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Abstract— The theoretical basis for conventional acquisition
of bandlimited signals typically relies on uniform time sampling
and assumes infinite-precision amplitude values. In this paper,
we explore signal representation and recovery based on uniform
amplitude sampling with assumed infinite precision timing in-
formation. The approach is based on applying a one-level level-
crossing detector to the result of adding a sawtooth waveform
to the source signal. The source signal is then represented by
the level-crossing times. For analysis purposes, the output of the
level-crossing detector is interpreted as the result of applying
a multi-level level crossing detector to the monotonic function
consisting of the sum of the source signal and an appropriate
linear ramp.This monotonic function is then uniformly sampled
in amplitude with the source signal again represented by
the level crossing times of the monotonic function. We refer
to this technique as amplitude sampling. The approach can
equivalently be viewed as nonuniform time sampling of the
original source signal or uniform amplitude sampling of the
monotonic function to which it is transformed. In this paper
we explore this approach and, in particular, present duality
and frequency-domain properties for the functions involved
in the transformation and develop and compare two iterative
algorithms for recovery of the source signal.

I. INTRODUCTION
The traditional sampling theorem [1], [2], [3], which

forms the basis for most conventional signal acquisition sys-
tems, describes the class of bandlimited signals by infinite-
precision amplitude values taken at uniform instants of time.
In this representation the sampling times are integer multiples
of the sampling interval and the amplitude samples may
assume values on a continuum.

In this paper, we consider uniform sampling in amplitude
corresponding to restricting amplitude information to integer
multiples of a basic step size and allow the time values
of the crossings of these levels to be on the continuum.
One class of examples of this type of representation is that
characterized by Logan’s theorem [4]. In that work, it is
shown theoretically that a class of bandpass signals can
be completely described within a scaling factor by its zero
crossings. Tractable recovery techniques based on Logan’s
theorem currently exist only for periodic signals [5]. Zero-
crossings in the context of wavelet transforms have also
been considered in [6]. Some extensions to level-crossing
sampling which assumes equally-spaced time instants has
been considered in [7] in the context of signal compression
with a continuous-time version later proposed in [8].
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In this paper, we explore signal representation and recov-
ery based on uniform amplitude sampling of a signal derived
from the source signal with assumed infinite precision tim-
ing information. Our approach is based on the concept of
transforming the source signal to a monotonic signal g(t)
which is then represented by the sequence of times {tn} at
which it crosses successive equally spaced amplitude levels
{n∆}. In principle, a nonmonotonic function can always be
represented by the monotonic function which results from
addition of a known ramp of sufficient slope which can then
later be subtracted as part of the reconstruction process. As
we discuss below, this time sequence {tn} is equivalent to
the time sequence representing the successive times at which
the source signal plus an appropriately constructed bounded
sawtooth waveform reaches the amplitude value ∆. For con-
ceptual simplicity in the analysis in this paper, we view the
time sequence {tn} in terms of ramp addition to the source
signal although a more practical implementation is suggested
by the alternative representation with sawtooth waveform
addition. We refer to either description as amplitude sampling
since as we show, the sequence {tn} represents sample
values of an underlying function at equally-spaced amplitude
values. In this paper, we explore this concept of amplitude
sampling and, in particular, present duality and frequency-
domain properties for the underlying associated functions.
As we discuss, the sequence {tn} can also be viewed as
nonuniformly spaced time samples of the original source
signal. This suggests that reconstruction can alternatively be
based on utilizing nonuniform time-sampling reconstruction
methods. We propose a specific approximate algorithm for
reconstruction of the source signal from {tn} based on the
interpretation of ramp addition and compare that algorithm
to the use of a specific iterative algorithm for reconstruction
from non-uniform time samples.

