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ABSTRACT

Eye movements can be affected by a number of neurological,

neuromuscular, and neurodegenerative disorders that are im-

portant to diagnose and track longitudinally. To enable unob-

trusive tracking of disease progression, we tailored and eval-

uated a set of candidate eye-tracking algorithms to operate

on video sequences obtained from an iPhone 6, for accurate

and robust determination of the time between the presentation

of a visual stimulus and the beginning of the eye movement

toward the stimulus (saccade latency). Additionally, we pro-

posed a model-based method to determine the onset of the eye

movement and demonstrate that the associated residual nor-

malized root-mean-squared error can be used to automatically

flag saccade tracings that should not be included in further

analysis. A variant of the iTracker algorithm performs most

robustly and results in mean saccade latencies and associated

standard deviations on iPhone recordings that are essentially

the same as those obtained from simultaneous recordings us-

ing a high-end, high-speed camera. Our results suggest that

accurate and robust saccade latency determination is feasi-

ble using consumer-grade cameras and therefore might en-

able unobtrusive tracking of neurodegenerative disease pro-

gression.

Index Terms— Eye tracking, convolutional neural net-

works, health monitoring, saccade latency, mobile imaging

1. INTRODUCTION

Neurodegenerative disorders have become increasingly preva-

lent – in part – due to the expanding elderly population [1].

One example is Alzheimer’s Disease, which is the sixth lead-

ing cause of death in the United States and one of the nation’s

costliest health conditions [2]. Diagnosis procedures involve

time-consuming neuropsychological tests that have a high

retest variability, which makes it difficult to accurately assess

the progression of the disease and its response to candidate

treatments. Neurodegeneration often manifests in changes

in a number of neural pathways, including movement of the

eyes [3, 4]. Clinically, such eye movements are typically

recorded under controlled conditions using high-cost and
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special-purpose capital equipment [5, 6]. These restrictions

make tracking of disease progression and dynamic assess-

ment of response to treatment difficult. In contrast, low-cost

consumer electronic devices are readily available and provide

easy access to comparatively high-grade cameras.

In this work, we tailor and evaluate eye-tracking algo-

rithms to enable unobtrusive and repeat measurement of eye-

movement patterns on consumer-grade cameras. In particular,

we focus on algorithms to measure saccade latency, which is

a widely studied reactive eye movement [4, 7]. A saccade is

a rapid eye movement between two points of visual fixation,

and the saccade latency is defined as the time delay (reaction

time) between the appearance of a visual stimulus and when

the eye begins to move toward the stimulus [8]. The accu-

racy of a saccade latency measurement is determined by the

accuracy of detecting when the eyes start to move toward the

target (saccade onset).

Recently, multiple methods that estimate eye gaze using

data collected from mobile devices have been proposed [9].

Among them, convolutional-neural-network-based algo-

rithms [10, 11] have become the state of the art. While

these algorithms are tuned to optimize gaze estimation accu-

racy, this metric does not translate into accuracy of saccade

onset detection. Our goal here is to extend a set of can-

didate eye-tracking algorithms to attain sufficiently precise

saccade-latency measurements for clinical applications.

The key contributions of this paper are (1) a candidate

algorithm for robust determination of eye movements in video

recordings from consumer-grade devices; (2) a model-based

approach to saccade onset determination; and (3) automated

outlier detection to enable widespread data collection without

the need for visual inspection of saccade traces.

2. SACCADE LATENCY MEASUREMENT

There are two main steps in acquiring saccade latencies as

shown in Fig. 1: (1) Eye-tracking to extract the eye posi-

tion in an image sequence across time; (2) Saccade-onset
detection to determine when the eye begins to move. In

this section, we discuss our experimental set-up, describe

the candidate eye-tracking algorithms, and detail our model-

based saccade-onset detection scheme that enables automated

saccade-latency estimation using consumer-grade cameras.
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Fig. 1: Pipeline for automated saccade-latency measurement,

consisting of eye-tracking and saccade-onset detection. The

time difference between the saccade onset (red line) and the

stimulus presentation (blue line) is the saccade latency.

