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ABSTRACT
Traditional data acquisition systems rely on sampling of ban-
dlimited signals at uniformly spaced time instants with high-
precision amplitude representation. Amplitude sampling, as
previously introduced by the authors, is based on uniform
amplitude sampling with high precision timing information.
This paper presents an iterative algortihm for signal recovery
from amplitude samples and compares the results with the use
of iterative recovery from the nonuniform time samples im-
plied by the amplitude sampling process. The iterative ampli-
tude sampling reconstruction algorithm (IASR) proposed and
evaluated in this paper is based on the interpretation of am-
plitude sampling as uniform sampling of an associated func-
tion obtained from a reversible transformation of the bandlim-
ited input signal. The IASR algorithm exploits uniform sam-
pling and the frequency- and time-domain properties of the
amplitude-time function. The IASR algorithm is compared
with the use of iterative nonuniform sampling reconstruction
as proposed by Voroni. While in numerical simulations the
Voronoi algorithm converges to marginally better reconstruc-
tion than IASR, the convergence rate of IASR is significantly
better.

Index Terms— Nonuniform sampling and reconstruction,
iterative algorithms, level-crossing sampling.

1. INTRODUCTION

Conventional digital data acquisition systems typically rely
on uniform time sampling with no or very fine amplitude
quantization. An alternative approach for signal acquisition
is based on quantizing amplitude and representing time with
no or very finely quantized values. One of the early instances
of a theoretical basis for signal representation through ampli-
tude quantization is found in Logan’s theorem [1] in which
a certain class of bandpass signals can be represented—up to
a multiplicative constant—by only its zero crossings. An ex-
tension to multiple levels with quantized time was presented
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in [2]. The continuous-time version was later introduced in
[3].

Logan’s theorem does not provide a procedure for recov-
ery from zero crossings. Reconstruction, although unstable,
was later suggested by further imposing periodicity within the
prescribed subset of bandpass signals [4]. Zero-crossing rep-
resentation within the framework of wavelet transforms has
also been studied in [5]. In this work, the recovery algorithm
exploits additional information in order to stabilize the re-
construction. Level-crossing sampling processes are typically
motivated by low-power consumption, thus prioritizing sim-
plicity in the implementation [6]. In practice, reconstruction
is commonly achieved by a zero- or first-order hold [7, 8].

In amplitude sampling as proposed in [9, 10], signal am-
plitude is quantized and time is represented with infinite pre-
cision. Conceptually, amplitude sampling can be viewed as
a transformation of the source signal into a monotonic func-
tion. Samples are then taken whenever this resulting function
crosses a predefined set of amplitude levels. An equivalent
and more practical implementation is presented in Section 2
and Fig. 1. The iterative algorithm for signal reconstruction
from the resulting time samples exploits the inherent structure
of the amplitude-sampled signals and achieves faster conver-
gence, in terms of number of iterations, than the Voronoi al-
gorithm for nonuniform time sampling reconstruction.

2. BACKGROUND

Fig. 1. Block-diagram representation.

In this section, we present the main results of amplitude
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sampling for signal representation proposed and derived in
[9, 10]. As discussed in [9, 10], the conceptual idea is to add
a ramp to the source signal with sufficient slope so that the re-
sulting function is monotonic and the samples taken from the
uniform amplitude crossing of the function can completely
represent the source signal. Although the analysis and rep-
resentation of the algorithm are presented in terms of this
conceptual view of ramp addition, a more practical and com-
pletely equivalent implementation is shown in Fig. 1. In this
implementation, the output impulses occur at times at which
the input signal to the level detector takes the value ∆ > 0.
Then, this sequence of time instants is used to generate ramp
segments in (tn, tn+1] with slope α that differ by an ampli-
tude shift of−∆ between successive intervals. The slope α is
chosen sufficiently large. Note that every function involved in
this process is bounded. The sequence of time instants is ex-
plicitly related to the nonuniform time samples of the source
signal, i.e. f(tn) = n∆ − αtn. Analytically, the sequence
of time instants can be equivalently obtained by first adding
a ramp with slope α to the source signal in order to gener-
ate a monotonic function, i.e. g(t) = αt + f(t). The output
samples correspond to the level crossings of this function at
amplitude levels {n∆}.

