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ABSTRACT

 

Sieve tubes are primarily responsible for the movement of
solutes over long distances, but they also conduct informa-
tion about the osmotic state of the system. Using a previ-
ously developed dimensionless model of phloem transport,
the mechanism behind the sieve tube’s capacity to rapidly
transmit pressure/concentration waves in response to local
changes in either membrane solute exchange or the magni-
tude and axial gradient of apoplastic water potential is
demonstrated. These wave fronts can move several orders
of magnitude faster than the solution itself when the sieve
tube’s axial pressure drop is relatively small. Unlike the
axial concentration drop, the axial pressure drop at steady
state is independent of the apoplastic water potential gra-
dient. As such, the regulation of whole-sieve tube turgor
could play a vital role in controlling membrane solute
exchange throughout the translocation pathway, making
turgor a reliable source of information for communicating
change in system state.
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INTRODUCTION

 

An unresolved issue in the study of phloem translocation
is the speed with which a change in sieve tube state is
transmitted along its length. Intuitively, the transmission of
pressure change ought to be set by the membrane and
elastic properties of the sieve tube (Kallarackal & Milburn
1985), while the transmission of a change in concentration
would be set by the time required for solution to move the
length of the sieve tube. However, direct observation has
shown that pressure and concentration fronts propagate
much faster than the solution itself, sometimes by more
than an order of magnitude (Mason & Maskell 1928a, b;
Huber, Schmidt & Jahnel 1937; Zimmermann 1969;
Moorby, Troughton & Currie 1974; Lee 1981).

Zimmermann (1969) argued that ‘pressure/concentra-
tion’ waves (Ferrier, Tyree & Christy 1975; Ferrier 1976)

are the combined result of local osmotic responses to
changes in apoplastic water potential, and thus the result
of pressure propagation in the xylem rather than in the
phloem. In contrast, Ferrier 

 

et al

 

. (1975), using a now stan-
dard physicochemical and fluid mechanical modelling
approach to phloem translocation, showed that both
changes in the apoplastic water potential gradient and
changes in solute loading would have the same effect on
pressure/concentration wave propagation.

The most plausible explanation for rapid concentration
wave propagation requires that the water potentials of the
sieve sap and apoplast be tightly coupled. Pressure waves
develop and propagate due to a local change or imbalance
in water potential. These waves drive membrane water flux
elsewhere in the sieve tube, either diluting or concentrating
the solution until the sieve sap again comes into water
potential equilibrium with the apoplast. If the pressure
waves propagate quickly, so will the concentration waves,
as long as the sieve sap can quickly return to water potential
equilibrium, which, in turn, depends on the local elastic and
membrane properties of the sieve tube (Dainty 1976; Kal-
larackal & Milburn 1985).

An analytical expression of the time scales involved in
wave  propagation  was  presented  by  Ferrier  (1976), but
the  assumptions  involved  limit  its  usefulness.  Here, using
the  model  of  Thompson  &  Holbrook  (2003b),  we  show
that the rate of transmission of pressure and concentration
‘information’ depends on a single dimensionless scale, ,
also called the phloem transport scale, which corresponds
to the ratio of the osmotic pressure of the solution to the
magnitude of the axial pressure drop. The phloem transport
scale has great diagnostic value as a comparative tool across
a variety of phloem transport scenarios, and here serves as
an index of the relative efficiency of the transport phloem
for information transmission in response to change.

 

METHODS

 

This work outlines factors critical to pressure/concentration
wave propagation, as well as a set of analytical and numer-
ical methods that can be used to estimate its speed. The
numerical methods employed here are the same as those
used by Thompson & Holbrook (2003b).

 

Governing equations

 

Thompson & Holbrook (2003b) showed that for a probable
and extensive set of phloem translocation scenarios, sap in
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the transport phloem (Fig. 1) is in water potential equilib-
rium with the apoplast. This is a commonly made assump-
tion (Fisher 1978; Minchin, Thorpe & Farrar 1993; Patrick

 

et al

 

. 2001), but previously with little justification.
In water potential equilibrium, the relevant transport

equations greatly simplify, pinning sieve tube dynamics
solely on the value of a dimensionless group denoted by 
(also called the ‘phloem transport scale’, see Thompson &
Holbrook 2003b). Mathematically,  is the ratio of the
sieve sap’s osmotic pressure, 

 

Y

 

p

 

, to the flow rate- and geom-
etry-dependent pressure drop, 

 

