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Abstract—The advance in nanotechnology has enabled the
fabrication of nanomachines for health applications. Recently,
molecular communication has become a promising communica-
tion paradigm that allows nanomachines to exchange information
by using messenger molecules in fluid environments. To enable
molecular communications, the knowledge of distance between
nanomachines is critical since the distance affects both the perfor-
mance and the efficiency of molecular communication. However,
works on molecular communication either assume the distance is
known or the distance estimation is based on the assumption of
clock synchronization between nanomachines. In this paper, we
propose novel methods for distance estimation using only one-way
transmission and requiring no clock synchronization between
nanomachines. The noise of diffusion channel due to random
walk of molecules is investigated and methods to effectively
improve the estimation accuracy are proposed.

Index Terms—Molecular communications, nanomachine, dis-
tance estimation, diffusion, Brownian motion.

I. INTRODUCTION

The thriving nanotechnology enables the fabrication of
nanomachines in a scale ranging from one to hundreds
nanometers for health applications such as drug delivery
and cancer treatment [1]–[3]. A nanomachine is a nanoscale
device which has the ability to execute specific tasks such
as sensing, signal processing, data storage, actuation and so
on [4]. Owing to the limited power supply and computational
capability of one single nanomachine, systems consisting of
multiple nanomachines are designed to achieve more complex
functionality [5]. As a consequence, communication between
nanomachines plays an essential role [6].

Due to limitations of nanomachines such as antenna size
and computational capability, existing technologies in elec-
tromagnetic communication are not feasible in nanonetworks.
Several approaches for communicating at nanoscale have
been proposed recently, and among these schemes, molecular
communication is expected to be an effective and promising
method for transporting information in nanonetworks formed
by nanomachines [4], [7], [8]. In molecular communication,
message molecules are used to encode, transmit, and re-
ceive information. Among different approaches in molecular
communication, the diffusion-based method is a popular one
in fluid medium [9]–[11]. The random moving of diffusing
molecules in the fluid medium is the so-called Brownian

motion. Through the macro perspective, the collective motion
of Brownian particles forms the variation of concentration
which is governed by the Fick’s law [12]. The information can
then be embedded in the waveform of molecule concentration
and transferred to the destination following the diffusion law
[13].

Distance between nanomachines is one of the critical pa-
rameters in a diffusion process. Different distances between
nanomachines cause different arrival probability of the mes-
sage molecules at the receiver [14], significantly impacting the
performance of the diffusion-based molecular communication.
With the knowledge of the distance, a transmitter can adjust
the number of transmitting molecules to achieve desired in-
formation rate. Therefore, the distance estimation should be a
preparatory step for any diffusion-based molecular communi-
cation systems, and developing a mechanism to estimate the
distance between two nanomachines is of great importance.

Existing works on distance estimation mainly adopt the
round-trip approach [15], [16]: a nanomachine measures dis-
tance by comparing the signal it transmits and the feedback
signal it receives from the target. Nevertheless, this approach
is time consuming. We show in this paper that a nanomachine
is able to obtain the distance information from the received
signal alone, and thus not requiring a round-trip treatment.
We call such methods the “one-way” approach in contrast
to the round-trip one. Another issue of the existing distance
estimation methods is the synchronization assumption. In
traditional electromagnetic wave communications, the clock
synchronization problem has been studied for decades and
many solutions have been proposed, e.g., phase lock loops
(PLL). It is thus reasonable to assume the transmitter and the
receiver are synchronized. However, in the field of molecule
communications, synchronization remains an open problem
due to the complexity of achieving synchronization (if pos-
sible). Different from the existing distance estimation works
in molecular communications, our approach does not require
synchronization between nanomachines, and is thus more
practical in realization.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the system model and the environment.
Our proposed methods for distance estimation are presented
in Sec. III. In Sec. IV, numerical results and the performance
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Fig. 1: Noise induced by random walk of diffusing molecules.
N = 10000, D = 10 µm2/sec, �t = 0.001 sec, and the
concentration is measured at x = 10 µm.

evaluation of the proposed methods are discussed. Finally,
conclusions are given in Sec. V.

II. SYSTEM MODEL

In this section, we first elaborate the diffusion environment
considered in this work. Then, we introduce an end-to-end
model of nanomachines.

