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THE IMPORTANCE OF FRICTIONAL INTERACTIONS IN

MAINTAINING THE STABILITY OF THE TWINING HABIT1
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The stability of twining vines under gravitational loads suggests an important role for friction. The coefficient of friction, m, between
vine stems and wood is high, often five times greater than between leather and wood, as determined by slip tests on an inclined plane.
Stem trichomes function like ratchets to facilitate climbing upward (or to facilitate slipping if the stem is inverted). A mathematical
model predicts large masses (kg) must be applied to the base of a twining vine to cause slipping. Vines slip as predicted when m is
low and arc length on the pole is short, and they break before slipping when m is large or arc length is long. In contrast, twining
vines are unstable in compression, collapsing when small masses (,10 g) are hung from the top of the vine. However, if the loads
are applied below the uppermost gyre, the stabilizing tensional effect dominates. Therefore, in nature vines twining on a cylindrical
support are stable under gravitational loads, unless these loads occur near the apex. A corollary is that a short apical coil can hold up
large masses of maturing shoot.
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Curved and twisted structures are common in nature, yet
there are few biomechanical studies involving large curvature
or torsion. Twining vines are curved and twisted and have
physical features similar to both mechanical springs and ropes.
Like springs, twining vines have helical shapes. Like ropes,
vines fall over when removed from rigid supports. The me-
chanical properties of vines are reminiscent of the novelties
known as ‘‘finger trap’’ puzzles (Fig. 1). These toys, cylindri-
cal shells made from helically woven straps, tighten to pinch
inserted fingers when pulled apart, but loosen when com-
pressed, widening the diameter of the trap. This paper explores
the tightening and consequent stability of a helical coil in ten-
sion.

We analyze the stability of the twining habit, including the
nature of the forces maintaining the helical form of vines twin-
ing around cylindrical supports. Plant habit is the position-
ing—the location and configuration—of stems, roots, and
leaves. The habit of an organ influences its access to light and
its structural stability. The habit of a plant axis, like the ge-
ometry of a space curve (DoCarmo, 1979), can be specified
by the values of s, the arc length along the axis; k, the asso-
ciated curvature; and t, the torsion. Thus an understanding of
plant habit requires an understanding of the manner in which
curvature and torsion are produced and maintained. Further-
more, k and t enter into force and moment balances of curved
and twisted structures (Love, 1944; Costello 1978).

To understand axial curvature and torsion, we need some
definitions based on the Frenet vectors, the unit tangent, nor-
mal and binormal to a curve in space (Fig. 2). The curvature
vector, k, lies along the direction of the unit normal (n) to the
curve and is the rate of change of the unit tangent (t) as we
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move along the curve, k 5 k n 5 (]t/]s). A more intuitive
measure is the radius R of the circle that just fits the curve
locally. An arc has large curvature if it is fit by a small circle,
and the converse is true. It can be shown that k is the recip-
rocal of R. For a plant stem the spatial distribution of curvature
can be characterized by plots of k or R vs. s, where s is the
distance along the edge or a computed midline of a photo-
graphic projection of a stem (Silk and Erickson, 1978; Whippo
and Hangartner, 2003). Since stems are often straight, having
zero k but infinite R, it is convenient to plot curvature rather
than the radius of curvature as a function of position. A planar
curve given by a set of values (s, k) retains its shape even if
it is rotated and translated in space. If the curve lies in more
than one plane, as is the case for twining vines, it is specified
by s, k, t. The torsion t is a measure of the rate at which the
curve is twisting out of the local plane and is given by t 5
tn 5 2 (]b/]s), where b is the binormal, i.e., the unit vector
perpendicular to the plane of the curve.

