[P U=1] - E[P U=0])	18.7% 0.803	9.4% 0.803	28.1% 0.803	18.7% 0.803
<u>Specification Details</u> CRRA, σ Spouse L.S. Semi-Elasticity, ε ^{semi}	2	1	3	2 0.5

- Private information explains absence of private UI market
 - Growing evidence that private information shapes the existence of insurance markets
- Knowledge of future job loss biases WTP estimates
 - Ex-ante consumption and spousal labor supply responses
- Re-scale private WTP (25% higher)
- Add ex-ante insurance value to social WTP (40% higher)
 - Larger than 25% because $W^{Ex-ante} > W^{Ex-post}$
 - UI partially insures against learning you might lose your job

A Second Implementation: Spousal Labor Supply

- Further evidence of ex-ante responses?
 - Spousal labor supply
 - If lower preferences for consumption, then spousal labor supply should decrease
- Also provides new quantification of WTP
 - Assume disutility of labor entry additively separable:

$$W^{Ex-ante} = rac{dlog\left(v'
ight)}{dp} pprox rac{1}{\epsilon^{semi}} rac{d[LFP^{Spouse}]}{dp}$$

▶ Return

- Observe elicitations and spousal labor supply jointly in HRS
- Sample of households who stay married in t-1 and t
- Focus on labor market entry
- Define an indicator for a spouse not in labor force last period and in labor force this period
 - On average, about 4% of spouses go from not working to working
 - Paper also looks at exit
 - Evidence of correlated shocks on exit
 - Suggests current approach may under-state response if opportunity set held fixed Return

0.08 Pr{Spouse Enters Workforce} 0.03 0.04 0.05 0.06 0.07 **•**51-100 41-50 1-10 11-40 •0 0.02 0 20 40 60 80 100

Relationship between Potential Job Loss and Spousal Labor Supply

Subjective Probability Elicitation

Specification:	Baseline	U=0	HH FE	Ind FE	2yr Lag ("Placebo")
Estimation of dL/dZ					
Elicitation (Z)	0.0273**	0.0270**	0.0267*	0.0312	0.00792
s.e.	(0.0112)	(0.0116)	(0.0146)	(0.0230)	(0.0102)
Mean Dep Var	0.04	0.04	0.04	0.04	0.04
Num of Obs.	11049	10726	11049	11049	11049
Num of HHs	2214	2194	2214	2214	2214

Welfare Calculation: Spousal Labor Supply Response

Translating to Welfare

- Assume $\epsilon^{semi} = 0.5$
- Need to correct for measurement error in Z

$$\frac{dLFP}{dP} = \frac{dLFP}{dZ} \frac{var(Z)}{var(P)}$$

• Again, use information in the joint distribution of Z and L

$$var(P) \approx cov(L, Z)$$

• So,

$$\frac{dlog(v')}{dp} \approx \frac{1}{\epsilon^{semi}} \frac{d[LFP^{Spouse}]}{dp} = \frac{1}{\epsilon^{semi}} \frac{dLFP}{dZ} \frac{var(Z)}{var(P)}$$
• Return

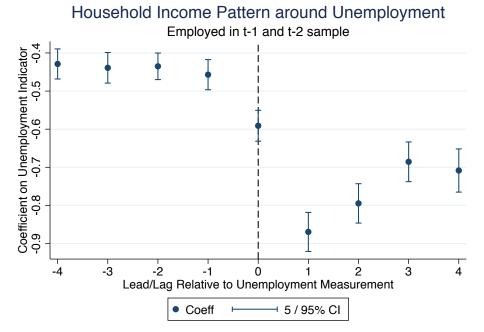
Specification:	Baseline	U=0	HH FE	Ind FE	2yr Lag ("Placebo")
<i>Estimation of dL/dZ</i> Elicitation (Z)	0.0273**	0 0270**	0.0267*	0.0312	0 00792
s.e.	(0.0112)	(0.0116)	(0.0146)	(0.0230)	(0.0102)
Welfare Calculation					
Total/Signal Var bootstrap s.e.	11.00 (1.41)	11.00 (1.37)	11.00 (1.32)	11.00 (1.32)	
Implied WTP ($\varepsilon^{\text{semi}} = 0.5$)	0.6**	0.59**	0.59**	0.69*	
bootstrap s.e.	(0.26)	(0.26)	(0.29)	(0.39)	
Mean Dep Var Num of Obs	0.04 11049	0.04 10726	0.04 11049	0.04 11049	0.04 11049
Num of HHs	2214	2194	2214	2214	2214

