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Analysis and Realization of Amplitude Sampling
Pablo Martı́nez-Nuevo, Hsin-Yu Lai, Student Member, IEEE, and Alan V. Oppenheim, Life Fellow, IEEE

Abstract—The theoretical basis for conventional acquisition of
bandlimited signals typically relies on uniform time sampling
and assumes infinite-precision amplitude values. In this paper,
we explore signal representation and recovery based on uniform
amplitude sampling with assumed infinite precision timing in-
formation. The approach is based on the concept of reversibly
transforming a nonmonotonic input signal into a monotonic
one which is then uniformly sampled in amplitude. In effect,
the monotonic function is then represented by the times at
which the signal crosses a predefined and equally-spaced set
of amplitude values. We refer to this technique as amplitude
sampling. When the transformation into a monotonic function is
based on ramp addition, for practical purposes, the approach can
be implemented by applying a one-level level-crossing detector
to the result of adding an appropriate sawtooth-like waveform
to the source signal. The time sequence generated by the level
crossings can be interpreted alternatively as nonuniform time
sampling of the original source signal or uniform amplitude
sampling of the monotonic function to which it is transformed.
We derive duality and frequency-domain properties for the
functions involved in the transformation. Iterative algorithms
are proposed and implemented for recovery of the original source
signal and compared with nonuniform time sampling reconstruc-
tion methods of the original source signal. As indicated in the
simulations, the proposed iterative amplitude-sampling algorithm
achieves a faster convergence rate than reconstruction based on
nonuniform sampling. The performance can also be improved
by appropriate choice of the parameters while maintaining the
same sampling density.

Index Terms—Sampling theory, level-crossing sampling,
nonuniform sampling and reconstruction, iterative algorithms.

I. INTRODUCTION

THE theoretical foundation of conventional time sampling
typically relies on the sampling theorem for bandlimited

signals [1]–[3], which states that bandlimited signals can be
perfectly represented by infinite-precision amplitude values
taken at equally-spaced time instants appropriately separated.
In this paper, we propose signal representation based on
equally-spaced amplitude samples with infinite-precision tim-
ing information.

Signal representation based on discrete amplitudes and
continuous time has previously been studied and utilized in
a number of context. In [4] signal representation consists of
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the real and complex zeros of a bandlimited signal. Logan’s
theorem [5] characterizes a subclass of bandpass signals that
can be completely represented, up to a scaling factor, by their
zero crossings. Practical algorithms for recovery from zero
crossings of periodic signals in this class have been proposed
in [6]. Arbitrary bandlimited signals can also be implicitly
described by the zero crossings of a function resulting from
an invertible transformation [7]–[9]—for example, the addition
of a sinewave [10, Theorem 1]. In principle, interpolation
is possible through Hadamard’s factorization [11, Chapter
5] although there are more efficient techniques in terms of
convergence rate [12]–[15]. Zero-crossings have also been
studied in relation to wavelet transforms [16]. In this case,
stable reconstruction can be achieved by including additional
information about the original signal.

The extension from zero crossings to multiple levels, in
the context of data compression, was investigated in [17]. In
that work, a sample is generated whenever the source signal
crosses a predefined set of threshold levels. The time instants
of the crossings and the level-crossings directions were utilized
to represent the signal although time was still quantized
due to practical considerations. A practical continuous-time
version of level-crossing sampling was later proposed in [18].
Asynchronous delta modulation [19] is, also, in some sense,
a precursor of level-crossing sampling since it generates a
positive or negative pulse at time instants when the change
in signal amplitude surpasses a fixed quantity.

The focus of previous work on level-crossing sampling and
reconstruction has typically been approximate reconstruction
and implementational simplicity. For example, recovery is
often performed through a zero- or first-order hold, possibly in
combination with low-pass filtering [20], [21]. Although there
exist elaborate reconstruction techniques for multidimensional
signals [22], [23], practical and accurate signal reconstruction
techniques for generalized level-crossing sampling in one
dimension are still under-explored.

In this paper, we explore the concept of amplitude sampling
with the signal represented by the time sequence of equally-
spaced level crossings. In principle, if a signal were mono-
tonic, then the crossings of equally-spaced amplitude levels
would generate an ordered time sequence {t

n

} which could
be considered as a representation of the signal. In effect, under
appropriate conditions, this corresponds to uniform sampling
in amplitude with the signal information contained in the time
sequence {t

n

}. Nonmonotonic signals can be reversibly trans-
formed into monotonic ones which are then uniformly sampled
in amplitude. We refer to this technique as amplitude sampling.
As discussed in section II, when the reversible transformation
consists of adding a ramp with appropriate slope, a more
practical implementation to generate the identical ordered time
sequence {t

n

} is that shown in Fig. 1. As shown in II the
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time sequence generated by the system in Fig. 1 and that
obtained by uniform amplitude sampling after ramp addition
are identical. For conceptual simplicity in the analysis in this
paper, we utilize the interpretation of the time sequence {t

n

}
as derived from uniform amplitude sampling of the monotonic
function obtained by ramp addition.

In sections III, IV, and V we derive duality as well as time-
and frequency-domain properties relating the functions present
in the transformation. The structure of these functions suggest
an iterative reconstruction algorithm for numerical recovery of
the source signal from the amplitude samples. This algorithm
is discussed in Section VI with simulations and comparisons
with reconstruction based on the nonuniform time samples.

II. PRINCIPLE OF AMPLITUDE SAMPLING

Consider first the process represented by the block diagram
depicted in Fig. 1. The level detector produces an impulse at
times at which the input signal reaches the value �. For ease
of illustration, assume the ramp-segment generator initiates a
ramp with slope ↵ > 0 that abruptly shifts down by � in
amplitude whenever an impulse arrives. Assume ↵ is chosen
such that g̃(t) is monotonic in each interval between successive
impulses.

Fig. 1. Equivalent representation of the amplitude sampling process.

Fig. 2. Illustration of the different waveforms involved in the system shown
in Fig. 1.

Fig. 2 shows an example of the signals involved in the
process. By construction, the ramp segments of the function
r(t) present the same slope. This manifests itself in the
presence of an continuous ramp of slope ↵ separated by
multiples of � for each corresponding segment. Consequently,
the function g̃(t), which is the addition of these segments and

the input signal f(t), presents the same characteristic with
respect to g(t) = ↵t+f(t). In fact, the time instants at which
the impulses are generated correspond precisely to the level-
crossing instants of g(t) for amplitude thresholds placed at
multiples of �. Moreover, the function g(t), assuming appro-
priate regularity conditions, has an inverse function t(g) which
is effectively sampled uniformly in the amplitude domain with
samples corresponding to these time instants. Therefore, the
sampling process of Fig. 1 can be interpreted as uniformly
sampling the function t(g). In principle, it is possible to
generalize this this concept by considering any transformation
that generates a monotonic function g(t).

Amplitude sampling and reconstruction as developed in this
paper is then based on the principle of reversibly representing
and then sampling a time function g(t) in the form t(g) and
then sampling in g. This requires that g(t) be monotonic which
means that if the source signal is nonmonotonic, it must first
be reversibly transformed into a strictly monotonic function
through a transformation �. As illustrated in Fig. 3, the
resulting function �(f(t)) is then uniformly sampled. The time
instants {t

n

} at which �(f(t)) crosses the predefined set of
amplitude values {n�} implicitly represents the source signal,
i.e. �(f(t

n

)) = n� where � > 0 is the separation between
consecutive levels. Each of the time instants is paired exactly
with one amplitude level. Thus, there exists a one-to-one
correspondence between amplitude values and time instants.
The sequence of time instants together with knowledge of �

is sufficient information to describe the sampling process.
Amplitude sampling corresponds to signal-dependent

nonuniform time sampling with the sampling density depen-
dent on the source signal and the choice of the transformation
�.

Fig. 3. Principle of amplitude sampling based on a transformation � of the
source signal f resulting in a monotonic function �(f(t)).

III. TRANSFORMATION BY RAMP ADDITION

There exist a myriad of transformations � that can poten-
tially generate a monotonic function from a given f . Among
the simplest is the addition of a ramp with a sufficiently
large slope. Suppose the original signal f is continuous, and
it is possible to construct the strictly monotonic function
g(t) = ↵t+f(t) for some ↵ 2 R. Then, the sampling process
consists of the sequence of time instants {t

n

} satisfying
g(t

n

) = ↵t

n

+ f(t

n

) = n� for some � > 0.
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As indicated earlier, for analysis purposes in this paper, it
is convenient to interpret the time sequence {t

n

} as resulting
from sampling uniformly in amplitude the monotonic function
u = g(t) = ↵t + f(t). In the context of this transformation,
there exists an inverse function g

�1
(u) that we choose to

express in the form g

�1
(u) = u/↵+h(u) for some amplitude-

time function h. This interpretation suggests that this trans-
formation can also be viewed as a mapping from f to the
associated function h.

A. Mapping between f and h

The addition of a ramp represents a mapping, parametrized
by the slope of the ramp, between the original signal and the
function h. We denote this mapping by M

↵

, i.e. M
↵

f = h

which can be viewed as the addition of the ramp to obtain
the monotonic function g and, after inverting g, subtracting
the ramp u/↵ to obtain h. The reverse procedure to recover
f from h consists of adding a ramp of slope u/↵ to h and
utilizing the invertibility of g�1 as well as the correspondence
between g and f . This inverse mapping is denoted by M

↵

�1

and satisfies M

↵

�1
h = f . Fig. 4 illustrates the one-to-one

correspondence between f and h. These mappings are also
summarized in equation form as [24]

f(t) =� ↵h(f(t) + ↵t)

h(u) =� 1

↵

f(h(u) +

u

↵

).

(1)

Fig. 4. Illustration of the invertibility of the transformation between f and h
when g(t) = ↵t+ f(t) and g�1(u) = u/↵+ h(u).

As is evident from Fig. 4 and (1) there is a duality between
M

↵

and its inverse. It is possible to interpret (1) as a signal-
dependent warping operation that obtains f from h and vice
versa. The addition of a ramp in amplitude sampling also
generates an underlying mapping, dependent on f or h,
between time t and amplitude u. Both mappings can be easily
seen from (1) in its matrix form and the corresponding inverse
matrix:

✓
f(t)

t

◆
=

✓ �↵ 0

1 1/↵

◆✓
h(u)

u

◆
(2)

✓
h(u)

u

◆
=

✓ �1/↵ 0

1 ↵

◆✓
f(t)

t

◆
. (3)

The duality implies that any properties of h inherited by
assumptions made on f hold for f if the same assumptions
are instead imposed on h.