II. PRINCIPLE OF AMPLITUDE SAMPLING

Our analysis of amplitude sampling is based on the
concept of reversibly transforming a source signal f(t)
into a strictly monotonic function g(t) by the addition of
a linear ramp and representing the source signal through
the sequence of time instants {tn} at which the monotonic
function crosses a set of equally spaced amplitude values
{n∆}. For the strictly monotonic function g(t) there is a one-
to-one correspondence between its amplitude values {n∆}
and the sequence {tn}, i.e. (see Fig. 1) and since the ramp
is known, the time sequence {tn} also implicitly contains
information about the source signal f(t). In particular, we
have that

g(tn) = n∆ = αtn + f(tn). (1)
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Equivalently, it is possible to obtain the same sequence
of time instants by considering the block diagram in Fig. 2.
The Level Detector outputs an impulse whenever its input
takes the value ∆. In the feedback loop, the ramp-segment
generator takes as a reference the ramp αt that is shifted by
an amount −∆ at times where the level detector generates
an impulse. In other words,

g̃(t) = f(t) + αt− k∆ (2)

for t ∈ (tk, tk+1] and k ∈ Z. Thus,

g̃(tk+1) = ∆ = f(tk+1) + αtk+1 − k∆ (3)

which gives (k+1)∆ = g(tk+1) for all k ∈ Z. Since there is
a one-to-one correspondence between amplitude values and
time instants due to the monotonicity of g(t), this implies that
{tk} = {tn}. In summary, the procedure shown in Fig. 2,
which only involves bounded signals, generates impulses at
the same time instants at which g(t) in Fig. 1 crosses the set
of amplitude levels {n∆}.

Fig. 1. Principle of amplitude sampling based on a transformation by
ramp addition of the source signal f resulting in a monotonic function
g(t) = αt+ f(t) with a sufficiently large value |α|.

Fig. 2. Equivalent representation of the amplitude sampling process.

III. TRANSFORMATION BY RAMP ADDITION
Assume that for a continuous and bounded input signal

f(t) and appropriate choice of α ∈ R, we form the variable
u which is a strictly monotonic function of t :

u = g(t) = αt+ f(t). (4)

We also consider the inverse function of g(t) denoted by
ĝ(u). The independent variable u then represents the am-
plitude of g(t) which contains the amplitude of f(t) plus

the values of the ramp. It will also be convenient to define
the function h(u) representing the result of subtracting the
inverse of the ramp from ĝ(u) i.e. h(u) = ĝ(u)− u/α.

A. Mapping Between f(·) and h(·)
As illustrated in Fig. 3 the invertibility of g(·) implies

an invertible relationship between f(·) and h(·). In effect,
we can view the procedure of obtaining h(·) from f(·) as
an invertible transformation Mαf(t) = h(u) parameterized
by α. In fact, the inverse transformation of Mα, denoted
by (Mα)−1, is given by substituting the parameter α by its
reciprocal, i.e. (Mα)−1 = M1/α.

Fig. 3. Illustration of the invertibility of the transformation between f and
h when g(t) = αt+ f(t) and ĝ(u) = u/α+ h(u).

Fig. 3 can also be described in terms of the equations [9]

f(t) =− αh(f(t) + αt)

h(u) =− 1

α
f(h(u) +

u

α
).

(5)

This set of equations suggests a signal-dependent time
warping so as to obtain f(t) from h(u) or the reverse.
Equivalently, we summarize these equations in matrix form
as (

f(t)
t

)
=

(
−α 0
1 1/α

)(
h(u)
u

)
. (6)

We have focused so far on the transformation from the
point of view of f(t), i.e. addition of a ramp with a suffi-
ciently large slope and subsequent inversion of the resulting
function. However, a duality in the transformation is evident
in either (5) or by inverting (6) to obtain(

h(u)
u

)
=

(
−1/α 0

1 α

)(
f(t)
t

)
. (7)

If we begin from knowledge of h(u), the function f(t) is
obtained by inverting h(u) and adding a ramp of appropriate
slope. This is conceptually dual to starting with f(t) and
constructing h(u) (see Fig. 3). In summary, this duality in the
transformation implies that any properties of h(u) inherited
by assumptions made on f(t) hold, by duality, for f(t) if
such assumptions are first imposed on h(u).
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B. The Sampling Process

The sampling process corresponds to sampling the ampli-
tude of g(t) at equally spaced amplitude intervals to obtain
the sequence of times tn. This is equivalent to sampling h(u)
at equally spaced intervals u = n∆ i.e.

h(n∆) = tn − n∆/α. (8)

.
Clearly, if the function h(u) belongs to a class of functions

that can be described by their samples on a uniform grid, for
example if h(u) is bandlimited, then perfect reconstruction is
possible if the sampling interval ∆ is sufficiently small. Fur-
thermore, since there is a one-to-one relation between f(t)
and h(u), reconstruction of h(u) provides f(t) through the
transformation M1/αh(u) = f(t). This amplitude sampling
technique can of course also be interpreted as a form of
time encoding, i.e. the information about the source signal
is implicitly contained in the time instants {tn} since the
quantizer levels are known.