We denote the inverse of u = g(t) by ĝ(u), which can be
expressed as ĝ(u) = u/α + h(u) for some function h(u). In
this domain, the relationship to the sequence of time instants
is tn = ĝ(n∆), or equivalently

h(n∆) = tn − n∆/α (1)

for all n ∈ Z. The function h(u) is then sampled uniformly,
thus we can interpret the sampling process as uniform sam-
pling of the amplitude-time function h(u).

We denote by Mα the mapping from f(t) to h(u) with
an appropriate choice of α ∈ R. Essentially, the function
h = Mαf is obtained by adding a ramp of slope α to f , tak-
ing the inverse of the resulting function, and then subtracting
a ramp of slope 1/α. It also follows in a straightforward man-
ner that M1/αh = f , which implies a duality of properties
between f(t) and h(u). For example, if f(t) is bandlimited,
then h(u) is necessarily nonbandlimited. Through the dual-
ity of f(t) and h(u), if h(u) is bandlimited, then f(t) cannot
be bandlimited. More specifically, if f(t) is a function ban-
dlimited to σ rad/s satisfying |f(t)| ≤ A and with appropriate
decay conditions on the real line, then h(u) is a nonbandlim-
ited function whose Fourier transform additionally satisfies
H(ω) = O(e−|ω|a) as ω →∞ for ω in rad/s and

a =
|α|
σ

log
( |α|
Aσ

)
− |α| −Aσ

σ
. (2)

It should be emphasized that the decay depends on the loga-
rithmic and linear difference between α and Aσ. By duality,
the same spectral properties hold for f when h is considered
bandlimited.

3. ITERATIVE AMPLITUDE SAMPLING
RECONSTRUCTION (IASR)

In this section, we present an iterative algorithm for ampli-
tude sampling that achieves numerically accurate reconstruc-
tion. Assume that the source signal f is a real-valued function
bandlimited to σ rad/s and bounded by someA > 0. By Bern-
stein’s inequality [11], it follows that supt∈R |f ′(t)| ≤ Aσ. It
is then sufficient to choose |α| > Aσ in order for αt+f(t) to
be strictly monotonic—hence invertible. Without loss of gen-
erality, we will assume that the slope of the ramp is positive
and satisfies α > Aσ for ease of illustration.

3.1. The IASR algorithm

Amplitude sampling can be viewed as uniform sampling of h
as indicated in (1). The approximate reconstruction shown in
Fig. 2 is referred to as the bandlimited interpolation approx-
imation (BIA) and was proposed in [9]. The BIA algorithm
first performs a bandlimited interpolation of h parametrized
by ∆ and denoted by D/C in Fig. 2 . Its output is given by

h∆(u) =
∑
k∈Z

h(k∆)sinc(u/∆− k). (3)

This approach exploits the exponential decay of the function
h since we have that

||h− h∆||∞ ≤
C ′

a
e−aπ/∆ (4)

for some C ′ > 0. There is no anti-aliasing filter preceding the
sampling process of h. The aliasing error in the reconstruction
is characterized in terms of the L∞ error given by (4). This
error can be reduced by increasing the difference α − Aσ or
by decreasing the level separation ∆. These two effects will
later become important in the interpretation of the simulation
results.

Next, h∆ is processed by M1/α to generate f∆ =
M1/αh∆, which assumes that the function h∆(u) + u/α is
invertible. This can always be achieved, in principle, through
a combination of a sufficiently large α and/or a sufficiently
small ∆.

Fig. 2. Approximate reconstruction procedure for a bandlim-
ited source signal f such that h = Mαf . The block D/C is a
discrete-to-continuous operation involving sinc interpolation
with period ∆.
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Fig. 3. Block diagram representation of the iterative ampli-
tude sampling reconstruction (IASR) algorithm.

The function f∆ = M1/αh∆ is nonbandlimited since we
have assumed that h∆ is bandlimited. To obtain a bandlimited
approximation to f(t) we then apply a lowpass filter to f∆, to
obtain the approximation f (̃t).

Iteratively applying this process results in the iterative al-
gorithm illustrated in Fig. 3, which we refer to as the iterative
amplitude sampling reconstruction algorithm (IASR). The fo-
cus is placed on reconstructing the amplitude-time function h
from the samples {h(n∆)}n∈Z. The iteration begins with the
original uniform samples h(n∆) with the objective of itera-
tively reducing the error ||ẽk(t)||2.