Twining stems have uniform curvature and torsion (Fig. 3)
and provide an instructive model system for studying growth
rate patterns that produce plant habit (Silk and Abou Haidar,
1986; Silk, 1989). Ascending a smooth vertical pole, a twining
vine forms a helical tube of tissue (Fig. 2). The helix a
through the center of the vine is

a(s) 5 a cos(s/d)i 1 a sin(s/d)j 1 c(s/d)k

where the variable s is distance along a; the parameter a is
the radius of the helix; c is the pitch, i.e., the gyre wavelength
divided by 2p; and i, j, and k are the unit vectors of the
cartesian reference frame. The curvature and torsion at all lo-
cations on the helix are

2 2k 5 a/d t 5 c/d ,

where d2 5 a2 1 c2. As will described in our model, the bio-
mechanical analysis of twining involves curvature, tensile forc-
es along t, and normal loads (forces per unit length) along n.

Climbing vines are a prominent feature of tropical forests
where light is limiting (Putz and Holbrook, 1991; Rowe and
Speck, 1996). The twining mode of growth has evolved in
many plant families and enables vines to ascend vertical sup-
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Fig. 1. ‘‘Finger trap’’ toy. The finger trap, made of helically woven straps,
contracts radially as it is pulled longitudinally and loosens as the coils widen
in compression.

Fig. 3. Geometry of the twining habit. The helix is characterized by pa-
rameters a, c, and d and has uniform curvature, k and torsion, t related to
the helical parameters. The helical parameters are found empirically to vary
with the diameter of the support. See legend to Fig. 2 for the definition of
the arc length s and the Frenet vectors t and b.

Fig. 2. Natural coordinate system for the analysis of twining mechanics.
On a cylindrical support, a vine stem grows into a helical form (photograph,
left). The Frenet vectors t, n, and b vary with position on the helix that runs
through the center of the vine stem (diagrams A and B, right). The unit tangent
t lies along the helix; the unit normal n is horizontal and points toward the
center of the vertical supporting pole; and the unit binormal b rotates so that
it remains perpendicular to t and n. The plane containing n and b cuts a cross-
section through the vine stem. The natural coordinates s (arc length along the
helix), r (distance along the radius of the helical tissue tube), and w (angle,
measured from the normal) are defined in terms of the Frenet vectors. The
unit vectors e can be drawn tangent to the natural coordinate curves; and
surfaces can be visualized corresponding to constant values of the natural
coordinates (diagram C, lower right). The forces generated by the twining
habit are dominated by axial tensions (tensile forces in the t direction) bal-
anced by normal loads (forces per unit length in the n direction).

ports with a minimum expenditure of biomass. The evolution-
ary success of the twining habit suggests that good mechanical
stability should be associated with the helical structure. Silk
and Hubbard (1991) showed that the mechanics of the twining
habit involves an innate tendency for the vine to grow into a
coil of smaller radius than the cylindrical supporting structure.
This causes the stem to hug the support. Putz and Holbrook
(1991) explored the model of loosely coiled springs to show
that friction must also play an important role. In this paper we
extend the earlier analyses to quantify the role of frictional
interactions in maintaining the stability of the twining habit.

MATERIALS AND METHODS

Cultivation of vines—Morning glory vines were grown from seeds of Ip-
omoea purpurea (L.) Roth (Convolvulaceae) cv. Heavenly Blue. Plants were
maintained in a growth chamber as described previously (Silk and Hubbard,
1991). After eight leaves had emerged, stems were allowed to twine around
a wooden dowel or the TWIFOR force measuring apparatus (Matista and Silk,
1997).