C. Sampling Density

The times associated with the level crossings of g(t) can
in effect be interpreted as providing amplitude samples of
the source signal f(t) non-uniformly spaced in time. If
we assume that f(t) is bandlimited, there are well known
results on the required density of the nonuniformly-spaced
time samples to permit perfect reconstruction. To explore the
sampling density implied by our sampling process, assume
that the source signal f(t) is differentiable with bounded
derivative B, i.e. |f ′(t)| ≤ B for B > 0. The slope α
of the ramp is set such that |α| > B. For increasing and
positive values of the derivative of f(t) the slope of g(t)
increases, thus generating an increasing number of level
crossings per unit of time. When f ′(t) is close to −B the
slope of g(t) is reversed. As a result, the signal f(t) is
naturally sampled more densely as its derivative becomes
more positive and less densely as the derivative becomes
more negative. Furthermore, reducing the value of ∆ leads
to an increase in the overall level-crossing density.

Specifically, it can be shown that the time intervals be-
tween level crossings can be bounded as [10]:

∆

|α|+B
≤ |tn+1 − tn| ≤

∆

|α| −B
(9)

for all n ∈ Z. Equation (9) emphasizes the role that is played
by the slope α of the ramp and the quantizer step size ∆. It
can be observed that if |α| increases significantly, the bounds
imply an almost uniform time spacing. Indeed, as the value
of |α| increases, the contribution of f(t) in amplitude to the
value of g(t) becomes less significant. In the extreme case,
sampling g(t) would be close to the situation of sampling
a straight line (that, clearly, would generate a uniform time
sequence) with the amplitude values of f(t) encoded in very
slight modulation of the values of tn.

IV. SPECTRAL PROPERTIES

Since the function h(u) is sampled uniformly, it is im-
portant to understand its frequency domain characteristics in
relation to those of the source signal f(t). In this section,
we consider the spectral content of h(u) when the source
signal f(t) is bandlimited. By duality, the corresponding
conclusions apply to f(t) when h(u) is assumed to be
bandlimited.

Consider the example in Fig. 4 in which f(t) is a sinc
function—hence bandlimited—and α is positive. The shape
of the function h(u) can be viewed as f(t) with a nonlin-
ear warping of the independent variable. It presents shear-
like parts that may manifest themselves as high-frequency
content. These tilted regions in h(u) are due to the regions
in f(t) with large negative values of the slope. Obviously,
analogous conclusions can be drawn if α is negative. Locally,
the derivative of the inverse function is inversely proportional
to that of the original function. Thus it is reasonable to expect
that the spectral content of h(u) is, in some sense, controlled
by the difference |α| −B, where |f ′(t)| ≤ B for all t ∈ R.
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Fig. 4. Example of the transformation in amplitude sampling where f(t) =
sinc(t), α = 1.38, and h = Mαf .

We formalize this notion in Theorem 1. In particular, it
is assumed that f(t) is a bounded function and bandlimited
to σ rad/s. In order to choose the slope of the ramp in the
transformation Mα, we assumed previously a bound for the
first derivative of the input function. Bernstein’s inequality
[11] provides a bound on the real line for the derivative
of a bounded bandlimited function. Specifically, if f(t) is
bounded by A > 0, its derivative satisfies |f ′(t)| ≤ Aσ
for all t ∈ R. Thus, it is sufficient to choose |α| > Aσ to
construct the invertible transformation Mα. In doing so, we

19



implicitly form the invertible function

u = g(t) = f(t) + αt (10)

to derive h(u) = ĝ(u) − u/α. As a result, it can be shown
that the Fourier transform of h(u), denoted by H(ω) for
ω ∈ R in rad/s, satisfies |H(ω)| = O(e−|ω|b), where b > 0
is dependent on the difference |α| −Aσ.