P

 

, attendant along the trans-
location path:

(1)

(In the plant physiology literature, the symbol 

 

P

 

 commonly
refers to osmotic pressure, but here, to maintain parallelism
between the variable and scale symbols, it refers to the axial
hydrostatic pressure drop; hence, 

 

p

 

: 

 

P

 

, 

 

v

 

:  

 

U

 

, 

 

t

 

:  

 

t

 

.) Both 

 

Y

 

p

 

and 

 

P

 

 are in units of pressure, so  is dimensionless. Con-
ceptually,  reflects whether a local perturbation in sieve
tube state is more likely to propagate axially (  

 

>

 

 1) or to
accumulate locally (  

 

<

 

 1). This is intuitively obvious from
observation of dimensionless solute profiles at different
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F̂
F̂

F̂
F̂

 

values of  (Fig. 1), where a much larger solute concentra-
tion gradient is attendant at low  than at high , indicat-
ing facile axial propagation at large  (Fig. 1).

When in water potential equilibrium, pressure and sol-
ute concentration locally co-vary in response to perturba-
tion. An increase in local solute concentration will lead to
an influx of water that will raise the pressure until the
balance is restored. Furthermore, a propagating pressure
wave will be accompanied by a concentration wave as the
increased pressure drives water out of the sieve tube, con-
centrating the solute already present. The propagation of
these waves can be thought of as ‘information’ transmis-
sion, both as a whole sieve tube signal of disturbance (i.e.
a change in apoplastic water potential, aphid probing,
mechanical damage, sun flecks in a complex canopy) and
as a feedback signal for photosynthesis and allocation of
solutes.

Some analysis is required to understand how this ‘infor-
mation’ propagation works. If, along the transport phloem,
net loading of solutes is low and water potential equilib-
rium is maintained, then the phloem transport equations of
Thompson & Holbrook (2003b) can be simplified to yield
the following dimensionless partial differential equation
(see Tables 1 and 2 for symbol definitions):

F̂
F̂ F̂

F̂

 

Figure 1.

 

Steady-state behaviour of the 
transport phloem. Upper panel: the transport 
phloem in water potential equilibrium is mod-
elled by a single dimensionless differential 
equation with solute flux boundary conditions 
defined at the ‘borders’ between the transport 
phloem and the collection and release phloem 
(at  = 0, 1). Membrane solute flux in the 
transport phloem is assumed negligible. Lower 
panels: steady-state dimensionless concentra-
tion ( ) and velocity ( ) profiles of sieve tubes 
in water potential equilibrium, and at 

 ( ) = 0, as a function of . At  = 10 and 
above, the concentration drop becomes negli-
gible. At  = 1, the concentration drop is of the 
same order of magnitude as the mean concen-
tration in the sieve tube. At  

 

<

 

 1, the concen-
tration drop becomes very large. The velocity 
profile at steady-state is simply 1/  since the 
solute flux density  is unity for all  (i.e. mass 
conservation requires that  be the same 
everywhere).  is an increasing function of  
due to the axial drop in pressure and constant 
influx of water along the sieve tube’s length.
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(2)

whose dynamics depend solely on the value of . The left
side of Eqn 2 reflects the temporal change in solute con-
centration, the quantity in the parentheses is the axial sol-
ute flux, and the quantity in square brackets is same as the
hydrostatic pressure of the sap (since , i.e.
water potential equilibrium). The first boundary condition
on Eqn 2 (Fig. 1) is the solute flux density [ , where

 for all ] from the collection phloem
to the transport phloem:

(3)

where  is an arbitrary function of time. The other bound-
ary condition  is  the  solute  flux  density  from  the  trans-
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port to the release phloem, and is a linear function of
concentration:

(4)

At steady-state, it can be shown  that  for all ,
allowing the following analytical solution of Eqn 2 for

 = 0 (see Fig. 1):

(5)

As long as axial efflux is proportional to concentration, per
Eqn 4, the unloading response to system perturbation will
be inherently exponential. Other unloading schemes are
possible (see Goeschl & Magnuson 1986; Minchin 

 

et al

 

.
1993), but since we are more concerned with wave propa-
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Table 1.