2.1. Experimental setup

During our saccade test, subjects are placed in front of a lap-

top screen with their chin supported. They fix their gaze on

a square at the center of a screen. After some time, a visual

stimulus appears horizontally to the right or left of the center

square. The subjects move their eyes towards the visual stim-

ulus, and back to the center of the screen once the stimulus

disappears. This sequence is repeated 40 times. We use the

rear-facing camera of a centrally positioned iPhone 6 in slow-

motion mode to record the eye movements at 240 frames per

second (fps). In a subset of recordings, we simultaneously

collect reference videos with a high-speed camera (Phantom

v25-11) at 500 fps. Recordings are acquired under standard

ambient lighting conditions of a laboratory environment. De-

tails of our data collection and protocol are given in [12].

2.2. Eye-tracking algorithms

Starburst is a feature- and model-based algorithm developed

for a head-mounted eye-tracking system [13]. It relies on in-

frared (IR) illumination to provide a sharp boundary between

the pupil and iris (Fig. 2). An initial estimate of the pupil cen-

ter is used as a seed, and the pupil-iris boundary is detected

using gradient-based features along rays that extend radially

outward from the seed. RANSAC is used to iteratively fit

an ellipse to the detected boundary and arrive at a final esti-

mate of pupil center for each frame [13]. The fixed camera

pose relative to the eyes ensures that the eye is always in the

same region relative to the camera, which makes algorithm

initialization easy across trials. However, the benefits of IR

illumination and head-mounting no longer hold when the eye

movement is captured with an iPhone camera with a varying

pose under natural light.

To address these limitations, we develop Starburst-
phone. First, we estimate the iris center instead of the

pupil center, considering that in visible-spectrum imaging

the boundary between the iris and the sclera is often more

distinct than the pupil-iris boundary [13] (Fig. 2). With an

iPhone, the camera pose can vary, and thus the eye-crop po-

sition must be manually determined; by assuming minimal

head movement during each test, which lasts under two min-

Fig. 2: Eye images with (left) infrared (Fig. from [13]) versus

(right) natural light.

Fig. 3: The Starburst-phone algorithm operating under natural

light; (left) iris contour detection that avoids the upper eyelid;

(right) iris model fitting.

utes, the same eye-crop position can be used for all frames.

Similarly, the pupil center is also manually initialized in the

first frame of each test; however, subsequent frames initialize

the pupil center based on the previous frame, which allows

for some minor head movement.

Fig. 3 shows how the rays are generated from this ini-

tialization point and the gradient along each ray is calculated.

We detect the iris contour by choosing the point with the max-

imum gradient along each ray rather than choosing the point

that first exceeds a fixed gradient threshold. Since we are now

measuring the boundary between the iris and sclera, the upper

eyelid can cause occlusion and the directions of the rays are

restricted accordingly. Due to the reduction in the number of

rays, we fit a circle model to the iris contour rather than an

ellipse. A circle has fewer parameters compared to an ellipse,

giving a more stable estimate with fewer feature points. Fi-

nally, to adapt to the various lighting conditions, histogram

equalization must be selectively applied. Fig. 6 shows an ex-

ample eye trace using the Starburst-phone algorithm.

iTracker uses a convolutional neural network (CNN) that is

trained to determine where a user is looking on a screen (i.e.,

gaze estimation) based on images taken from a frontal camera

of an iPhone or iPad [10]. The inputs of the iTracker include

a cropped left eye, a cropped right eye, a cropped face, and a

face grid indicating the location of the face within the frame.

All the input images have a resolution of 224×224 pixels

which means they undergo resizing from the original image;

the eye crops are upsampled, while the face crop is downsam-

pled. The architecture of the CNN is shown in Fig. 5. The

change in the x-coordinate of the gaze estimation over time

corresponds to the eye-movement trace.

