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Abstract

The ability to objectively track neurocognitive state is very important in a wide vari-
ety of settings and conditions. For example, with current clinical techniques, it is diffi-
cult to assess a patient’s neurodegenerative disease (e.g., Alzheimer’s) state accurately
and frequently. The most widely used tests are qualitative, variable and only per-
formed intermittently, exposing the need for quantitative, accurate, and non-obtrusive
metrics to track disease progression. Clinical studies have shown that saccade latency
(an eye movement measure of reaction time) and error rate (the proportion of eye
movements towards the wrong direction) are significantly affected by neurocognitive
states. We propose a novel system that measures and tracks these features outside
of the clinical environment using videos recorded with a mobile device. It is chal-
lenging to attain this goal, given variable environments and the absence of infrared
illumination, high-speed cameras, and chinrests.

Several steps are taken to overcome these challenges and therefore enable tracking
of eye movement features in large cohorts of subjects. We designed an app to guide
subjects to record their eye movements at a proper distance in a well-lit environment.
By enabling large-scale data collection, we have collected over 6,800 videos from 80
subjects across the adult age spectrum, which are about two orders of magnitude
more videos than in most previous literature. To measure eye-movement features
from these video recordings, we used a deep convolutional neural network for gaze
estimation and model-based methods to measure saccade latency and error rates.
With the frequent measurements of these features, we then designed an individualized
longitudinal model using a Gaussian process that learns individual characteristics
and the correlations across these eye-movement features. With a system that can
measure eye-movement features on a much finer timescale in a broader population
than previously available, our research opens up the possibility to understand whether
eye-movement features can be used to help track neurocognitive states more frequently
and accurately.
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Chapter 1

Introduction

The ability to objectively, accurately, and frequently track neurocognitive states is

important. For example, in transportation, drowsy driving contributes to 9.5% of all

crashes [6]. Alcohol consumption can also temporarily lower cognitive ability, and an

objective assessment of neurocognitive state might help reduce the rate of accidents

in transportation or other settings.

Neurocognitive states also degrade over the progression of neurodegnerative dis-

eases. The increase in life expectancy in the developed world as well as the failure

in development of effective medications, particularly for Alzheimer’s disease, makes

the detection and tracking of changes in neurocognitive ability a pressing clinical

need. Current assessments of neurodegenerative diseases are subjective and sparse,

and standard neurocognitive and neuropsychological test batteries require a trained

specialist to administer and score [7, 8]. Additionally, these tests demand significant

patient time and cooperation, and can therefore be influenced by a patient’s level of

attention and comfort with the clinical setting [9]. The lack of objective and accurate

assessment tools to quantify disease state hinders the development and validation of

novel treatment strategies. Since the quest for disease-modifying therapies in neu-

rodegenerative diseases is increasingly focusing on the early or even prodromal stages

of the disease process, the need for accurate and frequent measures of disease progres-

sion and response to treatment has become urgent [10, 11]. Frequent assessments can

also mitigate the effects of normal variations when determining neurodegenerative
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disease progression.

Assessment of eye movement is a promising candidate for such a quantitative,

objective, and frequent test. First, eye movements are readily observable. Second,

their neural pathways involve several brain regions controlling cognitive functions,

and they might hence be affected by degenerative processes affecting various brain

centers [4]. Some diseases also directly affect oculormotor pathways, such as Hunting-

ton’s disease and progressive supranuclear palsy. As a result, clinical eye-movement

assessments are key to diagnosing and tracking these diseases. Among the clinical

eye-movement assessments, pro- and anti-saccade visual reaction tasks are often used

challenge tests [12, 3]. In the pro-/anti-saccade tests, a subject is asked to look to-

wards/away from a visual stimulus. An anti-saccade task, in particular, requires a

person to inhibit a natural reflexive eye movement towards the stimulus and initiate

an eye movement in the opposite direction of the stimulus. Thus, it requires more

cognitive processing than a pro-saccade task [13, 14]. Because these tasks demand

cognitive abilities which can be affected by neurodegenerative diseases, two saccadic

eye movement features were observed to be significantly different between healthy

subjects and patients: saccade latency (visual reaction time) and directional error

rate (the proportion of eye movements towards the wrong direction) [15, 16, 17, 18].