 

Parameter and scale definitions. All symbols with carets refer to dimensionless parameters or variables

Parameter or scale Units Definition

 

A

 

0

 

, A

 

1

 

–
–

Amplitude of normalized concentration variation at  = 0 and 1, respectively,
Dimensionless amplitude of loading function (Eqn 8)

– Dimensionless frequency of loading function (Eqn 8)

 

I

 

mol m

 

-

 

2

 

 s

 

-

 

1

 

Solute transport scale (steady-state axial solute transport rate)

 

k

 

m

 

2

 

Sieve tube specific conductivity

 

L

 

m Length scale (sieve tube length)

 

L

 

p

 

m s

 

-

 

1

 

 MPa

 

-

 

1

 

Sieve tube membrane permeability

 

r

 

m Sieve tube radius

 

�

 

MPa m

 

3

 

Universal gas constant (8.3143 

 

¥ 

 

10

 

-

 

6

 

)
mol

 

-

 

1

 

 K

 

-

 

1

 

T

 

K Temperature

 

U

 

m s

 

-

 

1

 

Solution flux density scale (solution velocity, 

 

U

 

 = 

 

I

 

/

 

F

 

)
– Loading function (Eqn 8),  =  ( )

 

e

 

MPa Volumetric elastic modulus, or drained pore modulus, of the sieve tube (see Thompson & 
Holbrook 2003a)

 

m

 

MPa s Viscosity scale (sap dynamic viscosity), 

 

m

 

 = 

 

m

 

(

 

F

 

, 

 

T

 

)

 

P

 

 MPa Pressure scale (approximate turgor pressure drop along the sieve tube’s length), 

 

P = 

 

m

 

LU

 

/

 

k

 

t

 

s Time scale (length scale divided by velocity scale, or 

 

t = L /U)
F mol m-3 Concentration scale (set-point unloading zone concentration)
Yp MPa Sieve sap osmotic pressure, Yp = �TF

– Phloem transport scale (ratio of sap osmotic strength to pressure scale),  = Yp/P

d̂
ẑ

f̂

â â â t̂

F̂ F̂

Table 2. Variable and dimensionless variable definitions

Variable Units Definition Dimensionless variable

cs mol m-3 Solute concentration  = cs/F
p MPa Turgor (pressure)  = p/P
t s Time  = t/t
v m s-1 Solution flux density  = v/U

vs mol m-2 s-1 Solute flux density  = vs/I

z m Axial position  = z/L

yo MPa Apoplastic water potential  = yo/P
yp MPa Sap osmotic potential (yp = –�Tcs)  = yp/P
tp s Wave propagation time  = tp/t
tt s Transit time (Eqn 7), Thompson & Holbrook (2003b) use  = tt/t
te s Elastic response time (see Eqn 11)  = te/t
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gation in the transport phloem than with the nature of
solute unloading, we use the simplest unloading condition
to ease interpretation. We confine the behaviour of Eqn 2
to variation in the loading boundary condition (Eqn 3),
apoplastic water potential  (an exogenous forcing func-
tion), and , which when expanded is given by:

(6)

Equations 2, 3 and 4 are numerically solved with Eqn 5 as
an initial condition using a finite difference advection
scheme with a total-variation diminishing method to reduce
solute smearing at sharp solute boundaries (Thompson &
Holbrook 2003a). The simulation is 100% mass conserva-
tive, and is available in MATLAB version 6.5 code from
the authors.

Transport time scales

We employ several time scales (Table 2), the relative mag-
nitudes of which shed insight into the processes that limit
‘information’ transmission. The first is the time scale of the
system (t), which is used to make all other temporal scales
dimensionless (i.e.  = t/t, Table 1). One unit of  corre-
sponds to the dimensionless time required for solute to
move the length of the sieve tube at the velocity of the sieve
sap at  = 1. However, because solution velocity in a sieve
tube  with  no  net  radial  solute  flux  is  nowhere  as  high
as it is at  = 1 (see Fig. 1), t is an underestimate of transit
time. Instead, dimensionless transit time  is used,  where

 = tt/t (Thompson & Holbrook 2003b, use the symbol 
to denote transit time), and is given by the integral from

 = 0 to 1 of Eqn 5:

(7)

which is precisely valid only for ∂ /∂  = 0, but a good
approximation for ∂ /∂  π 0.