A. Environment

A one-dimensional (1-D), flow-free, diffusion channel is
assumed. (Note that the proposed methods can be applied
to a two- or three-dimensional environment as long as the
environment is isotropic [17]). The expected concentration of
diffusing molecules as a function of spatial coordinate x and
time t is predicted by Fick’s second law. In an unbounded
1-D space, the expected concentration satisfies the diffusion
equation with some initial condition (I.C.) g(x):
8
<

:

@C(x, t)

@t

= D

@

2
C(x, t)

@x

2
, �1 < x < 1, 0 < t < 1,

C(x, 0) = g(x), I.C.,
(1)

where D is the diffusion coefficient of the molecule in the
environment. The impulse response of a diffusion channel

C

⇤(x, t) =

(
1p

4⇡Dt
e

�x

2

4Dt

, t 2 (0,1),

0, t = 0
(2)

is obtained by letting g(x) = �(x) 1 and solving the partial
differential equation (1). If there are N molecules in an
impulse spike, the concentration would be N times the impulse
response, that is,

C(x, t) = NC

⇤(x, t). (3)

The context above describes the behavior of a huge collection
of diffusing molecules in terms of concentration. Nevertheless,
on the microscopic level, the motion of a single diffusing

1The notation �(x) is the Dirac delta function, which is zero everywhere
except at the origin.

Fig. 2: 1-D diffusion-based system model

particle is described as Brownian motion, which can be
modeled by a random walk in the form of successive random
displacements [18]. The displacements are assumed to be
independent, identically distributed Gaussian random variables
with zero mean and variance

p
2D�t, where �t is the

duration of an infinitesimal time step [19]. One can find that
it is consistent to (2) by substituting �t to t.

Let us see how the microscopic random walk affects the
behavior of the macroscopic concentration. Fig. 1 illustrates
the experimental results from a transmission of a spike signal
in a diffusion channel. From this figure, we see that the random
walk of molecules causes rapid variations in the concentration
with respect to the theoretical expected value. In general, when
dealing with a concentration-based problem, only the expected
value is considered as the signal. As a result, we call such
unwanted perturbation the noise induced by random walk in
a diffusion channel.

B. End-to-end Model
Let us now focus on the communication between a pair

of nanomachines—a transmitter T, which releases information
molecules into the environment, and a receiver R, which is
responsible for measuring the concentration of molecules in
the medium. In this paper, we model the transmitter as a point
and the receiver a ball with diameter r. The coordinate is
chosen such that the transmitter is located at the origin x = 0
and the receiver lies in the positive axis. The distance between
transmitter and receiver is defined to be the absolute distance
of their center, denoted by d. Fig. 2 illustrates the system
model.

At the beginning of a measurement t = 0, the transmitter
is set to release N molecules. These molecules propagate
in the environment by diffusion as described in Sec. II-A.
After the transmitter releases molecules, the receiver measures
concentration over time in order to estimate d.

III. DESIGN AND ANALYSIS

In this section, two methods for distance estimation are
proposed, namely, peak concentration-based and the double
spikes approach.

A. Method I: Peak Concentration
According to (3), the concentration of molecules at the

receiver is C(d, t). A typical curve of such function is shown
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Fig. 3: Impulse response of 1-D diffusion channel

in Fig. 3 with D = 10 µm2/sec and d = 2 µm. Since C(d, t)
is a positive continuous function defined on [0,1) and tends
to 0 as t goes to infinity, there must exist a global maximum
of C(d, t) in [0,1). Furthermore, the only solution of

@C(d, t)

@t

=

✓
�1

2t
+

d

2

4Dt

2

◆
Np
4⇡Dt

e

�d

2

4Dt = 0 (4)

is t = d2

2D . It follows that C(d, t) attains its maximum at
tp = d2

2D (the subscript p means peak). If the receiver is
able to measure the concentration accurately, we can estimate
d directly from the value of the peak concentration. By
substituting tp into (3), we obtain the value of the peak
concentration

Cp := sup
t2[0,1)

C(d, t) = C(d, tp) =
N

d

p
2⇡e

, (5)

where e is the natural exponential base. The distance d can
then be estimated as

d =
N

Cp

p
2⇡e

. (6)

This method is termed peak detection. Note that the peak
concentration is measured by the receiver directly, requiring
no synchronization to the transmitter.