However, these features are commonly measured with dedicated infrared cameras and

chinrests, which limits the measurements to the doctor’s office or the neurophysiolog-

ical laboratory. As a result, few longitudinal studies were conducted to analyze how

saccade latency and error rate change over the disease progression [19, 20], and the

measurements of these studies were usually too sparse (less than or equal to twice

per year) to detect disease onset or efficiently evaluate treatment effects. An alter-

native to this approach could be afforded by performing eye movement tracking and

analysis at the convenience of the patient on mobile devices such as cell phones and

tablets with user-facing cameras. In fact, the use of such “digital biomarkers” has re-

cently attracted significant attention in neurology [21, 22, 9] (where biomarkers refer

to biological signs for a disease or a condition).

The goal of this thesis is to enable frequent and accurate tracking of saccade
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latency and error rate using mobile devices. To achieve this goal, there are three

building blocks. a) We aim to design an instructive and easy-to-use data-collection

system that allows a subject to record themselves in their own homes and offices using

a mobile device. With such a system, frequent recordings of eye movements become

possible. b) We aim to design a robust and automated measurement pipeline that

can measure saccade latency and error rate from mobile-device recordings. With such

a measurement pipeline, frequent measurements of eye-movement features become

available. c) We aim to analyze how these features change over time in healthy

subjects. By characterizing these longitudinal eye-movement features from healthy

subjects, we can put into context how neurocognitive impairment may affect these

eye-movement features and evaluate the possibility to use these features to track

neurocognitive states objectively, accurately, and frequently.

1.1 Related Work

Several directions of work are related to our research. First, some studies were con-

ducted to understand how clinical biomarkers may be affected by disease progression.

However, since these biomarkers rely on cognitive tests, neuroimaging techniques, and

cerebrospinal fluid analysis, the assessments are not sufficiently quantitative, objec-

tive, and frequent to identify early or even prodromal stages. Digital biomarkers such

as gaits, finger tapping, and saccadic movements are promising unobtrusive measure-

ments to help detect disease onsets. While several mobile-device-based monitors have

been proposed to measure gaits and finger tapping, most of these studies were not

conducted longitudinally and mobile-device-based saccade measurements were still

underdeveloped. Therefore, to the best of our knowledge, our work is the first to

enable saccade measurements using mobile devices and is the first to have charac-

terized how these measurements change over days in healthy subjects. Finally, since

our ultimate goal is to potentially track the disease progression using eye-movement

features, we gave a concise review on existing disease progression models (including

models developed for other diseases).
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1.1.1 Clinical Biomarkers of Neurodegenerative Diseases

Several studies and datasets have been proposed to understand how neurodegnerative

diseases affect clinical measurements through the course of progression. One of the

most studied open dataset for the clinical biomarkers of Alzheimer’s disease (AD) is

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [23]. The study has started

in 2004 and has collected a relatively comprehensive set of biomarkers. The Coalition

Against Major Diseases (CAMD) provided another online dataset for AD [24]. Large-

scale cohort studies are also being developed for other diseases including Parkinson’s

diseases (PD) [25] and Huntington’s diseases (HD) [26, 27]. Most of these studies

focused on measurements instrumented by physicians. As a result, the measurements

were usually sparse in time and may not be used to track disease progression suffi-

ciently frequently identify early stages. However, studying these datasets can help

understand how disease progression is currently assessed.

1.1.2 Oculor Biomarkers of Neurodegenerative Diseases

Since eye movements are affected by disease progression [4, 28], it has been suggested

that eye movement patterns are useful and informative adjuncts to the standard neu-

rocognitive assessment tools in routine clinical care and clinical trials [3, 29, 30, 31].