B. The Sampling Process

Amplitude sampling produces a sequence of time instants
corresponding to n� = g(t

n

) = ↵t

n

+ f(t

n

) where � > 0.
In similar fashion, the inverse function g

�1
(u) and h are both

uniformly sampled in amplitude, i.e.

g

�1
(n�) = n�/↵+ h(n�) (4)

and
h(n�) = t

n

� n�/↵. (5)

C. Sampling Density

As noted earlier, amplitude sampling in the form presented
here can be viewed as equivalent to nonuniform time sampling.
In this setting, stable reconstruction algorithms typically im-
pose conditions on the sequence of sampling instants as for
example the Landau rate [25] for bandlimited signals. In order
to gain insight into the time-sampling density inherent in our
amplitude-sampling process, assume the source signal f has
a bounded derivative, i.e. |f 0

(t)|  B for some B > 0 and
that |↵| > B so that the function g(t) = ↵t+ f(t) is strictly
monotonic. Then the time between successive samples satisfies
the inequality

�

|↵|+B

 |t
n+1 � t

n

|  �

|↵|�B

. (6)

where � > 0 is the separation between consecutive amplitude
levels.

The bounds in (6) are consistent with intuition. For example,
assume that ↵ is positive. The derivative of g is bounded by
↵+B which provides the minimum attainable time separation
between crossings. Similarly, the maximum separation is es-
sentially limited by ↵�B. The quantization step � represents
the change in amplitude necessary to produce a sample.
Additionally, when ↵ achieves sufficiently large values, the
bounds for time separation become closer, or equivalently, the
time sequence becomes more uniform. We can observe this
effect in (6) where amplitude is approximately a scaled version
of the time axis.

D. Iterative Algorithm for the Realization of M
↵

In this section, we propose an iterative algorithm for the
implementation of M

↵

to generate h(u) from f(t). By duality,
an equivalent algorithm can be used for the implemention of
M

↵

�1 to generate f(t) from h(u). For ease of illustration, we
consider a modified version of the transformation M

↵

defined
in (7) which we denote by ˜

M

↵

:

f(t) =

˜

h(

1

↵

f(t) + t)

˜

h(u) = f(� 1

↵

˜

h(u) + u).

(7)
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Equations (7) form the basis for the iterative algorithm for-
malized in the following theorem.

Theorem 1: Let the function f be Lipschitz continuous with
constant < ↵ and suppose that sup

t2R |f(t)|  A. Then, the
function ˜

h(u) = (

˜

M

↵

f)(u) for u 2 R can be obtained by the
iteration

˜

h

n+1(u) = f(u� 1

↵

˜

h

n

(u)) (8)

for n � 0 where ˜

h0(u) = f(u) and ˜

h

n

(u) ! ˜

h(u) as n ! 1.
The detailed proof is carried out in Appendix A.

Fig. 5. Illustration of the iteration described in Theorem 1 with the
initialization t0 = u0.

As used in the preceding, the value of ˜h(u0) can be obtained
from the first equality in (7). In particular, ˜

h(u0) = f(t

⇤
)

where t

⇤ is the value that satisfies u0 = t

⇤
+ f(t

⇤
)/↵. The

solution is unique since the slope of the ramp, in absolute
value, is always greater than the maximum value of the
derivative of f . As shown in Fig. 5, t0 is the time instant
at which the ramp ↵t0 � ↵t intersects the function f(t). In
the same way, the value of the (n + 1)-th iteration can be
viewed as the solution of ↵t � (↵u0 � f(t

n

)) = 0. In other
words, we iteratively construct a straight line passing through
the point (u0, f(tn)). The intersection with the horizontal axis
then corresponds to the value of t

n+1.

IV. SPECTRAL PROPERTIES

Assumptions made on the source signal f are naturally
reflected in the structure of h. In this section, we assume that
f is a bandlimited function and derive properties regarding the
spectral content of the amplitude-time function h. The duality
between f and h = M

↵

f implies that similar conclusions can
be made about f when h is assumed to be bandlimited.

As an example to motivate the discussion, consider the
bandlimited input signal f(t) = sinc(t) to produce h = M

↵

f

where ↵ is assumed to be positive and large enough so that
g(t) = f(t) + ↵t is strictly monotonic. Fig. 6 depicts both
functions f and h. Note that h presents shear-like behavior
relative to to the shape of f . This effect is caused by the
subtraction of a ramp from the parts of g where its derivative
is small. Since, the derivative of g

�1 is the reciprocal of g,
these regions also correspond to large values of the derivative
of h. This structure may entail the presence of relevant energy
at high frequencies. In particular, we could expect that the
frequency-domain characteristics of h are roughly controlled
by the difference ↵�B for |f 0

(t)|  B.

-5 0 5
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-6 -4 -2 0 2 4 6
-0.8

-0.6

-0.4

-0.2

0

0.2

Fig. 6. Example of the transformation in amplitude sampling where f(t) =
sinc(t), ↵ = 1.38, and h = M↵f .

In exploring the spectral content of h we assume that f is
bandlimited to � rad/s with � > 0 and bounded in amplitude,
i.e. |f(t)| < A for some A. We further assume that the decay
of f(t) for t real satisfies |f(t)|  A/(1 + t

2
). In principle,

the extension to square-integrable functions is straightforward.
With our assumptions on f , Bernstein’s inequality [26] pro-
vides the bound |f 0

(t)|  A� for all t 2 R. This bound
gurantees that the function u defined as

u = g(t) = ↵t+ f(t). (9)

will be strictly monotonic whenever |↵| > A�. The function
h is then given by h(u) = g

�1
(u) � u/↵. From Theorem 2

below it follows that the decay of the Fourier transform of h,
denoted by ˆ

h(⇠) for ⇠ in Hz, satisfies ˆ

h(⇠) = O(e

�2⇡|⇠|b
) as

⇠ ! 1 where b > 0 is determined by the difference |↵|�A�.
Theorem 2: Let f(t) : R ! R be a continuous function

bandlimited to � > 0 rad/s. Assume further that |f(t)| 
A/(1 + t

2
) for all t 2 R and some A > 0. Construct the

function
u = g(t) = ↵t+ f(t) (10)

for |↵| > A�. Then, there exists g

�1
(u) for all u 2 R and

a constant C > 0 such that the Fourier transform of h(u) =

g

�1
(t)� u/↵ satisfies |ˆh(⇠)|  Ce

�2⇡|⇠|b for any 0  b < a

such that
a =

|↵|
�

log

⇣ |↵|
A�

⌘
� |↵|�A�

�

. (11)

and ⇠ 2 R.
The detailed proof is carried out in Appendix B.
As anticipated, the rate of decay of the Fourier transform

at infinity depends on |↵|�A�. The difference is logarithmic
in the first term and linear in the second one. The larger the
difference the faster the decay at infinity. Note that a > 0

always holds since |↵| > A�. Assuming ↵ > 0, this
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difference is precisely impacting the highest slope portions
in h, or, equivalently, the regions in which f

0 is smallest.
The underlying reason being that the derivative of g

�1 is
the reciprocal of g, i.e. (g

�1
(u))

0
= 1/g

0
(g

�1
(u)) for all

u 2 R. Informally, it is the tilted regions in the shape of h are
responsible, to some extent, for the high-frequency content.

It should be emphasized that any bandlimited function will
naturally be in the class of signals whose spectrum exhibits
at least exponential decay at infinity. However, Theorem 3
stated below asserts that f and h cannot be simultaneously
bandlimited. The precise statement in the description of the
theorem guarantees this property with the possible exception
of, at most, one value of ↵. For practical purposes, we can
ignore this isolated case.

Theorem 3: Under the conditions of Theorem 2 and unless
f is constant, the function h(u) is nonbandlimited for every
↵ > A� with at most one exception.

The detailed proof is carried out in Appendix C.
In the singular case, in which f is a constant, it can

be shown through the constructive process of M

↵

by ramp
addition that h is constant as well, specifically, for f = A,
then h = �A/↵. From another point of view, according to
(1), the function f results, in general, from h with a nonlinear
warping of the independent variable. When either of the two
functions is constant, the warping is affine. Therefore, in this
case, the bandlimited property is preserved [27]. In our context
the conclusion follows directly from (1) that if either f or h

is constant, the other must be also.
More generally, if |↵| increases significantly, the warping

function becomes approximately linear since f(t) is negligible
compared to ↵t, i.e. f(t) ⇡ �↵h(↵t). This is consistent with
(11) where an increase of |↵| produces a faster decay at infinity
of ˆ

h.

V. TIME-DOMAIN DECAY PROPERTIES

In some sense, h inherits characteristics of f since it is
a ”time-warped” version of f . In this section, we show the
connections between the properties of f and h in the time
domain with the relationship between f and h as specified
in (1) which explicitly requires that the slope of the ramp
added to f and the slope of the ramp subtracted to obtain
h be exact inverses. Intuitively, it is not surprising that the
function h should present decay properties similar to those
of f once the unbounded growth of the ramp component
has been subtracted. In particular, it is stated in [28, Chapter
2, Proposition 1] that when the slopes of the two ramps as
inverses, the decay of h will match that of f . Otherwise h

does not decay appropriately on the real line.
The transformation M

↵

also has an impact on the L

p norms
of the respective functions with the parameter ↵ playing a
crucial role. It can be shown that the decay on the real line of
both functions is related by [28, Chapter 2, Proposition 3]

||h||
p

=

1

↵

1� 1
p

||f ||
p

, p 2 [1,1]. (12)

Not only does h belong to L

p

(R) if f does, but their
respective norms are also related by a scaling factor which
is precisely ↵. Indeed, for very large values of |↵|, the ramp

approaches the vertical axis, thus reducing the range of h and
decreasing the norm.

In terms of a sense of distance, let f1 and f2 generate h1

and h2 respectively. The transformation M

↵

preserves the L

1

distance [28, Chapter 2, Proposition 4], i.e.

||h1 � h2||1 = ||f1 � f2||1. (13)

By duality, these properties hold irrespective of the role of
each function as an input or output.

VI. RECONSTRUCTION IN AMPLITUDE SAMPLING

Amplitude sampling can be interpreted as signal-dependent
nonuniform time sampling of the source signal f based on
uniform time sampling of the associated amplitude-time func-
tion h. If f is bandlimited, then as was shown in Section IV h

is not bandlimited and consequently cannot be exactly recon-
structed through bandlimited interpolation. Our reconstruction
approach begins by initially using sinc interpolation as an
approximation. This is then extended to an iterative algorithm
that achieves accurate recovery. Throughout this entire section,
we assume that the source signal f is bandlimited to � rad/s,
and |f(t)|  A/(1 + t

2
) for A > 0 and all t 2 R.

