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Abstract. Consider a mechanism designer who employs a dynamic protocol to
implement a choice rule. A protocol violates the contextual privacy of an agent if
the designer learns more of the agent’s private information than is necessary for
computing the outcome. Our first main result is a characterization of choice rules
that can be implemented without producing any contextual privacy violations. We
apply this result to show that many commonly studied and employed choice rules
violate some agent’s contextual privacy—the first-price auction and serial dictator-
ship rules are notable exceptions that can avoid violations altogether. Our second
main result is a representation theorem for protocols that are contextual privacy
equivalent. We use this result to derive a novel protocol for the second-price auc-
tion choice rule, the ascending-join protocol, which is more contextually private
than the widespread ascending or “English” protocol.

1. INTRODUCTION

In standard mechanism design, a designer elicits agents’ private information in order to

determine the outcome of a social choice rule. Ex-post, in an incentive compatible mecha-

nism, the designer learns all of agents’ private information—typically more than is strictly

necessary for computing the rule. For example, in a sealed-bid second price auction, the

designer learns all losing bids exactly, even though it is only necessary to know that all

losing bids fall below the second highest. The designer also learns the winner’s bid exactly,

even though it is only necessary to know that the winning bid is above the second highest.

At the same time, there are several reasons why it may be desirable that the designer not

learn “too much” about agents. First, gaining excess knowledge of agents’ private informa-

tion could expose the designer to legal liabilities or political risk. For example, as recounted

in McMillan (1994), a second-price auction for spectrum licenses in New Zealand had a
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“political defect”: “by revealing the high bidder’s willingness to pay, the auction exposed

the government to criticism, because after the auction everyone knew that the firm valued

the license at more than it paid for it” (McMillan, 1994). The government would have ben-

efited from a design that ensured it only learned what was strictly needed—with the idea

that, as the adage goes, what they don’t know can’t hurt them. Second, agents may have

intrinsic privacy concerns (Acquisti et al., 2016) or they may worry that their private in-

formation could be used against them in subsequent interactions with the designer or third

parties (Rothkopf et al., 1990, Ausubel, 2004). If agents have privacy concerns, they may

be reluctant to reveal their private information even if the appropriate allocative incentives

are in place.1

In this paper, we study mechanisms that minimize the superfluous information learned by

a designer. In our set up, when a designer commits to a social choice rule, they also choose

a dynamic protocol for computing the rule. These dynamic protocols allow the designer

to learn agents’ private information in a minimal way, ruling out type profiles until they

know enough to compute the outcome. A protocol produces a contextual privacy violation

for a particular agent if the designer learns a piece of their private information that was not

needed for computing the outcome. We call protocols that produce no violations for any

agent at any type profile contextually private protocols.2

We define protocols in a way that allows us to accommodate a broad range of social and

technological environments. A protocol is composed of queries. A query can be directed to

one agent—for example, a designer may ask one agent “Is your type above x?” Or, a query

can be directed to multiple agents—e.g. the designer could ask “How many agents have a

type above x?” Formally, a query presents a partition of the type space to agents, and asks

the agents to identify in which cell of the partition the true type profile lies. The details of

1For a recent example where superfluous information learned by the designer may have been used against
participants, consider Google’s second-price auctions for advertising. A 2022 lawsuit State of Texas v. Google
alleged that “Google induced advertisers to bid their true value, only to override pre-set AdX floors and use
advertisers’ true value bids against them... generat[ing] unique and custom per-buyer floors depending on what a
buyer had bid in the past.”

2As we will discuss further when we review related literature (Section 8), contextual privacy is analogous, in
some environments, to the concept of unconditional privacy in decentralized computing (Chor and Kushilevitz,
1989, Brandt and Sandholm, 2005) and generalizes the notion of unconditional winner privacy studied in an
auction context in Milgrom and Segal (2020).
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the environment may dictate the format of queries the designer is able to ask—we call the

set of available queries the elicitation technology.

An elicitation technology represents how the designer can learn about the subset of the

type space in which the true type profile lies. One possible elicitation technology is a

“trusted third party.” If there is a trusted third party, the designer can delegate informa-

tion retrieval to this third party, and ask the third party to report back only what is needed

to compute the outcome. So, under this trusted third party elicitation technology, all choice

rules trivially have a contextually private protocol. Cryptographic techniques like secure

multi-party computation and zero-knowledge proofs are elicitation technologies that simi-

larly trivialize contextual privacy.3

But there are many environments in which the designer has access neither to a trusted

third party nor to a full suite of cryptographic tools. Advanced cryptography may be exces-

sively costly in terms of time, money or computational power.4 In addition, sophisticated

cryptographic mechanisms require sophisticated participants—if participants do not under-

stand how their information is kept private, their privacy concerns may not be alleviated.5

We focus on protocols founded on minimal assumptions regarding trust and comprehen-

sion. Specifically, for the most design-relevant portions of the paper, we restrict attention

to sequential elicitation technologies. In a sequential elicitation protocol, the designer is

limited to queries directed at individual agents, sequentially asking agents questions about

their type. Sequential elicitation protocols neatly expose the privacy properties of a given

protocol: for an agent to understand what the designer has learned about her, she merely

has to recall her responses to the designer’s questions. The designer knows something if

and only if an agent said it.

This minimal assumption stands in contrast to more complex assumptions we could

make about the set of available elicitation technologies. For example, if the designer’s

3For a survey of cryptographic protocols for sealed-bid auctions, see Alvarez and Nojoumian (2020).
4Even if possible, some sophisticated solutions may be wasteful—in one of the earliest large-scale uses of

secure multi-party computation, a double auction with sugar beet farmers in Denmark, designers wondered “if the
full power of multiparty computation was actually needed,” or if a simpler implementation guided by a weaker
privacy criterion may have sufficed (Bogetoft et al., 2009).

5A recent survey shows that only 61% of WhatsApp’s users believe the company’s claim that their messages
are end-to-end encrypted (Alawadhi, 2021).
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elicitation technology allows them to count the number of agents whose type satisfies a

certain property without learning whose type satisfies that property, the agents must trust

the designer’s use of anonymization techniques. If the designer’s elicitation technology

enables the secret sharing behind secure multiparty computation, agents must grasp the id-

iosyncratic guarantees and computational assumptions of the particular secure multiparty

computation protocol in use.

An additional benefit of sequential elicitation protocols is that they induce a straightfor-

ward extensive-form game. Thus, we are able to connect to—and draw on—the growing

literature on dynamic mechanism design, especially that on obvious strategyproofness (Li,

2017) and credibility (Akbarpour and Li, 2020). It is a common thread in this literature

that the dynamic one-at-a-time implementation of a choice rule more clearly exposes its

properties—obvious strategyproofness, defined in such environments, is a form of strate-

gyproofness that is easier to understand. In a similar vein, contextual privacy can be under-

stood as a form of privacy that is straightforward to understand.

To illustrate the central definition of the paper and to introduce a key theme of our results,

we turn to a simple example.

1.1. Introductory Example.

Consider a setting with 4 agents and 2 identical objects. The agents’ private information

is their value for the object, which we will call the agent’s “type.” The agents have integer

values for the object in the range from 0 to 10.

TABLE I

INTRODUCTORY EXAMPLE: COMPARING TWO PROTOCOLS FOR φEFFICIENT .

Ascending Protocol Descending Protocol

Definition 1. For each i ask θi ≥ 1? 1. For each i ask θi ≤ 9?
2. For each i ask θi ≥ 2? 2. For each i ask θi ≤ 8?

...
...

k. For each i ask θi ≥ k? k. For each i ask θi ≤ 10− k?

CP? no no

Agent Violations violates losers’ privacy violates winners’ privacy
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The designer aims to compute a choice rule φ, and learns about the type profile through

a dynamic protocol. A protocol is contextually private for a choice rule φ if, at all possible

type profiles, each piece of information revealed through the protocol is necessary for de-

termining the outcome of the choice rule. More precisely, a protocol is contextually private

if for all agents and all possible types, the designer can only distinguish between possible

types of agents in the event that the two types lead to different outcomes under φ, holding

other agent types fixed.

To see how a protocol can fail to be contextually private, we consider a specific choice

rule. Suppose a designer wants to allocate the two objects efficiently, and there are no

transfers. We call this choice rule φefficient.6 The designer chooses a protocol to learn about

the type space, proceeding with queries that refine their knowledge of the type profile until

they have found the agents with the 2 highest values.

We will consider two natural protocols that the designer could use to compute the choice

rule φefficient: the ascending and descending protocols.7 First, consider the ascending pro-

tocol, in which the designer asks all agents if their value for the good is above 1, then asks

all agents if their value for the good is above 2, and so forth. The designer stops asking

questions when they have enough information to compute the efficient allocation.

The ascending protocol for the efficient choice rule is not contextually private. To see

this, suppose the type profile is (1,2,5,9). Following the ascending protocol, the designer

learns two agents’ types exactly, and learns that the other two agents have types greater than

or equal to 3, i.e. they learn that the type profile is contained in the subset of type profiles

{1}× {2}× [3,10]× [3,10]. Note that, holding all other agents’ types fixed, if agent 1 had

a value of 2 instead of 1, it would not make a difference to the outcome. Similarly, holding

6Formally, let agent i’s type be θi, and let the profile of agent types be θ = (θ1, θ2, θ3, θ4). The rule the designer
wants to implement is φefficient(θ) = (φ1(θ1), . . . , φ4(θ4)) with

φi(θi) =

{
1 if θi ≥ θ[2]

0 otherwise,

where θ[2] is the 2nd order statistic of the profile of agent types.
7For simplicity, this example abstracts away from agent strategies, assuming that agents truthfully respond to

all of the designer’s queries. Our formal framework, however, will accommodate indirect messaging protocols
with generic messaging strategies.
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all other agents’ types fixed, if agent 2 had a value of 1 instead of 2, it would not make a

difference to the outcome. Because contextual privacy requires that there are no violations

at any possible type profile, we have immediately shown that the ascending protocol is not

contextually private: For the losers (agents 1 and 2), the designer only needed to know that

they had values below 3—the designer did not need to learn their exact values.

Next we turn to the descending protocol, which is also not contextually private. Follow-

ing the descending protocol, the designer learns the winners’ types exactly and that all other

agents have types below 5. That is, the designer learns that the true type profile is contained

in the subset of type profiles [0,4]× [0,4]× {5} × {9}. This protocol is not contextually

private by similar logic to that of the ascending protocol, except here, it is the winners’

types that did not need to be learned exactly.

This introductory example, summarized in Table I, illustrates two key themes of the pa-

per. First, neither the ascending nor the descending protocol for φefficient is contextually

private—we will show in Section 4 that under our minimal trust assumption, it is hard

to find contextually private protocols for many choice rules. Second, the fact that the as-

cending protocol and descending protocol produce disjoint contextual privacy violations

sharpens our understanding of the privacy tradeoffs of different design choices. In Sec-

tion 5, we discuss in depth how different design choices lead to different contextual privacy

violations for different agents.

1.2. Overview.

We now present a brief overview of the paper. In Section 2, we articulate our formal

framework and present the key definitions of the paper.

In Section 3, we discuss which choice rules have protocols that produce no contextual

privacy violations for any agent. Our first main result, Theorem 1, is a characterization

of contextually private choice rules under a fixed arbitrary set of elicitation technologies.

Whether a choice rule admits a contextually private protocol depends on local properties

of the choice rule—that is, how the choice rule behaves on small subsets and projections

of the type space. We derive a powerful corollary of Theorem 1 called the Corners Lemma.
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The Corners Lemma is a simple necessary condition for a choice rule to have a contextually

private protocol under sequential elicitation technologies.

Next, in Section 4, we apply the necessary condition from Theorem 1 to understand

which choice rules are contextually private under a minimal assumption on the designer’s

elicitation technology. After noting that the first-price auction and the serial dictatorship

choice rules are contextually private, we focus on the limits of contextual privacy under

sequential elicitation protocols in assignment, auction and voting domains. We use the Cor-

ners Lemma to show all of the following negative results: there is no individually rational

and efficient rule for the house assignment problem that is also contextually private (Propo-

sition 2); there is no contextually private stable matching rule in matching with priorities

(Proposition 3); the second-price auction rule does not have a contextually private protocol

(Proposition 4); there is no efficient double auction rule that is contextually private (Propo-

sition 5); and finally that the generalized median voting rule is not contextually private

(Proposition 6).

Having seen the limits of contextual privacy under sequential elicitation, we next con-

sider in Section 5 how to design for privacy when a chosen choice rule is not contextually

private. We consider contextual privacy equivalence: a protocol is contextual privacy equiv-

alent to another protocol if the two protocols produce contextual privacy violations for the

same set of agents. Our second main result, Theorem 2, considers choice rules defined

on ordered type spaces and shows that every choice rule is equivalent to a bimonotonic

protocol, so it is without loss for the designer to consider only bimonotonic protocols. A

bimonotonic protocol consists of threshold queries which, for each agent, are monotoni-

cally increasing or decreasing in the threshold.

We also consider how a designer might select among protocols in a particular contextual

privacy equivalence class. We say that a protocol contextual privacy improves on another

protocol if, taking into account the type profiles that produce violations, the set of con-

textual privacy violations can be reduced. We observe that the ascending protocol for the

second-price auction can be contextual privacy improved: what we call ascending-join pro-

tocols are contextual privacy improvements on the ascending protocol (Proposition 7).
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Every sequential elicitation protocol induces a well-defined extensive-form game. In

Section 6, we “check” that three protocols we found to have good contextual privacy prop-

erties in Section 4 and Section 5 also allow the designer to “implement” the choice rule in

obviously dominant strategies or in perfect Bayesian strategies. This section relies mostly

on prior results (from e.g. Li (2017)), and is intended to be an initial step toward a more

complete understanding of how contextual privacy interacts with incentives.

In Section 7, we explore two modifications of contextual privacy: individual contextual

privacy and group contextual privacy. These extensions highlight connections to other con-

cepts such as non-bossiness (Satterthwaite and Sonnenschein, 1981, Pycia and Raghavan,

2022) and (strong) obvious strategyproofness (Li, 2017, Pycia and Troyan, 2023). Finally,

we discuss related literature in Section 8 and conclude in Section 9.

Proofs omitted from the main text are in Appendix A.

2. MODEL

Consider a set N = {1,2, . . . , n} of agents with private information (or “types”) θi

distributed according to Fi ∈ ∆(Θ), where Θ is a finite type space. We denote by θ =

(θ1, θ2, . . . , θn) ∈ Θn = Θ a profile of agents’ types. Agents have utility functions u over

outcomes in X which depend on their private types, ui : Θ×X→R. All primitives of the

model besides the realized type profile θ are common knowledge.

The designer wishes to implement a social choice function φ : Θ→ X through a dy-

namic protocol.8 In a protocol, agents repeatedly send messages mi ∈M , where a profile

of agent messages is m = (m1, . . . ,mn) ∈M.

2.1. Elicitation Technologies.

We will formally define protocols in the following subsection. For now it is enough to

think of them as a series of questions that the designer can ask about submitted message

profiles at each round. An elicitation technology captures the partitions of the space of

message profiles that are indistinguishable to the designer. Formally, hence, an elicitation

8We consider only deterministic choice rules. When we discuss common choice rules, such as the first-price
auction choice rule, we will assume that there is deterministic, and unless other noted otherwise, lexicographic,
tie-breaking.
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technology is a collection of partitions of the space of message profiles, i.e. a set of parti-

tions S⊆ 2(2M).

At each stage of the protocol, the designer chooses a partition S ∈S and learns which

of the partition cells the submitted message profile lies in. At any point, the protocol may

stop and choose an outcome x ∈X .

We next give two examples of particular elicitation technologies which will feature in our

analysis. The first elicitation technology, the sequential elicitation technology, was already

introduced informally in Section 1 and corresponds to a minimal assumption about the

agent’s trust.

EXAMPLE—Sequential Elicitation Technology: The sequential elicitation technology

SSE is a collection of partitions of the message space based on a single agent’s message.

This elicitation technology contains n elements, Si ∈ 2(2M) for i= 1, . . . , n. Each element

Si is a partition of the message space, i.e.

Si = {{m ∈M :mi =m} :m ∈M}. (1)

The interpretation of the sequential elicitation technology is that the designer can ask one

agent at a time to send a message about the cell of a given partition in which their message

lies. This is a result of the fact that (mi,m−i) and (mi,m−i) are indistinguishable for

the designer for any i = 1,2, . . . , n, mi ∈M and m−i ∈M−i. The sequential elicitation

technology corresponds to a minimal assumption on trust because agents are queried one

at a time, and thus immediately identified with their messages: there is no mediator or

mediating technology that could shield the agent’s message from their identity.

Another example of an elicitation technology is the count elicitation technology, under

which a designer can observe the number of messages, without learning the identities of

agents who send this message. This elicitation technology corresponds to the common

practice of anonymized elicitation (for example, many political elections use a secret ballot

and online auctions permit anonymous bidding).



10

EXAMPLE—Count Elicitation Technology: The count elicitation technology SCount is

SCount = {{m ∈M : |{mi =m}|= k} : k = 1,2, . . . , n,m ∈M}.

The count elicitation technology requires more trust than the sequential elicitation tech-

nology in the sense that it requires “mediation”. To see this, suppose the designer uses the

count elicitation technology to ask “How many agents have a message above x?” Then, in

order for it to be the case that the designer only learns the number, and not the identity of the

agents, there must be a technology that anonymizes agents messages when they are sent.