Welfare Calculation: Spousal Labor Supply Response

- Recovers causal effect under two assumptions:
 - Euler equation holds

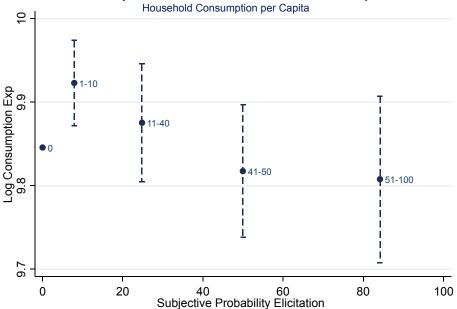
$$v'\left(c_{\textit{pre}}\left(p\right)\right) = pu'\left(c_{\textit{u}}\left(p\right)\right) + \left(1 - p\right)v'\left(c_{e}\left(p\right)\right)$$

2 Heterogeneity in p may be correlated with c_u and c_e , but not differentially $\left(\frac{dlog(c_u)}{dp} \approx \frac{dlog(c_e)}{dp}\right)$ return



• Return • Return

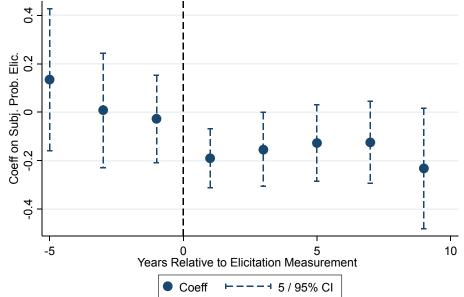
- Do c_u and c_e vary with p?
- Use consumption mail survey in HRS conducted in year after main survey
 - 10%(!) sub-sample
 - Regress ex-post consumption log(c) on ex-ante Z
 - Recall: Z has large focal point bias at zero
 - Controls for wages, census division, year, age, gender, marital status, and unemployment status



Relationship between Potential Job Loss and Consumption

Relationship between Potential Job Loss and Consumption

Leads and Lags of Per Capita Consumption



	Danal 1: Das	eline Sample	Danal 2: II	alth Sample	Donal 2: Ma	rried Sample
- Variable	mean	std dev	mean	std dev	mean	std dev
Selected Observables (subset of .	X)					
Age	56.1	5.1	56.1	5.2	56.6	5.0
Male	0.40	0.49	0.41	0.49	0.44	0.50
Wage	36,057	143,883	37,523	154,993	38,138	55,722
Job Tenure (Years)	12.7	10.8	12.7	10.9	13.6	10.9
Unemployment Outcome (U)	0.031	0.173	0.032	0.175	0.029	0.168
Subjective Probability Elicitatio	15.7	24.8	15.7	24.6	14.8	24.0
Spousal Labor Supply						
Working for Pay					0.693	0.461
Fraction Entering					0.039	0.194
Sample Size						
Number of Observations	26,	640	22,	831	11,	049
Number of Households	3,4	467	3,1	180	2,2	214

Sample Summary Statistics

	mean	std dev	
Variable			
Age	39.794	10.27	
Male	0.808	0.39	
Unemployment	0.059	0.24	
Year	1985	7.62	
Log Consumption	8.199	0.65	
Log Expenditure Needs	8.124	0.32	
Consumption growth $(log(c_{\iota-2})-log(c_{\iota-1}))$	0.049	0.360	
Sample Size			
Number of Observations	80,984		
Number of Households	11,055		

Summary Statistics (PSID Sample)