Coefficients of friction—To determine the coefficient of friction between
vine stems and differently textured surfaces, stem segments were placed on
a flat piece of wood (‘‘plane surface’’) either left bare, covered in contact
paper (smoothest texture), or covered with wool fabric (roughest texture). The
plane surface was then elevated at one side using a micromanipulator (Olym-
pus America, San Diego, California, USA). Measured from the horizontal,
the angle of inclination at which the stem segment slid down the plane was
recorded. Two types of placement were used in the measurements. First the
segments were firmly placed, so that the entire surface of the stem was in
good contact with the plane. This placement was intended to mimic the stem
experiencing a twining force so that it is in close contact with its support. In
a second set of determinations, termed ‘‘gentle placement,’’ the same stem
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TABLE 1. (A) Angle of slide in degrees and (B) coefficient of static
friction (m) for hairless and hairy stems of Ipomoea purpurea
placed on surfaces with different textures. Four replicates were used
in the hairy slide tests, six replicates for hairless stem segments
sliding on wool and contact paper-covered surfaces, and 21 repli-
cates for hairless stems sliding on wood. ‘‘Firmly placed’’ segments
were pressed onto the plane to simulate effects of twining forces
in situ; ‘‘gently placed’’ segments were placed lightly onto the
plane.

Hairless

Firmly placed Gently placed

Hairy

Firmly placed Gently placed

(A) Angle of slide
Inverted

Wood 53.1 6 17.0 22.5 6 6.7 34.0 6 5.8 23.0 6 0.7
Paper 57.7 6 9.5 25.7 6 3.6 28.2 6 3.3 20.5 6 2.1
Wool 75.8 6 15.6 37.2 6 4.4 .90 44.7 6 0.8

Upright
Wood 56.2 6 19.9 22.1 6 4.9 72.2 6 19.7 33.8 6 6.9
Paper 48.3 6 10.0 24.7 6 4.8 31.0 6 4.2 23.2 6 1.8
Wool 68.8 6 20.8 36.5 6 5.1 .90 .90

(B) Coefficient of static friction
Inverted

Wood 1.33 0.41 0.67 0.42
Paper 1.58 0.48 0.54 0.37
Wool 3.96 0.76 — 0.99

Upright
Wood 1.50 0.41 3.12 0.67
Paper 1.12 0.42 0.60 0.43
Wool 2.58 0.59 — —

segments were placed on the plane surface with as little pressure as possible.
The slip test was also performed for two orientations: an ‘‘upright’’ config-
uration in which the apical end of the stem segment was at the higher end of
the inclined plane and an ‘‘inverted’’ configuration in which the basal end of
the segment was placed on the higher end of the inclined plane. An aluminum
plate was used to determine frictional coefficients of the nylon string. Un-
coiled vine stems were used for the slip tests on an aluminum pole. The
coefficient of static friction, m, was calculated as the tangent of the angle at
which the stem or string first slips on the inclined plane. The coefficient of
kinetic friction could be estimated as 0.75 m (e.g., Beer and Johnston, 1977).

Measurements of the loads produced by the twining stems—A load-mea-
suring apparatus, the TWIFOR, was used to record the normal load exerted
by the helical vine stem (Matista and Silk, 1997; Scher et al., 2001). The
apparatus has a vertical support pole that is cut in half longitudinally to
make two poles with semicircular cross sections. The half-poles are mount-
ed in close proximity so that the twining vine acts to pull the halves together.
One half-pole is mounted rigidly in a fixed platform, and the other is an-
chored in a swinging bar suspended at each end from the fixed platform.
Suspending elements are thin plastic strips and a thin beam load cell, sup-
plied with balancing, compensating, and conductive elements and a rated
capacity for 113 g (Omega Engineering Inc., Stamford, Connecticut, USA).
The normal load exerted by the plant on the pole is sensed as a slight
horizontal movement of the bar and recorded with a datalogger (Campbell
Scientific, Logan, Utah, USA) connected to the load cell. Calibration of the
TWIFOR involves an analog to the twining stem: a helically wrapped nylon
string of 1 mm diameter. The TWIFOR gives stable output for the cali-
brating string, with mV output constant in time (Silk and Matista, 1997).
The force produced by the calibrating string rapidly drops to zero when the
masses are removed from the string. For the experiments shown in Fig. 4,
the vine stem was tied to pieces of string at each end and wrapped in a
helical form around the TWIFOR. The ends of the string were draped over
pulleys, and a mass of 12 g was attached to one end. Progressively greater
masses were added at the other end of the system, and millivolt output was
recorded as a function of the applied mass.