In practice, count elicitation technologies could be a ballot box, a third-party mediator, or

another trusted anonymization technique.

2.2. Protocols and Messaging Strategies.

We represent protocols, i.e. dynamic elicitation processes, as directed rooted trees. All

nodes encode histories of questions based on an elicitation technology. The root node r

corresponds to the initial, empry history. Terminal nodes z ∈ Z are the final queries at

which the outcome x ∈X is determined.

DEFINITION—Protocol: A protocol P = (V,E, r,Z) with elicitation technology S is

a directed tree with nodes V , edges E, root r ∈ V and a set of terminal nodes Z . Each

non-terminal node v is labelled with a query sv : M→ children(v), such that the partition

induced by the preimages of sv lies in S, that is

{s−1
v (w)⊆M :w ∈ children(v)} ∈S.

As a slight abuse of notation, we also write sv ∈S in this case.

We refer to a protocol with elicitation technology S as an S-protocol, and denote by PS
the set of protocols with elicitation technology S. Table II compiles notation. When it is

not clear from the context which protocol a given query belongs to, we will mark queries

sv by a superscript for the relevant protocol, sPv .
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It will be helpful to capture what the designer knows about the type profile at node y ∈ V .

Denote the information available to the designer at node y as

Θy :=
⋂

(v,w)∈path(y)

σ−1
v (s−1

v (w)),

where, path(y) is the set of edges from the root node r to the node w. So Θy is the set of

type profiles that are possible under the protocol P when node y is reached.

Agents submit messages according to deterministic strategies σi, which map non-

terminal nodes and type spaces into messages, i.e. σi : (V \ Z) × Θ→M . That is, de-

pending on their type θi, an agent chooses a message to send at each non-terminal node

V . The state of the protocol is public: The agents know the exact history of previously

asked queries, and the outcomes that were observed by the designer, so that the informa-

tion on which agent i’s strategy depends at node v is her own type θi in conjunction with

the information known at node v i.e. Θv . Depending on the elicitation technology used,

the messages of many agents at a particular node may be inconsequential. For example,

sequential elicitation queries only take into account a single agent’s message at each node

v.

We define the terminal node reached in protocol P from strategy profile σ inductively.

At a non-terminal node v ∈ V \Z , the successor node is determined as

sv(σ1(θ1, v), σ2(θ2, v), . . . , σn(θn, v)).

This defines a path, and a terminal node z ∈ Z for every type profile θ = (θ1, θ2, . . . , θn) ∈
Θ, which we denote by P (σ(θ)). We also say that θ leads to terminal node z = P (σ(θ)) ∈
Z and outcome x ∈X .

We say that P is a protocol for choice rule φ with strategies σ = (σ1, σ2, . . . , σn) if

P (σ(θ)) = φ(θ).

If there is an S-protocol for φ with some strategies σ, we say that it is S-computable.
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TABLE II

NOTATION FOR PROTOCOLS AND RELATIONS

Name Sets Representative Element

Agents {1, . . . , n} i

Type profiles Θ = Θn θ = (θ1, . . . , θn)

Message profiles M =Mn m = (m1, . . . ,mn)

Elicitation technology S S, sv
Protocols P = (V,E)

Nodes V v,w

Edges E e= (v,w)

Terminal nodes of protocol P Z z

Information at node v Θv θv

Relations

Node v precedes v′ in protocol P v �P v′
Protocol P ′ is contextual privacy equivalent to P for φ P ′ ∼φ P
Type θ is succeeded by θ′ in the type space θ′ = succ(θ) or θ = pred(θ′)

2.3. Contextual Privacy Violations and Contextual Privacy.

Protocols give rise to a notion of distinction for type profiles θ,θ′ ∈Θ.

DEFINITION—Distinction: A protocol P = (V,E, r) with strategies σ distinguishes a

type profile θ from θ′ at node v ∈ V if there are children w,w′, with (v,w), (v,w′) ∈ E
such that θ ∈Θw and θ′ ∈Θw′ .

Note that type profiles θ,θ′ ∈Θ lead to different terminal nodes z 6= z′ ∈ Z if and only

if they are distinguished at some node v ∈ V .

The main idea of this article is the idea of contextual privacy violations. A contextual

privacy violation is a piece of agent i’s private information learned by the designer that did

not play a role in determining the outcome. All of the key concepts of the paper employ

this definition.

DEFINITION—Contextual Privacy Violation: Let P be a protocol for φ with strategies

σ. We say that P and σ produce a φ-contextual privacy violation for agent i at θ,θ′ ∈Θ

with θ = (θi,θ−i) and θ′ = (θ′i,θ−i), if θ and θ′ are distinguished at some node v ∈ V in

P under σ, and φ(θ) = φ(θ′). We denote by Γ(P ) ⊆ N ×Θ ×Θ the set of contextual

privacy violations produced by protocol P .
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In other words, there is a contextual privacy violation for choice rule φ in protocol P

with strategies σ if the designer can tell types θi, θ′i apart for some partial type profile

θ−i ∈Θ−i for the other agents, but this leads to the same outcome under φ. A contextual

privacy violation is an instance of the designer learning more than they need to know to

compute the outcome of the choice rule φ.

DEFINITION—Contextual Privacy of Protocols: A protocol P with strategies σ is

contextually private at type profile θ = (θ−i,θi) for agent i if there does not exist a

θ′ = (θ′i,θ−i) that produces a contextual privacy violation. We say that P is contextually

private if it is contextually private for all agents i at all type profiles θ ∈Θ.

A protocol is contextually private at a given type profile θ if, for all type profiles that

are distinguished from it and differ only in one agent’s type, the outcome is different under

φ. In other words, the fact that agent i has type θi and not type θ′i is information that is

necessary for determining the outcome—holding all other types θ−i fixed, the designer

needed to distinguish θi from θ′i to compute φ.9

This criterion captures the idea that there must be a reason that the designer needed to

know whether agent i had type θi and not θ′i, holding other agents’ types fixed at θ−i. That

reason, in particular, is that without distinguishing θi from θ′i, the designer could not have

determined the overall allocation. This definition is illustrated on the right in Figure 1.

In many cases, we may be interested in understanding whether there exists a contextually

private protocol for a given choice rule. In other words, we might want to know whether

a given choice rule has a contextually private protocol. Note that this requires quantifying

over a set of admissible protocols—so, whether there exists a contextually private protocol

of a given choice rule depends on the elicitation technology.

DEFINITION—Contextual Privacy of Choice Rules: A choice rule φ is contextually pri-

vate with elicitation technology S if there exists an S-protocol for φ that is contextually

private.

9Another way of understanding contextual privacy is that there is no agent i or type profile θ at which protocol
P produces a contextual privacy violation.
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Θv

Θw

Node w

Θw′

Node w′

Θ

Root Node

...

. . .

Θz

Θz = (θi,θ−i)

Θz′

Θz′ = (θ′i,θ−i)

φ(Θz)

Outcome for z

φ(Θz′)

Outcome for z′

6=

6=

Terminal Node z Terminal Node z′

xφ xφCPCP

FIGURE 1.—Definitions: Generic direct protocol (left), contextually private protocol (right)

Contextual privacy is thus a property both of protocols and choice rules—when context

does not clearly signal whether we are speaking of the contextual privacy of a choice rule

or a protocol, assume that we are referring to a protocol. Note that the contextual privacy

of a protocol does not depend on the elicitation technology, while the contextual privacy of

a choice rule does. Note that with permissive elicitation technologies, all choice rules may

be (trivially) contextually private. Contextual privacy is non-trivial when the designer’s

elicitation technology is restricted.

2.4. Direct Protocols

In the rest of this section, and most of this paper (with the exception of Section 6 and

Section 7), we will restrict attention to a class of protocols we call direct.

To define direct protocols, we will assume that there is an injective mapping ι : Θ→M

that maps θi ∈Θ to corresponding messages m ∈M . We say that strategy σi : Θ×V →M

at node v is truthful if σi(θi, v) = ι(θi). As we assume ι to be an injection, we may write

Θ⊆M to identify the types with a subset of messages. With this notation, σi is truthful if

σi(θi, v) = θi for all v ∈ V and θi ∈Θ. We also say that a protocol P with truthful strategies

σ is direct.

In the rest of this subsection, we will show that for any S-protocol P there is a S∗-

protocol P ∗ with the same contextual privacy violations, for a related elicitation technology

S∗. We call S∗ the strategy-enhanced elicitation technologies.
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DEFINITION: Let S be an elicitation technology with element partitions S . A partition

S∗ is contained in the strategy-enhanced elicitation technology S∗ if and only if there

exists a partition S ∈S and a set of functions f1, f2, . . . , fn : Θ→M such that

S∗ = {(f1, f2, . . . , fn)−1({S}) : S ∈S}. (2)

Here, (f1, f2, . . . , fn)−1({S}) is the set of message profiles m = (m1,m2, . . . ,mn) such

that the partition (f1(m1), f2(m2), . . . , fn(mn)) ∈S.

Less formally, the technology S∗ consists of partitions of messages that the designer can

identify if she can “simulate” mappings f1, f2, . . . , fm : Θ→M before observing which set

S of a partition S ∈S the messages lie in. Formally, S∗ will depend on ι. We will suppress

this dependence for brevity of notation. In our reduction to direct protocols, f1, f2, . . . , fm

will simulate agents’ messaging strategies.

Under sequential elicitation technologies as defined in (1) above, the strategy-enhanced

protocols are those in which agents are queried for subsets of types instead of messages.

EXAMPLE—Strategy-Enhanced Sequential Elicitation Technology: For the sequential

elicitation technology SSE, the strategy-enhanced technology S∗SE consists of partitions

{{m ∈M :mi ∈ Θ̃l} : l = 1,2, . . . , k}

for all agents i ∈ N and all partitions Θ = Θ1 ∪Θ2 ∪ · · · ∪Θk, with 1 ≤ k ≤ |Θ|.10 This

technology allows the designer to request that a single agent identify in which cell of a

partition their type lies.

The strategy-enhanced count technologies are those that partition the type space of

agents, potentially differently per agent, and count those.

10Concretely, the partition for agent i and partition Θ1 ∪Θ2 ∪ · · · ∪Θk = Θ is induced in (2) by S = Si, and
functions that project θi on representative elements from the partition cells Θ1,Θ2, . . . ,Θk . That is,

fi : θi 7→ θ̃l such that θi ∈Θl

for representative elements θ̃l ∈Θl.



16

EXAMPLE—Strategy-Enhanced Count Technology: The strategy-enhanced technology

associated with this elicitation technology, S∗Count consists of type profile partitions

S∗Count = {{θ ∈Θ : |{θi ∈Θil}|= k} : k = 1,2, . . . , n}

for all partitions (Θil)l=1,2,...,|M | of Θ. This technology allows us to distinguish type pro-

files that have different numbers of agents that are contained in some cell of (potentially

individualized) partitions.

The following lemma establishes that, for the purposes of understanding contextual pri-

vacy desiderata, we can restrict attention to direct protocols.

LEMMA 1: There is an S-protocol P with strategies σ for φ with contextual privacy

violations Γ ⊆ N × Θ × Θ if and only if there is a direct S∗-protocol P ∗ for φ with

contextual privacy violations Γ⊆N ×Θ×Θ.

PROOF: We first show sufficiency. Let P be a S-protocol for φ with strategies σ. Define

P ∗ where for all v ∈ V \Z , sP
∗

v (θ) = sPv (σ(θ)). For z ∈ Z , assign the same outcome under

P ∗ as under P .

First, we show that P ∗ is an S∗-protocol. Note that (sP
∗

v )−1(w) = σ−1(v, ·)((sPv )−1(w))

and hence sP
∗

v ∈S∗ as (sPv )−1({w}) ∈ S and σ consists of mappings Θ→M .

Next, we observe that, by construction, P ∗ is a protocol for φ in that each type profile θ

leads to the same terminal node under P as in P ∗.

Finally, we show that the information of the principal is the same at the terminal nodes

that each type profile leads to in P and P ∗. We show this by induction over the nodes v.

It is clear at the root node r ∈ V that the principal’s information is Θr = Θ in P and P ∗.

The fact that sP
∗

v (θ) = sPv (σ(θ)) implies that this holds for all children w of v ∈ V , which

yields the inductive step. This concludes the proof of sufficiency.

For necessity, assume that P ∗ = (r,V,E,Z) is a direct S∗-protocol. By definition of S∗,

for all nodes v ∈ V \Z , there are f1, f2, . . . , fn : Θ→M such that there is sv ∈S and

s∗v(θ) = sv(f1(θ1, v), f2(θ2, v), . . . , fn(θn, v)). (3)
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We define the protocol P where all queries s∗v are replaced by sv together with strategies

σi = fi, i ∈ N . By assumption, P is a S-protocol. Given the definition of P , sP
∗

v (θ) =

sPv (σ(θ)) also holds in this case, and show that P is a protocol for φ leading to the same

information for the designer as P ∗ at every node v ∈ V . In particular, P and P ∗ have the

same contextual privacy violations. Q.E.D.

This lemma allows us to separate contextual privacy concerns from implementation con-

cerns. Implementation concerns center on whether there exists a truthful strategy profile

σ. To focus on the demands of contextual privacy, we assume in Section 3, Section 4 and

Section 5 that there is such a strategy profile and that the designer knows it.

This reduction is highly abstract, but a brief and informal concrete example helps to

show that it is relatively straightforward. Consider a sealed bid first-price auction in the

standard independent private values environment. Consider the following protocol P : Each

agent is queried once, and asked to identify their type in the partition of the type space

that includes only singletons. This protocol is an SSE-protocol. Assume the message space

is M is equal to the type space Θ. Suppose agents follow something like the symmetric

Bayes-Nash equilibrium strategy in a static first-price sealed bid auction, σ(θi, v) = χθi

where χ ∈ [0,1), for all agents i.11 Agents submit bids σ(θi) ∈M. The strategy-enhanced

elicitation technology S∗SE is enhanced with the strategy function, allowing us to talk about

agents’ messages (reports of types) instead of types themselves. The lemma states that any

contextual privacy violation in the SSE-protocol P is also present in a suitably defined

S∗SE-protocol P ∗, and vice versa. Note that this reduction requires that the designer knows

σ, and thus can “simulate” the agents’ reporting.

2.5. Beyond Contextual Privacy.

In some cases, under restrictive elicitation technologies S, it will be hard to find contex-

tually private protocols for desired choice rules. In such cases, we can still try to simplify

the search for privacy-preserving protocols by finding representatives that are as contextu-

11We are not claiming that this strategy is in fact an equilibrium, we are just considering this strategy for
illustrative purposes.
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ally private as other protocols, and select among those using contextual privacy violations.

We will consider these questions in Section 5.

We say that two protocols are contextual privacy equivalent if they produce contextual

privacy violations for the same agents. This notion of equivalence captures the idea that

the key difference between two protocols that are not contextual private is whose privacy is

violated.

DEFINITION—Contextual Privacy Equivalence: We say that a protocol P is contex-

tual privacy equivalent to P ′ under φ if for all agents i, and for all type profiles θ =

(θi,θ−i),θ
′ = (θi,θ−i) ∈Θ,

∨
θ′∈Θ

Γ(P,φ, i,θ,θ′) ⇐⇒
∨

θ′∈Θ

Γ(P ′, φ, i,θ,θ′). (4)

We denote this equivalence by P ∼φ P ′.

This notion of equivalence means that for some fixed type profile θ, the set of agents

i = 1,2, . . . , n who have a contextual privacy violation with some other type profile θ′ is

the same. In other words, a protocol P for φ is contextual privacy equivalent to a protocol

P ′ for φ if the same agents have a privacy violation in P as in P ′.12

In some cases, we may be interested in further refining among protocols that produce

violations for the same agents. For this, we define a notion under which even two contextual

privacy equivalent protocols may be compared. A protocol P for φ improves on a protocol

P ′ for φ if there the set of privacy violations under P is a strict subset of the set of privacy

violations under P ′.

DEFINITION—Improvement: We say that P is a strict φ-improvement of P ′ if

Γ(P,φ, i,θ,θ′) =⇒ Γ(P ′, φ, i,θ,θ′), (5)

12Segal (2007) and Mackenzie and Zhou (2022) consider a related order, the relative informativeness, on the
information revealed by different extensive-form implementations of choice rules. In Mackenzie and Zhou (2022),
the relative informativeness order is invoked to illustrate that menu mechanisms can be less informative than direct
revelation mechanisms, while in Segal (2007), the order is employed to identify the communication costs of choice
rules.
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and not Γ(P,φ, i,θ,θ′) ⇐⇒ Γ(P ′, φ, i,θ,θ′).

For some choice rules, there may be protocols that are neither equivalent, nor are im-

provements of one another.13

2.6. Incentives.

For the most part, this paper focuses on contextual privacy properties of specific proto-

cols, keeping privacy concerns distinct from implementation concerns. So, the most sub-

stantive sections of the paper— Section 3, Section 4, and Section 5—all assume truthful

protocols. We will consider, to some extent in Section 6 the dynamic incentives of a few

particular protocols shown to have “good” contextual privacy properties in prior sections.

3. NECESSARY CONDITIONS FOR CONTEXTUAL PRIVACY

We first characterize the choice rules that have a contextually private S-protocol, where

S is an arbitrary fixed class of admissible protocols.