While iTracker is designed to operate on a video at 30

frames per second (fps), a temporal resolution below 20 msec

is required for clinical applications [14]. Thus for this work,

we must use the rear facing camera at 240 fps, which has

3170



Fig. 4: Impact of frame rate on image quality of eye crop;

(left) 30 fps; (right) 240 fps.
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Fig. 5: CNN used by iTracker and iTracker-face. iTracker-

face only processes the face layers (highlighted in blue). Fig-

ure is modified from [10].

poorer image quality compared to 30 fps due to the reduc-

tion in exposure time as shown in Fig. 4.1 The image quality

worsens for the eye crops since they undergo upsampling.

To address the low quality eye-crop image at high frame

rate, we propose the iTracker-face algorithm, where we only

use the face-related convolutional layers as shown in Fig. 5.

Although this approach does degrade the accuracy of the

gaze estimation as discussed in [10], our objective is to only

determine if the gaze changes, and thus it does not signifi-

cantly affect our results. Fig. 6 shows an example eye trace

using the iTracker and iTracker-face algorithms. Note that

iTracker-face has a higher signal-to-noise ratio than iTracker

and Starburst-phone.

2.3. Saccade-onset detection

Differentiating the eye-position trace has been the method

of choice to detect saccade onsets in clinical recordings [15].

Saccade onset is defined as the time at which the eye velocity

exceeds 30 degrees/second [15]. To differentiate the eye-

position trace, we follow the steps in [16], since [17] suggests

it gives physiologically reasonable results. However, dif-

ferentiation of experimental data is known to amplify high-

frequency noise, which motivates our model-based tanh-
fitting approach to estimate saccade latency. We fit a hyper-

bolic tangent model to the eye-position trace by minimizing

1This is not an issue with high-end image sensors such as those found in

the Phantom high-speed camera. However, this is one of the reasons the cost

for those cameras are in the tens to hundreds of thousand dollars.
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Fig. 6: Sample traces for the three eye tracking algorithms.

Table 1: Number of good saccades as determined by visual

inspection.

Eye Tracking
Algorithm

Glasses Ext. Illumination
(out of 200) (out of 40)
No Yes No Low Max

Starburst-phone 136 22 17 38 35

iTracker 153 100 29 37 35

iTracker-face 177 181 36 39 35

the root-mean-squared error between the trace and the model

fit. The eye velocity is estimated by differentiating the fitted

tanh expression, and a saccade onset is determined as the

time when the velocity exceeds 30 deg/s. The model-based

approach has the added benefit of providing a goodness-of-fit

metric on the basis of which the reliability of saccade trac-

ings can be evaluated in an automated manner. The best-fit

normalized root-mean-squared error (NRMSE) between the

model and the eye-position trace quantifies the residual dis-

crepancy between the two. Unreliable measurements or fits

typically have a high NRMSE while reliable measurements

have a low NRMSE. Thresholding the NRMSE allows au-

tomated rejection of recordings in which the saccade onsets

might have been erroneously detected.

3. RESULTS

3.1. Robustness of eye tracking algorithms

To determine the robustness of the candidate eye-tracking al-

gorithms to environmental conditions, we evaluated their per-

formance on video sequences of subjects with and without

glasses and under different levels of ambient lighting. An ex-

pert annotator reviewed all saccade traces from the three al-

gorithms to determine whether each represents a typical sac-

cade movement and has sufficiently high signal-to-noise to

allow saccade-onset determination. Saccades that met these

criteria were labeled as good. We compared the number of

good saccades across 200 recordings from five subjects in the

glasses/no-glasses category and across 40 recordings in one

subject for different levels of ambient lighting.
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Fig. 7: Performance of the tanh fitting (red curve) and the

differentiation method (blue dot) in classifying saccades.