Wave propagation time (tp) is the time required for a
pressure/concentration wave to travel the length of the
sieve tube. The dimensionless wave propagation time
(  = tp /t) can be calculated numerically by running the
numerical model to quasi-steady state with the following
sinusoidally varying loading function:

(8)

where  is dimensionless frequency (or number of oscilla-
tions per dimensionless time), and  is dimensionless
amplitude. The rate of wave propagation is then measured
directly from the numerical results. Note that  must be
small (< 0.01) to avoid a shift in the value of  during the
simulation. The attenuation in the amplitude of the propa-
gating wave is given by the ratio of the normalized ampli-
tude of the wave at  = 1 to the normalized amplitude of
the wave at  = 0, or A1/A0.
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The dimensionless propagation time  can also be esti-
mated analytically. When  is set equal to zero, Eqn 2
becomes a non-linear parabolic partial differential equa-
tion similar to the classical diffusion equation (although no
diffusion is actually involved):

(9)

The propagation time, , can be derived from the transport
coefficient of Eqn 9 (D = ) as the mean Gaussian
spreading time (Berg 1993) required for a pulse of solute
to travel a distance D  = 1:

(10)

While it is possible to generally apply Eqn 10 for qualitative
predictions of wave propagation time, it is only precisely
valid when  > 1 and when applied to low-frequency and
low-amplitude loading functions (i.e.  and  are small,
Eqn 8).

Because dimensionless concentration, axial pressure
drop, time, and distance are all scaled to be of order unity,
the critical value of  is also near unity. At  > 1,  falls
below unity; at  < 1,  becomes greater than unity (that
is, greater than the time scale of the system). This becomes
conceptually tractable if we think of  as indicating the
relative tendency of pressure and concentration impulses
to propagate axially rather than accumulate in place. In
sieve tubes of low , local changes in pressure and concen-
tration will accumulate rather than propagate, wheres in
sieve tubes of high , changes will propagate rather than
accumulate.

Following perturbation, water potential equilibrium is
not precisely maintained. The elastic response time te is the
e-folding  time  (that  is,  the  time  required  to  come  within
1/e of steady-state) for changes in cell volume following
small perturbations in either internal osmotic potential or
external water potential (Dainty 1976), given here for a
right cylinder of radius r with infinite axial rigidity:

(11)

where  Lp  is  membrane  permeability  (around  5.0 ¥ 10-8 m
s-1 MPa-1, see Thompson & Holbrook 2003b), e is the
drained pore modulus of the sieve tube (between 5 and
18 MPa, see Thompson & Holbrook 2003b), Yp is the sap
osmotic pressure (approximately 2.0 MPa), and 2/r is the
surface area : volume ratio of a right cylinder. For a sieve
tube of r = 40 mm, e = 5 MPa, and Yp = 2.0 MPa, te would
equal 57 s. In this case, the local recovery of water potential
equilibrium will occur at a time scale of about 57 s. How-
ever, despite the presence of local disturbance, pressure will
continue to propagate at the rate prescribed by , leaving
the concentration wave to catch up. Thus, the minimum
possible time scale for transmission of pressure ‘informa-
tion’ would be no smaller than 57 s, regardless of . By
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contrast, for a sieve tube of r = 3 mm, e = 18 MPa, and
Yp = 2.0 MPa, te would be only 1.5 s.

Change in apoplastic water potential

Axial solute flux will transiently vary following changes in
the gradient of apoplastic water potential, a response that
will depend not only on the change in , but also on the
value of . To compare across different values of , how-
ever, it is necessary to properly scale the imposed gradient
in , which can be done by casting the change in ∂ /∂
relative to ∂ /∂ , which is scaled to be approximately equal
to unity, at all . The same increase in ∂ /∂ , irrespective
of , will always cause the same initial and instantaneous
reduction in dimensionless axial flow rate. Here, we run the
simulation to steady-state with  = 0 for all  and , and
then change  to:

(12)

That is,  = 0 at  = 1, with a gradient of ∂ /∂  = 0.01 at
all . This imposes an instantaneous 1% reduction in solu-
tion flux density ( ), and causes  to build until the axial
solute flux density ( ) is again constant for all .