The precise statement is presented in the following the-
orem. Its detailed proof can be found in [10]. For clarity
in the proofs but without loss of generality, the assumption
about the decay on the real line of h(u) is made. However,
the theorem can be extended in a straightforward manner to
square-integrable functions.

Theorem 1: Let f(t) : R → R be a continuous function
bandlimited to σ > 0 rad/s. Assume further that |f(t)| ≤
A/(1 + t2) for all t ∈ R and some A > 0. Construct the
function

u = g(t) = αt+ f(t) (11)

for |α| > Aσ. Then, there exists ĝ(u), the inverse function of
g, for all u ∈ R and a constant C > 0 such that the Fourier
transform of h(u) = ĝ(t)− u/α satisfies |H(ω)| ≤ Ce−|ω|b
for any 0 ≤ b < a such that

a =
|α|
σ

log
( |α|
Aσ

)
− |α| −Aσ

σ
. (12)

and ω ∈ R.
We expected the decay rate to be a function of |α|−Aσ. In

effect, the tilted regions in h(u), which are also the highest
slope portions, correspond to more horizontal regions in g(t).
This is inherited from the properties of the inverse function.
Indeed, note that g′(t) 6= 0 for all t ∈ R, thus we can
write (ĝ(u))′ = 1/g′(ĝ(u)). Loosely speaking, the slope
of the inverse function ĝ is the reciprocal of the original
function g. Therefore, if for example, α > 0, regions with
large negative values of f ′ create regions in h with large
positive slopes. The latter are in turn responsible for the high-
frequency content of H(ω). The influence of this effect is
clearly controlled by the bound on the derivative of f(t), or
more precisely, by the difference |α| −Aσ.

In (12), we can clearly observe that the decay of the
energy present in high frequencies depends on |α|−Aσ. The
difference is logarithmic in the first term and linear in the
second. Since we have chosen |α| > Aσ, it always holds that
a > 0. This is consistent with our previous interpretation: the
larger the difference the faster the eventual decay.

It is important to note that the exponential decay of the
spectrum of h(u) does not preclude h(u) from being ban-
dlimited, i.e. any bandlimited signal has a Fourier transform
that belongs to O(e−|ω|b) as |ω| → ∞ for any b 6= 0. The
next theorem states that, when the signal f(t) is bandlimited,
the function h(u) cannot also be bandlimited unless f is a
constant. The proof is presented in [10].

Theorem 2: Under the conditions of Theorem 1 and un-
less f(t) is constant, the function h(u) is nonbandlimited for
every α > Aσ with at most one exception.

This theorem establishes that if f(t) is a nonconstant
bandlimited function, then h(u) is essentially guaranteed to

be nonbandlimited. Strictly speaking, there may exist a value
of α for which we cannot make such an assertion. This is due
to the fact that in the proof we have used a theorem [12] that
states that an analytic function on the whole complex plane
assumes every value in C with the possible exception of a
single point. For practical purposes, we ignore this singular
case.

In summary, if the function f(t) is assumed to be ban-
dlimited and nonconstant, then h(u) is nonbandlimited and
with an exponential decay in its spectrum. In some sense, the
function h(u) becomes closer to a bandlimited function as
|α| increases. Recall from (5) that f(t) = −αh(f(t) + αt).
This implies that f(t) is close to h(u) for sufficiently large
|α| and after appropriate scaling of the axes.

V. NONUNIFORM SAMPLING OF A CLASS OF
NONBANDLIMITED SIGNALS

As has been mentioned earlier, amplitude sampling as
discussed in this paper, can be viewed as uniformly sampling
the function h(u) = Mαf(t) for a source signal f(t) and an
appropriate choice of α. If we are able to reconstruct h(u)
from its uniform samples, then the input signal f(t) can of
course also be recovered due to the invertibility of Mα.