The iTracker-face algorithm achieved the highest number

of good saccades across the experimental conditions (Table 1

and Fig. 6). Starburst-phone can mistakenly detect the rim of

glasses or hair as part of the iris contour. Under insufficient

lighting, it also has difficulty detecting the iris-sclera bound-

ary. Since our model selection in Starburst-phone is based

on the maximum number of fitted points under RANSAC,

with fewer points detected on the iris contour, the iris fitting

will frequently fail. iTracker-face may be less sensitive than

iTracker to the details in the eye area of the recordings. While

iTracker may need these subtleties to obtain accurate gaze es-

timation, noise in the eye area during fixation times might

obscure the eye movement onset.

3.2. Selection of saccade onset detection method

After identifying iTracker-face as the most robust candidate

eye-tracking algorithm for iPhone-based recordings, we com-

pare the differentiation and our proposed tanh-fitting meth-

ods for saccade-onset determination on traces produced by

iTracker-face. A review of 480 saccade traces revealed that

when the traces were sufficiently smooth, the differentiation

and tanh methods gave very similar saccade onsets. When

traces are noisy, however, the saccade onsets as determined

by the differentiation method were prone to error and there-

fore exhibited significant variation. Since neither erroneous

eye movements nor traces with incorrect onsets should be in-

cluded in saccade-latency determinations and distributions,

the differentiation method inevitably requires visual inspec-

tion of the saccade onsets. In our experience, the review of

480 saccade traces took about an hour, which makes process-

ing of large volumes of data impractical.

As mentioned in Section 2, an additional benefit of the

tanh method is the use of the NRMSE as a natural metric

of goodness-of-fit. To evaluate the NRMSE as an automated

means to flag bad saccades, we used the expert-annotated sac-

cades for the iTracker-face and tanh fitting as ground truth

and swept the NRMSE to generate a receiver operating char-

acteristic (ROC) curve for each recording. A representative

ROC curve is shown in Fig. 7, where we also report the

true positive/false positive rate attained by the differentiation

method (blue dot). We found that for each recording, there ex-
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Fig. 8: Example saccade latency distributions obtained from

(left) iPhone and (right) Phantom on two subjects.

ists a wide range of NRMSE thresholds over which the tanh

method outperforms the differentiation method by maintain-

ing both a higher true-positive and lower false-positive rate.

Moreover, we empirically determined that a NRMSE thresh-

old of 1.5 times the median of the NRMSE across each 40-

saccade recording resulted in an average true-positive rate of

0.95 and average false-positive rate of 0.05. The selection

of the NRMSE threshold completes the automation of the

saccade-latency pipeline in Fig. 1. Analysis and statistical

modeling of the saccade-latency distributions obtained with

this pipeline are explored in separate work [12].

3.3. Comparison across cameras

To verify that we can attain similar saccade latency statistics

using a low-cost, consumer-grade camera (iPhone 6, cost <
$1k, rolling shutter, 720p resolution, 240 fps) as a research-

grade camera (Phantom v25-11, cost ∼ $100k, global shutter,

720p resolution, 500 fps), we took simultaneous recordings

on two subjects. Fig. 8 shows the resulting saccade latency

distributions obtained using the iTracker-face algorithm and

tanh-based onset detection. The distributions from both cam-

eras are consistent, with essentially the same mean and stan-

dard deviation.

4. CONCLUSION

Our work here demonstrates that iTracker-face, along with the

tanh model for saccade-onset determination, is robust to vary-

ing recording conditions, allows for automated outlier rejec-

tion, and produces saccade latency distributions that are very

similar to those obtained from a high-end, high-speed refer-

ence camera. This work suggests that tracking of saccade la-

tency can be achieved using the cameras on consumer-grade

devices. This contribution paves the way to expanding sac-

cade latency measurements to a broad population for tracking

of neurologic and neurodegenerative disease progression.

3172



5. REFERENCES

[1] M.-T. Heemels, “Neurodegenerative diseases,” Nature,

vol. 539, no. 179, 2016.

[2] “Alzheimer’s Association,” https://www.alz.
org/facts/, Accessed: 2018-05-21.

[3] O. B. White, J. A. Saint-Cyr, R. D. Tomlinson, and J. A.