Comparison to data: change in length scale

These dimensionless simulations and analyses can be com-
pared against real situations by multiplying, or ‘re-scaling’,
each dimensionless variable by its corresponding scale as a
function of sieve tube length. We focused on sieve tubes of
two species for which measured sieve tube geometry data
are available: Robinia pseudoacacia, a leguminous tree, and
Ricinus communis, a euphorb crop plant with high axial
conductivity (Thompson & Holbrook 2003b): for R.
pseudoacacia, T = 20 ∞C, F = 463.23 mol m-3 (or 15% w/w,
corresponding to m = 1.59 ¥ 10-9 MPa s), r = 10 mm,
k = 4.0 ¥ 10-12 m2, and U = 1.4 ¥ 10-4 m s-1; and for R. com-
munis, T = 20 ∞C, F = 450 mol m-3 (corresponding to
m = 1.57 ¥ 10-9 MPa s), r = 15 mm, k = 24.7 ¥ 10-12 m2, and
U = 4.0 ¥ 10-4 m s-1. These scales and parameters were kept
constant for both plants, while only length was allowed to
vary. We assume that if the loading rate varies diurnally
(following Eqn 8), then the frequency is once per 24 h, or,
in dimensionless terms,  = t/(24 h) = L/(24 h · U).

RESULTS

The relationship between  and wave propagation can be
shown by applying a pulse of solute to the loading end of
the sieve tube and tracking the perturbation in solute efflux
(Fig. 2). When  exceeds unity, the solute efflux response
is exponential with essentially no delay between when the
solute impulse is applied and when the effect of that
impulse is first observed at  = 1. When  is less than or
equal to unity, there is a delay while pressure and concen-
tration build and eventually traverse the length of the sieve
tube.
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The rapid propagation of solute fronts present at high
values of  is further illustrated by the impulse-induced
temporal deviation of the solute concentration profile from
steady-state (Fig. 3). At  = 10, an impulse leads to a homo-
geneous increase in pressure and solute concentration
throughout the sieve tube. The profile’s decay back to
steady state is exponential, following the linear unloading
dynamics imposed by Eqn 4. When  = 0.1, the pulse first
builds locally and then propagates axially, resulting in an
inhomogeneous distribution of solute and almost twice as
much time to decay as in the high-  case. Only by  = 0.5
does the profile’s deviation approach homogeneity. The
behaviour observed at  = 1 shows a sieve tube at the cusp
of these extremes.

Wave propagation time can be measured numerically by
applying a sinusoidally varying impulse of solute influx
(Eqn 8) and following the resulting waves in solute concen-
tration. Example results for  = 0.1, 1 and 10 are shown in
Fig. 4 (a Huber plot, see Ferrier et al. 1975), all three with
the loading pulses applied at a dimensionless frequency

 = 1. The three sieve tubes act as low-pass filters of varying
strength. At high , pulse attenuation is small, and wave
propagation fast. At low , however, the waves are slow
(Fig. 2), longer than the period of oscillation in loading rate,
such that the input signal is heavily damped. If the oscilla-
tion period is small relative to the wave propagation time,

F̂

F̂

F̂

F̂ t̂

F̂

F̂

f̂
F̂

F̂

Figure 2. Transport of information and material as a function of 
. Upper panel: normalized deviation from steady-state unloading 

rate (  at  = 1) following a pulse of solute at  = 0. The pulse 
decays exponentially for  > 1, indicating rapid transmission of the 
pulse throughout the sieve tube. At  < 1, however, there is a long 
delay between when the pulse is applied and when its effects are 
first observed at  = 1. Lower panel: the dimensionless transit time 
( ) is a decreasing function of , approaching unity at  > 1. Thus, 
both information and material are transported faster, in dimen-
sionless terms, at  > 1.
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then the waves become ‘clipped’, such that a downward
swing in  at  = 1 is brought up sooner than normal by
the subsequent upward swing in solute concentration at

 = 0. In fact, the numerically calculated dimensionless
wave propagation time ( ) depends on both  and 
(Fig. 5). At high  however, variation in  closely follows
Eqn 10 (  ª 1/2 ), and is -independent (for example,

 = 0.01 at  = 50). The deviation from Eqn 10 at low 
is due to the low-pass filtering behaviour of the system,
which causes significant signal attenuation.

These theoretical propagation times can be compared
against measurement. Huber et al. (1937) measured sieve
sap concentrations from cut bark at various heights in indi-
viduals of Quercus borealis. Concentrations were found to

ĉs ẑ

ẑ
t̂ p F̂ f̂

F̂ t̂ p

t̂ p F̂ f̂
t̂ p F̂ F̂

vary diurnally, but with an increasingly large temporal
phase shift with decreasing sampling height. They errone-
ously interpreted this phase shift as a measure of sap veloc-
ity. From those data, Ferrier et al. (1975) calculated a phase
velocity of between 1.5 and 4.5 m h-1, but, following Zim-
mermann (1969), argued that the actual solution velocity
was 0.25 m h-1. The ratio of these two velocities (solution
velocity to phase velocity) is equivalent to , which here
would be between 0.06 and 0.2. Huber et al. (1937) worked
with 10-m-tall trees. Over that distance, the diurnal (24 h)
dimensionless frequency would be  = 24 h/t = 24 h/(10 m/
0.25 m h-1) = 0.6. Hence, sieve tubes in the trunk of Quer-
cus borealis probably operate at values of  between 2.6
and 7 (found graphically from Fig. 5), and with a fairly small
axial pressure drop, even over a distance of 10 m. The tran-
sit time would be about 40 h, but wave propagation could
require as little as 2.6 to 8 h.