A. Bandlimited Interpolation Algorithm (BIA)

The approximate reconstruction of f based on sinc interpo-
lation of h is depicted in Fig. 7. From this approximation to
h an approximation to f is generated through M

↵

�1 which is
then lowpass filtered since f is assumed to be bandlimited. In
particular, the D/C system is defined by the relationship

h�(u) =

X

k2Z
h(k�)sinc(u/�� k). (14)

Note that the samples of h are related to {t
n

} as h(n�) =

t

n

� n�/↵, n 2 Z. At this stage the approximation can be
quantified as [28, Chapter 3, Proposition 6]

||h� h�||1  C

0

a

e

�⇡

a

�
. (15)

The error in (15) is then controlled both by the difference
|↵| � A� and the quantization step size �. As already
discussed, increasing the difference |↵|�A� produces, in some
sense, a function h with a faster high-frequency spectral decay
and therefore one that is more approximately bandlimited.
Thus, we would expect that the performance of the approxi-
mation can be improved by increasing this difference.

Fig. 7. Approximate reconstruction procedure for a bandlimited source signal
f such that h = M↵f . The block D/C is a discrete-to-continuous operation
involving sinc interpolation with period �.
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B. Iterative Amplitude Sampling Reconstruction (IASR)

The bandlimited interpolation algorithm (BIA) forms the
basis for an iterative algorithm which we refer to as the Iter-
ative Amplitude Sampling Reconstruction (IASR) algorithm
illustrated in Fig. 8. Note that if the initialization satisfies
h0(u) ⌘ 0 and f0(t) ⌘ 0, the first iteration corresponds
precisely to BIA, i.e. f1(t) =

˜

f(t). Similar to the approx-
imate bandlimited recovery, the emphasis is placed on the
reconstruction of h from its nonuniform amplitude samples
and then imposing the bandlimited constraint on the successive
approximations to f with the objective of iteratively reducing
the error ||e

k

(t)||2.

Fig. 8. Block diagram representation of the iterative amplitude sampling
reconstruction (IASR) algorithm.

C. Simulation Results

In all of the simulations in this section, the source signal f
is chosen as white noise bandlimited to � rad/s and bounded
by A > 0. The quantization step size � and the parameter ↵
are chosen so that the sampling density is greater or equal than
the Landau rate [25], which, in our case, is given by ⇡/�. We
choose as a measure of approximation error the signal-to-error
ratio (SER) given by

SER = 10 log10

⇣ ||f
k

||22
||f � f

k

|22
⌘

(16)

where f

k

is the k-th iteration.
Since amplitude sampling also implies nonuniform time

sampling on the source signal f , we also directly apply a
nonuniform reconstruction algorithm to recover f . Specifi-
cally, we compare IASR to the Voronoi method developed in
[29, Theorem 8.13]. Based on the bounds in (6) for the time
instants, it is straightforward to see that the sampling instants
in an amplitude sampling setting satisfy the requirements
of the Voronoi method for an appropriate choice of the
parameters. In particular, it can be shown that it is sufficient
that

�

|↵|�A�

>

⇡

�

. (17)

In initializing both algorithms, the 0-th iteration in both IASR
and the Voronoi method is assumed to be zero.

In Fig. 9, we have modified individually the parameters ↵
or �. In reducing the value of the quantization step size �,
the transformed function ↵t + f(t) will clearly cross more

(a)

(b)

Fig. 9. Performance comparison between IASR, AWM, and BIA, for a
broadband input signal bandlimited and bounded; (a) � is changed while
↵ is fixed; (b) ↵ is changed while � is fixed.

amplitude levels per unit of time. Similarly, when the slope
of the ramp added to f is increased in absolute value, it also
causes an increase in the level-crossing density. Thus, both
effects result in an increase of the sampling density, and,
as shown in the figure, the rate of convergence improves.
However, it can be observed that the rate of convergence is
faster in the IASR case. The first iteration in IASR achieves
a better approximation than the Voronoi method although the
rate of convergence appears to be highly insensitive to this
change of parameters. On the other hand, the Voronoi method
is significantly impacted by the change in sampling density.
Moreover, it requires several iterations until it obtains the same
approximation performance as the first iteration in IASR. As
shown in Fig. 10 the same conclusions hold if we increase
the oversampling ratio by considering signals with smaller
bandwidths and, at the same time, keeping ↵ and � fixed.

Thus far, we have focused on modifying the sampling
density. Additionally, due to the structure of the sampling
process in amplitude sampling, it is also possible to keep
the sampling density fixed while changing both ↵ and �

accordingly. The rate of convergence in the Voronoi method
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is determined by the maximal separation between consecutive
sampling instants. With constant sampling density, the per-
formance of the Voronoi method does not change, as shown
in Fig. 11. However, IASR presents an improvement in the
rate of convergence. This is not surprising since the difference
|↵| � A� has increased, which likely results in a better
approximation of the sinc interpolation in IASR.

When the input signal is highly oversampled, we have
empirically observed that the Voronoi method has a faster
rate of convergence. Nevertheless, when the sampling instants
become increasingly sparse approaching the Landau rate,
IASR performs significantly better.

In summary, overall, IASR appears to have better per-
formance than the Voronoi method in terms of speed of
convergence when the sampling density approaches the Lan-
dau rate. Changes in the sampling density have a higher
impact on the convergence in the Voronoi method than in
IASR. Moreover, IASR performance can also be improved
by increasing the difference |↵| � A� while keeping the
sampling density invariant. In [24], a scaling of the input
signal also produces an increase in the speed of convergence.
This performance improvement of IASR over the Voronoi
method may be due to the characteristics of the sampling
instants. Specifically the sampling instants in IASR inherently
incorporate the amplitude sampling structure and therefore
contain more information initially than more general nonuni-
form sampling would. In some sense, this may suggest that
IASR is designed to more effectively exploit the structure
of this particular sampling process which implicitly is signal
dependent and consequently signal information is implicitly
embedded in both the sampling times and the sample values.

Fig. 10. Performance comparison between IASR and the Voronoi method
when the bandwidth � is changed, and ↵ and � are fixed.

VII. CONCLUSION

Amplitude sampling represents a signal with equally-spaced
amplitude values and infinite-precision timing information by
reversibly transforming the source signal. This transformation
provides the perspective of viewing amplitude sampling as
uniform sampling of an associated amplitude-time function or
equivalently as nonuniform time sampling of the source signal.

Fig. 11. Performance comparison between IASR and the Voronoi method
when the sampling density is fixed and ↵ and � are changed.

The properties of both functions are connected by a duality
relationship. Similarly, an iterative algorithm for recovery was
proposed and evaluated that exploits the particular character-
istics of the sampling instants in amplitude sampling. For the
amplitude sampling structure this algorithm outperforms the
use of more general nonuniform reconstruction algorithms.

APPENDIX A
PROOF OF THEOREM 1

According to (7), obtaining ˜

h(u0) for some fixed u0 2 R is
equivalent to finding some t

⇤ 2 R such that u0 = t

⇤
+f(t

⇤
)/↵

since ˜

h(u0) = f(t

⇤
). Therefore, we have to find the roots of

t = u0 � 1

↵

f(t) , v

u0(t) (18)

for t 2 R. It is easy to see that v
u0(t) is Lipschitz continuous

for some constant K < 1. Furthermore, there always exists
some ✏ � A/↵ such that v

u

o

: I ! I where I = [u0� ✏, u0+

✏]. Thus, the Banach fixed-point theorem [30] guarantees the
uniqueness and existence of a solution. Moreover, it ensures
convergence with the following bounds for the error

|t
n+1 � t

⇤|  K|t
n

� t

⇤| (19)

for n � 0 where t0 2 I and t

n+1 = v

u0(tn). Then,
the iteration can be equivalently expressed in terms of the
functional composition form as

˜

h

n+1(u0) = f(u0 � 1

↵

˜

h

n

(u0)). (20)

Since u0 was chosen arbitrarily, the same conclusions hold for
any u0 2 R. ⇤

APPENDIX B
PROOF OF THEOREM 2

We first introduce several results that will become useful in
the proof of the theorem. Define the open disk in the complex
plane centered at z

o

and of radius r as

D

r

(z

o

) = {z 2 C : |z � z

o

| < R} (21)

and use D

r

(z

o

) for its closure.
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Lemma 1: Let f be a holomorphic function in some region
⌦ with power series f(z) =

P1
n=0 an(z � z

o

)

n at z

o

2 ⌦.
Consider a disk of radius R centered at z

o

such that ⌦ contains
the disk and its closure. If a1 6= 0 and

|a1| >
1X

n=2

|a
n

|nRn�1
, (22)

then f is injective in any open disk of radius r  R.
Proof 1: Without loss of generality assume z

o

= 0, thus
the power series expansion of f around the origin is given by
f(z) =

P1
n=0 anz

n for all z 2 ⌦. Take z1, z2 2 D

R

(0) ⇢
⌦ such that z1 6= z2 and recall that for any z, w 2 C the
following identity holds

(z

n�w

n

) = (z�w)(z

n�1
+ z

n�2
w+ . . .+ zw

n�2
+w

n�1
).

(23)
We can write

���
f(z2)� f(z1)

z2 � z1

��� =

���a1 +
1X

n=2

a

n

z

n

2 � z

n

1

z2 � z1

���

=

���a1 +
1X

n=2

a

n

(z

n�1
2 + z

n�2
2 z1 + . . .

. . .+ z2z
n�2
1 + z

n�1
1 )

���

� |a1|�
1X

n=2

|a
n

|nRn�1
.

where the last inequality follows from the reverse triangle
inequality and the fact that |z1|, |z2|  R. Thus, if |a1| �P1

n=2 |an|nRn�1
> 0, then f(z2) � f(z1) 6= 0 and f(z) is

injective in D

r

(z

o

) for any r  R. ⇤
Proposition 1: Let f : U ! V be a bijective continuous

function. Consider a set ⌦ such that its closure ⌦ is strictly
contained in U , then f(@⌦) = @f(⌦).

Proof 2: Consider x 2 @⌦, which is clearly a limit point of
⌦. We know there exist a convergent sequence x

n

! x for n �
1, where x

n

2 ⌦. By continuity, we have that f(x
n

) ! f(x)

is a convergent sequence in V . As f is a bijection from U to V ,
we have that f(x

n

) 6= f(x) for all n � 1, thus f(x) 2 f(⌦).
Moreover, f(x) 6= f(x

0
) for all x

0 2 ⌦, therefore f(x) 2
@f(⌦) for all x 2 @⌦. It follows that f(@⌦) ✓ @f(⌦).