Stability of the vine in tension—To test the validity of eq. 9 (predicting
weights required for slipping of string and vine stems), nylon string or a vine
segment with pieces of string slip knotted to each end were wrapped in a
helical form around an aluminum pole. The ends of the nylon string were
draped over pulleys, with the pulleys positioned to establish the pitch of the
helix. A mass of 12 g was attached with a clothes hook to one end of the
string, and an empty weighing bottle was attached to the other end. Water
was poured into the weighing bottle until the string or vine began to slip on
the pole or until the vine tore or broke. The mass required for slippage or
breakage was measured on a standard precision balance (Mettler-Toledo Inc.,
Columbus, Ohio, USA).

Instability of the vine in compression—Small masses (2.5 g) were hung
from a leaf axil near the top of the uppermost gyre of a twining vine of
Ipomoea purpurea. Masses were added to the leaf axil until the helix col-
lapsed. During the collapse of the helix, the coiled stem fell to the bottom of
the support pole.

Statistics—Differences in sliding angle due to substrate, placement method,
stem orientation, and presence of epidermal trichomes were analyzed with a
general linear model from Minitab Statistical Software (Release 13 for Win-
dows; Minitab Inc., State College, Pennsylvania, USA). Factors were assumed
to be fixed and crossed. Analysis of variance was performed with an F test
(P , 0.005). Tabular data are shown as means 6 SD.

RESULTS

The stem of the twining vine has a high coefficient of
friction—Frictional interactions between stems and surfaces
were characterized by determining the angle at which stem

segments began to slide off an inclined plane. The coefficient
of static friction was calculated as the tangent of the angle of
slip. Once the vine begins to move on its support, a continuing
slide is related to the coefficient of kinetic friction, generally
about 25% lower than the coefficient of static friction (e.g.,
Beer and Johnston, 1977).

Two I. pupurea phenotypes, having hairless stems and hairy
stems, were found in plants grown from a single seed packet.
The frictional properties of these two stem types were com-
pared. The effects of smooth and rough surfaces and the effect
of placing segments upside down were also determined. In
both stem phenotypes, the angle of slip was highest on the
rough (wool covered) surface (Silk et al., 2000; Table 1). In
fact, for the hairy phenotype most segments did not slide at
all on the woolen surface; rather, when the plane surface was
inclined substantially past the vertical, the segments would fall
off the plane (‘‘undefined’’ coefficient of friction in Table 1).
This suggests that the stem trichomes grip the wool fibers in
some way. In the upright configuration, the angle of slip of
the hairy phenotype was least on smooth paper, highest on
wool, and intermediate for the bare wood surface. For the hair-
less phenotype, there was no significant difference between
frictional interactions on the wood and paper surfaces.

An interesting difference in frictional properties was appar-
ent between upright and inverted stem segments for the hairy
stem phenotype. In general, the upright hairy segments had
larger frictional interactions than the inverted hairy segments.
Furthermore, the frictional interaction was greater for hairy
than for hairless stems upright on the wood surface, but less
for hairy stems than for hairless stems sliding upside down.
This suggested that the stem trichomes act like miniature
ratchets or the hairs on climbing skins of mountaineering skis.
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In the ‘‘uphill’’ direction the trichomes engage the surface and
facilitate climbing, while in the ‘‘downhill’’ direction the tri-
chomes facilitate slipping.

In general, Table 1 shows that the gently placed vine stem
has a coefficient of friction in the range reported for other
materials on dry surfaces: metal on wood has m between 0.15
and 0.60, while wood on leather has m between 0.25 and 0.50
(Beer and Johnston, 1977). In contrast, the firmly placed up-
right vine stem, with m in the range 0.61–3.12, has an unusu-
ally high coefficient of friction. This shows that in nature a
twining vine segment will have large frictional interactions
with supporting structures.