Sharpe, “Ocular motor deficits in Parkinson’s Disease:

II. Control of the saccadic and smooth pursuit systems,”

Brain, vol. 106, no. 3, pp. 571–587, 1983.

[4] R. Shafiq-Antonacci, P. Maruff, C. Masters, and

J. Currie, “Spectrum of saccade system function in

Alzheimer’s Disease,” Archives of Neurology, vol. 60,

pp. 1275–1278, 2003.

[5] A.L. Boxer, S. Garbutt, W.W. Seeley, A. Jafari, H.W.

Heuer, J. Mirsky, J. Hellmuth, J.Q. Trojanowski,

E. Huang, S. DeArmond, J. Neuhaus, and B.L.

Miller, “Saccade abnormalities in autopsy-confirmed

frontotemporal lobar degeneration and Alzheimer’s Dis-

ease,” Archives of Neurology, vol. 69, no. 4, pp. 509–

517, 2012.

[6] H.W. Heuer, J.B. Mirsky, E.L. Kong, B.C. Dickerson,

B.L. Miller, J.H. Kramer, and A.L. Boxer, “Antisaccade

task reflects cortical involvement in mild cognitive im-

pairment,” Neurology, vol. 81, no. 14, pp. 1235–1243,

2013.

[7] Q. Yang, T. Wang, N. Su, S. Xiao, and Z. Kapoula,

“Specific saccade deficits in patients with Alzheimer’s

Disease at mild to moderate stage and in patients with

amnestic mild cognitive impairment,” Age, vol. 35, no.

4, pp. 1287–1298, 2013.

[8] R.J. Leigh and D.S. Zee, “The neurology of eye move-

ments,” chapter 4, p. 174. Oxford University Press, Ox-

ford, 2015.

[9] O. Ferhat and F. Vilariño, “Low cost eye tracking:

The current panorama,” Computational Intelligence and
Neuroscience, vol. 3, pp. 1–14, 2016.

[10] K. Krafka, A. Khosla, P. Kellnhofer, H. Kannan,

S. Bhandarkar, W. Matusik, and A. Torralba, “Eye track-

ing for everyone,” Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pp. 2176–2184, 2016.

[11] X. Zhang, Y. Sugano, M. Fritz, and A. Bulling, “It’s

written all over your face: Full-face appearance-based

gaze estimation,” Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition Workshops
(CVPRW), pp. 2299–2308, 2017.

[12] G. Saavedra-Peña, H.-Y. Lai, V. Sze, and T. Heldt, “De-

termination of saccade latency distributions using video

recordings from consumer-grade devices,” Proceedings
of the IEEE Engineering in Medicine and Biology Con-
ference (EMBC), 2018.

[13] D. Li, D. Winfield, and D.J. Parkhurst, “Starburst: A hy-

brid algorithm for video-based eye tracking combining

feature-based and model-based approaches,” Proceed-
ings of the IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR) - Work-
shops, pp. 79–87, 2005.

[14] T.J. Crawford, S. Higham, T. Renvoize, J. Patel,

M. Dale, A. Suriya, and S. Tetley, “Inhibitory control

of saccadic eye movements and cognitive impairment in

Alzheimer’s Disease,” Biological Psychiatry, vol. 57,

no. 9, pp. 1052–1060, 2005.

[15] K. Holmqvist, M. Nyström, R. Andersson, R. Dewhurst,

H. Jarodzka, and J. van de Weijer, “Eye-tracker hard-

ware and its properties,” in Eye Tracking: A Compre-
hensive Guide to Methods and Measures, chapter 2, pp.

48–49. Oxford University Press, Oxford, 2011.

[16] M. Nyström and K. Holmqvist, “An adaptive algorithm

for fixation, saccade, and glissade detection in eyetrack-

ing data,” Behavior Research Methods, vol. 42, no. 1,

pp. 188–204, 2010.

[17] L. Larsson, Event Detection in Eye-Tracking Data for
Use in Applications with Dynamic Stimuli, Ph.D. thesis,

Lund University, 2016.

3173