Now, we claim that for every y 2 @⌦ there exists an x 2 @⌦

such that y = f(x). Imagine this is not true and there exists
an x

o

2 U \ @⌦ such that y

o

= f(x

o

). From our previous
discussion, it is clear that x

o

cannot be in ⌦, then imagine
x

o

2 U \⌦. Since f is continuous and bijective, we can choose
a sufficiently small ✏ > 0 such that f�1

(D

✏

(y

o

)) ⇢ D

�

(x

o

)

and D

�

(x

o

)\⌦ = ; for some � > 0. However, as y
o

is a point
in the boundary, it holds that D

✏

(y

o

)\ f(⌦) 6= ;. Thus, there
exist an x1 2 ⌦ such that f(x1) = y

0 for some y

0 2 D

✏

(y

o

).
At the same time, there also exists an x2 2 f

�1
(D

✏

(y

o

))

such that f(x2) = y

0, where x1 6= x2. This contradicts the
bijectivity assumption, thus f(@⌦) ◆ @f(⌦) which together
with f(@⌦) ✓ @f(⌦) gives f(@⌦) = @f(⌦). ⇤

Proposition 2: Suppose f(z) is an entire function of expo-
nential type � such that |f(x)|  A/(1 + x

2
) for all x 2 R.

Then, the following bound holds for all z 2 C

|f(z)|  Ae

�|y|

1 + x

2
. (24)

Proof 3: By assumption, we have that |f(z)|  Ae

�|z|

for all z 2 C. Construct the function F (z) = (1/A)(1 +

x

2
)e

i�z

f(z), then F is bounded by 1 on the positive imagi-
nary and positive real axis. If we consider the first quadrant
Q = {z = x+ iy : x > 0, y > 0}, it is clear that there exists
constants C, c > 0 such that |F (z)|  Ce

c|z| for z 2 Q. We
conclude by the Phragmén-Lindelöf theorem that |F (z)|  1

for all z in Q. This implies that |f(z)|  Ae

�y

/(1+x

2
) for z 2

Q. Using the same argument, one can show that the same is
true in the second quadrant. For the third and fourth quadrants
we use instead the function F (z) = (1/A)(1+x

2
)e

�i�z

f(z),
which shows that (24) also holds for y  0. ⇤

The function f is of moderate decrease. By the Paley-
Wiener theorem, its Fourier transform is then supported on
[�M,M ]. Thus, Bernstein’s inequality implies that |f 0

(x)| 
�A. Now, we can split the proof of the theorem in three steps.

Step 1. We claim that the function u = g(x) = ↵x+ f(x)

admits a real analytic inverse function whenever ↵ > �A.
It is clear that g(x) is analytic for all x 2 R since it is
the sum of two analytic functions on the whole real line.
Moreover, g(x) is a strictly increasing monotone function
because |f 0

(x)|  A� and ↵ > A�, which implies g

0
(x) > 0.

The Real Analytic Inverse Function theorem guarantees that
for a point x

o

where g

0
(x

o

) 6= 0, there exists a neighborhood
J

o

of x
o

and a real analytic function g

�1 defined on an open
interval I

o

containing g(x

o

) satisfying (g

�1 � g)(x) = x for
x 2 J

o

and (g � g�1
)(u) = u for y 2 I

o

. Since g

0
(x) 6= 0 for

all real x, it is always possible for any given x1 2 R to find an
x2 /2 J1 such that J1\J2 6= ;. Thus, by analytic continuation,
we conclude that g�1

(u) is analytic on the whole real line.
Step 2. We show that the function g

�1
(w) is analytic in a

region containing the horizontal strip

S

a

= {w 2 C : |Im(w)| < a,

where a =

↵

�

log

⇣
↵

�

⌘
� ↵� �

�

}. (25)

The function g(z) = ↵z + f(z) is an entire function of
exponential type � and admits a power series expansion around
x 2 R

g(z) = ↵z +

1X

n=0

f

(n)
(x)

n!

(z � x)

n (26)

for all z 2 C. By Bernstein’s inequality, the derivatives of f

are bounded on the real line by |f (n)
(x)|  A�

n. We now
look for a region where g(z) is injective. Using Lemma 1,
g(z) is injective in a disk of radius R > 0 whenever

|↵+ f

0
(x)| > A

R

1X

n=2

n

(�R)

n

n!

= A�(e

R� � 1) (27)

or, equivalently

R <

1

�

log

⇣
1 +

|↵+ f

0
(x)|

A�

⌘
. (28)
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The right-hand side of this expression is lower bounded by
(1/�) log(1 + (↵ � A�)/A�) > 0, since |f 0

(x)|  A� < ↵

for all x 2 R. Thus, it is always possible to choose a disk of
positive radius satisfying this lower bound such that g(z) is
injective.

Let us fix an R satisfying this lower bound. Remember
that holomorphic functions are open mappings, i.e. they map
open sets to open sets. Thus, g(z) maps an open disk of
radius R to the open set g(D

R

(x)). By continuity, g(D
R

(x))

is also connected since D

R

(x) is connected. Therefore, the
mapping g(z) : D

R

(x) ! g(D

R

(x)) represents a holomorphic
bijection, thus its inverse is also holomorphic. Moreover, the
inverse agrees with g

�1
(u) for real u 2 g(D

R

(x)). Thus,
it represents the analytic continuation of g

�1
(u) on u 2

g(D

R

(x)). In fact, we can always choose a disk D

R

(x

0
) such

that g(D
R

(x)) \ g(D

R

(x

0
)) 6= ;, where the inverse functions

defined on their respective images take the same value in
the intersection for real u. Again, by analytic continuation,
we can analytically extend g

�1
(u) to g(D

R

(x))[ g(D

R

(x

0
)).

Repeating this process for all real x, we obtain the analytic
continuation of g�1

(u) in the open set ⌦ = [
x2Rg(DR

(x)).
We want to find an a > 0 such that S

a

✓ ⌦. Using Lemma
1, the boundary of the disk @D

R

(x) is mapped bijectively to
@g(D

R

(x)). Therefore, the largest radius ⇢ for a disk centered
at g(x) such that D

⇢

(g(x)) ✓ g(D

R

(x)) for all x 2 R is given
by

⇢ = inf

x2R
sup

|z�x|=R

{|g(z)� g(x)| :

D|g(z)�g(x)|(g(x)) ✓ g(D

R

(x))}.
(29)

We can use the power series expansion of g around x to find
a lower bound for ⇢ in the following manner

|g(z)� g(x)| = |↵(z � x) +

1X

n=1

a

n

(z � x)

n|

� ↵R�
1X

n=1

A�

n

n!

R

n

= ↵R�A(e

R� � 1).

for |z � x| = R. The right-hand side of the last expression
represents a strictly concave function of R, thus the maximum
is achieved for

R =

1

�

log

⇣
↵

A�

⌘
> 0 (30)

which is positive as ↵ > A� and satisfies the upper bound in
(28). Setting the value of R as in (30), we can write

|g(z)� g(x)| � ⇢ � ↵

�

log

⇣
↵

A�

⌘
�
⇣
↵�A�

�

⌘
(31)

for all x 2 R and |z � x| = R. This implies that S
a

✓ ⌦ for
any a such that

a <

↵

�

log

⇣
↵

A�

⌘
�
⇣
↵�A�

�

⌘
. (32)

Step 3. We show that h(w) is of moderate decay on each
horizontal line |Im(w)| < a, uniformly in |y| < a. First, we
note that since f is an entire function of exponential type �
and is of moderate decrease along the real line, by Proposition
2

|f(z)|  Ae

�|y|

1 + x

2
(33)

for all z 2 C. Let us now fix an R satisfying (30), then we
have a bijection from D

R

(x

0
) to g(D

R

(x

0
)) for some x

0 2
R. Therefore, z = g

�1
(w), where w 2 g(D

R

(x)) and z 2
D

R

(x

0
). Since |y| < R for z 2 D

R

(x

0
), we also have |f(z)| =

|↵z � g(z)|  Ae

�R

/(1 + x

2
), or equivalently

|w � ↵g

�1
(w)|  Ae

�R

1 + (g

�1
(u))

2
(34)

whenever w 2 g(D

R

(x)) and z 2 D

R

(x

0
). Using the reverse

triangle inequality in the previous expression for real w, we
can also obtain

|g�1
(u)| � |u|

↵

� Ae

�R

↵

. (35)

which is true for all u 2 R since x = g

�1
(u) holds for all

real x and u as shown in the first step of the proof. Define the
function for all real u

 (u) =

(
|u|/↵�Ae

�R

/↵ if |u|/↵ > Ae

�R

/↵

0 otherwise
(36)

which clearly satisfies |g�1
(u)| � | (u)|. Make � = 1/↵

and multiply both sides of (34) by 1/↵ to see that |h(w)| =
|w/↵ � g

�1
(w)|. Combining these expressions, we can then

write for some A

0
> 0 and w 2 g(D

R

(x

0
))

|h(w)|  Ae

�R

/↵

1 + g

�1
(u)

2
 Ae

�R

/↵

1 +  (u)

2
 A

0

1 + u

2
(37)

As our choice of x0 was arbitrary, this is true for any x

0 2 R
and |h(u+ iv)| is of moderate decrease along horizontal lines.