Eye movements are also accessible. Therefore, they may be used as objective and fre-

quent assessments of disease progression. In this work, we focus on two of the most

studied saccade features – saccade latency (visual reaction time) and error rate (the

proportion of eye movements towards the wrong direction) – which can be measured

from pro/anti-saccade tasks (tasks to look toward/away from a stimulus). Such visual

reaction tasks require cognitive attention as well as appropriate execution of oculomo-

tor responses once a stimulus is registered. This stimulus-response paradigm therefore

probes a subject’s cognitive and oculomotor function, either or both of which can be

impaired in neurocognitive diseases [3, 15, 16, 17, 18]. Due to the restricted recording

setup in the literature, there are few studies that track the longitudinal changes in

saccade latency among patients [19, 20] and the measurements are sparse (fewer than
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two recording sessions a year). Therefore, it is unknown whether saccade latency

and error rates can be frequent, objective, and accurate measurements for monitoring

disease progression. One of our major objectives in this work is to understand how

these features change over time in healthy subjects to put into context how these

features may be affected by disease progression.

1.1.3 Digital Biomarkers of Neurodegenerative Diseases

To enable frequent and quantitative measurements of neurodegenerative diseases, sev-

eral mobile-device monitors have been proposed to meausre digital biomarkers. Since

most of these studies are in early stages, the main focus is to detect a disease rather

than to track the progression of a disease. To get an overview of what measurement

platforms have been developed, we mention several work including two review papers

for mobile-device monitors for AD [32, 33] and a review paper for gait-based monitors

for PD[34]. Recently, multiple methods have been proposed to estimate eye gaze using

data collected from mobile devices [35]. Among them, convolutional-neural-network-

based algorithms [2, 36] have become the state of the art. While these algorithms

are tuned to optimize gaze estimation accuracy, this metric does not translate into

accuracy of saccade onset detection. To the best of our knowledge, our work in [37]

is the first to measure saccade latency and error rate using mobile devices, which

enables the potential to consider saccade latency and error rate as digital biomarkers

for neurodegenerative diseases.

1.1.4 Disease Progression Modeling

After we enabled frequent measurements of saccade latency and error rate using mo-

bile devices, we developed longitudinal models for healthy subjects in Chapter 4.

The models were developed based on literature in disease progression modeling,

since we envisioned extending our model for such a purpose. There are several ap-

proaches to disease progression modeling – a graphical model [38], a Gaussian process

model [39, 40, 41, 42], and an recurrent neural network [43]. A graphical model is
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helpful in learning the relationship between biomarkers and discrete disease states. A

Gaussian process (GP) model is useful in modeling the disease progression as a con-

tinuous process. A recurrent neural network model tends to rely on a large amount

of training data and a large number of features. Due to limited longitudinal stud-

ies on non-intrusive measurements, most disease progression models developed for

neurodegenerative diseases focus on clinical measurements [44, 45, 46, 43, 42]. Our

goal is to develop individualized longitudinal models for the eye-movement features

we collected from healthy subjects. We used a GP model for three reasons. First,

one can capture how the correlation over time and the correlation across the features

are characterized. Second, GP is a nonparametric model and its complexity can be

adapted to the complexity of the training data. Compared to a linear model which

can only characterize a linear function, GP can characterize an infinite dimensional

function. Thus, it is more flexible than any model consisting of a finite number of

basis functions. Third, because any finite samples from GP form a Gaussian distribu-

tion, the computation for learning and inference is relatively simple. Therefore, a GP

model provides interpretability, flexibility, and computability. An in-depth overview

of GP models can be found in [47]. Our models are special cases of a multi-task GP

model[48], which is known as linear models of coregionalization (LMC) in the geo-

statistics literature [49]. With the amount of data we have collected, we developed

a model similar to that in [50]. However, we carefully designed the hyperparameters

and whether they should be individualized or shared across the subjects based on

the characteristics of the eye-movement features. This design allowed us to enable

individualized tracking of saccade latency and error rates from healthy subjects.