Determining whether a social choice function is contextually private might be very chal-

lenging, since the space of protocols is potentially vast. In the following characterization,

however, we see that we need not search over the full class of potential protocols in order to

determine whether a choice rule has a contextually private protocol—we need only look at

the behavior of the choice rule on subsets of the type space. As we will discuss further be-

low, the necessary condition in this characterization is particularly useful. After presenting

the characterization Theorem 1, we derive two implications.

THEOREM 1: An S-computable choice rule φ is S-contextually private if and only if

there does not exist a subset of type profiles Θ̂⊆Θ such that

(i) φ|Θ̂ is non-constant, and

(ii) for every query sv ∈S∗ with |sv(Θ̂)| ≥ 2, there are type profiles θ = (θi,θ−i) and

θ′ = (θ′i,θ−i), θ,θ′ ∈ Θ̂ with sv(θ) 6= sv(θ) and φ(θ) = φ(θ′).

PROOF: By Lemma 1, we may restrict our analysis to direct S∗-protocols. We first

show that contextual privacy implies that no such set Θ̂ exists. We prove this statement

13In Appendix D, we offer a brief discussion a related definition of equivalence of protocols.
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in the contrapositive. Hence, assume that Θ̂ exists. As φ|Θ̂ is non-constant (by hypothesis

(i)) and P is a protocol for φ, the set of nodes that distinguish two type profiles in Θ̂ is

non-empty. Let v be any earliest (i.e. minimal in precedence order) node that distinguishes

two type profiles in Θ̂. The query at node v, sv , must have |sv(Θ̂)| ≥ 2 as it distinguishes

types in Θ̂. Hence, by the hypothesis (ii) in the statement, there exist θ = (θi,θ−i) and

θ′ = (θ′i,θ−i) with sv(θ) 6= sv(θ
′) and φ(θ) = φ(θ′). These constitute a contextual privacy

violation.

For the converse direction, assume that no such Θ̂ exists. We construct a contextually

private protocol inductively. For the base case, we consider Θr = Θ. For the inductive step,

we consider an arbitrary node v associated with Θv = Θ̂. Either, φ|Θ̂ is constant, and the

protocol can terminate and compute φ, or not. If φ|Θ̂ is not constant then there must be a

query s′v such that |s′v(Θ̂)| ≥ 2 because, by assumption, there is an S∗-protocol for φ. Since

hypothesis (i) holds, hypothesis (ii) cannot: there must be a query sv such that |sv(Θ̂)| ≥ 2

and there are no types θ = (θi,θ−i) and θ′ = (θ′i,θ−i), θ,θ′ ∈ Θ̂ with sv(θ) 6= sv(θ
′) and

φ(θ) = φ(θ′). Hence, the query sv does not introduce any contextual privacy violations.

The induction terminates, as |Θ| <∞ and the cardinality of Θv strictly decreases along

paths on the tree P . Q.E.D.

This characterization reduces the search for contextual private protocols to a search over

local properties of a social choice function. As the space of protocols is potentially vast

(trees of depth up to |Θ|), this is a significant simplification. The proof is straightforward.

We prove that contextual privacy implies that there is no “counterexample” that satisfies (i)

and (ii) in the contrapositive—we directly show that (i) and (ii) produce a contextual privacy

violation under our assumptions. The other direction proceeds inductively: we assume that

there is no “counterexample” satisfying (i) and (ii) and then construct a contextually private

protocol inductively.

To illustrate the value of the necessary condition of Theorem 1, we return to the se-

quential elicitation and count technologies. We first observe that S∗Count ⊇S∗SE, hence all

queries that are possible under sequential elicitation are also possible under count elicita-

tion.
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LEMMA 2: The strategy-enhanced count technology S∗Count can simulate all queries

that the strategy-enhanced sequential elicitation technology allows, i.e. S∗Count ⊇S∗SE.

PROOF: Let S ∈S∗SE. We know that this S corresponds to a partition Θ1∪Θ2∪· · ·Θk =

Θ, and an agent i. By the definition of strategy-enhanced technologies, it suffices to provide

strategies f1, f2, . . . , fn that partition type profiles as S . This indeed holds for fj(θj) =mj ,

j ∈N \ {i} and fi(θi) = θ̃l for representative elements θl ∈Θl. Q.E.D.

The idea of this result is that with a ballot box, it is possible to learn something about a

particular agent, if all other agents send a fixed message.

3.1. The Corners Lemma

We show a necessary condition for the count elicitation technology, which, because of

Lemma 2 also means an impossibility for sequential elicitation.

COROLLARY 1—Corners Lemma for Sequential Elicitation and Count Queries: Let φ

be contextually private under sequential elicitation or count elicitation protocols. Then, for

any fixed θ−ij ∈Θ−ij , for all types θi, θ′i, θj , θ
′
j ∈Θ,

φ(θi, θj ,θ−ij) = φ(θ′i, θj ,θ−ij) = φ(θi, θ
′
j ,θ−ij) = x =⇒ φ(θ′i, θ

′
j ,θ−ij) = x. (6)

PROOF: Assume that (6) does not hold. In particular,

φ(θi, θj ,θ−ij) = φ(θ′i, θj ,θ−ij) = φ(θi, θ
′
j ,θ−ij) = x

but

φ(θ′i, θ
′
j ,θ−ij) 6= x.

We apply Theorem 1 to the set Θ̂ = {θi, θ′i} × {θj , θ′j} ×Θ−ij . By assumption, φ|Θ̂ is not

constant. The only queries that separate this set of type profiles lead to the following three

partitions:

{(θi, θj ,θ−ij), (θ′i, θj ,θ−ij)} ∪ {(θi, θ′j ,θ−ij), (θ′i, θ′j ,θ−ij)}
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{(θi, θj ,θ−ij), (θi, θ′j ,θ−ij)} ∪ {(θ′i, θj ,θ−ij), (θ′i, θ′j ,θ−ij)}

{(θi, θj ,θ−ij)} ∪ {(θ′i, θ′j ,θ−ij)} ∪ {(θ′i, θj ,θ−ij), (θi, θ′j ,θ−ij)}.

The first query corresponds to a query that separates θi from θ′i in the partition (Θil)l=1,2,...,|Θ|,

but does not separate θj from θ′j in (Θjl)l=1,2,...,|Θ|. The second query corresponds to a

query that separates θj from θ′j in the partition (Θjl)l=1,2,...,|Θ|, but does not separate θi

from θ′i in (Θil)l=1,2,...,|Θ|. The third query corresponds to a query that separates both θi

from θ′i in the partition (Θil)l=1,2,...,|Θ| and θj from θ′j in the partition (Θil)l=1,2,...,|Θ| .

All three of these partitions lead to contextual privacy violations if (6) does not hold. The

first partition leads to a violation for (θ′i, θj ,θ−ij), (θ
′
i, θ
′
j ,θ−ij), the second partition leads

to a violation for (θi, θ
′
j ,θ−ij), (θ

′
i, θ
′
j ,θ−ij) and the third partition leads to a violation for

(θi, θ
′
j ,θ−ij), (θ

′
i, θ
′
j ,θ−ij). Q.E.D.

We call this result the Corners Lemma because an analogue of it appears in the context

of unconditional privacy (Chor and Kushilevitz, 1989, Chor et al., 1994) for decentralized

computing—in Chor et al. (1994), the authors named the analogous result the Corners

Lemma. A function of agents’ private information can be computed in a way that preserves

unconditional privacy if the agents can, through a decentralized messaging protocol, jointly

compute the function through messages about their private information sent to each other

without revealing more to anyone than is contained in the outcome. In their setting, they

show a function cannot be computed with unconditional privacy if for any three “corners”

of a two-by-two square that lead to one outcome, the fourth “corner” must also lead to that

outcome.

It turns out that contextual privacy under sequential elicitation technologies is exactly

analogous to the notion of unconditional privacy studied in Chor and Kushilevitz (1989). To

see this, first note that under strategy-enhanced sequential elicitation technologies S∗SE, the

designer queries one agent at a time, asking a question about their type. This corresponds

to the assumption in the unconditional privacy setting that agents send messages only about

their own information, one at a time. Next, to see the equivalence between the two concepts

of privacy, note that in the decentralized setting, unconditional privacy is violated when
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some agent learns something that was not contained in the outcome, and in our centralized

setting, all of this information would still be required, but would be concentrated in the

hands of the designer.

So, the Corners Lemma also holds under sequential elicitation technologies S∗SE. We

could have shown this fact using similar methods to those used in Chor and Kushilevitz

(1989). Instead, we showed this through a novel observation: first we observed that any

sequential elicitation protocol with queries from S∗SE can be simulated through a series

of count queries from S∗Count. Then we showed that the Corners Lemma holds for count

elicitation technologies—thus our statement of the Corners Lemma is more general than

the analogous statement in the decentralized computing literature initiated by Chor and

Kushilevitz (1989).

In this subsection, we have shown that for two practically relevant technologies, there

is a particularly simple “counterexample” φΘ̂ for contextual privacy. That is, if we find a

“corner” under the count elicitation technology SCount or sequential elicitation technology

SSE, we know that the choice rule under consideration is not contextually private.

3.2. Type Separability.

Next, we use the characterization in Theorem 1 to derive a complete characterization of

contextual privacy under the sequential elicitation technology S∗SE. This characterization

will allow us to disprove the contextual privacy of a choice rule even if we do not find a

counterexample of the shape implied by the Corners Lemma (and, for example, allow us

to show that the failure of contextual privacy of the second-price auction for sequential

elicitation does not rely on ties).

Instrumental to this analysis will be a notion of type inseparability.14 Roughly, two types

for an agent i are inseparable if the designer cannot distinguish between them without

violating contextual privacy.

14Our concept of inseparability parallels the concept of forbidden matrices used in the work on decentralized
computation Chor and Kushilevitz (1989), Chor et al. (1994). Our statement is more general in that it captures
more than 2 agents.
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FIGURE 2.—Illustration of Inseparable Types with n = 2, Θ̂ = {θ1, θ2, θ3}2. Shaded regions represent out-
come x under φ. For agent 1, θ3 ∼1,φ,Θ̂ θ1. For agent 2, θ1 ∼2,φ,Θ̂ θ2 ∼2,φ,Θ̂ θ3.

DEFINITION—Inseparable Types: For a social choice function φ, call two types θi, θ′i
for an agent i directly inseparable on Θ̂ under φ, denoted θi ∼′i,φ,Θ̂ θ′i if there exists θ−i ∈
Θ−i such that (θi,θ−i), (θ

′
i,θ−i) ∈ Θ̂, and

φ(θi,θ−i) = φ(θ′i,θ−i).

Denote the transitive closure of ∼′
i,φ,Θ̂

by ∼i,φ,Θ̂. If θi ∼i,φ,Θ̂ θ′i, call θi and θ′i inseparable

for i. We denote equivalence classes under ∼i,φ,Θ̂ by [θ]i,φ,Θ̂.

We can view inseparability as a necessary condition for contextual privacy when φ is

evaluated on a subset of type profiles Θ̂. Assume that the designer arrives at an interior node

v such that Θv = Θ̂. Then, a query to agent i that separates θi and θ′i leads to a violation

of contextual privacy, as φ(θi,θ−i) = φ(θ′i,θ−i). When the designer learns something that

“separates” inseparable types, it learns something that it didn’t need to know.

To build further intuition for this definition, consider Figure 2 for an illustration of insep-

arable types. The 3 × 3 grid represents a subset of the type space in a setting where there

are two agents (n= 2). The shaded regions of the grid represent type profiles for which the

outcome under φ is a particular outcome x ∈X . Regions of the grid that are not shaded in

lead to arbitrary outcomes under φ. On Θ̂, all of agent 2’s types are inseparable. To see this,

note that θ1 and θ2 are directly inseparable—they lead to the same outcome x when agent

1’s type is fixed at θ3. Furthermore, for agent 2, θ2 and θ3 are directly inseparable, since

they lead to the same outcome x when agent 1’s type is fixed at θ1. So, since inseparability

is transitive, θ1, θ2 and θ3 are all inseparable for agent 2.
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In short, when a choice rule φ requires separating inseparable types, contextual privacy

is violated. Note that a particular protocol for φ may not in fact arrive at an interior node

such that Θv = Θ̂. However, the fact that some product set Θ̂ exists where all contained

types are inseperable and φ is nonconstant already implies a violation of contextual privacy.

The following characterization specializes Theorem 1 to the case of sequential elicitation

protocols.

PROPOSITION 1—Characterization of Contextually Private Choice Functions Under

Sequential Elicitation Protocols: A choice function φ is contextually private if and only

if there is no cylinder set Θ̂ such that φ|Θ̂ is non-constant and for all agents i and all

θi, θ
′
i ∈Θ′i, θi and θ′i are inseparable.

We use the characterization of contextual private rules under sequential elicitation tech-

nologies SSE to prove impossibility results in cases where the Corners Lemma does not ap-

ply. In particular, we use this characterization to prove that the second-price auction choice

rule is not contextually private under SSE even when ties are forbidden in Appendix A.3

(there is also a proof of this statement that uses the Corners Lemma in subsection 4.2 which

relies on the deterministic tie-breaking rule).

4. APPLICATIONS

We next turn to a practical application of the results in Section 3. We consider a handful

of specific choice rules in three domains: assignment, auctions and voting. We show which

choice rules are contextually private under sequential elicitation technologies S∗SE.15 A

summary of the results is collected in Table III. With one notable exception (the failure

of the second-price auction even without ties), we prove all negative results in this section

using the Corners Lemma.

15Note that, using the construction from Lemma 2, all results for S∗SE imply the analogous result for the more
powerful count elicitation technology S∗Count. However, we focus on sequential elicitation technologies as the
protocols with count technologies are much less straightforward to interpret.
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TABLE III

CONTEXTUAL PRIVACY OF CHOICE RULES UNDER SEQUENTIAL ELICITATION TECHNOLOGY

Choice Rule φ Contextually Private Under SSE?

Assignment
(Subsection 4.1)

Serial Dictatorship Rule X Appendix B
Efficient and IR Rules (House Assignment) 7 Proposition 2
Stable Rules (Matching with Priorities) 7 Proposition 3

Auctions
(Subsection 4.2)

First-price Auction Rule X Appendix C
Second-price Auction Rule 7 Proposition 4
kth-price Auction Rule 7 Proposition 4
Efficient Double Auction 7 Proposition 5

Voting
(Subsection 4.3)

Generalized Median Voting Rule 7 Proposition 6

4.1. Assignment.

In the assignment domain, we fix a set C of objects. The set of outcomes is X = 2N×C ,

i.e. outcomes are matchings between agents in N and objects in C .

In the standard object assignment setting, agents may receive at most one object, and

agents have ordinal preferences over objects, which are private information. So agents’

types θ ∈Θ are preference orders of C where �i refers to agent i’s preference ordering.

In what follows, we use the Corners Lemma to rule out contextual privacy of choice

rules, and to illuminate why contextual privacy fails in conjunction with other desiderata.

Although most of the results in this section are negative, we do show in Appendix B that the

serial dictatorship (with deterministic lexicographic tie-breaking) is contextually private.

To see why this is the case, notice that serial dictatorships play nicely with sequential

elicitation protocols—every time an agent is asked a question about her type in a serial

dictatorship, her assignment is determined.16

Now we turn to our applications of the Corners Lemma in two different assignment

environments. Consider first the house assignment problem Shapley and Scarf (1974). All

16In fact, this feature of serial dictatorships implies that they are not just contextually private but in fact satisfy
the stronger properties of individual and group contextually privacy, as discussed in Section 7.
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agents are initially endowed with an object from C . Denote the initial assignment by an

injective function e : N →C , where e(i) ∈C refers to agent i’s initial endowment. For our

result it will be irrelevant whether the endowments are private information or known to the

designer. We call a choice rule φ individually rational if for all i ∈N

φi(θ)�i e(i).

PROPOSITION 2: Assume agents have initial endowments e(i). Then there is no individ-

ually rational, efficient and contextually private choice rule under sequential elicitation.

PROOF: The proof uses the Corners Lemma. Consider two agents i and j and two pos-

sible preference profiles for each agent. For agent i, consider a type θi which contains

e(i) �i e(j), and a type θ′i which contains e(j) �i e(i). For agent j, consider θj which

contains e(j) �j e(i), and a type θ′j which contains e(i) �j e(i). Hold fixed all other

types θ−i,−j , to be such that they prefer their own endowment to all other objects, i.e.

θ−ij = (e(k)�k c for all c ∈C \ {e(k)})k∈N\{i,j}.
When the type profile is (θi, θj ,θ−i,−j), the agents both prefer their own endowment

to the other’s. When the profile is (θ′i, θj ,θ−i,−j), or (θi, θ
′
j ,θ−i,−j), they both prefer

i’s endowment and j’s endowment, respectively. When (θ′i, θ
′
j ,θ−i,−j), they each prefer

the other’s endowment to their own. Let x be the outcome in which both agents retain

their endowment, i.e. x = (i, e(i)), (j, e(j)). Let y be the outcome in which each agent

gets each other’s endowment y = (i, e(j)), (j, e(i)). Then, individual rationality makes

the requirements shown on the mid-left in Figure 3: φ(θi, θj ,θ−i,−j) = (θi, θ
′
j ,θ−i,−j) =

(θ′i, θj ,θ−i,−j) = x. Meanwhile, efficiency requires φ(θi, θj ,θ−i,−j) = y (shown on the

mid-right in Figure 3). Hence, by the Corners Lemma, no individually rational and effi-

cient choice rule is contextually private under sequential elicitation protocols. Q.E.D.