Relevance of the problem of a rope wrapped around a pole
and generalization to helical forms—Analysis of the me-
chanical interaction between the vine and its supporting pole
indicates that the vine puts itself into tension as it ‘‘grabs’’ the
pole (Silk and Hubbard, 1991). That is, the tendency of the
stem to tighten its coil (make a helix of smaller radius and
larger torsion than the helix on the supporting pole) produces
a normal load (a force per unit length), acting toward the cen-
ter of the pole, balanced by an axial tension in the vine (Fig.
2). Compressive loads tend to open the helix so that frictional
interactions with the pole are eliminated (see Fig. 1 for another
example). In contrast, added axial tension causes the vine to
push harder on the pole, so that frictional interactions are fa-
cilitated, Thus twining stems should be stable in tension but
weak in compression. Putz and Holbrook (1991) showed that
the problem of a rope wrapped around a pole was relevant to
tendril twining. Here we extend their approach to assess the
stability of the twining stem. We ask, what is the axial force
that must be added to the vine to cause it to slip on its sup-
porting pole?

To analyze the situation of a helically wrapped vine expe-
riencing an additional axial load, a frictional term can be added
to the basic equations of the force balance of a thin, elastic
rod (Love, 1944). We assume a frictional load acts along the
tangent. As is conventionally assumed, the frictional load is
proportional to the normal load with the proportionality con-
stant set by the coefficient of friction. The complete balance
of forces is given by

F9 2 kF 1 p 5 0 (1)t n t

F9 1 kF 2 tF 1 p 5 0 (2)n t b n

F9 1 tF 1 p 50, (3)b n b

where F represents forces and p represents applied loads (force
per unit length) along the unit vectors t, n, and b directed
respectively along the tangent, normal, and binormal to the
central helix; and the prime represents differentiation with re-
spect to arc length along the helix (Fig. 2; Love, 1944; Silk
and Hubbard, 1991).

As is conventional in the study of wire ropes (Costello,
1978), we will ignore the resultant normal and binormal forc-
es. The frictional load acts along the tangent and thus helps
prevent the vine from slipping.

p 5 m p .t n (4)

From eq. 2, since Fb and F9n are negligible

p 5 2m k F .t t (5)

Note that eqs. 4 and 5 imply that

p 5 2k Fn t, (6)

which is the force balance in the frictionless analysis of Silk
and Hubbard (1991). Equation 6 is in great contrast to the
conventional force balances for either beams or helical springs.
In cantilevers, for instance, curvature and torsion are assumed
negligible; the normal load is integrated along the beam to
give the shear force Fn; the shear force is integrated along the
beam to give the bending moment Mb; and the axial force Ft

sums to zero through the cross-section because the upper sur-
face of the beam is in tension, while the lower surface is in
compression (e.g., Beer and Johnston, 1977). For helical
springs Ft and Mb are important, and pn is usually neglected
(Lin and Pisano, 1988). In contrast, eq. 6 states that the twin-
ing stem has a normal distributed load, acting along the line
of contact between the stem and the pole, balanced by an in-
ternal, axial tensile force.

Substituting in eq. 1 we see

F9 2 m k F 5 0.t t (7)

Integrating along s, the arc length following the central helix

F9/F ds 5 mk ds. (8)E t t E
Integrating, collecting terms, and rearranging we find

mkDsF 5 Aet (9)

where A, the constant of integration, is the tension (an axial
force) at the top of the vine.

Note that when the vine is wrapped in a circle, the curvature
is 1/r, where r is the radius of the pole; and the arc length Ds
can be written rDu. Equation 9 then is seen as a generalization
of Euler’s familiar formula for the force Ft that can be held
by a smaller initial force Fi at one end of a rope wrapped
around a pole

mDuF 5 F e ,t i (10)