Length transects, using sieve tube scales and parameters
appropriate to R. communis and R. pseudoacacia, show
that solute waves are highly attenuated in long sieve tubes
(10 m < L < 100 m), but that they propagate freely in
shorter sieve tubes (Fig. 5). The sieve tubes of R. communis
are highly conductive. If we assume that they are not much
longer than 1.0 m, and that their sap velocity is about
1.44 m h-1 (see Methods), then the expected time scale t
would be about 0.7 h (i.e. 1.0 m/1.44 m h-1). The transit time
would be about the same, given that  ª 50 at that length.
Thus, following Eqn 10,  would be about 0.01, and the
wave propagation time in R. communis would be about
25 s. This is of the same order of magnitude as the elastic
response time (Fig. 6). In other words, wave propagation in
R. communis operates at or near the elastic limit suggested
by Kallarackal & Milburn (1985).

As expected, the pressure drop scale (P) and all the
relevant time scales increase in magnitude with sieve tube
length in R. pseudoacacia. However, some of the time
scales increase faster than others. The transit time, tt,
exceeds the system time scale, t, at low  (see Fig. 2), and
the wave propagation time, tp, is lower than t at all , but
especially so at high  (Fig. 6). At small L, concentration
waves propagate as much as two orders of magnitude faster
than the solution itself, limited only by the membrane and
elastic properties of the sieve tube walls.

A sudden change in the spatial gradient in apoplastic
water potential against the flow of sap leads to a transient
drop in the rate of solute unloading at  = 1 (Fig. 7). The
size and duration of this response depends on , where at

 > 1 a negative transient is hardly perceptible, whereas at
lower values of  it can become quite large.

DISCUSSION

The central finding of this work is that local perturbations
in sieve tube solute concentration and pressure can be rap-
idly transmitted over long distances in response to any
physicochemical perturbation that locally alters the water
potential of the sap or apoplast (Figs 5 & 7), and especially
when the sieve tube’s axial pressure differential is relatively

t̂ p
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t̂ p
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Figure 3. Deviation from the steady-state concentration profile 
following a pulse of solute at  = 0 as a function of  (10, 1, 0.1). 
At  = 10, solute concentration is well coupled throughout the 
sieve tube, but at  = 0.1, there is a long delay (D  = 0.2) between 
when the solute is first applied and when it is observed at  = 1. 
At  = 1, there is a small delay, but solute is distributed evenly 
throughout the sieve tube by  = 0.2.
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small (i.e. at high ). While Kallarackal & Milburn (1985)
argued that the primary limitation to the movement of
pressure waves was the sieve tube’s elastic and membrane
properties (te), it appears that a more important factor is

, the ratio of solution osmotic pressure to the magnitude
of the axial pressure drop (Fig. 6).

Sieve sap is osmotically coupled to the apoplast through
a semi-permeable membrane. A local increase in concen-
tration leads to an influx of water and locally high turgor
(Fig. 8), which propagates as a wave along the length of the
sieve tube (at a rate that depends predominantly on , but
also on te at low L; Figs 5 & 6). The wave transiently raises
the water potential of the sap, resulting in an efflux of water
that concentrates the solute already present until water
potential equilibrium is regained. This behaviour is in stark

F̂

F̂

F̂

contrast to our intuition of how a ‘pipe’ ought to work. For
instance, a fluid-filled steel pipe rapidly transmits changes
in pressure, but solutes move only as fast as the bulk flow
of solution will carry them. In the phloem, the two are
coupled.