1.2 Summary of Contributions

We map the contributions of this work to the three building blocks – a self-guided

mobile-device-based data-collection system, a measurement pipeline for measuring

saccade latency and error rate from large-scale mobile-device recordings, and charac-

terization of eye-movement features from healthy subjects.
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A self-guided mobile-device-based data-collection system (Chapter 2)

In this thesis, we developed an instructive and easy-to-use app to display the

pro-/anti-saccade tasks on an iPad while recording a subject’s eye movements with

the built-in camera. The app guides a subject to adjust their recording setup to

record themselves properly in their own homes and offices without the assistance of

an expert. In addition, to measure saccade latency on a tablet, we ensured that the

absolute timing error between on-screen task presentation and the camera recording

is within 5 ms, which is well within the standard deviation of a subject’s saccade

latency distribution. With this user-friendly recording platform, we collected over

6,800 videos and over 235,000 individual eye movements from 80 subjects across the

adult age spectrum, which is around 100 times more eye movements than in previous

literature.

A measurement pipeline for large-scale mobile-device recordings (Chap-

ter 3)

With large-scale mobile-device recordings enabled by the app, we presented a ro-

bust and automated measurement pipeline to track eye movements and determine

pro-/anti-saccade latency and error rate. Without infrared illumination, the lighting

conditions are less controlled. We used a deep convolutional neural network for gaze

estimation and showed that it is robust to different lighting conditions. Without

a chinrest, head movements may affect saccade latency measurement. We used a

model-based approach for saccade latency measurement that allows for automated

flagging and rejection of eye-movement traces that might be of questionable quality.

In addition, we developed an automated algorithm for measuring error rate that takes

into account the possibility that it might not always be possible to determine the di-

rection of an eye movement from app-based recordings due to insufficient lighting or

eyelid drooping. Finally, we showed that simultaneous recordings with a smartphone

and a high-speed camera resulted in negligible differences in saccade latency distri-

butions. Additionally, our error detection algorithm achieved a sensitivity of 0.97

and a specificity of 0.97. We therefore can conclude that we have enabled saccade

latency and error rate measurements from mobile-device recordings outside of clinical
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environment.

Characterization of eye-movement features (Chapter 4)

Understanding the characteristics of eye-movement features from healthy subjects

is key to understand how disease progression affects eye-movement features. With the

data we obtained through the app and the measurement pipeline, we analyzed the in-

dividual distributions, the day-to-day variations, the correlations across the features,

and the relationship between the features and age. In particular, we observed that the

various strategies subjects used to perform the tasks could introduce significant intra-

and inter-subject variability in the day-to-day variations. This observation highlights

the importance of individualized tracking of eye-movement features.

We then built a Gaussian-process-based individualized longitudinal model based

on the intuitions we obtained from analyzing these eye-movement features. We showed

that if there are more than 25 days of recordings, our model can characterize the

data better than assuming that eye-movement features do not change over time in

healthy subjects. In addition, our model can learn the correlation across the eye-

movement features and thus learn the subjects’ task-performing strategies. With

an individualized and interpretable model, we hope it can provide a foundation

to put into context the effects of different neurocognitive states on eye-movement

features.

Conclusion and significance (Chapter 5)

Our system and algorithms allow ubiquitous tracking of saccade latency and direc-

tional error rate, which opens up the possibility of quantifying neurocognitive states

on a finer timescale in a broader population than previously possible.

1.3 Publications based on work done in this thesis

Chapter 2 and Chapter 3 are modified based on the following publications. My contri-

butions are mostly on the design of the app and the development of the measurement

pipeline.

• H.-Y. Lai, G. Saavedra-Peña, C.G. Sodini, T. Heldt, and V. Sze, “Enabling
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saccadelatency measurements with consumer-grade cameras,” in Proceedings

of the IEEE International Conference on Image Processing (ICIP), 2018, pp.

3169–3173.

• G. Saavedra-Peña, H.-Y. Lai, V. Sze, and T. Heldt, “Determination of Saccade

Latency Distributions using Video Recordings from Consumer-Grade Devices,”

in Proceedings of the IEEE International Engineering in Medicine and Biology

Conference (EMBC), 2018.

• H.-Y. Lai, G. Saavedra-Peña, C.G. Sodini, V. Sze, and T. Heldt, “Measuring

Saccade Latency using Smartphone Cameras,” IEEE Journal of Biomedical and

Health Informatics (JBHI), vol. 24, no. 3, pp. 885-897, 2020.