where Du is the total angle of wrap of the rope around the
pole (Hibbeler, 1983; Putz and Holbrook, 1991). The contrast
between eq. 9 and eq. 10 illuminates the difference between
the botanical system and a rope. In a rope wrapped helically
around a pole, A of eq. 9 would be the same as Fi of eq. 10.
Fi is a force applied to one end of the helically wrapped rope,
and Ft would be the force that would need to be added to the
other end of the rope to make it slip. In a twining stem, initial
contact with a vertical pole induces the growth gradients that
cause the plant to cling to the pole. By developing growth
gradients within the stem (and with form change impeded by
the pole), the vine generates its own twining force., thus A is
the twining force, an axial tension measurable with the cali-
brated TWIFOR in contact with a gyre near the top of the vine
and without added masses (see Silk and Matista, 1997). In
contrast, the rope can only remain in place with an externally
applied force Fi. In both helical systems, the force at the apical
end can support a larger mass (applied load or maturing vine
stem with leaves) below the coiled region.

Equation 9 can be used as a model to find the importance
of various factors in maintaining the stability of the twining
habit. Let us use eq. 9 and consider the case of a vine wrapped
around a wooden pole of 1.91 cm diameter (Fig. 2). Silk and
Hubbard (1991) have tabulated values for k, t, and gyre arc
lengths in I. purpurea. Typical values of m 5 1.5 (this paper),
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TABLE 2. Predicted and actual masses required for slipping of nylon string or vine stem on supporting pole. Numbers in the last column represent
mean values for ten vines 61 SD. A (initial twining force), m (coefficient of friction), k (curvature), and Ds (arc length of helix on pole) are
as explained in Results (in Empirical tests of equation for slipping).

Type of loading A (g) m k (cm21) Ds (cm)
Predicted mass

for slip (g)
Actual mass for

slip (g)

Vine with twining force 30 1.5 0.25 12 2700
Vine with twining force and large friction 30 3 0.25 12 243 092
Vine with twining force and two gyres 30 1.5 0.25 24 243 092
Vine with small friction and small twining force 10 0.41 0.25 12 34
Nylon string with 12 g on Al pole 12 0.49 0.33 7.8 42 45 6 4
String with 12 g on Al pole, two gyres 12 0.49 0.33 15.6 149 142 6 15
Vine with 12 g on Al pole 12 0.93 0.27 8.6 96 165 6 40
Vine with 12 g on Al pole, two gyres 12 0.93 0.27 17.2 701 638 6 238

Fig. 4. Normal load vs. applied tension. Stems were wrapped around the
TWIFOR load-measuring device and put into axial tension by adding nylon
strings at each end, draping the strings over pulleys and adding masses to the
strings. Stems in tension exerted progressively greater normal loads with
greater applied tension. The force curve represents the mean of 10 vines. Bars
indicate 1 SD.

and k 5 0.25 cm21 can be used with the arc length of the vine
around the pole s 5 12 cm. If we assume a twining force
produced by the vine in the typical range, equivalent to 30 g
of tension (Scher et al., 2001), then eq. 9 predicts that more
than 2700 g would need to be applied before the vine would
begin to slip down the pole (Table 2). Note that the value of
Ft from eq. 9 is very sensitive to both the coefficient of friction
and the length of the vine in contact with the pole. If hairy
stems with m 5 3 are used, or if the vine has two full gyres
wrapped around the pole (s 5 24 cm), then the mass needed
to make the vine slip would be greater than 243 kg! At the
other extreme, a vine lightly resting on a smooth pole (cor-
responding to our gentle placement, m 5 0.41), and before the
development of a large twining force (A 5 10 g, s 5 12 cm)
might slip downward if only 34 g were applied to the bottom
of the vine.

Empirical test of the assumption that the normal load is
proportional to applied axial tension—The model assumes
that the normal load exerted by a vine on the pole is propor-
tional to applied axial tension, eq. 6. This assumption was
tested with our device to measure twining loads, the TWIFOR
(see Material and Methods). The vine was wrapped helically

around the split pole, and masses were added to provide in-
creasing amounts of axial tension. The normal load was seen
to increase with added mass (Fig. 4). The best regression of
load with mass is linear with r2 5 0.98. The model also pre-
dicts that the vine will not slip on a rough surface until hun-
dreds of grams are pulling axially on the vine. On the TWI-
FOR, vines tore or broke when more than 800 g were applied,
and slipping was never observed. This supported the hypoth-
esis that the vine would not be likely to slip in tension. How-
ever, because the force required for slipping could not be mea-
sured, this approach fails to test the major prediction of eq. 9.