Therefore, the function h(w) is analytic on the strip S

a

and
it is of moderate decrease on each horizontal line |Im(w)| = v,
uniformly in |v| < a, as long as � = 1/↵. By the Paley-Wiener
theorem [31, Theorem X], we conclude that there exists a
constant C > 0 such that |ˆh(⇠)|  e

�2⇡b⇠ for any 0  b < a.
⇤

APPENDIX C
PROOF OF THEOREM 3

Construct the function g(z) = ↵z + f(z) where f is not
constant. By Picard’s little theorem, there exists at most one
value ↵ > A� that f 0

(z) does not take. For the rest of them,
there always exists a z

o

2 C such that g0(z
o

) = ↵+f

0
(z

o

) = 0.
Then, it is possible to write

g(z)�a0 = (z�z

o

)

2
[a2+a3(z�z

o

)+a4(z�z

o

)

2
+. . .]. (38)

Therefore, the function g(z) � z

o

has a zero of order � 2 at
z

o

. By the Local Mapping Theorem, g is n-to-1 near z

o

for
n � 2. Using the argument of analytic continuation of local
biholomorphisms in Theorem 2, we conclude that the analytic
extensions of h around g(z

o

) are multivalued. This excludes
the possibility of h being entire, thus, h cannot be bandlimited.
If f(z) = C for some C > 0, then h(u) = �C/↵, which is
bandlimited in the distributional sense. ⇤
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Analysis and Realization of Amplitude

Sampling
Pablo Martı́nez-Nuevo, Hsin-Yu Lai, Student Member, IEEE, and Alan V. Oppenheim, Life

Fellow, IEEE

Abstract

The theoretical basis for conventional acquisition of bandlimited signals typically relies on uniform

time sampling and assumes infinite-precision amplitude values. In this paper, we explore signal rep-

resentation and recovery based on uniform amplitude sampling with assumed infinite precision timing

information. The approach is based on the concept of reversibly transforming a nonmonotonic input

signal into a monotonic one which is then uniformly sampled in amplitude. In effect, the monotonic

function is then represented by the times at which the signal crosses a predefined and equally-spaced set

of amplitude values. We refer to this technique as amplitude sampling. When the transformation into a

monotonic function is based on ramp addition, for practical purposes, the approach can be implemented

by applying a one-level level-crossing detector to the result of adding an appropriate sawtooth-like

waveform to the source signal. The time sequence generated by the level crossings can be interpreted

alternatively as nonuniform time sampling of the original source signal or uniform amplitude sampling

of the monotonic function to which it is transformed. We derive duality and frequency-domain properties

for the functions involved in the transformation. Iterative algorithms are proposed and implemented

for recovery of the original source signal and compared with nonuniform time sampling reconstruction

methods of the original source signal. As indicated in the simulations, the proposed iterative amplitude-

sampling algorithm achieves a faster convergence rate than reconstruction based on nonuniform sampling.
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The performance can also be improved by appropriate choice of the parameters while maintaining the

same sampling density.

Index Terms

Sampling theory, level-crossing sampling, nonuniform sampling and reconstruction, iterative algo-

rithms.

I. INTRODUCTION

The theoretical foundation of conventional time sampling typically relies on the sampling theorem for

bandlimited signals [1]–[3], which states that bandlimited signals can be perfectly represented by infinite-

precision amplitude values taken at equally-spaced time instants appropriately separated. In this paper, we

propose signal representation based on equally-spaced amplitude samples with infinite-precision timing

information.

Signal representation based on discrete amplitudes and continuous time has previously been studied

and utilized in a number of context. In [4] signal representation consists of the real and complex

zeros of a bandlimited signal. Logan’s theorem [5] characterizes a subclass of bandpass signals that

can be completely represented, up to a scaling factor, by their zero crossings. Practical algorithms for

recovery from zero crossings of periodic signals in this class have been proposed in [6]. Arbitrary

bandlimited signals can also be implicitly described by the zero crossings of a function resulting from an

invertible transformation [7]–[9]—for example, the addition of a sinewave [10, Theorem 1]. In principle,

interpolation is possible through Hadamard’s factorization [11, Chapter 5] although there are more efficient

techniques in terms of convergence rate [12]–[15]. Zero-crossings have also been studied in relation

to wavelet transforms [16]. In this case, stable reconstruction can be achieved by including additional

information about the original signal.

The extension from zero crossings to multiple levels, in the context of data compression, was inves-

tigated in [17]. In that work, a sample is generated whenever the source signal crosses a predefined set

of threshold levels. The time instants of the crossings and the level-crossings directions were utilized

to represent the signal although time was still quantized due to practical considerations. A practical

continuous-time version of level-crossing sampling was later proposed in [18]. Asynchronous delta

modulation [19] is, also, in some sense, a precursor of level-crossing sampling since it generates a

positive or negative pulse at time instants when the change in signal amplitude surpasses a fixed quantity.

The focus of previous work on level-crossing sampling and reconstruction has typically been approx-

imate reconstruction and implementational simplicity. For example, recovery is often performed through
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a zero- or first-order hold, possibly in combination with low-pass filtering [20], [21]. Although there

exist elaborate reconstruction techniques for multidimensional signals [22], [23], practical and accurate

signal reconstruction techniques for generalized level-crossing sampling in one dimension are still under-

explored.

In this paper, we explore the concept of amplitude sampling with the signal represented by the time

sequence of equally-spaced level crossings. In principle, if a signal were monotonic, then the crossings

of equally-spaced amplitude levels would generate an ordered time sequence {t
n

} which could be

considered as a representation of the signal. In effect, under appropriate conditions, this corresponds

to uniform sampling in amplitude with the signal information contained in the time sequence {t
n

}.

Nonmonotonic signals can be reversibly transformed into monotonic ones which are then uniformly

sampled in amplitude. We refer to this technique as amplitude sampling. As discussed in section II,

when the reversible transformation consists of adding a ramp with appropriate slope, a more practical

implementation to generate the identical ordered time sequence {t
n

} is that shown in Fig. 1. As shown in

II the time sequence generated by the system in Fig. 1 and that obtained by uniform amplitude sampling

after ramp addition are identical. For conceptual simplicity in the analysis in this paper, we utilize the

interpretation of the time sequence {t
n

} as derived from uniform amplitude sampling of the monotonic

function obtained by ramp addition.

In sections III, IV, and V we derive duality as well as time- and frequency-domain properties relating the

functions present in the transformation. The structure of these functions suggest an iterative reconstruction

algorithm for numerical recovery of the source signal from the amplitude samples. This algorithm is

discussed in Section VI with simulations and comparisons with reconstruction based on the nonuniform

time samples.

II. PRINCIPLE OF AMPLITUDE SAMPLING

Consider first the process represented by the block diagram depicted in Fig. 1. The level detector

produces an impulse at times at which the input signal reaches the value �. For ease of illustration,

assume the ramp-segment generator initiates a ramp with slope ↵ > 0 that abruptly shifts down by � in

amplitude whenever an impulse arrives. Assume ↵ is chosen such that g̃(t) is monotonic in each interval

between successive impulses.

Fig. 2 shows an example of the signals involved in the process. By construction, the ramp segments

of the function r(t) present the same slope. This manifests itself in the presence of an continuous ramp

of slope ↵ separated by multiples of � for each corresponding segment. Consequently, the function g̃(t),

which is the addition of these segments and the input signal f(t), presents the same characteristic with
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Fig. 1. Equivalent representation of the amplitude sampling process.

Fig. 2. Illustration of the different waveforms involved in the system shown in Fig. 1.

respect to g(t) = ↵t + f(t). In fact, the time instants at which the impulses are generated correspond

precisely to the level-crossing instants of g(t) for amplitude thresholds placed at multiples of �. Moreover,

the function g(t), assuming appropriate regularity conditions, has an inverse function t(g) which is

effectively sampled uniformly in the amplitude domain with samples corresponding to these time instants.

Therefore, the sampling process of Fig. 1 can be interpreted as uniformly sampling the function t(g). In

principle, it is possible to generalize this this concept by considering any transformation that generates

a monotonic function g(t).

Amplitude sampling and reconstruction as developed in this paper is then based on the principle

of reversibly representing and then sampling a time function g(t) in the form t(g) and then sampling

in g. This requires that g(t) be monotonic which means that if the source signal is nonmonotonic, it

must first be reversibly transformed into a strictly monotonic function through a transformation �. As

illustrated in Fig. 3, the resulting function �(f(t)) is then uniformly sampled. The time instants {t
n

}
at which �(f(t)) crosses the predefined set of amplitude values {n�} implicitly represents the source
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signal, i.e. �(f(t
n

)) = n� where � > 0 is the separation between consecutive levels. Each of the

time instants is paired exactly with one amplitude level. Thus, there exists a one-to-one correspondence

between amplitude values and time instants. The sequence of time instants together with knowledge of

� is sufficient information to describe the sampling process.

Amplitude sampling corresponds to signal-dependent nonuniform time sampling with the sampling

density dependent on the source signal and the choice of the transformation �.

Fig. 3. Principle of amplitude sampling based on a transformation � of the source signal f resulting in a monotonic function

�(f(t)).

III. TRANSFORMATION BY RAMP ADDITION

There exist a myriad of transformations � that can potentially generate a monotonic function from a

given f . Among the simplest is the addition of a ramp with a sufficiently large slope. Suppose the original

signal f is continuous, and it is possible to construct the strictly monotonic function g(t) = ↵t + f(t)

for some ↵ 2 R. Then, the sampling process consists of the sequence of time instants {t
n

} satisfying

g(t

n

) = ↵t

n

+ f(t

n

) = n� for some � > 0.

As indicated earlier, for analysis purposes in this paper, it is convenient to interpret the time sequence

{t
n

} as resulting from sampling uniformly in amplitude the monotonic function u = g(t) = ↵t + f(t).

In the context of this transformation, there exists an inverse function g

�1
(u) that we choose to express

in the form g

�1
(u) = u/↵+ h(u) for some amplitude-time function h. This interpretation suggests that

this transformation can also be viewed as a mapping from f to the associated function h.

A. Mapping between f and h

The addition of a ramp represents a mapping, parametrized by the slope of the ramp, between the

original signal and the function h. We denote this mapping by M

↵

, i.e. M
↵

f = h which can be viewed

May 31, 2017 DRAFT

Page 15 of 34

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

as the addition of the ramp to obtain the monotonic function g and, after inverting g, subtracting the

ramp u/↵ to obtain h. The reverse procedure to recover f from h consists of adding a ramp of slope u/↵

to h and utilizing the invertibility of g

�1 as well as the correspondence between g and f . This inverse

mapping is denoted by M

↵

�1 and satisfies M

↵

�1
h = f . Fig. 4 illustrates the one-to-one correspondence

between f and h. These mappings are also summarized in equation form as [24]

f(t) =� ↵h(f(t) + ↵t)

h(u) =� 1

↵

f(h(u) +

u

↵

).

(1)

Fig. 4. Illustration of the invertibility of the transformation between f and h when g(t) = ↵t+f(t) and g�1(u) = u/↵+h(u).