The failure of contextual privacy in the house assignment problem is illuminating. In

particular, problems arise because, in an efficient rule, there may be competition for a par-

ticular house. In such cases, the designer must elicit information from multiple participants

that may not be used.
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FIGURE 3.—Applying the Corners Lemma for house assignment. Type profiles {θi, θ′i} × {θj , θ′j} used in
the proof (left, arrows denote whether agent prefers own or other’s endowed object); required outcomes for each
type profile under individual rationality (mid-left), under efficiency (mid-right), and under both efficiency and
individual rationality (right).

In two-sided matching, we see a similar failure mode for contextual privacy and sta-

ble outcomes under sequential elicitation. In two-sided matching, every agent (also called

“student”) is matched to at most one object (also called “school”), and at most κ(c) agents

are matched to an object c, for every c ∈ C , for some capacities κ(c). That is, the set of

outcomes is

X = {µ⊆N ×C :

∀i ∈N : |{c ∈C|(i, c) ∈ µ}| ≤ 1 and ∀c ∈C|{i ∈N : (i, c) ∈ µ}| ≤ κ(c)}

We say there is no oversupply if the aggregate capacity equals the number of agents,∑
c∈C κ(c) = n.

We assume that objects have preferences over agents, which are given by priority scores.

We assume the scores for different objects are private information of the agents. This

matches the college assignment problem with standardized test scores (Balinski and Sön-

mez, 1999, Sönmez and Ünver, 2010). We assume that each agent has a vector of scores sc,

representing their score at each object c ∈ C . Objects prefer agents with higher scores.

Agent i has private information θi = (≺i, si), where ≺i is i’s preference ranking over

schools, and si : C→R maps objects to scores.

In such school choice settings, a desirable property of choice rules is stability (or no

justified envy). A choice rule φ is stable or induces no justified envy if there is no blocking

pair (i, c), i ∈N , c ∈C such that c�i φi(θ) and si(c)> si(φi(θ)).
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PROPOSITION 3: Assume there are n ≥ 2 agents, |C| ≥ 2 objects and no oversupply.

Then there is no stable and contextually private choice rule under sequential elicitation.

The reason why stability conflicts with contextual privacy is relatively easy to see. A

stable protocol must “check” for blocking pairs. However, in so doing, the protocol will

necessarily check for a blocking pair even when there is none. Consider for example the

deferred acceptance protocol, which produces a stable outcome. Consider some tentative

assignment in which (i, c) form a pair. Later in the protocol, the designer must elicit infor-

mation from i to check whether (i, c) forms a blocking pair, and if they do not, then (i, c)

becomes a final assignment and the designer has learned something they did not need to

know.

4.2. Auctions.

We next consider single-item auctions and double auctions. Our results that pertain to the

first-price and second-price auctions parallel prior results in a literature on decentralized

computation, Brandt and Sandholm (2008).

Consider a standard private values auction environment in which a single indivisible

item is to be allocated to one agent. Types are real numbers Θ⊆ [0,1]. The outcomes are

given by (qi, ti), qi ∈ {0,1}, ti ∈R, where qi is agent i’s allocation, and ti is their payment.

Preferences are defined by

ui((q, t); θi) = θiqi − ti, (7)

We call an auction choice rule standard if there is at most one agent i ∈N such that ti 6= 0

and qi = 1. We call an auction efficient if

φ(θ) ∈ argmax(q(θ), (θ))

∑
i∈N

ui((q(θ), t(θ)), θi)

for all θ ∈Θ.

The two most widely studied standard auction rules are the first-price and the second-

price auction. As this article considers deterministic mechanisms, we consider these

rules with deterministic lexicographic tiebreaking. The first-price auction is a choice rule
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φFP(θ) = (φFP
1 (θ), . . . , φFP

n (θ)) = ((q1, t1), . . . , (qn, tn))(θ), where

φFP
i (θ) =

(1, bi(θi))) if b(θi) = min argmaxj∈N b(θj)

(0,0) otherwise.

for some bid shading function bi : θi → θ. The second-price auction is a choice rule

φSP(θ), where

φSP
i (θ) =

(1, θ[2]) if i= min argmaxj∈N θj

(0,0) otherwise,

where b is the bidding function. Both of these auction rules can be computed via a number

of different protocols. Commonly studied protocols for the first-price and second-price

rules, respectively, include the descending (“Dutch”) protocol and the ascending (“En-

glish”) protocol. We formally define these (classes of) protocols in Appendix F.

Although the focus of this section is on negative results for contextual privacy via the

Corners Lemma, we note first that the first-price auction is contextually private with a

descending protocol. We present and discuss this result in Appendix C. The intuition for

this result is very similar to the intuition behind the result that the serial dictatorship is

contextually private. The designer begins at the top of the type space and asks questions of

the form “Is your type above θ̃?” As soon as one agent answers in the affirmative at some

θ̃, the protocol ends and assigns the object to the agent who responded affirmatively and

the price is set at t= θ̃. The designer thus only elicits information that directly changes the

outcome.

Now we turn to negative results for the second-price auction, uniform kth price auctions,

and later, uniform price efficient double auctions. The ascending protocol for the second-

price is celebrated because it is not only efficient but also strategyproof (Vickrey, 1961,

Wilson, 1989), obviously strategyproof (Li, 2017) and credible (Akbarpour and Li, 2020).

Paralleling the result (Brandt and Sandholm, 2005, Theorem 4.9) for decentralized proto-

cols, the second-price choice rule does not admit a contextually private protocol for three
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or more bidders. In particular, this result implies that the ascending auction protocol is not

contextually private. In fact, the result holds for any uniform kth price auction.

PROPOSITION 4: Assume n ≥ 3 agents and |θ| ≥ 3. Under sequential elicitation, the

second-price choice rule φSP is not contextually private. If n ≥ k + 2, the uniform kth

price auction is not contextually private.

PROOF: The proof uses the Corners Lemma. Consider a type profile with θ[1] > θ[4] (or

no constraint if n= 3), and consider agents i, j that have types in [θ, θ̄] such that θ[4] < θ <

θ̄ < θ[1]. Consider the product set {θ, θ̄} × {θ, θ̄} ××k∈N\{i,j} θk. This corresponds to a

square depicted in Figure 4.

FIGURE 4.—Applying the Corners Lemma to the second-price auction. Type profiles for agent i and agent j
(left, agent j’s type is represented by a dot, and agent i’s type is represented by a dash); required outcome under
the second-price auction rule φSP.

Let x be the outcome in which the highest type wins (qi = 1 for θi = θ[1], qi = 0

otherwise) and pays the price ti = θ. Let x′ be the outcome under which the high-

est type wins and pays the price ti = θ. Then, φSP(θ, θ,θ−i,−j) = φSP(θ, θ̄,θ−i,−j) =

φSP(θ̄, θ,θ−i,−j) = x. But, under φSP, it must be the case that φ(θ, θ,θ−i,−j) = x′. Since

x 6= x′, the Corners Lemma is violated, and thus the second-price choice rule is not contex-

tually private under sequential elicitation.

An analogous construction is possible for the k-th price auction by considering agents

i, j with types θ, θ ∈ (θ[k−1], θ[k+2]). Q.E.D.

We show in Subsection A.3 that this impossibility holds even if ties are ruled out.

We conclude this section with a similar impossibility for standard double auction price

rules. Suppose m agents are buyers and m agents are sellers, and n = 2m. The m sellers

are each endowed with one homogeneous, indivisible object. The buyers have unit demand



32

for objects. Formally, agents have initial endowments ei ∈ {0,1} where ei = 0 for buyers

and ei = 1 for sellers. The preferences are

ui((q, t), θ) =−eiθiqi + (1− eiθi)qi + ti.

A double auction price rule seeks to find a price t that maximizes
∑

i∈N ui((q, t), θi) if

buyers with types θi ≥ t buy a good at price t, and sellers with value θi ≤ t sell their good

at price t. Agents with θi = t sell or buy in order to match supply to demand.

PROPOSITION 5: Assume there are n > 3 agents. There is no efficient, uniform-price

contextually private double auction price rule under sequential elicitation protocols.

The main observation for this statement is that efficient price rules set prices that are

medians of the empirical type distribution, φ(θ) ∈ [θ[m], θ[m+1]]. We prove that medians

may not be computed in a contextually private way under sequential elicitation. To see why

this is the case, note that if there are two or more agents at the median value, then, when

either agent changes her report, the outcome doesn’t change—i.e. a single deviation cannot

change the outcome. However, a double deviation, where both agents change their report,

the outcome does change. So under sequential elicitation, the designer must ask both agents

about their types in order to compute the rule. But then, in so doing, the designer may learn

something they did not need to know.

4.3. Voting and Information Aggregation.

We next turn to a voting environment. There is an ordered set of social outcomes X .

Preferences are single-peaked ≺i with peaks θi ∈X .17

We consider a commonly studied class of voting rules. Namely, we study generalized

median voting rules. As shown in Moulin (1980), this class is the class of all anony-

mous, strategy-proof and Pareto-efficient voting rules, where anonymity means that the

outcome cannot depend on the identity of any agent. A generalized median voting rule

17A preference order ≺i is single-peaked with peak θ if x ≺i θ ≺i θ′ for x < θ < θ′ and x �i θ �i θ′ if
x > θ > θ′.
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takes as input submitted peaks of agents’ preferences θ1, θ2, . . . θn as well as phantom bal-

lots k1, k2, . . . , kn−1 ∈X ∪{−∞,∞}. The output is the median of the submitted votes and

phantom votes, i.e.

φ(k1, k2, ..., kn−1)(θ) = median(θ1, θ2, . . . , θn, k1, k2, . . . , kn−1).

PROPOSITION 6: For any k1, k2, . . . , kn−1 ∈X ∪ {−∞,∞} such that neither

sup(k1, k2, . . . , kn−1) 6= −∞ nor inf(k1, k2, . . . , kn−1) 6=∞, the generalized median

voting rule φ(k1, k2, ..., kn−1) is not contextually private under sequential elicitation.

The case where sup(k1, k2, . . . , kn−1) = −∞ and inf(k1, k2, . . . , kn−1) =∞ makes the

choice rule inf(θ1, θ2, . . . , θn) resp. sup(θ1, θ2, . . . , θn). In this case, there is an ascending

protocol that is contextually private for the choice rule inf(θ1, θ2, . . . , θn) and adescending

protocol that is contextually private for sup(θ1, θ2, . . . , θn). For all other cases, we use the

Corners Lemma. Note that this result connects closely to Proposition 5—the negative result

for the double auction. In the course of proving the result for the double auction, we showed

that there is no contextually private protocol for computing a median of an even number of

bids. For general median voting rules, an argument for an odd number of bids is needed.

Observe that this result also leads to an impossibility of computing an interior quantile of a

set of values.

To summarize, this section first presented a corollary of Theorem 1: a characterization

of choice rules that have a contextually private protocol when the designer is restricted to

sequential elicitation protocols. Then, we presented a useful corollary of Theorem 1, the

Corners Lemma, and used it to prove that many commonly studied choice rules are not

contextually private under sequential elicitation protocols. We considered assignment, auc-

tion, and voting domains. There are two notable choice rules that are contextually private

under sequential elicitation: the serial dictatorship and the first-price auction. In Appendix

B, we show that the serial dictatorship is contextually private. In Appendix C we show that

the first-price auction is contextually private with a descending or “Dutch” protocol.
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5. BEYOND CONTEXTUAL PRIVACY

When contextual privacy is unattainable, how should designers design with contextual

privacy in mind? In this section, we compare the contextual privacy of different protocols,

using the notions of equivalence and improvement defined in Section 2.

This section has two parts. The first part centers on a key theoretical insight of the

paper—a representation theorem which helps us to reduce the practical complexity of de-

signing for privacy (Theorem 2). In particular, we show that for choice rules of a particular

structure, every protocol is contextual privacy equivalent to what we call a bimonotonic

protocol. This statement is practically relevant because it can help designers to simplify

their consideration of different protocols: it is without loss for designers to consider only

bimonotonic protocols when designing for contextual privacy, as every possible protocol is

contextual privacy equivalent to a bimonotonic one.

The second part of this section aims to lend insight into how a designer might choose

among different protocols that are contextual privacy equivalent. We consider which pro-

tocols in a particular equivalence class can be improved: improvements take into account

the type profiles at which contextual privacy is violated. Here, it is difficult to make state-

ments with a high degree of generality, given that the space of protocols for a given choice

rule is vast. So, we focus on a particular choice rule, the second-price choice rule, both be-

cause it is theoretically illustrative and because it is practically relevant. We show that for

the second-price choice rule, the commonly used ascending protocol has a strict improve-

ment which we call the ascending-join protocol. We then briefly discuss how the principles

behind the ascending-join protocol may extend to other settings.

5.1. A Representation Theorem

The main goal of this subsection is to present our representation theorem (Theorem 2)

for contextual privacy equivalence classes under the restriction to sequential elicitation

protocols. The theorem we prove shows that a privacy-concerned designer can, without

loss, restrict attention to bimonotonic protocols under the restriction to sequential elicitation

protocols SSE.
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First, we formally define biomonotonicity. A bimonotonic protocol draws all of its

queries from a subset of the sequential elicitation technology that we call the threshold

elicitation technology. We denote the set of threshold elicitation queries to be

Sthresh = {{θi ≤ θ̃} | θ̃i ∈Θ} ∪ {{θi > θ̃} | θ̃i ∈Θ}.

That is, a threshold query is a query to a single agent, asking whether their type falls above

or below some value θ̃i ∈Θ. A bimontonic protocol is a protocol in which all the threshold

queries to a single agent i form an increasing or decreasing interval in the type space Θ.

DEFINITION—Bimonotonic Protocol: A Sthresh-protocol P is bimonotonic if for any

path in P , the sequence of thresholds to agent i form an increasing or decreasing interval

in Θ.

The main theorem will show that for many choice rules of interest, SSE-protocol is

contextual privacy equivalent to a bimonotonic protocol. The choice rules of interest must

have a particular property which we call interval pivotality.

DEFINITION—Interval Pivotality: A social choice function φ defined on ordered type

space Θ exhibits interval pivotality if for all θ−i ∈Θ−i there are elements θ ∈Θ and θ ∈Θ

such that

φ(θi,θ−i) = φ(θ′i,θ−i) ⇐⇒ (θi, θ
′
i ≤ θ or θi, θ′i ≥ θ).

This property of choice rules states that, holding fixed some profile of other agents’ types

θ−i, the choice rule φ(θi,θ−i) is constant in θi if and only if θi is outside some interval

[θ, θ] ∈Θ. So, inside the interval, i is “pivotal” in that her report changes the outcome. Note

in this definition that the interval defined by [θ, θ] depends on the profile of other agents’

types, θ−i.

Many social choice rules of interest are interval pivotal: Any kth price auction, the Wal-

rasian auction, and all generalized median voting rules. That is, all social choice functions

considered in Subsections 4.2 and 4.3 are interval pivotal. Note, however, that interval
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pivotality only applies to choice rules defined on ordered type spaces, so assignment and

matching rules, such as those considered Subsection 4.1, cannot be interval pivotal.

Now that we have defined bimonotonicity and interval pivotality, we can present the

main result of this section, and indeed a central theoretical insight of the paper. This rep-

resentation theorem simplifies the designer’s search for privacy-preserving protocols when

choosing among sequential elicitation protocols for an interval pivotal choice rule: the de-

signer need only consider bimonotonic protocols, because every SSE-protocol is contextual

privacy equivalent to a bimonotonic protocol.

THEOREM 2: Let P be a SSE-protocol for φ, where φ exhibits interval pivotality. There

is a bimonotonic protocol P ′ that is contextual privacy equivalent to P .

In other words, every contextual privacy equivalence class has a bimonotonic represen-

tative.

The proof of Theorem 2 proceeds by considering any protocol and applying a set of

modifications that preserve the set of contextual privacy violations. Up to a technical op-

eration which we call anchoring, a first operation allows “fill in” any holes between two

separated agent types in queries to the same agent. A “deduplication” operation keeps only

a monotonic sequence of threshold queries.

Several common protocols are bimonotonic, and we define them formally in Appendix F:

The ascending protocol for the second-price auction, the descending protocol for the first-

price auction, and the overdescending protocol for the second-price auction. For voting

rules, one-sided protocols are bimonotonic: First, query all agents whether they are below

the right-most alternative, then query the next-to-rightmost alternative, et cetera.

The fact that every equivalence class has a bimonotonic representative emphasizes that

the decisions a designer makes about privacy amount to: 1) the threshold of the initial query

to each agent, and 2) the order in which the designer asks agents these threshold queries.

5.2. The Case of the Second-Price Auction

To investigate the implications of the bimonotonicity result (Theorem 2), we focus

on a particular choice rule, the second-price auciton rule. We first consider in Subsec-
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tion 5.2.1 three different contextual privacy equivalence classes for the second-price auc-

tion rule. Their bimonotonic representatives—the ascending, overdescending and guessing

protocols—highlight tradeoffs between the privacy of different agents and at different type

profiles. Next, in Subsection 5.2.2, we consider an improvement in one of these equivalence

classes: we show that the ascending protocol can be contextual privacy improved by using

instead what we call an ascending-join protocol.