Although this peak detection method is simple, the perfor-
mance is affected by the random walk described in Sec. II-A.
From Fig. 1, we observe two properties of the noise resulting
from random walk:

(i) the expected concentration is approximately the av-
erage of the upper and lower envelopes of the noisy
received signal, and

(ii) locally the number of time instants when the mea-
sured concentration is greater than the expected value
approximately equals to the number of its counter-
part.

The second observation can be explained in a macro point of
view. The noise is regarded as a perturbation in the concentra-
tion. A positive perturbation causes the second derivative of
concentration in the spatial coordinate to be more negative than
in the unperturbed case. Therefore, the concentration would
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Fig. 4: Relation between �s/s and d

drop more rapidly than expected, which may cause a negative
perturbation at the next time instant.

In order to reduce the effect of noise at the receiver and im-
prove the accuracy in distance estimation, three improvements
are proposed. Suggested by observation (i), the first method is
envelope detection. The receiver detects the upper and lower
envelopes of the received signal, and then takes the average
of them. The second method, resulted from observation (ii) as
well as the continuity of C(d, t), is named moving average,
which calculates the mean of the data points in a sampling
window. The third method, named weighted moving average,
gives different weights to each data point in a sampling
window. To obtain information of the concentration at time
t from the locally measured concentrations in a sampling
window, we use least-squared method to approximate the slope
of the cumulative measured concentration curve. This is simply
implemented by assigning specific weights to the data points
in a sampling window. In our numerical results, the window
size is chosen to be 5, and the weights are chosen as:

Ĉt =
1

35
(5Ct�2�t+8Ct��t+9Ct+8Ct+�t+5Ct+2�t). (7)

B. Method II: Double Spikes

A noticeable characteristic of the waveform of impulse
response is that the curve is always positive but tends to zero
as t goes to infinity (see Fig. 3). We call such waveform having
a residual tail. In most cases of concentration-based molecular
communication, the residual tail is undesirable since it is the
leading factor of inter-symbol interference [20]. However, if
we allow the transmitter T to transmit n > 1 spikes during the
same measurement, the residual tail of the impulse response
of diffusion channel can be exploited for distance estimation.
In this work, we consider the case n = 2.

Let s denote the duration of the time interval between the
spikes that T releases. Then the initial condition in (1) becomes
N(�(x) + �(x� s)) and the solution is given by

C̃(x, t) =

⇢
C(x, t), 0 < t < s,

C(x, t) + C(x, t� s), s < t < 1.

(8)

By solving @C̃(d, t)/@t = 0, we look for two distinct solutions
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(a) Envelope detection
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(b) Moving average
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(c) Weighted moving average

Fig. 5: Performance of the peak concentration-based methods

tp1 and tp2 . This happens when s > tp. To estimate the
distance, we are interested in the difference s

0 := |tp1 � tp2 |.
Due to the existence of the residual tail of the impulse
response, by (8) we see that tp = tp1 < tp2 < 2tp. Intuitively,
the residual tail pulls the second peak closer to the first. In
fact, fixing s and D, the difference �s

:= s� s

0 is a bijective
function of d. Fig. 4 illustrates the relation between �s/s and
d with s = 6, 7, and 8 seconds. Note that the time difference
can be measured by the receiver directly, without requiring the
synchronization between nanomachines.

As shown in Fig. 4, a larger s means the two peaks are
more separated from each other such that the second peak
is less influenced by the residual tail. On the other hand,
a larger d implies a slower decay in the residual tail, thus
pulling the peaks much closer. In practical realization, s is
predetermined and known by the receiver. The receiver detects
�s and estimates d by referring to the curve of d-�s/s, which
is known by the receiver in advance.

IV. PERFORMANCE EVALUATION

In this section, we demonstrate the performance of the
proposed distance estimation methods via Monte Carlo simu-
lations.