Suppose that h(u) is bounded by some B > 0 and
bandlimited to σ rad/s. Assume now that we perform the
amplitude sampling procedure on f(t) with f(t) and h(u)
related through f(t) = M1/αh(u) for a fixed 1/α >
Bσ. Note that f(t) will not be bandlimited since h(u) is
assumed to be. In particular, f(t) belongs to a subset of
nonbandlimited signals whose Fourier transform decays at
least exponentially fast. Then, amplitude sampling generates
the pair of samples {tn, f(tn)}n∈Z where n∆ = αtn+f(tn).
Clearly, this mechanism generates a nonuniform sampling
set for the function f(t). Essentially, we are nonuniformly
sampling a nonbandlimited signal.

Moreover, we are performing simultaneously uniform
sampling on h(u) with a sample spacing of ∆. Obviously, if
we choose ∆ < π/σ to satisfy the Nyquist criterion, we can
then reconstruct h(u) with sinc interpolation, i.e. f(t) can
be perfectly recovered through the interpolation of h(u).

VI. RECONSTRUCTION IN AMPLITUDE
SAMPLING

A. Amplitude Sampling as Nonuniform Sampling

Amplitude sampling can be regarded as a form of nonuni-
form time sampling of the source signal f(t). Specifically,
it generates the sampling pairs {(tn, f(tn))}n∈Z where
f(tn) = n∆ − αtn for an appropriately chosen α 6= 0.
Assuming f(t) is bandlimited to σ rad/s and bounded by
A > 0, we can always choose |α| > Aσ.

One approach to recovering f(t) is to utilize well known
nonuniform sampling reconstruction algorithms to recover
f(t) from its samples. Nonuniform sampling theory is based
in one way or another on the basic concept of sampling
density. In this paper we use the concept of sampling density
as stated by Beurling [13] and later used by Landau to
derive necessary density conditions for stable reconstruction
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of bandlimited signals [14], i.e. for our purposes the sampling
density D−({tn}) is defined as

D−({tn}) = lim inf
r→∞

inf
a∈R

n([a, a+ r])

r
(13)

where n : R ⊇ Λ → N is a counting function that
indicates the number of elements of {tn}n∈Z contained in
Λ. Additionally, the set {tn} is said to be separated if
|tn−tm| ≥ δ for some δ > 0 and all n 6= m. Weakening this
notion, {tn} is relatively separated if it can be expressed as
the finite union of separated sets.

It is then sufficient that {tn} is relatively separated and
D−({tn}) > π/σ for f to be completely described by
the pairs {(tn, f(tn))}n∈Z [15]. In the amplitude sampling
setting in this paper, it is clearly seen in (9) that the sequence
{tn}n∈Z is separated, i.e. |tn− tm| ≥ ∆/(|α|+Aσ) > 0 for
all n 6= m. Moreover, it is straightforward to observe that

D−({tn}) ≥
∆

(|α| −Aσ)
>
π

σ
(14)

providing ∆ < π(|α| −Aσ)/σ. Thus, the conclusions about
recovery from nonuniform samples also apply to amplitude
sampling for an appropriate choice of the parameters.

B. Approximate Reconstruction

Amplitude sampling also generates uniform samples of
h(u) = Mαf(t) given by

{(n∆, h(n∆) = tn − n∆/α)}n∈Z. (15)

We have previously shown that f(t) and h(u) cannot
be simultaneously bandlimited. With f(t) assumed to be
bandlimited, we consider the approximate reconstruction of
h(u) through bandlimited interpolation of these uniform
samples, i.e.

h∆(u) =
∑
k∈Z

h(k∆)sinc(u/∆− k). (16)

Since h(u) is not bandlimited, aliasing error results, as has
been characterized in [10].

Fig. 5. Approximate reconstruction procedure for a bandlimited source
signal f such that h = Mαf . The block D/C is a discrete-to-continuous
operation involving sinc interpolation with period ∆.

As expected, the exponent in the bound has two contribu-
tions. First, the difference |α| − Aσ reduces the error when
the difference becomes more pronounced. We intuitively
interpret this result by noting that h(u) becomes closer to
a bandlimited function as |α|−Aσ increases. Therefore, the
bandlimited interpolation is a better approximation for large
values of |α|. In the same way, reducing the value of ∆

decreases the aliasing error resulting in improvement of this
reconstruction.