5.2.1. Three Equivalence Classes.

In this subsection we consider three contextual privacy equivalence classes, and their

bimonotonic representatives. We begin with the ascending and overdescending protocols

which are formally defined in Appendix F. We focus on the ascending protocol because it

is widely used in practice, and widely studied, and we focus on the overdescending proto-

col because it resembles the descending (“Dutch”) protocol for first-price rules, which we

showed to be contextually private under sequential elicitation in Appendix C.

EXAMPLE—Ascending and Overdescending Protocols: While the ascending protocol

for the second-price choice rule is standard (corresponding to open “English” auctions), the

overdescending protocol for the second-price choice rule is more exotic. To our knowledge,

the overdescending protocol for the second-price choice rule is discussed only in Harstad

(2018): it is the same as a descending protocol, except when the highest bid is reached, it

continues to descend until it reaches the second-highest bid, which sets the price.

Consider a type profile (θi, θj ,θ−ij) such that θi = max Θ and θj = min Θ and the sec-

ond highest type θ[2] is not equal to the highest type, i.e. θ[2] 6= θi. Then, on the one hand,

the ascending protocol has a contextual privacy violation for agent j and type profiles

(θi, succ(θj),θ−ij), (θi, θj ,θ−ij), which the overdescending protocol does not have. On

the other hand, the overdescending protocol has a contextual privacy violation for agent i

and type profiles (pred(θi), θj ,θ−ij), (θi, θj ,θ−ij), which the ascending protocol does not

have.

In general, when |n|> 2, the ascending protocol violates the privacy of the n− 2 losing

bidders, and the overdescending protocol violates the privacy of the single winning bidder.

These two protocols thus illustrate that the contextual privacy order helps us to sharpen
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our understanding of the tradeoffs between violating the privacy of different (groups of)

agents. As described in Milgrom and Segal (2020), in the FCC’s 2017 spectrum auction,

it was important that the auction design protected the privacy of the winning bidder: so,

the auction design used there resembles the ascending protocol. However, in other cases

it may be more important to protect the privacy of the losing bidders. For example, in the

case of Google’s second-price auctions for advertising, where a 2022 lawsuit alleged that

the company was storing advertisers’ losing bids from prior auctions to set personalized

reserve prices in future auctions, it may be more important to protect the privacy of losing

bidders, and thus an overdescending auction may be the better design (Texas v. Google,

2022).

Different equivalence classes not only trade off the privacy of different agents, but also

trade off the agents whose privacy is violated at different type profiles. To see this, we turn

to the next example, which considers a guessing protocol.

EXAMPLE—Guessing Protocols: The guessing protocol for the second-price choice

rule essentially guesses a price θ̃ ∈ Θ and then aims to verify that it is the second-highest

bid. The protocol starts with a query θi > θ̃ for all agents.

Consider first type profiles in which a single agent is higher than the initial query θ̃.

Then, no ascending questions are asked anymore. If all agents have types at most θ̃, the

protocol descends for other agents, asking all agents except the agent with the highest bid

θi > pred θ̃, and then θi > pred(pred θ̃), and so on until the second-highest bid is found.

For the type profile in which the second-highest bid is exactly θ̃ and the highest bid is

larger than θ̃, that is, the guess is correct, there are no contextual privacy violations. Denote

this type profile θ, the terminal node following it by z, the winner of the auction by i and

the second-highest bidder by j. Then,

Θz = {θ ∈Θ : θi > θ̃, θj = θ̃, θk < θ̃ ∀k ∈N \ {i, j}}.

That is, the guessing auction learns the second-highest bidder’s type exactly, and otherwise

only what’s needed to compute the outcome. Compare this to the privacy violations of

the ascending auction at θ: In this case the privacy of all agents except the winner i is
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violated. For the overdescending protocol, the privacy of i and j are violated. Hence, at this

type profile, both the ascending protocol and the overdescending protocol have more agent

violations than the guessing protocol.

On the other hand, if the guess is wrong, the guessing protocol might lead to more vi-

olations than either the ascending or overdescending protocols. For example, if all types

are smaller than θ̃, the guessing protocol will be an overdescending protocol on the re-

stricted type spaces {θ ∈Θ | θ ≤ θ̃}, which (like the overdescending protocol) will violate

the privacy of the winner. At such type profiles, the set of violations are the same as in the

overdescending protocol. But, at other type profiles, the violations are the same as in the

ascending protocol: if all types are above p, the protocol amounts to an ascending protocol

on the restricted type space {θ ∈Θ | θ ≥ θ̃}, violating the privacy of all the losers.

So, the guessing protocol example shows that there are some type profiles at which the

guessing protocol has fewer violations than the overdescending or ascending protocols,

and other type profiles at which the guessing protocol produces the same violations as

either the ascending or overdescending protocols. When considering all type profiles, the

guessing protocol produces some violation for every agent, but when considering only one

type profile, the guessing protocol can produce no violations for any agent.

The guessing protocol suggests an interesting direction for future work: If the designer

cares about the expected contextual privacy violations, then the guessing protocol may be

preferable to the ascending or overdescending protocols. In other words, if the designer uses

their prior f(θ) to choose a “good guess”, and if the designer cares about privacy violations

in expectation, then the guessing protocol might be preferable, from a privacy standpoint,

to the ascending or overdescending protocols, because the designer can leverage their prior

to minimize contextual privacy violations in expectation. But, if the designer can’t use

their prior to choose a “good guess”, because e.g. the prior is diffuse, then the guessing

protocol may produce more contextual privacy violations in expectation than the ascending

or overdescending protocols.

5.2.2. Comparisons Within Equivalence Classes.

We have now considered three contextual privacy equivalence classes for the second-

price auction choice rule. Next, we discuss how a designer might select a particular protocol



40

within an equivalence class. In other words, equivalence classes are large, is there a way

for a designer to select among contextual privacy equivalent protocols? We focus on the

ascending protocol for the second-price choice rule and make one simple observation: there

is an improvement to the ascending protocol, which we call the ascending-join protocol.

We make the observation in this section for two reasons. First, it is design-relevant in

itself, as it speaks to a commonly-used protocol (the ascending auction) for a commonly-

used choice rule (the second-price choice rule). Second, we make this observation because

it is illustrative more broadly of how “ascending”-type protocols for choice rules with in-

terval pivotality might be improved upon.

We introduce the ascending-join protocol through an example. Roughly speaking,

ascending-join protocols work as follows. The protocol begins at some threshold “price”

θ̃ ∈ Θ. Two agents are selected as “active” agents. The designer asks these two agents

whether their type is above θ̃. If the answer from both agents is “yes”, then the designer

raises the threshold to succ θ̃ ∈Θ and asks the same two active agents again whether their

type is above the new threshold value succ θ̃. If one of the agents answers “no”, then that

agent exits the set of active agents and the designer chooses a different agent who has never

been active to join the set of active agents. The agent who joins the active set is asked

whether their type is above θ̃. At all points, the designer maintains a set of exactly two

active agents, and agents cannot be in the active set more than once. When only one agent

answers a question of the form “Is your type above x?” in the affirmative, the protocol

stops.

EXAMPLE—Ascending-Join Protocol: Consider a setting withN = 5, Θ = {1,2,3,4,5,6}
and a true type profile θ = (4,3,1,1,5). The second-price auction choice rule gives the ob-

ject to agent 5 at a price of 3.

The ascending auction produces violations for agents 2, 3 and 4 because the designer

learns their types exactly when the designer only needed to know that their types were

below 4. In other words, and with a slight abuse of notation, the designer learns

θ ∈ {4} × {3} × {1} × {1} × {5,6} (8)
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Now consider a protocol, which we call an ascending-join protocol, that runs as follows:

• Ask agents 1 and 2 “Is your type above 1?”

→ Both answer “yes.”

• Ask agents 1 and 2 “Is your type above 2?”

→ Both answer “yes.”

• Ask agents 1 and 2 “Is your type above 3?”

→ Agent 1 answers “yes” and agent 2 answers “no.”

• Since agent 2 answered no, agent 3 joins the set of active agents. Ask agent 3 “Is your

type above 3?”

→ Agent 3 answers “no.”

• Since agent 3 answered no, agent 4 joins the set of active agents. Ask agent 4 “Is your

type above 3?”

→ Agent 4 answers “no.”

• Since agent 4 answered no, agent 5 joins the set of active agents. Ask agent 5 “Is your

type above 3?”

→ Agent 5 answers “yes”.

• Since there are now two active agents with types above going threshold 3, increase

threshold to 4. Ask agents 1 and 5 “Is your type above 4?”

→ Agent 1 answers “no” and agent 5 answers “yes.”

• The protocol concludes: allocate object to agent 5, set price at 4.

Through this ascending-join protocol, the designer learns that the type profile lies in the set

(again with a slight abuse of notation)

θ ∈ {4} × {3} × {1,2} × {1,2} × {5,6}. (9)

Compare what is learned by the ascending auction (8) to what is learned in the ascending-

join auction (9). We see that, although these two auctions are contextual privacy equivalent,

in that they both produce violations for agents 2, 3 and 4, the violations in the ascending-

join auction are not as extensive for agents 3 and 4. In particular, in the ascending-join

protocol the designer learns that agents 3 and 4 have types strictly below 3, whereas in the

ascending protocol the designer learns these agents’ types exactly.
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We define ascending-join protocols formally in Appendix F. The next result shows that

the ascending-join protocol is a contextual privacy improvement on the ascending protocol

for the second-price choice rule.

PROPOSITION 7: Assume |N | ≥ 2. Then, PAsc-Join ∼φ PAsc, but PAsc-Join is a strict

φSPA-improvement.

While this result is for a very specific choice rule, the second-price auction rule, it also

offers insight for other protocols. For example, consider an interval-pivotal rule that re-

quires computing any order statistic of the type profile, such as the introductory example

in Section 1. The rule that asks agents from the bottom of the type profile is bimonotonic,

and can be improved by having only two “active” agents at any given moment, where the

“active” agents set the threshold “price”.

6. CONTEXTUAL PRIVACY AND INCENTIVES

So far, we have focused on whether choice rules can be computed through a contextually

private protocol, without considering the strategic aspects of the induced messaging game.

In this section, we provide an initial study of the conjunction of contextual privacy and

implementation, i.e. whether there are contextually private protocols that are also imple-

mentable. While it is beyond the scope of this article to treat incentives in depth, we take

a step in this direction by providing positive results on the dynamic incentives of a few

sequential elicitation protocols highlighted in Section 4 and Section 5. 18

We begin this section by formally defining two dynamic implementation notions in

subsection 6.1: implementation in obviously dominant strategies and in perfect Bayesian

strategies. Then, we turn attention to three protocols that we singled out as having good

contextual privacy properties in Section 4 and Section 5. We first show that the ascending-

join protocol for the second-price auction rule, which we showed to be an improvement

on the ascending protocol in Section 5, is implementable in obviously dominant strategies.

Then we show that the serial dictatorship, which we showed to be contextually private in

18Given Lemma 2, one may also consider the incentives of protocols under the count technology. The incentives
of such protocols do depend on what the principal does in case of deviations, as under count queries they cannot
necessarily detect a deviator.
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Section 4, is also implementable in obviously dominant strategies. Finally, we show that

the descending protocol for the first-price auction rule, which we showed to be contextually

private in Section 4, is implementable in perfect Bayesian equilibrium strategies.

6.1. Implementation in Obviously Dominant and Perfect Bayesian Strategies.

Recall that agents submit messages from a set M according to strategies σi : Θ× V →
M . The state of the protocol is public, so that their strategy takes into account information

known at node v ∈ V , i.e. Θv . We will assume that if an off-path outcome is reached, the

designer does not complete the allocation implied by the choice rule, and all agent utilities

are some fixed outside option (e.g. 0 in an auction environment).

Implementation in obviously dominant strategies requires that the worst outcome fol-

lowing the messaging strategy is better than the best outcome from a deviation.

DEFINITION: We say that a protocol P for φ implements φ in obviously dominant strate-

gies σ if for all agents i, nodes v and θ−i ∈Θ−i, we have

inf
θ:=(θi,θ−i)∈Θw

w=sv(σ(θ))

ui (φ(θ); θi)≥ sup
θ′:=(θ′i,θ−i)∈Θw

w∈children(v)\sv(σ(θ))

ui
(
φ(θ′); θi

)
.

Consider this in the case of a direct protocol. Then, it has to be the case that the worst

outcome that can result from telling the truth, i.e. reporting θi, is better than the best

outcome that can result from misreporting some other type θ′i, regardless of what other

agents do in the future. Notice that when the agent tells the truth, the child node of v is

w = sv(σ(θi,θ−i)). When the agent does not tell the truth, the child node of v is some

w ∈ children(v) \ sv(σ(θi,θ−i)).

We next define a notion of implementation in perfect Bayesian equilibrium. For this, we

make a standard assumption about agents’ private information: their types are independent

and identically distributed according to a prior f with cumulative distribution function F .

The designer and the agents share a common prior. We call this information environment

independent private values. This definition relies strongly on the assumption that informa-

tion is public, i.e. at each node v, all agents know Θv.
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DEFINITION: We say that a protocol P for φ with strategies σ implements φ in perfect

Bayesian equilibrium strategies if for all agents i ∈N , and nodes v ∈ V

E[ui(φ(θ); θi) | θ ∈Θsv(θ)]≥ E[ui(φ(θ); θi) | θ ∈Θw]

for all w ∈ children(v).

If P implements φ with direct strategies σ, that is, P is a direct protocol for φ, we

also say that the direct protocol P implements φ. For both notions of implementation, the

reduction in Lemma 1 applies.

COROLLARY 2: There is a S-protocol P implementing φ in obviously dominant resp.

perfect Bayesian strategies and contextual privacy violations Γ⊆N ×Θ×Θ if and only

if there is a direct S∗-protocol P ∗ implementing φ with contextual privacy violations Γ⊆
N ×Θ×Θ.

6.2. Implementation Results for Three Contextual Privacy-Preserving Protocols.

There are three protocols that we showed to have particularly good properties from the

standpoint of contextual privacy. We begin with the ascending-join protocol for the second-

price auction rule, which is a contextual privacy improvement on the ascending protocol.

These protocols, though we have not seen them defined explicitly as we have, have equi-

libria in obviously dominant strategies.

PROPOSITION 8: The ascending-join protocols for φSP are a contextual privacy im-

provement on ascending protocols, and implement φSP in obviously dominant strategies.

To show that the second part of this statement holds, we show that the ascending-join

protocol we have defined is equivalent to a personal-clock auction. Therefore, we can rely

on the characterization in Li (2017, Theorem 3), which states that every personal-clock

auction protocol has an equilibrium in obviously dominant strategies.

We continue to rely on results from Li (2017) to show that the serial dictatorship, which

we showed to be contextually private in Section 4, is also implementable in obviously

dominant strategies.
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PROPOSITION 9: The serial dictatorship choice rule is SSE-contextually private and is

implementable in obviously dominant strategies.

Again, we show that the serial dictatorship amounts to a personal-clock auction.

Next we turn to the descending protocol for φFP, which we showed to be contextu-

ally private in Section 4. It is well known that this protocol has good dynamic incentives,

namely that it is strategically equivalent to a static sealed-bid first price auction which has

a symmetric Bayes-Nash equilibrium.

PROPOSITION 10: The descending protocol for φFP is SSE-contextually private and

implementable in Perfect Bayesian equilibrium strategies.

We view further study of incentives and contextual privacy as a key direction for future

work. The intention of this section was primarily to show that our formalism is capacious

enough to discuss incentives and to formally define implementation notions, and to begin

to show how our results connect to the literature on dynamic implementation.

7. VARIATIONS

In this section, we consider two concepts that strengthen the notion of contextual privacy

violation. We explore these stronger concepts for both theoretical and practical reasons.

On the practical side, these extensions may have desirable properties in some settings.

On the theoretical side, these criteria help to illuminate connections to other desiderata in

mechanism design, and illustrate which of our results are robust to alternative formulations

of contextual privacy.

7.1. Individual Contextual Privacy

The first extension, individual contextual privacy, requires that if two types are distin-

guishable for agent i, these types must lead to different outcomes under φ for agent i. This

definition thus only applies in domains where the outcome space X, specifies an allocation
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for each agent i ∈ N .19 Let φi(θ) denote the projection of the outcome vector φ(θ) onto

the ith component.

DEFINITION—Individually Contextually Private Protocols: A protocol P = (V,E) for

a social choice function φ with strategies σ = (σ1, σ2, . . . , σn) has an individual contextual

privacy violation at θ = (θi,θ−i),θ
′ = (θ′i,θ−i) if θ,θ′ are distinguished under P and σ

but lead to the same outcome for agent i. If a protocol does not have any individual con-

textual privacy violations, we call it individually contextually private. If there is a protocol

P (with some strategies σ) for φ that is individually contextually private, we say that φ is

individually contextually private.

As in the main text, and with an identical proof, we may reduce to truthtelling protocols.

LEMMA 3: For every S-protocol P , there is a direct S∗-protocol P ∗ with the same

individual contextual privacy violations.

Notice that individual contextual privacy is stronger than contextual privacy—any choice

rule that is individually contextually private is also contextually private. If there were an

agent i for whom contextual privacy were violated, then individually contextual privacy

would automatically be violated.