As is evident from Fig. 4 and (1) there is a duality between M

↵

and its inverse. It is possible to interpret

(1) as a signal-dependent warping operation that obtains f from h and vice versa. The addition of a ramp

in amplitude sampling also generates an underlying mapping, dependent on f or h, between time t and

amplitude u. Both mappings can be easily seen from (1) in its matrix form and the corresponding inverse

matrix: 0

@ f(t)

t

1

A
=

0

@ �↵ 0

1 1/↵

1

A

0

@ h(u)

u

1

A (2)

0

@ h(u)

u

1

A
=

0

@ �1/↵ 0

1 ↵

1

A

0

@ f(t)

t

1

A
. (3)

The duality implies that any properties of h inherited by assumptions made on f hold for f if the same

assumptions are instead imposed on h.
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B. The Sampling Process

Amplitude sampling produces a sequence of time instants corresponding to n� = g(t

n

) = ↵t

n

+f(t

n

)

where � > 0. In similar fashion, the inverse function g

�1
(u) and h are both uniformly sampled in

amplitude, i.e.

g

�1
(n�) = n�/↵+ h(n�) (4)

and

h(n�) = t

n

� n�/↵. (5)

C. Sampling Density

As noted earlier, amplitude sampling in the form presented here can be viewed as equivalent to

nonuniform time sampling. In this setting, stable reconstruction algorithms typically impose conditions

on the sequence of sampling instants as for example the Landau rate [25] for bandlimited signals. In

order to gain insight into the time-sampling density inherent in our amplitude-sampling process, assume

the source signal f has a bounded derivative, i.e. |f 0
(t)|  B for some B > 0 and that |↵| > B so that

the function g(t) = ↵t+ f(t) is strictly monotonic. Then the time between successive samples satisfies

the inequality
�

|↵|+B

 |t
n+1 � t

n

|  �

|↵|�B

. (6)

where � > 0 is the separation between consecutive amplitude levels.

The bounds in (6) are consistent with intuition. For example, assume that ↵ is positive. The derivative

of g is bounded by ↵ + B which provides the minimum attainable time separation between crossings.

Similarly, the maximum separation is essentially limited by ↵ � B. The quantization step � represents

the change in amplitude necessary to produce a sample. Additionally, when ↵ achieves sufficiently large

values, the bounds for time separation become closer, or equivalently, the time sequence becomes more

uniform. We can observe this effect in (6) where amplitude is approximately a scaled version of the time

axis.

D. Iterative Algorithm for the Realization of M
↵

In this section, we propose an iterative algorithm for the implementation of M
↵

to generate h(u) from

f(t). By duality, an equivalent algorithm can be used for the implemention of M

↵

�1 to generate f(t)
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from h(u). For ease of illustration, we consider a modified version of the transformation M

↵

defined in

(7) which we denote by ˜

M

↵

:

f(t) =

˜

h(

1

↵

f(t) + t)

˜

h(u) = f(� 1

↵

˜

h(u) + u).

(7)

Equations (7) form the basis for the iterative algorithm formalized in the following theorem.

Theorem 1: Let the function f be Lipschitz continuous with constant < ↵ and suppose that sup
t2R |f(t)| 

A. Then, the function ˜

h(u) = (

˜

M

↵

f)(u) for u 2 R can be obtained by the iteration

˜

h

n+1(u) = f(u� 1

↵

˜

h

n

(u)) (8)

for n � 0 where ˜

h0(u) = f(u) and ˜

h

n

(u) ! ˜

h(u) as n ! 1.

The detailed proof is carried out in Appendix A.

Fig. 5. Illustration of the iteration described in Theorem 1 with the initialization t0 = u0.

As used in the preceding, the value of ˜h(u0) can be obtained from the first equality in (7). In particular,
˜

h(u0) = f(t

⇤
) where t

⇤ is the value that satisfies u0 = t

⇤
+ f(t

⇤
)/↵. The solution is unique since the

slope of the ramp, in absolute value, is always greater than the maximum value of the derivative of f . As

shown in Fig. 5, t0 is the time instant at which the ramp ↵t0�↵t intersects the function f(t). In the same

way, the value of the (n + 1)-th iteration can be viewed as the solution of ↵t � (↵u0 � f(t

n

)) = 0. In

other words, we iteratively construct a straight line passing through the point (u0, f(tn)). The intersection

with the horizontal axis then corresponds to the value of t
n+1.

IV. SPECTRAL PROPERTIES

Assumptions made on the source signal f are naturally reflected in the structure of h. In this section,

we assume that f is a bandlimited function and derive properties regarding the spectral content of the
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amplitude-time function h. The duality between f and h = M

↵

f implies that similar conclusions can be

made about f when h is assumed to be bandlimited.

As an example to motivate the discussion, consider the bandlimited input signal f(t) = sinc(t) to

produce h = M

↵

f where ↵ is assumed to be positive and large enough so that g(t) = f(t) + ↵t

is strictly monotonic. Fig. 6 depicts both functions f and h. Note that h presents shear-like behavior

relative to to the shape of f . This effect is caused by the subtraction of a ramp from the parts of g where

its derivative is small. Since, the derivative of g

�1 is the reciprocal of g, these regions also correspond

to large values of the derivative of h. This structure may entail the presence of relevant energy at high

frequencies. In particular, we could expect that the frequency-domain characteristics of h are roughly

controlled by the difference ↵�B for |f 0
(t)|  B.

-5 0 5
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-6 -4 -2 0 2 4 6
-0.8

-0.6

-0.4

-0.2

0

0.2

Fig. 6. Example of the transformation in amplitude sampling where f(t) = sinc(t), ↵ = 1.38, and h = M↵f .

In exploring the spectral content of h we assume that f is bandlimited to � rad/s with � > 0 and

bounded in amplitude, i.e. |f(t)| < A for some A. We further assume that the decay of f(t) for t real

satisfies |f(t)|  A/(1+ t

2
). In principle, the extension to square-integrable functions is straightforward.

With our assumptions on f , Bernstein’s inequality [26] provides the bound |f 0
(t)|  A� for all t 2 R.

This bound gurantees that the function u defined as

u = g(t) = ↵t+ f(t). (9)
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will be strictly monotonic whenever |↵| > A�. The function h is then given by h(u) = g

�1
(u)� u/↵.

From Theorem 2 below it follows that the decay of the Fourier transform of h, denoted by ˆ

h(⇠) for ⇠ in

Hz, satisfies ˆ

h(⇠) = O(e

�2⇡|⇠|b
) as ⇠ ! 1 where b > 0 is determined by the difference |↵|�A�.

Theorem 2: Let f(t) : R ! R be a continuous function bandlimited to � > 0 rad/s. Assume further

that |f(t)|  A/(1 + t

2
) for all t 2 R and some A > 0. Construct the function

u = g(t) = ↵t+ f(t) (10)

for |↵| > A�. Then, there exists g

�1
(u) for all u 2 R and a constant C > 0 such that the Fourier

transform of h(u) = g

�1
(t)� u/↵ satisfies |ˆh(⇠)|  Ce

�2⇡|⇠|b for any 0  b < a such that

a =

|↵|
�

log

⇣ |↵|
A�

⌘
� |↵|�A�

�

. (11)

and ⇠ 2 R.

The detailed proof is carried out in Appendix B.

As anticipated, the rate of decay of the Fourier transform at infinity depends on |↵|�A�. The difference

is logarithmic in the first term and linear in the second one. The larger the difference the faster the decay

at infinity. Note that a > 0 always holds since |↵| > A�. Assuming ↵ > 0, this difference is precisely

impacting the highest slope portions in h, or, equivalently, the regions in which f

0 is smallest. The

underlying reason being that the derivative of g

�1 is the reciprocal of g, i.e. (g�1
(u))

0
= 1/g

0
(g

�1
(u))

for all u 2 R. Informally, it is the tilted regions in the shape of h are responsible, to some extent, for

the high-frequency content.

It should be emphasized that any bandlimited function will naturally be in the class of signals whose

spectrum exhibits at least exponential decay at infinity. However, Theorem 3 stated below asserts that

f and h cannot be simultaneously bandlimited. The precise statement in the description of the theorem

guarantees this property with the possible exception of, at most, one value of ↵. For practical purposes,

we can ignore this isolated case.

Theorem 3: Under the conditions of Theorem 2 and unless f is constant, the function h(u) is

nonbandlimited for every ↵ > A� with at most one exception.

The detailed proof is carried out in Appendix C.

In the singular case, in which f is a constant, it can be shown through the constructive process of

M

↵

by ramp addition that h is constant as well, specifically, for f = A, then h = �A/↵. From another

point of view, according to (1), the function f results, in general, from h with a nonlinear warping of

the independent variable. When either of the two functions is constant, the warping is affine. Therefore,

in this case, the bandlimited property is preserved [27]. In our context the conclusion follows directly

from (1) that if either f or h is constant, the other must be also.
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More generally, if |↵| increases significantly, the warping function becomes approximately linear since

f(t) is negligible compared to ↵t, i.e. f(t) ⇡ �↵h(↵t). This is consistent with (11) where an increase

of |↵| produces a faster decay at infinity of ˆ

h.

V. TIME-DOMAIN DECAY PROPERTIES

In some sense, h inherits characteristics of f since it is a ”time-warped” version of f . In this section,

we show the connections between the properties of f and h in the time domain with the relationship

between f and h as specified in (1) which explicitly requires that the slope of the ramp added to f and

the slope of the ramp subtracted to obtain h be exact inverses. Intuitively, it is not surprising that the

function h should present decay properties similar to those of f once the unbounded growth of the ramp

component has been subtracted. In particular, it is stated in [28, Chapter 2, Proposition 1] that when the

slopes of the two ramps as inverses, the decay of h will match that of f . Otherwise h does not decay

appropriately on the real line.

The transformation M

↵

also has an impact on the L

p norms of the respective functions with the

parameter ↵ playing a crucial role. It can be shown that the decay on the real line of both functions is

related by [28, Chapter 2, Proposition 3]

||h||
p

=

1

↵

1� 1
p

||f ||
p

, p 2 [1,1]. (12)

Not only does h belong to L

p

(R) if f does, but their respective norms are also related by a scaling

factor which is precisely ↵. Indeed, for very large values of |↵|, the ramp approaches the vertical axis,

thus reducing the range of h and decreasing the norm.

In terms of a sense of distance, let f1 and f2 generate h1 and h2 respectively. The transformation M

↵

preserves the L

1 distance [28, Chapter 2, Proposition 4], i.e.

||h1 � h2||1 = ||f1 � f2||1. (13)

By duality, these properties hold irrespective of the role of each function as an input or output.

VI. RECONSTRUCTION IN AMPLITUDE SAMPLING

Amplitude sampling can be interpreted as signal-dependent nonuniform time sampling of the source

signal f based on uniform time sampling of the associated amplitude-time function h. If f is bandlimited,

then as was shown in Section IV h is not bandlimited and consequently cannot be exactly reconstructed

through bandlimited interpolation. Our reconstruction approach begins by initially using sinc interpolation

as an approximation. This is then extended to an iterative algorithm that achieves accurate recovery.