The above discussion suggests an approximate recon-
struction procedure for f(t) consisting of the bandlimited
interpolation of h(u) denoted by h∆(u) from which we then
obtain the function f∆(t) = M1/αh∆(u). However, based
on the duality of the transformation Mα, the function f∆

is nonbandlimited since h∆ is bandlimited by construction.
Thus, the reconstruction error in the L2 sense is reduced by
lowpass filtering f∆ with unity gain and obtaining f̃(t), i.e.
||f− f̃ ||2 < ||f−f∆||2. This reconstruction approach, which
we call bandlimited interpolation approximation (BIA), is
depicted in Fig. 5.

C. Simulations

In this section, we show the numerical performance of
the bandlimited interpolation algorithm in comparison with
a specific iterative algorithm, the Voronoi method [16], for
recovery from nonuniform samples. This method has been
shown to achieve empirically the best convergence rate in
terms of the required number of iterations. The Voronoi
method requires that supn∈Z |tn − tn+1| < π/σ assuming
an ordered sequence of time instants . . . < tn−1 < tn <
tn+1 < . . . and lim|n|→∞ tn =∞. It is easy to verify from
(9) that the sequence of time instants generated by ampli-
tude sampling satisfies such requirements for an appropriate
choice of the parameters α and ∆.

In the simulations, we considered bandlimited synthetic
signals with frequency components up to σ rad/s. We choose
as a measure of approximation error the signal-to-error ratio
(SER) given by

SER = 10 log10

( ||f ||22
||f − fa||22

)
(17)

(t) where fa(t) is the corresponding approximation to f(t),
i.e. fa = f̃(t) for BIA and the k-th iteration fa(t) = fk(t)
in the Voronoi method.

Fig. 6. Performance comparison between BIA and the Voronoi method for
fixed α and varying ∆.

As discussed, with fixed input bandwidth, the sampling
density can be modified by changing the parameters α and
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∆ appropriately. Fig. 6 and Fig. 7 show the numerical results
for both methods as the parameters α and ∆ are varied.

Fig. 6 shows the performance improvement when ∆ is
reduced. Theoretically, the Voronoi method has a geometric
rate of convergence that depends in some sense on the
maximal gap between consecutive sampling instants. Clearly,
the increase in sampling density is caused by reducing the
separation between amplitude levels. The effect in the BIA
is connected to the bandlimited interpolation of the samples
h(n∆), i.e. the maximum deviation of h∆ from h is reduced
when ∆ decreases. This empirically has an impact on the
reduction of the approximation error of f̃ in terms of energy.

Fig. 7. Performance comparison between BIA and the Voronoi method for
fixed ∆ and varying α.

Figure 7 illustrates the improvement when the slope of the
ramp is increased. This increase results in an increase of the
level crossings per unit of time, hence the sampling density
is increased. Similarly, increasing α causes the spectrum of
h to decay faster—the bound in (12) increases—reducing the
aliasing error. Similarly, the simulation results also show a
decrease in ||f − f̃ ||2.

It is important to emphasize that the Voronoi method
requires multiple iterations until it reaches the SER level
of the respective BIA reconstruction. Therefore, iterative
algorithms successively incorporating the chain of operations
of Fig. 5 are being explored.

VII. CONCLUSIONS

A sampling and reconstruction technique was presented
in which amplitude is quantized and time is allowed to
take arbitrary real values. This approach is in contrast to
conventional sampling schemes where time is quantized.
Amplitude sampling is based on the concept of transforming
the source signal into an invertible monotonic function. This
perspective allows the sampling process to be viewed in
terms of an associated amplitude-time function.

Approximate recovery is performed through bandlimited
interpolation. In a noisy scenario, this may potentially repre-
sent an advantage over nonuniform sampling reconstruction
algorithms which are known to be highly unstable in such

circumstances. The performance of this approximation sug-
gests the possibility of extension to iterative reconstruction
algorithms. In a general sense amplitude sampling represents
a signal by a sequence of analog time instants that im-
plicitly contain quantized amplitude information. Amplitude
sampling can potentially be a promising alternative to time-
sampling regimes when fine time resolution is available and
amplitude is coarsely quantized.
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