3.2. Simulations

Since amplitude sampling can be regarded as a form of
nonuniform time sampling, in our simulations we com-
pare the IASR algorithm to reconstruction based directly
on nonuniform time sampling of bandlimited signals. In par-
ticular, we compare IASR against the method proposed in
[12, Theorem 8.13] referred to as the Voronoi method. It is
straightforward to show that the sequence of time instants
generated by amplitude sampling satisfies the requirements
of the Voronoi method for an appropriate choice of the pa-
rameters. In considering the required nonuniform sampling
density, we use the definition of sampling density formalized
in [13].

We consider as input signals bandlimited noise with fre-
quency components occupying the interval up to σ rad/s. The
parameters are chosen such that the the sampling density
should be greater or equal than π/σ, which in this case, cor-
responds to the Landau rate [14]. We choose as a measure of
approximation error the signal-to-error ratio (SER) expressed
as

SER = 10 log10

( ||f ||22
||f − fk||22

)
(5)

where fk is the k-th iteration.
IASR requires two functions to be initialized that we set

to zero, i.e. h0(u) ≡ 0 and f0(t) ≡ 0 (see Fig. 3). Similarly,
we consider the zero function as the initial function in the

(a)

(b)

Fig. 4. Performance comparison between IASR and the
Voronoi method for a broadband input signal bandlimited and
bounded; (a) ∆ is changed while α is fixed; (b) α is changed
while ∆ is fixed.

Voronoi method case. Note that the first iteration f1 in the
IASR algorithm corresponds exactly to f̃ in Fig. 2. Therefore,
as shown in [9], the approximation error of the first iteration
of IASR will be significantly lower than the Voronoi method.

Fig. 4 shows the performance when either α or ∆ is
changed with the other fixed. This corresponds to modi-
fying the number of level crossings per unit of time either
by modifying the separation between amplitude levels or by
modifying the slope of the ramp. For example by reducing
∆ or by increasing α the sampling density increases which
results in an improvement of the performance of both meth-
ods. Clearly the rate of convergence of the Voronoi method is
more sensitive than IASR to the sampling density. For IASR,
the rate of convergence doesn’t appear to be highly sensitive
to the change in parameters. However it is the first iteration
that achieves a significantly better approximation for a larger
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Fig. 5. Performance comparison between IASR and the
Voronoi method when the bandwidth σ is changed, and α and
∆ are fixed.

sampling density. If we now fix α and ∆ and reduce the band-
width of the input signal the oversampling ratio effectively
increases and as Fig. 5 illustrates, the performance improves.

In order to isolate the effect of modifying the sampling
density when changing parameters, Fig. 6 shows results for
a fixed sampling density. In order to do so, the bandwidth is
fixed, but both the values of ∆ and α are adjusted accordingly
in order to maintain the same sampling density. Clearly, the
behavior of the Voronoi method remains the same since its
convergence rate primarily depends on the sampling density
and, in particular, on the maximal value between consecutive
sampling instants. It is important to note that the performance
of IASR improves as α is increased. The underlying reason
is likely due to the increase of the difference α − Aσ, which
results in a faster decay in the spectrum of H(ω) .

We have also seen empirically that when the sampling
density is significantly large, the Voronoi method presents
a faster rate of convergence. However, the more the sam-
pling density approaches the Landau rate, the more evident
the faster rate of convergence of IASR is compared to the
Voronoi method. In other words, when the sampling instants
become more and more sparsely distributed, IASR performs
significantly better.

Overall, IASR performs better than the Voronoi method
in terms of rate of convergence when the sampling density
approaches the Landau rate. The Voronoi method is more
sensitive than IASR to changes in the sampling density. The
performance of IASR is not only driven by the sampling den-
sity but by an increase in the difference |α|−Aσ. In the same
manner, it is reported in [15] that a scaling in the input sig-
nal to reduce its amplitude range produces an increase in the
speed of convergence as well. These results also suggest that
IASR more effectively exploits the inherent structure of the
function h than the Voronoi method.

Fig. 6. Performance comparison between IASR and the
Voronoi method when the sampling density is fixed and α and
∆ are changed.

4. CONCLUSIONS

We have presented an iterative algorithm to recover a ban-
dlimited signal from samples generated by amplitude sam-
pling. In most situations, it appears to outperform the Voronoi
method for reconstruction from nonuniform time samples,
and particularly when the sampling instants are sparsely sep-
arated.
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d’une variable réelle, Paris, 1926.

[12] H. G. Feichtinger and K. Gröchenig, “Theory and prac-
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