Empirical tests of equation for stem slipping—To test eq.
9 we used a smooth aluminum pole to reduce the coefficient
of friction. We measured slipping first in nylon string and then
in uncoiled lengths of I. purpurea vine so that A 5 Fi would
be only the applied load of 12 g. Slip tests gave m 5 0.91 for
the vine and m 5 0.48 for the string sliding on an aluminum
plate. Observed values of the mass required to cause slipping
were similar to the predicted values for masses in the range
between 30–700 g (Table 2; Fig. 5). Larger masses tore the
vine before causing any slippage. This supports the hypothesis
that in situ the vine twining on a rough support would usually
break before it slips in tension. The twining force that develops
as the top of the vine hugs the pole is amplified exponentially
with the coefficient of friction and the length of the helical
contact.

The mechanics of the twining habit includes an irrevers-
ible component of tension in response to an applied load—
The mechanical behavior of the axially loaded vine was sim-
ilar in some ways to that of the nylon string. The greater sta-
bility of the vine in tension is explainable by the higher friction
of the vine (compared to the nylon string) on the pole. A less
explicable difference between vine and calibrating string is the
irreversibility of the normal load exerted by the vine. As the
masses were added to the vine, the output of the TWIFOR
increased (Fig. 4). This was similar to the response for a cal-
ibrating string. However, for nylon string, the output from the
TWIFOR falls immediately to zero loading when the mass is
removed from the string. In contrast, for the vine much of the
force remains after the load is removed. Typically 80% of the
force output from a 260-g load remained after the load was
removed from the base of the plant. Only when the vine was
snapped against the pole so that the geometry of the vine/pole
interaction was disturbed did the TWIFOR return to the output
for zero loading. This suggests a viscous or plastic component
to the force exerted by the vine loaded in tension. It also means
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Fig. 5. Tests of eq. 9 to predict axial force required for slippage on a pole. A nylon string, or a noncoiled vine stem attached to two lengths of nylon string,
was wrapped in a helical form on an aluminum pole and draped over pulleys (black circles). A mass of 12 g was applied at one end of the system, and water
was poured into a weighing bottle until the string or vine slipped on the supporting pole. Predicted and actual masses causing slipping are shown in Table 2.
(A) Nylon string wrapped in a single helical gyre. (B) Ipomoea purpurea vine wrapped in two helical gyres. (C) Vine subjected to a force with a large
compressive component applied near the apex.

that the twining force oscillations observed during growth of
vines in situ (Matista and Silk, 1997; Scher et al., 2001) must
involve repeated, active opening and closing of the helix over
time.

The twining vine is weak in compression—To demonstrate
the weakness of the twining habit in compression, we hung
progressively heavier masses, in increments of 2.5 g, from the
leaf axil located at the apical end of the uppermost gyre (Fig.
5, right). The helical form of the vine remained stable until a
sudden collapse occurred as the helical gyres were com-
pressed. Of the sample of 10 vines, one collapsed when 2.5 g
was applied and two remained stable until 15 g had been ap-
plied. The average mass producing compressive failure was
8.25 6 4.25 g. However, when the masses were applied below
the uppermost gyre, the helix did not collapse. This is because
the upper gyres were put into tension by the mass hanging
below them, and the tendency to slip was resisted by the mech-
anism described above for the vine in tension.

Once the vine grows above a supporting structure, the un-
supported part of the stem exerts a force and bending moment
and tends to destabilize the older helical structure on the pole.
Collapse of an existing helix is not observed, however. Instead,
after the shoot apex reaches the end of a supporting pole the
vine uncoils: the wavelengths of the upper gyres increase; the
vine no longer touches the pole; and a reversion to an erect
searching habit is observed.