A. Parameter Setting
The diameter r of the receiver is set to be 0.2 µm. Each

signal spike the transmitter releases contains N = 10000
molecules. Molecules perform random walk with a diffusion
coefficient of D = 10 µm2/sec (roughly the scenario of a
protein in the water). The time step �t is 0.001 sec. The
concentration at the receiver at a time instant is calculated by
dividing the number of molecules in the interval [d� r

2 , d+
r
2 ]

by r.
Simulated distance d between the transmitter and the re-

ceiver ranges from 1 to 7 µm, about tens times of the diameter
of the receiver. Total simulation time of a single experiment
is 15 seconds (15000 time steps).

B. Numerical Results
Fig. 5 presents the statistics of the performance of peak

detection (using (6) directly), envelope detection, moving

average, and weighted moving average. Each point represents
the averaged result over 100 simulations with a confidence
interval [µ � 2�, µ + 2�], where µ represents the mean, and
� represents the standard deviation. We see that the estimated
distance is always less than the true value. This is because
the maximum value detected from the noisy signal is always
greater than the expected value. The error (the difference
between the estimated distance and the actual distance) and the
standard deviation become larger when the receiver becomes
farther away from the transmitter. The reason is that when
d is large, the curve C(d, t) changes more gently and thus
the variation in actual concentration induced by random walk
becomes relatively severe. The proposed envelope detection,
moving average, and weighted moving average methods all
improve the estimation precision of simple peak detection.
Among these three methods, envelop detection performs best,
followed by moving average, although the weighted moving
average has smaller variance.

The performance of the double spikes method is shown
in Fig. 6. Envelope detection is employed since it performs
best in the peak concentration method. Unlike the results from
the peak concentration method, Fig. 6 shows that the double
spikes method results in positive mean error and the farther the
receiver is, the more accurate the estimation would be. It can
be explained through Fig. 4 that �s/s becomes smaller with
smaller d. Therefore, a smaller error of �s/s contributes to
a larger error of estimated distance when the actual distance
is smaller. Nevertheless, as discussed in Sec. III-B, there is
an upper limit of the allowed value of d for one to use the
double spikes method to estimate distance with a designed
s. Therefore, to assure that the double spikes method is
applicable, a larger s has to be used.

C. Comparison of Proposed Approaches

We compare both the peak concentration and double spikes
methods by their accuracy, precision, and time delay.

For distance ranging from 1 to 7 µm, the method of peak
concentration is of better accuracy for measuring smaller
distance while the double spikes method gets better when the
distance is larger. This is because the influence of variation on
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Fig. 6: Performance of the double spikes method

the curve C(d, t) is positively related to the distance, which
results in larger error resulted from the larger distance in the
peak concentration method. On the contrary, the influence of
error of �s/s is negatively related with the distance, which
affects accuracy more when estimating smaller distance. As
to the precision, for distance ranging from 1 to 7 µm, the
peak concentration method has better precision than the double
spikes method. Now let us discuss the time delay. Since
in the peak concentration method the receiver only detects
the peak concentration, the transmission time is about tp

seconds. Analysis in Sec. III-B points out that the theoretical
transmission time for the double spikes method is about 2s
seconds. In other words, the peak concentration method has
shorter delay.

Besides the comparison mentioned above, it is worth notic-
ing that the double spikes method can be extended to the
scenario that multiple data points are obtained in a single
transmission. For example, the transmitter may be allowed to
transmit multiple signal spikes spaced by the same time period.
The advantage of this approach is the saving of time: the re-
ceiver is able to estimate the distance in a single transmission.
As to the peak concentration method, one possible extension
is using a receiver with multiple detectors. That is, after a
spike is transmitted, each detector uses the peak concentration
method to estimate the distance. The distance between any
pairs of detectors is known and the distance is not affected by
the channel effect. With the known distances, the number of
detections can thus be lowered down.

V. CONCLUSIONS

In this work, we investigate the peak concentration and
double spikes approaches to estimate distance via one-way
molecular communication in a 1-D diffusion-based chan-
nel. The impractical requirement of clock synchronization is
avoided in our proposal. We find that the noise effect induced
by random walk of molecules has great impact on the distance
estimation, and the methods of envelope detection, moving
average, and weighted moving average have been proposed to
circumvent this problem. Monte Carlo simulations confirm the
effectiveness of the proposed methods.
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