The freedom of movement of a pressure/concentration
wave in the phloem depends solely on the phloem transport
scale, . The more energy dissipated by the phloem in
translocation relative to the osmotic pressure of the sap (i.e.
as  decreases), the more the propagation of concentration
and pressure becomes coupled to the bulk movement of the
solution. That is to say, at low values of , pulses of pressure
and concentration are more likely to accumulate than prop-
agate. Sieve tubes of high  behave like high-pressure man-
ifolds (i.e. like good household plumbing or municipal
water distribution), or like low output impedance electrical
circuits or high voltage power distribution lines. In each of
these systems, energy is delivered at high potential with
minimal differences in potential between access points, so
that the entire system behaves as a single unit. No one point
in the system is privileged, since changes in system state at
one site are immediately distributed to all others. Although
not discussed in exactly these terms by Eschrich, Evert &
Young (1972), their ‘volume-flow’ hypothesis posits a very
similar system to the one defined by a sieve tube operating
at high .

It seems natural to suppose, then, that the phloem should
‘design’ its sieve tubes to maintain a high value of . How-
ever, to protect its sap, a sieve tube is heavily interspersed
with resistive sieve plates, which the plant plugs in response
to mechanical damage or herbivory. In many plants (such
as Beta vulgaris, see Thompson & Holbrook 2003b), sieve
plate resistance may comprise as much as 90% of the total
axial resistance of the sieve tube; others, less so (e.g. R.
communis). As a result, sieve tubes (especially long ones)
are immediately biased toward having a large pressure drop.
Perhaps it is for this reason that phloem solute concentra-
tion and turgor are kept so high; the negative effect that a
moderate axial pressure drop would have on pressure/con-
centration wave propagation would be overcome by the
much higher osmotic pressure (that is,  will increase pro-
vided Yp increases faster than P). Moreover, at higher Yp

the velocity required to maintain the same solute flux den-
sity will be lower, leading to a decline in the pressure drop
provided there were not also a significant increase in vis-
cosity (Lang 1978). There are other design considerations
that could also be addressed relating to trade-offs between
whole-axis solute flux, sieve sap velocity, sieve plate geom-
etry, and the number of sieve tubes per axis, but they are
unfortunately beyond the scope of this work.

There is considerable experimental evidence, both
direct and circumstantial, that solute flux in the phloem
is controlled by a pressure feedback regulatory system,
though the details of such a system are not yet known
(Lalonde et al. 2003; van Bel 2003). Phloem pressure
regulation is also supported by an argument from neces-
sity – that all plant cells must maintain a relatively con-
stant turgor to maintain physiological function. But
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Figure 4. Huber plots of normalized variation in concentration 
at three points (  = 0, 0.5, and 1) along sieve tubes of  = 10, 1, 
and 0.1. Each sieve tube is sinusoidally forced (Eqn 8) with 

 = 0.01 and  = 1, and run to a quasi-steady-state (see Methods). 
A0 and A1 are the amplitudes of the concentration waves at  = 0 
and 1, respectively.
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turgor regulation of phloem function finds support in the
mechanics of phloem transport, as well. Although water
potential equilibrium ensures that changes in solute con-
centration and pressure are locally coupled, it does not
require that whole-sieve tube coupling exists between
their gradients (see Fig. 7 of Thompson & Holbrook
2003b). The definition of water potential equilibrium
( ) includes a term for apoplastic water
potential, making the concentration profile as sensitive
to the apoplastic water potential profile as it is to the
pressure gradient:

(13)

Traditionally (see Hocking 1980), we think of
 as being negative (i.e. concentration drops

with z). This is guaranteed to be true if phloem transloca-
tion is in the opposite direction of xylem sap flow, where
dyo/dz is positive. Yet, precisely because there is water
potential equilibrium, the larger dyo/dz becomes, the
more the concentration and pressure gradients decouple
(Fisher 1978). Indeed, were dyo/dz to become negative
and of sufficiently high magnitude (i.e. phloem and xylem
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z z

d
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d

s oy

¬ ( )T c zd ds

transport in the same direction), then the pressure and
solute potential gradients could have opposite signs (see
Wolswinkel 1992): phloem translocation against a concen-
tration gradient!

For this reason, concentration cannot be a good feedback
control variable. A better candidate would be turgor, which
meaningfully reflects the physiological state of the system
while avoiding the transmission of spurious signals. The
magnitude of the pressure drop is ultimately free from the
effects of changing apoplastic water potential gradients,
depending as it does solely on the flow velocity, the viscos-
ity, and the geometry and length of the sieve tube. If the
phloem transport scale is large (which seems to be the case
based on the limited data available, see Thompson & Hol-
brook 2003b), then the absolute magnitude of the pressure
drop will be relatively insensitive to changes in flow rate
(which varies less than a factor of 2 or 3, anyway, see Peuke
et al. 2001), allowing turgor to be nearly the same every-
where in the system. Turgor would be highly sensitive to
local, if transient, changes in apoplastic water potential or
osmotic pressure, but with a global effect.