During twining the apical stem segment remains uncoiled
and is displaced during growth in an undulating, circular path.

Unlike the searching habit that occurs in the absence of the
support pole, the radius of the path is small, so the length of
the unsupported portion of the stem remains short. In our I.
purpurea stems twining on 6.2 mm poles, the unsupported
stem segment is 2–4 cm in length and weighs 15–30 mg, well
below the 8000 mg load required to collapse the helix; thus
the twining habit appears to be engineered to avoid compres-
sive loads.

DISCUSSION

Helical growth has been the subject of recent interest, as
molecular and cellular determinants have been discovered for
handedness of twisting growth forms in roots of Arabidopsis
(Thitamadee et al., 2002; Yuen et al., 2003). In classical lit-
erature, the growth of twining stems has fascinated scientists
since the time of Darwin (1876). Twining plants grow in a
searching mode characterized by sweeping circular or elliptical
movement of the apex. After the stem encounters a suitable
support the growth pattern changes (see Baillaud, 1962, for a
review of the historical literature). A growth tensor in a natural
coordinate system can be used to find the intrastem pattern of
expansion and twisting that produces the well-known cork-
screwlike shape of the twining vine (Silk, 1989). The shift
from selfsupporting to a supported growth habit in woody
vines has been shown to involve an increase in stem flexibility
resulting from both a smaller stem diameter and a more flex-
ible wood type (Gartner, 1991; Gallenmueller et al., 2004).
Furthermore, an anatomical basis for the variation in material
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mechanical properties has been determined (Rowe and Speck,
1996; Gallenmueller et al., 2004). Recently the twining habit
has been characterized in terms of wood chemistry and mi-
crofibril angle (Hoffmann et al., 2003), thus there is historical
and recent interest in the mechanical properties of vine stems.
Nevertheless, the literature contains little analysis of the me-
chanical function of the twining habit.

In nature, some species of twining stems, including I. pur-
purea, appear to have mostly continuous contact between stem
and support. Other species, such as Phaseolus spp., touch the
support infrequently and appear to be more selfsupporting. A
complete analysis of the mechanics of the twining habit would
involve modeling the range of frictional interactions observed
in nature, from species that twine smoothly with continuous
contact to species with intermittent contact and a more self-
supporting habit. Theoretical treatments of the dynamics of
helical strips have identified instabilities that might be relevant
to the problem of optimum mechanical design for those vines
with intermittent contact (Goriely and Shipman, 2000; Goriely
et al., 2001).

In this study, we put the vine into tension and thereby en-
sured continuous contact. The results of this manipulation
demonstrate that in nature, gravitational loads (unless they are
applied very near the vine apex) will stabilize the twining habit
if the vine is wrapped around the pole. It is also instructive to
think of the frictional interaction as a mechanism by which a
small apical stem portion can hold up a large mass of older
stem. This explains the observation that a loosely coiled,
heavy, older vine segment can simultaneously stabilize and be
held up by one or two tightly wound younger coils (Putz and
Holbrook, 1991).

The twining vine, unstable in compression and stable in
tension, is similar to structures made of rope or cloth, such as
clotheslines, tents, and ‘‘finger traps.’’ Indeed, many plant
structures are stabilized by tensile forces (Vogel, 1988; Niklas,
1992; Moulia, 2001). For the twining habit, an underlying
mystery is how a vertical pole of a particular radius induces
the tendency to produce stem coils of a particular ‘‘potential’’
radius (observable when the stem is removed from its support).
Because the potential coil radius is smaller than the pole ra-
dius, contact with the supporting pole is assured. As shown in
this paper, the frictional interactions arising from the contact
produce stability under tensional forces and allow a few coils
near the top of the vine to support a large mass of maturing
stem against the pull of gravity.
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