Throughout this entire section, we assume that the source signal f is bandlimited to � rad/s, and |f(t)| 
A/(1 + t

2
) for A > 0 and all t 2 R.
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A. Bandlimited Interpolation Algorithm (BIA)

The approximate reconstruction of f based on sinc interpolation of h is depicted in Fig. 7. From this

approximation to h an approximation to f is generated through M

↵

�1 which is then lowpass filtered

since f is assumed to be bandlimited. In particular, the D/C system is defined by the relationship

h�(u) =
X

k2Z
h(k�)sinc(u/�� k). (14)

Note that the samples of h are related to {t
n

} as h(n�) = t

n

� n�/↵, n 2 Z. At this stage the

approximation can be quantified as [28, Chapter 3, Proposition 6]

||h� h�||1  C

0

a

e

�⇡

a

�
. (15)

The error in (15) is then controlled both by the difference |↵|�A� and the quantization step size �.

As already discussed, increasing the difference |↵| � A� produces, in some sense, a function h with a

faster high-frequency spectral decay and therefore one that is more approximately bandlimited. Thus, we

would expect that the performance of the approximation can be improved by increasing this difference.

Fig. 7. Approximate reconstruction procedure for a bandlimited source signal f such that h = M↵f . The block D/C is a

discrete-to-continuous operation involving sinc interpolation with period �.

B. Iterative Amplitude Sampling Reconstruction (IASR)

The bandlimited interpolation algorithm (BIA) forms the basis for an iterative algorithm which we

refer to as the Iterative Amplitude Sampling Reconstruction (IASR) algorithm illustrated in Fig. 8. Note

that if the initialization satisfies h0(u) ⌘ 0 and f0(t) ⌘ 0, the first iteration corresponds precisely to

BIA, i.e. f1(t) = ˜

f(t). Similar to the approximate bandlimited recovery, the emphasis is placed on the

reconstruction of h from its nonuniform amplitude samples and then imposing the bandlimited constraint

on the successive approximations to f with the objective of iteratively reducing the error ||e
k

(t)||2.

C. Simulation Results

In all of the simulations in this section, the source signal f is chosen as white noise bandlimited to �

rad/s and bounded by A > 0. The quantization step size � and the parameter ↵ are chosen so that the
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Fig. 8. Block diagram representation of the iterative amplitude sampling reconstruction (IASR) algorithm.

sampling density is greater or equal than the Landau rate [25], which, in our case, is given by ⇡/�. We

choose as a measure of approximation error the signal-to-error ratio (SER) given by

SER = 10 log10

⇣ ||f
k

||22
||f � f

k

|22
⌘

(16)

where f

k

is the k-th iteration.

Since amplitude sampling also implies nonuniform time sampling on the source signal f , we also

directly apply a nonuniform reconstruction algorithm to recover f . Specifically, we compare IASR to the

Voronoi method developed in [29, Theorem 8.13]. Based on the bounds in (6) for the time instants, it is

straightforward to see that the sampling instants in an amplitude sampling setting satisfy the requirements

of the Voronoi method for an appropriate choice of the parameters. In particular, it can be shown that it

is sufficient that
�

|↵|�A�

>

⇡

�

. (17)

In initializing both algorithms, the 0-th iteration in both IASR and the Voronoi method is assumed to be

zero.

In Fig. 9, we have modified individually the parameters ↵ or �. In reducing the value of the quantization

step size �, the transformed function ↵t+f(t) will clearly cross more amplitude levels per unit of time.

Similarly, when the slope of the ramp added to f is increased in absolute value, it also causes an increase

in the level-crossing density. Thus, both effects result in an increase of the sampling density, and, as shown

in the figure, the rate of convergence improves. However, it can be observed that the rate of convergence

is faster in the IASR case. The first iteration in IASR achieves a better approximation than the Voronoi

method although the rate of convergence appears to be highly insensitive to this change of parameters.

On the other hand, the Voronoi method is significantly impacted by the change in sampling density.

Moreover, it requires several iterations until it obtains the same approximation performance as the first
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(a)

(b)

Fig. 9. Performance comparison between IASR, AWM, and BIA, for a broadband input signal bandlimited and bounded; (a)

� is changed while ↵ is fixed; (b) ↵ is changed while � is fixed.

iteration in IASR. As shown in Fig. 10 the same conclusions hold if we increase the oversampling ratio

by considering signals with smaller bandwidths and, at the same time, keeping ↵ and � fixed.

Thus far, we have focused on modifying the sampling density. Additionally, due to the structure of

the sampling process in amplitude sampling, it is also possible to keep the sampling density fixed while

changing both ↵ and � accordingly. The rate of convergence in the Voronoi method is determined

by the maximal separation between consecutive sampling instants. With constant sampling density, the

performance of the Voronoi method does not change, as shown in Fig. 11. However, IASR presents an

improvement in the rate of convergence. This is not surprising since the difference |↵|�A� has increased,
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which likely results in a better approximation of the sinc interpolation in IASR.

When the input signal is highly oversampled, we have empirically observed that the Voronoi method

has a faster rate of convergence. Nevertheless, when the sampling instants become increasingly sparse

approaching the Landau rate, IASR performs significantly better.

In summary, overall, IASR appears to have better performance than the Voronoi method in terms of

speed of convergence when the sampling density approaches the Landau rate. Changes in the sampling

density have a higher impact on the convergence in the Voronoi method than in IASR. Moreover,

IASR performance can also be improved by increasing the difference |↵| � A� while keeping the

sampling density invariant. In [24], a scaling of the input signal also produces an increase in the

speed of convergence. This performance improvement of IASR over the Voronoi method may be due

to the characteristics of the sampling instants. Specifically the sampling instants in IASR inherently

incorporate the amplitude sampling structure and therefore contain more information initially than more

general nonuniform sampling would. In some sense, this may suggest that IASR is designed to more

effectively exploit the structure of this particular sampling process which implicitly is signal dependent

and consequently signal information is implicitly embedded in both the sampling times and the sample

values.

Fig. 10. Performance comparison between IASR and the Voronoi method when the bandwidth � is changed, and ↵ and � are

fixed.

VII. CONCLUSION

Amplitude sampling represents a signal with equally-spaced amplitude values and infinite-precision

timing information by reversibly transforming the source signal. This transformation provides the per-

spective of viewing amplitude sampling as uniform sampling of an associated amplitude-time function
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Fig. 11. Performance comparison between IASR and the Voronoi method when the sampling density is fixed and ↵ and � are

changed.

or equivalently as nonuniform time sampling of the source signal. The properties of both functions

are connected by a duality relationship. Similarly, an iterative algorithm for recovery was proposed

and evaluated that exploits the particular characteristics of the sampling instants in amplitude sampling.

For the amplitude sampling structure this algorithm outperforms the use of more general nonuniform

reconstruction algorithms.

APPENDIX A

PROOF OF THEOREM 1

According to (7), obtaining ˜

h(u0) for some fixed u0 2 R is equivalent to finding some t

⇤ 2 R such

that u0 = t

⇤
+ f(t

⇤
)/↵ since ˜

h(u0) = f(t

⇤
). Therefore, we have to find the roots of

t = u0 � 1

↵

f(t) , v

u0(t) (18)

for t 2 R. It is easy to see that v
u0(t) is Lipschitz continuous for some constant K < 1. Furthermore,

there always exists some ✏ � A/↵ such that v
u

o

: I ! I where I = [u0 � ✏, u0 + ✏]. Thus, the Banach

fixed-point theorem [30] guarantees the uniqueness and existence of a solution. Moreover, it ensures

convergence with the following bounds for the error

|t
n+1 � t

⇤|  K|t
n

� t

⇤| (19)

for n � 0 where t0 2 I and t

n+1 = v

u0(tn). Then, the iteration can be equivalently expressed in terms

of the functional composition form as

˜

h

n+1(u0) = f(u0 � 1

↵

˜

h

n

(u0)). (20)

Since u0 was chosen arbitrarily, the same conclusions hold for any u0 2 R. ⇤
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APPENDIX B

PROOF OF THEOREM 2

We first introduce several results that will become useful in the proof of the theorem. Define the open

disk in the complex plane centered at z
o

and of radius r as

D

r

(z

o

) = {z 2 C : |z � z

o

| < R} (21)

and use D

r

(z

o

) for its closure.

Lemma 1: Let f be a holomorphic function in some region ⌦ with power series f(z) =

P1
n=0 an(z�

z

o

)

n at z
o

2 ⌦. Consider a disk of radius R centered at z
o

such that ⌦ contains the disk and its closure.

If a1 6= 0 and

|a1| >
1X

n=2

|a
n

|nRn�1
, (22)

then f is injective in any open disk of radius r  R.

Proof 1: Without loss of generality assume z

o

= 0, thus the power series expansion of f around the

origin is given by f(z) =

P1
n=0 anz

n for all z 2 ⌦. Take z1, z2 2 D

R

(0) ⇢ ⌦ such that z1 6= z2 and

recall that for any z, w 2 C the following identity holds

(z

n � w

n

) = (z � w)(z

n�1
+ z

n�2
w + . . .+ zw

n�2
+ w

n�1
). (23)

We can write
���
f(z2)� f(z1)

z2 � z1

��� =

���a1 +
1X

n=2

a

n

z

n

2 � z

n

1

z2 � z1

���

=

���a1 +
1X

n=2

a

n

(z

n�1
2 + z

n�2
2 z1 + . . .

. . .+ z2z
n�2
1 + z

n�1
1 )

���

� |a1|�
1X

n=2

|a
n

|nRn�1
.

where the last inequality follows from the reverse triangle inequality and the fact that |z1|, |z2|  R.

Thus, if |a1| �
P1

n=2 |an|nRn�1
> 0, then f(z2) � f(z1) 6= 0 and f(z) is injective in D

r

(z

o

) for any

r  R. ⇤
Proposition 1: Let f : U ! V be a bijective continuous function. Consider a set ⌦ such that its closure

⌦ is strictly contained in U , then f(@⌦) = @f(⌦).

Proof 2: Consider x 2 @⌦, which is clearly a limit point of ⌦. We know there exist a convergent

sequence x

n

! x for n � 1, where x

n

2 ⌦. By continuity, we have that f(x
n

) ! f(x) is a convergent

sequence in V . As f is a bijection from U to V , we have that f(x

n

) 6= f(x) for all n � 1, thus
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f(x) 2 f(⌦). Moreover, f(x) 6= f(x

0
) for all x0 2 ⌦, therefore f(x) 2 @f(⌦) for all x 2 @⌦. It follows

that f(@⌦) ✓ @f(⌦).