Pressure-regulated sieve tube transport (or osmoregula-
tory flow, Thompson & Holbrook 2003b) will work best
only at high  (just as plumbing works best when pressureF̂

Figure 5. Dimensionless propagation time 
( , left panel) and amplitude attenuation 
(A1/A0, right panel; see Fig. 4) as a function of 

 and  (225 simulations of Eqn 2 for 25 log-
arithmically spaced values of  between 0.01 
and 10 000 at 4 per decade, and 9 logarithmi-
cally spaced values of  between 0.1 and 10 at 
4 per decade).  is the dimensionless time 
required for the wave peak (see Fig. 4) to go 
the length of the sieve tube. The dotted diago-
nal line corresponds to the position of Ricinus 
communis in this space as a function of sieve 
tube length (open circles), and the solid diag-
onal line corresponds to the position of Rob-
inia pseudoacacia (closed circles). For both 
length transects, all other parameters and 
scales are set as described in the text, and  is 
a function of the length-dependent time scale, 
such that  = t/24 h. The vertical, dashed line 
corresponds to the probable position in  -
space of Huber et al. (1937) Quercus borealis 
trunk sieve tubes.
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differentials are small), so that all sieve element/companion
cell (SE/CC) complexes can be ‘programmed’ to respond
to changes in turgor in the same or nearly the same way.
Over long distances, as pressure differentials increase in
magnitude, this may not be possible. If a large pressure
differential has to be maintained by the sieve tube (Aloni,
Wyse & Griffith 1986; Minchin & Thorpe 1987; van Bel &
Knoblauch 2000; Patrick et al. 2001; Ayre, Keller & Turgeon
2003; van Bel 2003), then it would be necessary to ‘program’
the different SE/CC complexes to set-point turgor pres-
sures that are position- and flow-rate-dependent, and to ‘re-
program’ those set-points whenever flow rate or plant
architecture changed. For the decentralized plant, this
could be difficult. But at high , any part of the sieve tube
(whether in the collection, transport, or release phloem)
could maintain turgor on behalf of the whole, using what-
ever solutes are available, including sucrose, sugars of the
raffinose series, or inorganic and organic ions, such as
potassium and malate (Lang 1983). Moreover, there is
room to believe that plants might artificially raise  by
decreasing the effective length (L) of transport throughout
the use of apoplastic solute relays (Lang 1979; Thompson
& Holbrook 2003b).

Plants lack a nervous system, and phloem translocation
control must rely on locally available signals that hope-
fully represent the needs of tissues much further away.
Individual plant cells (no bigger than a few hundred
microns) can quickly deliver changes in concentration by
diffusion alone. By other means, sieve tubes do the same,
behaving like ‘neurons’ to transmit information from one
part of a plant to another with little material transfer. A

F̂

F̂

small axial pressure differential allows the sieve tube to
transmit this information quickly and to employ changes
in pressure as a means of regulating global sieve tube
function.

Figure 6. Pressure and temporal behaviour 
of a Robinia pseudoacacia sieve tube (same 
as in Fig. 5) as a function of L, using scale 
parameter values as described in the text (see 
Methods). Upper panel: the pressure scale (P, 
or axial pressure drop) increases linearly with 
L (Eqn 6, Table 1), and becomes large rela-
tive to the osmotic potential of the sap (i.e. 

 £ 1) at L > 20 m. Lower panel: the system 
time scale (t), transit time (tt), and wave 
propagation time (tp) all increase with L; 
however, tt increases faster than t at low  
(see Fig. 2), and the wave propagation time is 
always lower than the material transit time. 
The grey band shows the potential range of 
te, for e between 5 and 18 MPa, and assuming 
Lp = 5 ¥ 10-8 m s-1 MPa-1 and Yp = 2.0 MPa. 
The vertical dotted lines indicate the values 
of , and the right-facing arrow shows where 
amplitude attenuation falls below A1/A0 = 0.5.
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Figure 7. The deviation and recovery from the steady-state 
unloading rate, as a function of , after imposing an opposing 
gradient in apoplastic water potential (∂ /∂ ) of magnitude 0.01 
(Eqn 12).
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