As a normative criterion, individual contextual privacy requires that if the designer can

distinguish between two types for agent i, then it should be the case that agent i’s outcome

is changed. This criterion captures a notion of legitimacy—agent i may view participation

in the mechanism as involving an inherent tradeoff between information revelation and

allocation. We can imagine a speech from agent i along the following lines: “The designer

can learn that I have type θi and not θ′i as long as the designer’s knowledge of this makes a

difference to my allocation.”

19The domains that we focus on in this paper—auction domains and assignment domains—both satisfy this
property. Any domain with transfers also satisfies this property. However, voting rules, for example, do not have
this property—there is a single social outcome, without individualized allocations.
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Individual contextual privacy is closely related to non-bossiness, introduced by Satterth-

waite and Sonnenschein (1981). A choice rule φ is non-bossy if for all θi ∈Θ,

φi(θi,θ−i) = φi(θ
′
i,θ−i) =⇒ φ(θi,θ−i) = φ(θ′i,θ−i).

Non-bossiness says that if agent i changes her report from θi to θ′i and her allocation is

unchanged, then no other agent j’s allocation changes either. The idea is that if agent i

could unilaterally change her report and affect a change in some agent j’s allocation without

changing her own allocation, agent i would be “bossy.”20 We show that non-bossiness is

a necessary condition for individual contextual privacy, and individual contextual privacy

lies at the intersection of contextual privacy and non-bossiness.

PROPOSITION 11: A choice rule φ : Θ→Xn is S-individually contextually private if

and only if it is S-contextually private and non-bossy.

PROOF: Suppose for contradiction that protocol P is individually contextually private

for φ, but φ is bossy. Since φ is bossy, there exists a j ∈ N \ {i} and type profiles

(θi,θ−i), (θ′i,θ−i) such that φi(θi,θ−i) = φi(θ
′
i,θ−i) but φj(θi,θ−i) 6= φj(θ

′
i,θ−i). Since

φj(θi,θ−i) 6= φj(θ
′
i,θ−i), any protocol P for φ, including P , must have (θi,θ−i) and

(θ′i,θ−i) in distinct terminal nodes z, z′ (otherwise P could not compute φ). But if (θi,θ−i)

and (θ′i,θ−i) belong to distinct terminal nodes in P and P is individually contextually pri-

vate for φ, it must be that φi(θi,θ−i) 6= φi(θ
′
i,θ−i), which contradicts the assumption that

φ is bossy.

Next, assume that φ is non-bossy and contextually private. Consider (θi,θ−i) and

(θ′i,θ−i) in distinct terminal nodes of protocol P . By contextual privacy, φ(θi,θ−i) 6=
φ(θ′i,θ−i). By non-bossiness, φi(θi,θ−i) 6= φi(θ

′
i,θ−i) follows. Thus, P is individually

contextually private. Q.E.D.

This characterization results in unique characterizations for the first-price auction and

the serial dictatorship.

20See Thompson (2014) for a discussion of the normative content of non-bossiness.
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PROPOSITION 12: Serial dictatorships are the unique individually contextually private,

efficient and strategyproof object assignment rules.

PROOF: The serial dictatorship contextually private and non-bossy, hence individually

contextually private by Proposition 11. It also is strategyproof.

Conversely, if φ is individually contextually private, then it is also non-bossy by Propo-

sition 11. It is known that the only efficient, strategyproof and non-bossy object assignment

mechanisms are serial dictatorships (see Hatfield (2009) for a proof, and compare Satterth-

waite and Sonnenschein (1981)). Q.E.D.

PROPOSITION 13: The first-price auction is the unique individually contextually pri-

vate, efficient, and individually rational auction rule.

PROOF: The first-price auction is individually contextually private. Indeed, the protocol

outlined in Appendix C is individually contextually private. It is well known that the first-

price auction is efficient and individually rational.

Let φ be any individually contextually private, efficient and individually rational auction

rule. By the characterization of efficient, non-bossy and individually rational auctions Pycia

and Raghavan (2022, Theorem 1), this means that it is (up to a zero set) a protocol for the

first-price auction. Q.E.D.

7.2. Group Contextual Privacy

Another extension is group contextual privacy. Group contextual privacy requires that

if two type profiles are distinguishable at the end of the protocol, then they must lead to

different outcomes. This notion strengthens contextual privacy, which requires only that if

a single agent’s types are distinguishable, then they lead to different outcomes.

DEFINITION—Group-Contextual Privacy: A protocol P = (V,E) for a social choice

function φ with strategies σ = (σ1, σ2, . . . , σn) is group contextually private if for all type

profiles θ,θ′ ∈ Θ that are distinguished by P and σ, the type profiles θ and θ′ lead to

different outcomes under σ. If a protocol does not have any group-contextual privacy vio-

lations, we call it individually contextually private. If there is a protcol P (for some strate-
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gies σ) for φ that is individually contextually private, we say that φ is group-contextually

private.

Notice again that this definition strengthens contextual privacy. Here, it is because it

strengthens the underlying notion of distinguishability—two type profiles θ,θ′ are distin-

guishable if they belong to different terminal nodes. Regular contextual privacy’s notion of

distinguishability is on the agent-level—two types θi, θ′i are distinguishable if they belong

to different terminal nodes, holding all other agent’s types fixed at Θ−i.

As in the main text, and with an identical proof, we may reduce to truthtelling protocols.

LEMMA 4: For every S-protocol P for φ, there is a direct S∗-protocol P ∗ for φ with

the same group-contextual privacy violations.

We hence may restrict to direct protocols.

We characterize the set of group contextually private protocols next. First, recall that we

denote the set of outcomes reachable from node v, labelled with Iv by Xv := φ(Iv).

THEOREM 3: A protocol P = (V,E) is S-group contextually private if and only if for

any query,
⋃

(v,w)∈EXw =Xv is a disjoint union.

PROOF: First assume that P is group contextually private, and assume for contradiction

that v is a query such that (v,w), (v,w′) ∈E and Xw ∩Xw′ 6= ∅. Hence, there are θ ∈Θw

and θ′ ∈Θw′ such that φ(θ) = φ(θ′), which contradicts group contextual privacy.

Next assume that reachable outcomes are disjoint at each query. Let θ and θ′ be distin-

guished at v. As outcomes are disjoint, it must be that φ(θ) 6= φ(θ′). Hence the protocol is

group contextually private. Q.E.D.

This general characterization lends more practical insight when specialized to group

contextual privacy under only sequential elicitation protocols.

COROLLARY 3: A social choice function is group contextually private under sequential

elicitation protocols if and only if it can be represented by a protocol in which, at every

node, the agent’s choice rules out a subset of the outcomes.
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This characterization, in particular, implies that the serial dictatorship is group contex-

tually private. In a live sequential protocol of a serial dictatorship, whenever an agent is

called to play, they obtain their favorite object among those that remain. So, their choice

rules out the outcomes in which a different agent gets their favorite object that remains.

Group contextual privacy, under sequential elicitation protocols, is thus reminiscent of

other extensive-form properties related to simplicity that the serial dictatorship satisfies. In

particular, the serial dictatorship is obviously strategyproof Li (2017) and strongly obvi-

ously strategyproof Pycia and Troyan (2023).

Is there are containment relationship between protocols that are group contextually pri-

vate and obviously strategyproof? It turns out that the answer is no: there are mechanisms

that are group contextually private and not obviously strategyproof, and vice versa. The

ascending auction is obviously strategyproof Li (2017), but not group contextually pri-

vate with respect to sequential elicitation, as it is a protocol for the second-price auction,

which is not contextually private. A class of “non-clinching rules”, on the other hand, are

strategyproof and group contextually private, but fail to have an obviously strategyproof

implementation. Appendix E offers an example of a non-clinching rule, and shows that it

is group contextually private but not obviously strategyproof.

8. RELATED LITERATURE

This paper brings privacy considerations into extensive-form mechanism design. We dis-

cuss here our connection to extensive-form mechanism design, as well as other literature

on designing for privacy in computer science and cryptography.

Our restriction to sequential elicitation protocols coincides with the extensive-form mes-

saging game used to define and study obvious strategyproofness (Li, 2017) and credibility

(Akbarpour and Li, 2020). Credibility shares a motivation with contextual privacy—both

criteria have to do with the potential for the designer to somehow abuse the information it

receives. Credibility, which requires incentive compatibility for the auctioneer, sometimes

coincides with the diagnoses of contextual privacy and sometimes not.21 Under sequen-

tial elicitation protocols, contextual privacy can be understood as a form of privacy that is

21The descending or Dutch protocol of the first-price auction is both contextually private and credible, but the
ascending protocol of the second-price auction is credible but not contextually private.
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easier for participants to understand, just as obvious strategyproofness is a form of strat-

egyproofness that is easier for participants to understand. Many papers study variants of

obvious strategyproofness and their compatibility with other axioms and computational

properties (Bade and Gonczarowski, 2016, Ashlagi and Gonczarowski, 2018, Mackenzie,

2020, Golowich and Li, 2021, Mackenzie, 2020, Pycia and Troyan, 2023).

Other considerations related to privacy and trust have been incorporated into mechanism

design and market design, in both static and dynamic models. Though it is not the focus of

their paper, Mackenzie and Zhou (2022) discuss how the dynamic menu mechanisms they

define (in which at each history the agent chooses from a menu of possible outcomes) pro-

tect privacy compared to direct mechanisms. Grigoryan and Möller (2023) and Woodward

(2020) define two different but related notions of the auditability of different mechanisms,

based on the amount of information that would be required to determine whether the out-

come of a mechanism had been correctly computed. Others study aftermarkets, and how

the disclosure of past trades affects future trades (Dworczak, 2020, Ollar et al., 2021).

Canetti et al. (2023) considers the privacy of the designer as opposed to our focus on the

privacy of agents, and investigates the use of zero-knowledge proofs to prove properties

of the mechanism without revealing the designer’s objectives. Several papers have incor-

porated measures of “privacy loss” as constraints on mechanism design (Eilat et al., 2021,

Liu and Bagh, 2020), where privacy loss is defined as some measure (e.g. Shannon entropy,

Kullback-Leibler divergence) of information revelation. These measure-based criteria treat

all datum as equal. Contextual privacy, unlike these measure-based criteria, is not about

how much information is revealed, and is also not just about whether information is re-

vealed, but rather it is about how the information that is revealed is used.22

There are two important precursors to contextual privacy that draw heavily on the mathe-

matics of decentralized computation. The notion of perfect implementation (Izmalkov et al.,

2005, 2011) seeks implementations that do not rely on trusted mediators, but rather rely on

simple technologies that enable verification of what was learned—like sealed envelopes.

The construction allows for particular elicitation technologies that allow, e.g., envelopes-

22For a survey of the literature on privacy in economics more broadly, i.e. beyond mechanism design, see
Acquisti et al. (2016).
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inside-envelopes. This paper does not consider such technologies. Even more closely, con-

textual privacy (with sequential elicitation) exactly parallels the concept of unconditional

full privacy for decentralized protocols (Brandt and Sandholm, 2005, 2008). Unconditional

full privacy requires that the only information revealed through a decentralized protocol is

the information contained in the outcome. In its standard formulation, it is not amenable to

a mechanism design framework in which a principal chooses an allocation based on par-

ticipants’ information. Unconditional full privacy has been applied to an auction domain

(Brandt and Sandholm, 2008), and a voting domain (Brandt and Sandholm, 2005). Our def-

inition of contextual privacy brings unconditional full privacy into a framework amenable

to economic analysis and extends it in several ways: we discuss assignment domains, we

add count queries, and we discuss extensions to group and individual contextual privacy.23

Furthermore, under general elicitation technologies, contextual privacy has no immediate

analogue in decentralized computing.

Milgrom and Segal (2020)’s concept of unconditional winner privacy is similar to con-

textual privacy in that it brings unconditional full privacy into centralized mechanism de-

sign: unconditional winner privacy is unconditional full privacy in a centralized mecha-

nism, for the winner only. Contextual privacy differs from unconditional winner privacy in

three ways: (i) we require privacy for all players while Milgrom and Segal require privacy

for just the winner, (ii) we define the set of outcomes to be allocations and prices (whereas

Milgrom and Segal define outcomes to be allocations alone), (iii) we define contextual

privacy in a range of domains while Milgrom and Segal consider only the auction domain.

Beyond unconditional full privacy, the most closely related concept in computer science

and cryptography, lies an extensive literature on privacy preserving protocols for auctions

and allocation. The literature on cryptographic protocols for auctions, going back to Nurmi

and Salomaa (1993) and Franklin and Reiter (1996) is too vast to summarize here—the

main point is that there are many cryptographic protocols that do not reveal any private in-

formation to a designer. Such protocols allow participants to jointly compute the outcome

without relying on any trusted third party. To this literature we bring analysis of the impact

23In addition, we strengthen the impossibility result Brandt and Sandholm (2008, Theorem 4.9) paralleling our
Proposition 4 to cases where no ties are allowed (see the proof in subsection A.3).
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of the social and technological environments in which many designers operate: when arbi-

trary cryptographic protocols are not available, we need some other privacy desideratum to

guide design. Thus, we align with the tradition of contextual integrity (Nissenbaum, 2004)

which contrasts with traditions that view cryptography as a go-to solution for all privacy

problems (Benthall et al., 2017).

An influential privacy desideratum is differential privacy (Dwork et al., 2006). Con-

textual privacy sharply diverges from interpretations of differential privacy in mechanism

design contexts.24 Differential privacy, as adapted for mechanism design contexts, says that

the report of a single agent should have a negligible effect on the outcome. (This idea also

has a precedent in the concept of “informational smallness” studied in Gul and Postlewaite

(1992) and McLean and Postlewaite (2002).) To illustrate the sharp contrast between differ-

ential privacy and contextual privacy, suppose some bit of information is revealed through

the mechanism. Differential privacy says that this bit can be revealed if it does not have

an effect (or has a negligible effect) on the outcome. Contextual privacy says that this bit

can be revealed if it does have an effect on the outcome—it can be revealed if the designer

needed to know it. Whether contextual or differential privacy is a more appropriate notion

of privacy will depend on context.25

9. CONCLUSION

This paper introduced a notion of contextual privacy violations into mechanism design.

An agent’s contextual privacy is violated when the designer learns more about her private

information than is needed in context, i.e. more than is needed to compute the outcome

of the choice rule. Whether the designer violates agents’ privacy depends not only on the

structure of the choice rule, but on details of the social and technological environment, i.e.

whether the designer’s has access to mediating technologies that anonymize or shuffle the

reports of participants.

24Differential privacy was originally proposed as a tool for database management. For a survey of its incorpo-
ration into mechanism design, see Pai and Roth (2013).

25Differential privacy has also been microfounded with privacy concerns in agent utility functions, (Ghosh and
Roth, 2015, Nissim et al., 2012, Roth and Schoenebeck, 2012, Ligett and Roth, 2012), and has been shown to be
compatible with truthfulness (McSherry and Talwar, 2007, Xiao, 2013).
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There are two directions for future work that may be especially fruitful: (i) contextual

privacy and incentives, and (ii) statistical contextual privacy violations. First, although we

discuss traditional implementation concerns briefly in Section 6, we do not offer a full treat-

ment of designing for contextual privacy in conjunction with designing for good incentives.

It would be valuable to better understand how contextual privacy interacts with incentives

for truthtelling more generally. Second, the notion of contextual privacy violation studied

here focused only on whether a violation occurred, as opposed to how likely it is that a

given violation might occur. As discussed briefly in the context of the “guessing protocol”

for the second-price auction rule in Subsection 5.2.2, understanding contextual privacy vi-

olations in expectation might lead to further design-relevant comparisons among protocols.

When shifting to a statistical perspective that takes an expectation over possible contextual

privacy violations, the best protocol, from a contextual privacy standpoint, may depend on

the designer’s prior beliefs about the type profile.
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APPENDIX A: PROOFS

A.1. Proof of Corollary 1.

PROOF OF PROPOSITION 1: We first consider necessity. Assume for contradiction that

there is a contextually private protocol P for the choice function φ and that there is a

product set Θ̂ such that all types are inseparable under Θ̂ and φ is non-constant on this set.

As φ is non-constant on Θ̂, the protocol must make a query separating type profiles

(θ,θ−i) and (θ′,θ−i) for θ 6∼i,φ,Θ̂ θ′ for some agent i. Consider the earliest such query in

the precedence order on P .

By the choice of v and θ ∼i,θ,Θ̃ θ′, there must be a chain θ1, θ2, . . . , θk such that θ1 = θ

and θk = θ′ and

θ1 ∼′
i,φ,Θ̂

θ2 ∼′
i,φ,Θ̂

· · · ∼′
i,φ,Θ̂

θk.
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That is, there is a chain of direct inseparability from θ to θ′. As θ and θ′ are separated at

v, there must be l = 1,2, . . . , k − 1 such that θl is separated from θl+1 at v. As a property

of sequential elicitation protocols, for any θ−i such that (θl,θ−i), (θ
l+1,θ−i) ∈ Θ̂ ⊆Θv ,

(θl+1,θ−i) and (θl+1,θ−i) lead to distinct terminal nodes. By direct inseparability, there is

θ−i such that (θl,θ−i), (θ
l+1,θ−i) ∈ Θ̂ and φ(θl,θ−i) = φ(θl+1,θ−i). Together, these two

observations yield a contradiction to contextual privacy of P .