Now, we claim that for every y 2 @⌦ there exists an x 2 @⌦ such that y = f(x). Imagine this is not

true and there exists an x

o

2 U \ @⌦ such that y
o

= f(x

o

). From our previous discussion, it is clear

that x
o

cannot be in ⌦, then imagine x

o

2 U \ ⌦. Since f is continuous and bijective, we can choose a

sufficiently small ✏ > 0 such that f�1
(D

✏

(y

o

)) ⇢ D

�

(x

o

) and D

�

(x

o

)\⌦ = ; for some � > 0. However,

as y

o

is a point in the boundary, it holds that D

✏

(y

o

) \ f(⌦) 6= ;. Thus, there exist an x1 2 ⌦ such

that f(x1) = y

0 for some y

0 2 D

✏

(y

o

). At the same time, there also exists an x2 2 f

�1
(D

✏

(y

o

)) such

that f(x2) = y

0, where x1 6= x2. This contradicts the bijectivity assumption, thus f(@⌦) ◆ @f(⌦) which

together with f(@⌦) ✓ @f(⌦) gives f(@⌦) = @f(⌦). ⇤
Proposition 2: Suppose f(z) is an entire function of exponential type � such that |f(x)|  A/(1+x

2
)

for all x 2 R. Then, the following bound holds for all z 2 C

|f(z)|  Ae

�|y|

1 + x

2
. (24)

Proof 3: By assumption, we have that |f(z)|  Ae

�|z| for all z 2 C. Construct the function F (z) =

(1/A)(1 + x

2
)e

i�z

f(z), then F is bounded by 1 on the positive imaginary and positive real axis. If we

consider the first quadrant Q = {z = x+iy : x > 0, y > 0}, it is clear that there exists constants C, c > 0

such that |F (z)|  Ce

c|z| for z 2 Q. We conclude by the Phragmén-Lindelöf theorem that |F (z)|  1

for all z in Q. This implies that |f(z)|  Ae

�y

/(1 + x

2
) for z 2 Q. Using the same argument, one can

show that the same is true in the second quadrant. For the third and fourth quadrants we use instead the

function F (z) = (1/A)(1 + x

2
)e

�i�z

f(z), which shows that (24) also holds for y  0. ⇤
The function f is of moderate decrease. By the Paley-Wiener theorem, its Fourier transform is then

supported on [�M,M ]. Thus, Bernstein’s inequality implies that |f 0
(x)|  �A. Now, we can split the

proof of the theorem in three steps.

Step 1. We claim that the function u = g(x) = ↵x + f(x) admits a real analytic inverse function

whenever ↵ > �A. It is clear that g(x) is analytic for all x 2 R since it is the sum of two analytic

functions on the whole real line. Moreover, g(x) is a strictly increasing monotone function because

|f 0
(x)|  A� and ↵ > A�, which implies g

0
(x) > 0. The Real Analytic Inverse Function theorem

guarantees that for a point x
o

where g

0
(x

o

) 6= 0, there exists a neighborhood J

o

of x
o

and a real analytic

function g

�1 defined on an open interval I
o

containing g(x

o

) satisfying (g

�1 � g)(x) = x for x 2 J

o

and

(g � g�1
)(u) = u for y 2 I

o

. Since g

0
(x) 6= 0 for all real x, it is always possible for any given x1 2 R

to find an x2 /2 J1 such that J1 \ J2 6= ;. Thus, by analytic continuation, we conclude that g�1
(u) is

analytic on the whole real line.
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Step 2. We show that the function g

�1
(w) is analytic in a region containing the horizontal strip

S

a

= {w 2 C : |Im(w)| < a,

where a =

↵

�

log

⇣
↵

�

⌘
� ↵� �

�

}.
(25)

The function g(z) = ↵z + f(z) is an entire function of exponential type � and admits a power series

expansion around x 2 R

g(z) = ↵z +

1X

n=0

f

(n)
(x)

n!

(z � x)

n (26)

for all z 2 C. By Bernstein’s inequality, the derivatives of f are bounded on the real line by |f (n)
(x)| 

A�

n. We now look for a region where g(z) is injective. Using Lemma 1, g(z) is injective in a disk of

radius R > 0 whenever

|↵+ f

0
(x)| > A

R

1X

n=2

n

(�R)

n

n!

= A�(e

R� � 1) (27)

or, equivalently

R <

1

�

log

⇣
1 +

|↵+ f

0
(x)|

A�

⌘
. (28)

The right-hand side of this expression is lower bounded by (1/�) log(1 + (↵ � A�)/A�) > 0, since

|f 0
(x)|  A� < ↵ for all x 2 R. Thus, it is always possible to choose a disk of positive radius satisfying

this lower bound such that g(z) is injective.

Let us fix an R satisfying this lower bound. Remember that holomorphic functions are open mappings,

i.e. they map open sets to open sets. Thus, g(z) maps an open disk of radius R to the open set g(D
R

(x)).

By continuity, g(D
R

(x)) is also connected since D

R

(x) is connected. Therefore, the mapping g(z) :

D

R

(x) ! g(D

R

(x)) represents a holomorphic bijection, thus its inverse is also holomorphic. Moreover,

the inverse agrees with g

�1
(u) for real u 2 g(D

R

(x)). Thus, it represents the analytic continuation of

g

�1
(u) on u 2 g(D

R

(x)). In fact, we can always choose a disk D

R

(x

0
) such that g(D

R

(x))\g(D
R

(x

0
)) 6=

;, where the inverse functions defined on their respective images take the same value in the intersection

for real u. Again, by analytic continuation, we can analytically extend g

�1
(u) to g(D

R

(x))[g(D

R

(x

0
)).

Repeating this process for all real x, we obtain the analytic continuation of g

�1
(u) in the open set

⌦ = [
x2Rg(DR

(x)).

We want to find an a > 0 such that S
a

✓ ⌦. Using Lemma 1, the boundary of the disk @D

R

(x) is

mapped bijectively to @g(D

R

(x)). Therefore, the largest radius ⇢ for a disk centered at g(x) such that

D

⇢

(g(x)) ✓ g(D

R

(x)) for all x 2 R is given by

⇢ = inf

x2R
sup

|z�x|=R

{|g(z)� g(x)| :

D|g(z)�g(x)|(g(x)) ✓ g(D

R

(x))}.
(29)
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We can use the power series expansion of g around x to find a lower bound for ⇢ in the following manner

|g(z)� g(x)| = |↵(z � x) +

1X

n=1

a

n

(z � x)

n|

� ↵R�
1X

n=1

A�

n

n!

R

n

= ↵R�A(e

R� � 1).

for |z � x| = R. The right-hand side of the last expression represents a strictly concave function of R,

thus the maximum is achieved for

R =

1

�

log

⇣
↵

A�

⌘
> 0 (30)

which is positive as ↵ > A� and satisfies the upper bound in (28). Setting the value of R as in (30), we

can write

|g(z)� g(x)| � ⇢ � ↵

�

log

⇣
↵

A�

⌘
�
⇣
↵�A�

�

⌘
(31)

for all x 2 R and |z � x| = R. This implies that S
a

✓ ⌦ for any a such that

a <

↵

�

log

⇣
↵

A�

⌘
�
⇣
↵�A�

�

⌘
. (32)

Step 3. We show that h(w) is of moderate decay on each horizontal line |Im(w)| < a, uniformly in

|y| < a. First, we note that since f is an entire function of exponential type � and is of moderate decrease

along the real line, by Proposition 2

|f(z)|  Ae

�|y|

1 + x

2
(33)

for all z 2 C. Let us now fix an R satisfying (30), then we have a bijection from D

R

(x

0
) to g(D

R

(x

0
))

for some x

0 2 R. Therefore, z = g

�1
(w), where w 2 g(D

R

(x)) and z 2 D

R

(x

0
). Since |y| < R for

z 2 D

R

(x

0
), we also have |f(z)| = |↵z � g(z)|  Ae

�R

/(1 + x

2
), or equivalently

|w � ↵g

�1
(w)|  Ae

�R

1 + (g

�1
(u))

2
(34)

whenever w 2 g(D

R

(x)) and z 2 D

R

(x

0
). Using the reverse triangle inequality in the previous expression

for real w, we can also obtain

|g�1
(u)| � |u|

↵

� Ae

�R

↵

. (35)

which is true for all u 2 R since x = g

�1
(u) holds for all real x and u as shown in the first step of the

proof. Define the function for all real u

 (u) =

8
><

>:

|u|/↵�Ae

�R

/↵ if |u|/↵ > Ae

�R

/↵

0 otherwise
(36)
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which clearly satisfies |g�1
(u)| � | (u)|. Make � = 1/↵ and multiply both sides of (34) by 1/↵ to see

that |h(w)| = |w/↵ � g

�1
(w)|. Combining these expressions, we can then write for some A

0
> 0 and

w 2 g(D

R

(x

0
))

|h(w)|  Ae

�R

/↵

1 + g

�1
(u)

2
 Ae

�R

/↵

1 +  (u)

2
 A

0

1 + u

2
(37)

As our choice of x

0 was arbitrary, this is true for any x

0 2 R and |h(u + iv)| is of moderate decrease

along horizontal lines.

Therefore, the function h(w) is analytic on the strip S

a

and it is of moderate decrease on each horizontal

line |Im(w)| = v, uniformly in |v| < a, as long as � = 1/↵. By the Paley-Wiener theorem [31, Theorem

X], we conclude that there exists a constant C > 0 such that |ˆh(⇠)|  e

�2⇡b⇠ for any 0  b < a. ⇤

APPENDIX C

PROOF OF THEOREM 3

Construct the function g(z) = ↵z + f(z) where f is not constant. By Picard’s little theorem, there

exists at most one value ↵ > A� that f 0
(z) does not take. For the rest of them, there always exists a

z

o

2 C such that g0(z
o

) = ↵+ f

0
(z

o

) = 0. Then, it is possible to write

g(z)� a0 = (z � z

o

)

2
[a2 + a3(z � z

o

) + a4(z � z

o

)

2
+ . . .]. (38)

Therefore, the function g(z) � z

o

has a zero of order � 2 at z

o

. By the Local Mapping Theorem, g

is n-to-1 near z

o

for n � 2. Using the argument of analytic continuation of local biholomorphisms in

Theorem 2, we conclude that the analytic extensions of h around g(z

o

) are multivalued. This excludes

the possibility of h being entire, thus, h cannot be bandlimited. If f(z) = C for some C > 0, then

h(u) = �C/↵, which is bandlimited in the distributional sense. ⇤
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