Now consider sufficiency. We define a contextually private protocol inductively. Through-

out the induction, the following holds:

For any terminal nodes w,w′ whose earliest point of departure in P is v, there

are no (θi,θ−i) ∈Θv′ and (θ′i,θ−i) ∈Θv′′ such that φ(θi,θ−i) = φ(θ′i,θ−i).
(10)

Note that a protocol that satisfies (10) at all internal nodes is contextually private. We prove

the statement by induction over the tree P .

Assume a protocol has been constructed until query v associated to type set Θv ⊆Θ.

If φ is constant on the remaining set, the node is terminal, and the outcome of the social

choice function can be determined.

Otherwise, because there is no restriction to a product set Θ̂ under which all types are

inseparable, there are types θ, θ′ that are separable under Θv for agent i. Consider the

binary query that separates the equivalence class of θ, [θ]i,φ,Θv , from its complement Θv,i \
[θ]i,φ,Θv , which is non-empty as it contains at least θ′. By definition of ∼, for any θ−i,

φ(θ̃i,θ−i) 6= φ(θ̃′i,θ−i), (11)

implying that (10) continues to hold. By induction, it holds at all internal nodes. Q.E.D.

A.2. Proof of Proposition 3.

PROOF OF PROPOSITION 3: The proof uses the Corners Lemma. We first choose the

type profile for n− 2 agents that are not labelled i or j. Then we construct a square repre-

senting possible types for agents i and j.
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FIGURE A.1.—Applying the Corners Lemma to college assignment. Agent types θi, θ′i, θj , θ
′
j (left, arrows

from agents denote favored object, arrows from objects denote high score); outcomes under any stable choice rule
(right, where x= ((i, a), (j, b)) and y = ((j, a), (i, b))).

Let s1 > s2 > s3 > s4. Fix the type profile of all n− 2 agents that are not i or j to be

θ−ij where each agent has a score greater than s1 for their top choice object, and their

top choice object has capacity to accommodate them. Denote C there is no oversupply, i.e.∑
c∈C κ(c) = n, the number of remaining spots is n− (n− 2) = 2. Assume without loss

of generality that the remaining spots are for different objects. Label these objects with

remaining spots a and b.

Consider the final two agents i, j ∈N . Two possible (partial) types for agent i, j are:

θi = (a�i b, si(a) = s1, sj(b) = s4), θ′i = (b�i a, si(a) = s3, sj(b) = s2)

θj = (b�j a, sj(a) = s4, sj(b) = s1), θ′j = (a�j b, sj(a) = s2, sj(b) = s3).

The parts of agent i and j’s types for other schools can be arbitrary.

Let x be the outcome in which agent i is matched to school a and j is matched to b. Let

y be the outcome in which agent i is matched to b and j is matched to a. In both x and y,

all agents not i or j are assigned to their top choice object at which they have a high score.

Stability requires that φ(θi, θj ,θ−i,−j) = (θi, θ
′
j ,θ−i,−j) = (θ′i, θj , θ−i,−j) = x while

φ(θi, θj ,θ−ij) = y. We have chosen a particular θ−ij ∈Θn−2, and particular θi, θ′i, θj , θ
′
j ∈

Θ such that the condition (6) does not hold for any stable choice rule. So, by the Corners

Lemma, no stable choice rule is contextually private under sequential elicitation. Q.E.D.

A.3. Strengthening of Proposition 4 Allowing for Ties.

We include a strengthening of Proposition 4 which does not rely on ties. While Brandt

and Sandholm (2008) includes a proof analogous to the one in the main text using the Cor-
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ners Lemma. We use type separability to construct a larger counterexample for contextual

privacy.

PROPOSITION: Assume n ≥ 3 agents and |θ| ≥ 3. Under sequential elicitation, the

second-price choice rule φSP is not contextually private. If n ≥ k + 2, the uniform k-th

price auction is not contextually private.

PROOF OF PROPOSITION 4: This proof proceeds in two steps. First, we construct a di-

rect contradiction of Corollary 1 in a case with n= 3 and |Θ|= 9. Then we argue that for

any auction with n≥ 3 and |Θ| ≥ 9, this counterexample cannot be ruled out.

Construction of a minimal counterexample. Let n= 3 and let

Θ = {θ0, θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8}.

Consider the product set Θ′ = {θ5, θ0, θ2} × {8,7,3} × {6,4,1}. In this product set, the

first factor represents types of agent 1, the second represents possible types of agent 2, and

the third represents possible types of agent 3. We will show that when φSPA is evaluated on

this restricted product set, it is non-constant and all types in the product set are inseparable.

To see this, we construct the tensor of outcomes for the product set. This tensor is rep-

resented in Figure A.2. We represent agent 1’s type on the up-down axis, agent 2’s type on

the left-right axis, and agent 3’s type is constant for each box. The outcomes under φSPA

are represented by letters and colors. For example, the upper left corner in the left-most box

signifies φSPA(θ2, θ8, θ6) = a, where a is the outcome under which agent 2 wins the object

and pays a price θ6.

To see that this constitutes a violation of contextual privacy, we show that: (i) φ is non-

constant on Θ′, and (ii) for all agents i, and all θi, θ′i ∈Θ′, θi and θ′i are inseparable. As

for (i), we can observe immediately that φ|Θ′ is non-constant. To see (ii) that all types are

inseparable, we go through each agent in turn.

• Agent 1: Outcome a is the same for θ−1 = (θ7, θ6), hence all agent 1 types are insepa-

rable.

• Agent 2: Outcome i for θ−2 = (θ5, θ1) show that all agent 2 types are inseparable.



CONTEXTUALLY PRIVATE MECHANISMS 61

θ5

θ0

A
ge

nt
1

Ty
pe θ2 a a

a a

a a

c

b

b

θ8 θ7 θ3

Agent 2 type

Agent 3 type: θ6

θ5

θ0

θ2

θ8 θ7 θ3

Agent 2 type

Agent 3 type: θ4

d d

f f

f f

e

b

b θ5

θ0

θ2

θ8 θ7 θ3

d d

h h h

i i i

g

Agent 2 type

Agent 3 type: θ1

FIGURE A.2.—Counterexample φSPA with n= 3 and |Θ|= 9.

• Agent 3: θ6 and θ4 are inseparable because they both yield outcome b for θ−3 =

(θ0, θ3). θ1 and θ4 are inseparable because they both yield outcome d for θ−3 =

(θ2, θ7).

Now that we have constructed a counter-example, we argue that for any settings with

n ≥ 3 and |Θ| ≥ 9, this situation cannot be ruled out. Consider a restriction Θ′′ = Θ′ ×

×i∈{4,...,n}Θi where each Θ for agents i ∈ {4, . . . , n} contains only types below θ9 and Θ′

is as defined in step 1. Then, φ|Θ′′ = φ|Θ′ . As shown in step 1, φ|Θ′ is non-constant and all

types are inseparable. Q.E.D.

A.4. Proof of Proposition 5.

PROPOSITION: Assume there are n > 3 agents. There is no efficient, uniform-price con-

textually private double auction price rule under sequential elicitation protocols.

PROOF OF PROPOSITION 5. Since every efficient uniform-price choice rule is a Wal-

rasian choice rule, it suffices to show that no Walrasian choice rule is contextually private.

We use the Corners Lemma. Consider four agents i, j, k, and ` who have the types

{θ[m−1], θ[m], θ[m+1], θ[m+2]}.

For ease of exposition (and without loss of generality), suppose these middle four types are

belong to the set {θ, θ̄}4 with θ < θ̄. Consider arbitrary endowments.
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We construct two squares: a square that holds agents k and `’s types fixed at (θk, θ`) =

(θ, θ) and considers all possible combinations in {θ, θ̄}2 for agents i and j; a square that

holds i and j’s types fixed at (θk, θ`) = (θ̄, θ̄) and varies k and ` in the same manner. See

Figure A.3.

FIGURE A.3.—Applying the Corners Lemma to the double auction. Combinations of types for agents i, j, k, `
(left); required prices t in an efficient choice rule.

Let x be the outcome in which the market clearing price is t = θ and let x′ be the

outcome in which the market clearing price is t = θ̄. Consider first the top square which

holds the types of agents k and ` fixed and varies the types of agents i and j. Efficiency

requires φ(θi, θj , θ, θ) = φ(θ′i, θj , θ, θ) = φ(θi, θ
′
j , θ, θ) = x. Efficiency also requires that

φ(θ′i, θ
′
j , θ, θ) ∈ {x,x′}.

Now consider the bottom square which holds the types of agents i and j fixed and varies

the types of agents k and `. Efficiency requires φ(θ̄, θ̄, θk, θ`) ∈ {x,x′}. It also requires that

φ(θ̄, θ̄, θ′k, θ`) = φ(θ̄, θ̄, θk, θ
′
`) = φ(θ̄, θ̄, θ′k, θ

′
`) = x′.

The outcome under the type profile in the box that conjoins the two squares (θ̄, θ̄, θ, θ)

must be either x or x′ (it cannot be both). If it is x, then the Corners Lemma is violated in

the bottom (k− `) square. If it is x′, then the Corners Lemma is violated in the top (i− j)
square. So, there must be a violation of the Corners Lemma, and any efficient uniform-price

rule is not contextually private under sequential elicitation protocols. Q.E.D.

A.5. Proof of Proposition 6.

PROPOSITION: For any k1, k2, . . . , kn−1 ∈X ∪ {−∞,∞} such that neither

sup(k1, k2, . . . , kn−1) 6= −∞ nor inf(k1, k2, . . . , kn−1) 6=∞, the generalized median

voting rule φ(k1, k2, ..., kn−1) is not contextually private under sequential elicitation.
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PROOF: The proof is related to the one for Proposition 5, however for a median with an

odd number of bids. Consider two adjacent types θ, θ′ ∈Θ and θ−ij ∈Θ−ij such that

θ = median(θ−ij , k1, k2, . . . , kn−1).

By assumption that rules out extreme phantom ballots such types and a partial type profile

exists. The set Θ̃ = {theta, θ′}×{θ, θ′}×Θ−ij produces a corner. By the Corners Lemma,

generalized median voting rules are not contextually private. Q.E.D.

A.6. Proof of Theorem 2.

THEOREM: Let P be a protocol for φ, where φ exhibits interval pivotality. There is a

bimonotonic protocol P ′ that is exactly as contextually private as P .

PROOF: The definition of bimonotonic protocols only depends on a single agent, hence

we consider an arbitrary but fixed agent i ∈N .

We will show that there are ways to modify to protocols for interval pivotal social choice

functions that produces a protocol that is as contextually private as the original. We first

discuss injecting then filling-in and then.... [].

The first operation we define is an injection to a protocol.

DEFINITION—v-before-v′ injected protocol: Let P = (V,E) be a protocol. Let (v, sv),

sv : Θ→ children(v) be a query and let

• v′ ∈ V be a non-root node

• u= parent(v)

• subtree(v) be the sub-tree following v.

Define the v-before-v′-injected protocol Pv,v′ as the protocol where

• child(u) = v′,

• all children of v′ are followed by subtree(v).

We denote i(v) as the agent who receives a query at node v.

DEFINITION: Let (Θ,≤) be a finite ordered type space and succ(θ) resp. pred(θ) be the

next-highest resp. lowest type, if existent. Also, let s be a query for node v. We call θv,i, θv,i
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the highest resp. lowest separator if

θv = min{θi ∈Θv,i | ∃θ−i : s(succ(θi),θ−i) 6= s(θi,θ−i)}

θv = max{θi ∈Θv,i | ∃θ−i : s(pred(θi),θ−i) 6= s(θi,θ−i)}

(If these sets are empty, we will set θv < θ for all θ ∈Θ and θv > θ for all θ ∈Θ.) That

is, the lowest separator at node v is the lowest element in the type space that ends up in a

different child.

PROPOSITION 14—Protocol Injection: Let φ be interval pivotal, i(v) = i(v′), and v′ ∈
subtree(v). Define

θv,v′ = max{θv, θv′} (12)

θv,v′ = min{θv, θv′} (13)

where θv, θv are the highest and lowest separators at v as defined above (and similarly

for v′). Then, for any θ̃i ∈ [θv,v′ , θv,v′ ], a threshold query v′′ with sv′′(θ) = 1{θ∈Θ|θi≤θ̃i}

satisfies

P ∼φ Pv′′,v′

for any θ ∈Θ.

In other words, consider an agent that is asked two queries v and v′ one after the other on

one path through the protocol. If one inserts a threshold query in between v and v′, where

the threshold θ̃i lies between the highest and lowest types that v and v′ can distinguish, this

insertion will result in no change to the set of contextual privacy violations.

PROOF: Consider the newly introduced node v′′ as introduced in the statement. Assume

(θi,θ−i) and (θ′i,θ−i) produce a contextual privacy violation for agent i at node v′′,26 i.e.

26Note that if a contextual privacy violation is produced at a non-terminal node, then, by the definition of
protocols (particularly that the type spaces associated to the children of a node v form a partition of the type space
associated with the parent) the same contextual privacy violation will persist at the terminal node.



CONTEXTUALLY PRIVATE MECHANISMS 65

they are distinguished at v′′ while

φ(θi,θ−i) = φ(θ′i,θ−i).

Assume without loss that θi ≤ θ̃i < θ′i, where θ̃i is the threshold of the threshold query

asked at v′′.

We will now show that (θi,θ−i) and (θ′i,θ−i) are contextual privacy violations at v or v′

in P . By interval pivotality, there are two cases:

(a) φ(θ̂i,θ−i) = φ(θ′i,θ−i) for all types θ̂i ≤ θ′i, or

(b) φ(θ̂i,θ−i) = φ(θi,θ−i) for all types θ̂i > θi.

For the first case (a), assume without loss that v attains the minimum in (12). By definition

of θv,v′ , we have that there must be two (adjacent) types θv, succ(θv)≤ θ′i that are distin-

guished at v. There are two cases within case (a), assuming without loss that v attains the

minimum in (12):

• (θi,θ−i) and (θ′i,θ−i) are distinguished at v. In this case, both type profiles produce

contextual privacy violations for agent i at v.

• (θi,θ−i) and (θ′i,θ−i) are not distinguished at v, but this means that {θi, θ′i} are dis-

tinguished from θv or succ(θv) (or both). In this case as well, these type profiles are

contextual privacy violations.

For the second case (b), we can follow similar reasoning, but with flipped inequiuality

signs. In this case, one proceeds by showing that a contextual privacy violation happened

at the query maximizing (13).

Hence, in both cases (a) and (b), we showed that inserting a threshold query between v

and v′ does not add new contextual privacy violations, i.e. if there is a contextual privacy

violation in Pv′′,v′ then that contextual privacy violation also occurs in P . Formally,

P �φ Pv′′,v′ . (14)
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Observe also that any type profiles that are separated by P are also separated by Pv′′,v′ ,

which means that

P �φ Pv′′,v′

and hence P ∼φ Pv′′,v′ . Q.E.D.

We next introduce another operation that does not affect the set of CP violations. A

filled-in protocol is one in which, for each agent, the threshold of every threshold query is

adjacent in the type space to the threshold of the previously asked threshold query.

DEFINITION: We call a protocol P filled-in if (a) all queries are threshold queries i.e.

for all v ∈ V (P ), sv(θ) = 1{θ∈Θ|θi≤θ̃} and (b) for any v, v′ such that i(v) = i(v′) and there

is no v′′ such that i(v′′) = i(v) and v ≺P v′′ ≺P v′, it must hold that

thresh(v) = succΘ thresh(v′) or thresh(v) = predΘ thresh(v′).

That is, in a filled-in protocol, every query is a threshold query and the threshold for

every query adjacent in the protocol is also adjacent in the type space.

LEMMA 5: Let φ be an interval pivotal choice rule. Then, for any protocol P , there is a

filled-in protocol P ′ such that

P ∼φ P ′

PROOF: We prove this lemma in three steps.

Anchoring. We first add trivial queries si(θ) = vi to all agents in the beginning, where vi

is a new child to the queries. These allow us to perform protocol injection on initial queries

to agents.

Inserting trivial queries affects neither measurability nor contextual privacy violations.

We then introduce threshold queries at the highest (θv,v′) and lowest (θv,v′) separators of

pairs of queries to the same agent, that is, before the later in P of v, v′, i(v) = i(v′). This
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leads to the introduction of at most |V |2 many new queries and does not affect measurability

or contextual privacy violations.

Inserting. Let v, v′ be the set of queries such that i(v) = i(v′) and there is θ̃ such that

thresh(v) ≺Θ θ̃ predΘ threshv′ but there is no v′′ such that v ≺P v′′ ≺P v′ and and θ̃ =

θ̃v . As threshold queries v′′ continue to be inserted before v′ with threshold θ̃, the set of

candidate insertions (triples (v, v′, v′′)) shrinks. As there are only |V |3 many candidate

insertions, this process terminates after finitely many rounds.

Deleting. After this process, for any non-threshold queries v ∈ V (P ), all thresholds be-

tween θv and θv are queried. This implies that non-threshold queries can be removed with-

out affecting measurability. Similarly to the observation that insert operations do not affect

contextual privacy violations. The resulting protocol is filled-in. Q.E.D.

The following observation helps finish the proof.

DEFINITION—Redundant query: Let P be a protocol. A query w is redundant if there

is a query v such that

sv = sw.

We call w a repetition of v. If there is a query that w repeats, then we call it repeated.

DEFINITION—Protocol locally deduplicated at v: Let P be a protocol. Let v ∈ V (P )

be a repeated query. Then, there is a unique w ∈ children(v) such that Θw 6= ∅. Denote by

Dedupv(P ) the protocol that attaches subtree(w) to parent(v) and deletes subtree(w′) for

all w′ ∈ children(v) \ {w}.

DEFINITION: We inductively define a deduplication through a nested induction. Starting

with the earliest query u that has a repetition, we start with the earliest repetition v, and

apply Dedupv(P ). Continuing with the next-earliest repetition v′, we apply Dedup′v(P ).

After all repetitions of u are treated in this way, we continue with the next node u′ that has

a repetition, and deduplicate in the same way. Each of these operations decreases |V (P )|
by at least one, and, as V (P ) initially is finite, will terminate after finitely many steps.
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LEMMA 6: For any filled-in protocol P for any social choice function φ the deduplicated

protocol is bimonotonic.

PROOF: Assume a deduplicated, filled-in protocol were not bimonotonic. In this case,

there must be a path and three threshold queries v, v′, v′′ such that thresh(v) = thresh(v′′)

and thresh(v′) 6= thresh(v), thresh(v′). This, however, would mean that the the protocol is

not fully deduplicated. Q.E.D.

Q.E.D.

A.7. Proof of Proposition 7.

PROPOSITION: Assume |N | ≥ 2. Then, PAsc.Join ∼φ PAsc., but PAsc.Join is a strict

φSPA-contextual privacy improvement.

PROOF: The ascending auction is a weak contextual privacy improvement as, for ev-

ery type profile, it asks a subset of the queries to agents. Consider a type profile in

which the third-highest agent i is asked last in the order of the ascending join auction.

This agent will be asked whether their type is at least the second-highest type, to which

they give a negative answer. Consider a type profiles (θi,θ−i), (θ
′
i,θ−i) for θi > θ′i. The

triple (i, (θi,θ−i), (θ
′
i,θ−i)) will constitute a contextual privacy violation under the as-

cending auction (as all loser types are fully learned), but not under the ascending join

auction. Q.E.D.

A.8. Proof of Lemma 2.

LEMMA: There is a S-protocol P implementing φ in dominant resp. obviously domi-

nant resp. perfect Bayesian strategies and contextual privacy violations Γ ⊆ N ×Θ×Θ

if and only if there is a direct S∗-protocol P ∗ implementing φ with contextual privacy

violations Γ⊆N ×Θ×Θ.

PROOF: Note that the reduction in Lemma 1 leads to the same outcomes and information

state under P and P ∗. This means it preserves incentives. Q.E.D.
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A.9. Proof of Proposition 10.

PROPOSITION: The descending protocol for φFP is implementable in perfect Bayesian

strategies.

PROOF: This result is a direct consequence of the observation that in an indepen-

dent private value setting, the best response for the bidding agent depends only on the

expectation of maxθ−i conditional on θi which is not changing conditional on events

{θ : θi < θ, i= 1,2, . . . , n}. Q.E.D.

A.10. Proof of Proposition 8.

PROPOSITION: An ascending-join protocol for φSP have equilibria in obviously domi-

nant strategies.

PROOF: We show that both the ascending and the ascending join protocols are personal-

clock auctions Li (2017, Theorem 3). Given this Li (2017, Theorem 3) implies our result.

The “personal clocks” in this case are to only raise running prices for agents that are active

in the join auction. Q.E.D.

APPENDIX B: SERIAL DICTATORSHIPS ARE CONTEXTUALLY PRIVATE UNDER

SEQUENTIAL ELICITATION

In the assignment domain, we fix a set C of objects. The set of outcomes is X = 2N×C .

In the standard object assignment setting, agents may receive at most one object, and

agents have ordinal preferences over objects, which are private information. So agents’

types θ ∈Θ are preference orders of C where�i reference to agent i’s preference ordering.

A choice rule φ is efficient if there is no outcome x such that x%i φi(θ) for all agents i and

x�j φj(θ) for some agent j.

Let A⊆N ×C be an outcome. A partial assignment N(A) is the set of agents who have

an assigned object in A, i.e. N(A) = {i ∈N : ∃c ∈ C : (i, c) ∈A} ⊆N . If N(A) =N , we

call A complete. For a partial assignment A, denote A(i) the (at most one) object assigned

to agent i.



70

The remaining objects R(A) are the objects that do not have an assigned agent in A, i.e.

R(A) := {c ∈C : @i ∈N : (i, c) ∈A}.
We first study serial dictatorship mechanisms, in which agents are sequentially asked

to choose one of the remaining objects. To define the serial dictatorship protocol in our

notation, we characterize the nodes and edges of the rooted tree. Fix the permutation

π : N → N of agents that defines the priority order of the serial dictatorship. The serial

dictatorship protocol with respect to π has as nodes all partial assignments to agents

in Nπ
i := {π(i′) : 1 ≤ i′ ≤ i} for any i ∈ N . Edges are between partial assignments

A,A′ such that exactly agents Nπ
i resp. Nπ

i+1 are assigned an object, N(Ai) = Nπ
i and

N(Ai+1) ∈ Nπ
i+1, and π(1), π(2), . . . , π(i) are assigned the same objects. We define sets

of type profiles associated to each node recursively. For an edge (A,A′),

ΘA′ = ΘA ∩

{
θ ∈Θ : max

θπ(i)

R(A) =A′(π(i+ 1))

}
.

Here, R(i) is the set of remaining objects when it is agent i’s turn in the partial order;

maxθπ(i)
R(i) is the most preferred element of R(i) with respect to the strict order θπ(i).

If a node is reached that is a complete assignment, the protocol ends, and the complete

assignment is computed.

PROPOSITION 15: Serial dictatorships are contextually private under sequential elici-

tation.

PROOF OF PROPOSITION 15: Consider θi, θ′i ∈ Θ and a partial type profile for other

agents θ−i ∈ Θn−1 such that (θi,θ−i) is separated from (θ′i,θ−i). We will show that

φ(θi,θ−i) 6= φ(θ′i,θ−i).

Denote A the node of separation. By definition of sequential elicitation, this must be

a query to agent i. By definition of serial dictatorship, the children of A are given by

{θ|θπ(i) ∈maxθπ(i)
R(i) = c} for some c ∈ R(A). Hence, if φ(θi,θ−i) and φ(θi,θ−i) are

separated from each other, agent i must get a different assignment under θi and θ′i, hence

φ(θi,θ−i) 6= φ(θi,θ−i).

Q.E.D.
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A B

A x or x′ x

B x′ x or x′

A B

A x x

B x′ x

A B

A x x′

B x x

A B

A x x

B x′ x′

A B

A x′ x

B x′ x

TABLE B.I

OUTCOMES FOR ARBITRARY EFFICIENT 2-AGENT SOCIAL CHOICE FUNCTIONS (LEFT); UNDER AN

EFFICIENT CHOICE RULE WHICH BREAKS TIES LEXICOGRAPHICALLY (φFAIR ) (MID-LEFT, MIDDLE); UNDER

A SERIAL DICTATORSHIP φsd (MID-RIGHT, RIGHT)

The above protocol for the serial dictatorship satisfies even stronger versions of con-

textual privacy. For any θ, θ′ in distinct terminal nodes of the protocol, φ(θ) = φ(θ′). The

reason for this is that at an earliest point of departure, the assignment to an agent is different,

and any actions by later agents will lead to different outcomes. Such group-contextually pri-

vate mechanism may be formulated as restricting the set of outcomes. Additionally, if θi, θ′i
are such that for some θ−i, (θi,θ−i) and (θ′i,θ−i) are in distinct terminal nodes, it holds

that φi(θi,θ−i) 6= φ′i(θi,θ−i), serial dictatorships are individually contextually private. We

discuss both of these strengthenings in Section 7.

In the case of only two agents, serial dictatorship is the unique contextually private and

efficient mechanism, as the following example shows.

EXAMPLE—Contextual Privacy and Serial Dictatorships, n= 2: Consider an example

of two agents N = {1,2}, each of which is allocated an object A or B. The two possible

outcomes are x= {(1,A), (2,B)} and x′ = {(1,B), (2,A)}.
Table B.I shows possible assignments under efficiency. In the upper right table cell, ef-

ficiency requires that the outcome is x. In the lower left cell, efficiency requires that the

outcome is x′. In the top left and bottom right cell, where both agents have the same type,

efficiency allows either x or x′.

Four different assignments remain. The first two assignments contain a Corner in the

sense of Corollary 1, hence are not contextually private. The other two are Serial Dictator-

ships corresponding to the agent orderings π(1) = 1, π(2) = 2 resp. π(1) = 2, π(2) = 1.
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APPENDIX C: FIRST-PRICE AUCTION IS CONTEXTUALLY PRIVATE UNDER

SEQUENTIAL ELICITATION

While second-price auctions are incompatible with contextual privacy, there are contex-

tually private protocols of the first-price auction. Such a protocol is given by a descending

protocol. A descending protocol queries, for each element of the type space θ̃, in decreas-

ing order, each agent 1 to n on whether their type θi is above θ. Formalized as a protocol,

this leads to a set of nodes N × Θ× {0,1} and edges from ((i, θ,0) to (i + 1, θ,0)), for

i ∈ N \ {n} and θ ∈ Θ. There are edges from (n, θ,0) to (1,maxθ′<θ θ
′,0). Furthermore,

there are edges ((i, θ,0), (i, θ,1)) for all i ∈N and θ ∈Θ corresponding to an agent stating

that they have a type θ, which leads to them being allocated the good. Hence, the set of

terminal nodes is Θ×N ×{1}. The associated set of type profiles is recursively defined as

Θ(i+1,θ,0),i := Θ(i,θ,0),i \ {θ}, Θ(i,θ,1),i := {θ}, Θ(1,θ,0),i := Θ(n,maxθ′<θ θ
′,0),i \ {θ}.

The first rules out the type θ for type i when they claim that they are not type θ. The second

identifies an agent’s type exactly when they claim they are type θ. The last rules out the

type θ for agent n when they claim they are not θ and leads to the protocol considering the

next-lowest type maxθ′<θ.

PROPOSITION 16: The descending protocol for the first-price rule φFP is contextually

private under sequential elicitation.

PROOF OF PROPOSITION 16: It suffices to show that the descending protocol is con-

textually private. Let (θi,θ−i) and (θ′i,θ−i) be separated. By definition of sequential elici-

tation, this must happen when agent i is queried. Note that terminal nodes cannot separate

type profiles. Hence, (θi,θ−i) and (θ′i,θ−i) are separated at a node of the form (i, θ̃,0). By

definition of the descending protocol, the children of the node (i, θ̃,0) are associated to sets

{θ̃} and {θ̃′ ∈Θ: θ̃′ < θ̃}.
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Let, without loss, θi = θ̃ and θ′i < θ̃. In the former case, the outcome is that agent i gets the

good at price θ̃. By definition of the descending protocol, in the latter case, it is that either

agent i does not get the good, or they get it at a price θ̃′ < θ̃.

Note that by construction of the protocol, the first query leading to a singleton possible

type space must be a type θi attaining maxi∈N θi. This implies that the descending pro-

tocol is a protocol for the first-price choice rule (with tie-breaking according to the order

1,2, . . . , n). Q.E.D.

Hence, the first-price choice rule is contextually private under sequential elicitation. The

next example gives insight into the other kinds of standard auction choice rules that have

contextually private protocols under sequential elicitation protocols.

EXAMPLE: Consider a standard auction rule in which the agent with the highest type

wins and pays a price t where t : Θ→ R is an injective function. That is, the payment t

that the winner pays is different for every type profile θ ∈Θ. In this case, the outcome

φ(θ) = (q(θ), t(θ)) is different for every type profile. Hence, contextual privacy is trivial,

as φ(θ) 6= φ(θ′) for any θ 6= θ′, θ,θ′ ∈ Θ. Hence, any protocol for this auction rule is

contextually private.

The example above shows that if the winner’s payment can depend in an arbitrary way on

the profile of bids, many standard auction choice rules are contextually private. However,

with an additional condition on how the payment depends on the bid distribution, the first-

price choice rule is the unique contextually private choice rule. We say that payments in an

auction depend only on rank if the payment is a function of an order statistic, t(θ) = f(θ[k]),

k ∈N .

PROPOSITION 17: Consider the class of choice rules Φ that consists only of standard

auctions where the payment t depends only on rank. Under sequential elicitation protocols,

the first-price choice rule φFP is the unique efficient and contextually private standard

auction rule in Φ.
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PROOF OF PROPOSITION 17: A similar construction as in the proof of Proposition 4.

The quantile that the price depends on is chosen by two types. The Corners Lemma can be

applied analogously. Q.E.D.

APPENDIX D: A TYPE-BASED NOTION OF PROTOCOL EQUIVALENCE

One may also consider equivalence based on equivalence of the sets of contextual privacy

violations.

DEFINITION: We say that protocols P and P ′ for φ are perfectly equivalent with respect

to contextual privacy if (i,θ,θ′) is a contextual privacy violation under P if and only if it

is a contextual privacy violation under P ′.

The reader might wonder whether a result similar to Theorem 2 holds also for perfect

equivalence. This is not true. Consider the following 2-player social choice function with

2- resp. 4-element type spaces and two outcomes.

θ2

A
ge

nt
1

Ty
pe

θ1

θ1 θ2 θ3 θ4

Agent 2 Type

FIGURE D.1.—Counterexample for analogue of Theorem Theorem 2 for perfect contextual privacy equiva-
lence. Blue corresponds to the same outcome, white corresponds to another outcome.

Three distinct equivalence classes in ∼p hi are represented by the following protocols:

• Query agent 1 first, and then ask a query to agent 2 to compute φ;

• Query agent 2 whether they are θ4; If the answer is positive, query agent 1. If the

answer is negative, ask agent 2 whether they are θ1. If the answer is positive, query

agent 1.

• Query agent 2 whether they are θ1; If the answer is positive, query agent 1. If the

answer is negative, ask agent 2 whether they are θ4. If the answer is positive, query

agent 1.

Note that the second and third protocol are not bimonotonic, and the only element in their

perfect equivalence classes.
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APPENDIX E: GROUP CONTEXTUAL PRIVACY AND OBVIOUS

STRATEGYPROOFNESS

The following example illustrates that there are rules that are group contextually private

but not obviously strategyproof.

EXAMPLE—Non-Clinching Rule: In particular, there are strategyproof choice rules that

are not obviously strategyprouf but group-contextually private. As an example, consider

n= 2, Θ = {θ, θ} and X = {x1, x2, x3, x4}. Assume that for agent 1,

x1 �θx3 �θ x2 �θ x4

x1 ≺θx3 ≺θ x2 ≺θ x4

and for agent 2

x1 �θx2 �θ x3 �θ x4

x1 ≺θx2 ≺θ x3 ≺θ x4.

Consider the social choice function

φ(θ, θ) = x1 φ(θ, θ) = x2 φ(θ, θ) = x3 φ(θ, θ) = x4.

As φ is injective, any protocol for φ is group contextually private. It is also tedious but

straightforward to check that this rule is strategyproof. There is no obviously strategyproof

implementation, however. Assume that agent 1 is asked to play first. They face a choice

between outcomes {x1, x3} and {x2, x4}, which, for both θ and θ types are are not ordered

in the set order, and hence make no action obviously dominated. A similar observation for

agent 2 shows that neither first action can be obviously dominant.
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APPENDIX F: DEFINITIONS OF PROTOCOLS

Algorithm 1: Ascending Protocol
Input: N agents, each with willingness to pay θi ∈Θ

Output: The remaining agent in set R and price θ̃

Data: θ̃←min(Θ)

Data: Set of remaining agents R←N

1 while |R|> 1 do

2 Rnext←∅;

3 foreach agent i in R do

4 if θi ≥ θ̃ then

5 Add agent i to Rnext;

6 R←Rnext;

7 θ̃← succΘ θ̃;

Algorithm 2: Descending Protocol
Input: N agents, each with willingness to pay θi ∈Θ

Output: Agent winner and price θ̃

Data: θ̃←max(Θ)

1 while true do

2 foreach agent i in R do

3 if θi ≥ θ̃ then

4 return winner i and price θ̃

5 θ̃← predΘ(θ̃);
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Algorithm 3: Ascending Join Protocol
Input: Ordered list n of agents, each with willingness to pay θi ∈Θ

Output: Agent i and price θ̃

Data: θ̃←min(Θ)

Data: active← first two agents from N

1 while true do

2 foreach agent i in active do

3 if θi < θ̃ then

4 Remove i from active;

5 if There is agent i that never has been active then

6 active← active∪{i};

7 else

8 return Remaining agent i from active, predΘ(θ̃)

Algorithm 4: Overdescending Protocol
Input: N agents, each with willingness to pay θi ∈Θ

Output: Agent winner and price θ̃

Data: θ̃←max(Θ)

1 while true do

2 winnerFound← False;

3 winner←∅;

4 foreach agent i in R \winner do

5 if winnerFound then

6 if θi ≥ θ̃ then

7 winnerFound← True;

8 winner←{i};

9 else

10 if θi ≥ θ̃ then

11 return Agent winner and price θ̃;

12 θ̃← predΘ(θ̃);
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