• H.-Y. Lai, G. Saavedra-Peña, C.G. Sodini, T. Heldt, and V. Sze, “App-Based

Saccade Latency and Error Determination across the Adult Age Spectrum,” in

Review for a journal, arXiv:2012.09723 [q-bio.NC].

Most of Chapter 4 is in preparation for a journal publication.
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Chapter 2

Data-collection System

In this chapter, we discuss the design of our measurement system, including the task

design, the recording setup, and the recruitment efforts. There were two stages of this

design. The goal of the first stage was to enable measurements of eye-movement fea-

tures using mobile-device cameras. Thus, we controlled the recording setup carefully

to evaluate the performance of our algorithms in different lighting conditions. Once

we can validate that it is possible to measure saccade latency using mobile-device

cameras, in the second stage, we aimed to enable large-scale eye-movement measure-

ments using mobile devices. Therefore, we developed an app to guide a subject to

record themselves in the comfort of their homes and offices. To better present our

results taken in these two different stages, throughout this thesis, we would refer to

the first stage as “Validation Stage” and the second stage as “Deployment Stage”.

2.1 Task Design

2.1.1 Validation Stage

In the Validation Stage, we used the Psychophysics Toolbox 3 for Matlab [51] to

implement the visual fixation/stimulus task presented to participating subjects on

the laptop screen. A single saccade task started with a fixation period in which

three squares were presented on the screen, arranged horizontally, against a black
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Figure 2-1: Saccade task in the Validation Stage: (a) Example of the visual tracking
task during a saccade-latency measurement. The tasks consisting of a fixation period
(F), a gap (G), and the appearance of the stimulus (S). Only the final 200 ms of the
fixation period are shown. (b) The corresponding horizontal eye movement trace.

background, a green square at the center of the laptop screen and two white squares

arranged at a horizontal distance on either side (Figure 2-1a). Subjects were asked to

fix their gaze on the green square. After 1000 ms of fixation, all three squares disap-

peared. Following a 200 ms gap, the two lateral squares reappeared in their original

position, with one of them bounded by a yellow square (the stimulus). Subjects were

tasked with moving their eyes to – and subsequently keeping their gaze fixed on –

the stimulus (Figure 2-1b). After the stimulus disappeared, subjects returned their

gaze back to the centrally located green square. This task was repeated 40 times per

trial, with a total of 20 stimuli appearing on the right and 20 on the left in random-

ized order. Each recording session consisted of three such trials conducted in close

succession, resulting in 120 saccade tasks per session and taking about ten minutes

to complete (including breaks between trials).
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2.1.2 Deployment Stage

To better compare our results with the previous work, in the Deployment Stage,

we implemented two commonly studied tasks in the literature, namely a gap-pro-

saccade and a gap-anti-saccade task [52, 18, 16]. Both tasks start with a fixation

period. During the fixation period (1 s), a fixation point (green square) is shown at

the top center of the screen (as shown in Figure 2-2). Subjects were instructed to

look at the fixation point during this period. The fixation is followed by a 200-ms gap

period, where the fixation point disappears and the screen stays black. After the gap

period, a stimulus (white square) is presented on either left or right side of the screen.

If a subject is performing a pro-/anti-saccade task, the subject is instructed to move

their eyes towards/away from the stimulus as quickly and accurately as possible. This

stimulus period will last for 1.2 s and be followed by another 200-ms gap period. This

sequence of “fixation-gap-stimulus-gap” will repeat for 20 or 40 times, with half of the

stimuli presented to the right of the fixation point and half to the left in randomized

order. Here, how many stimuli appear in a saccade task depends on whether a subject

participates in one or multiple recording sessions. Subjects who chose to participate in

a single session recorded three pro-saccade tasks and three anti-saccade tasks, where

each task consists of a set of 40 stimuli. Subjects who chose to participate in multiple

recording sessions were asked to take three pro-saccade and three anti-saccade tasks

every day for at least two weeks and were given the choice of 20 or 40 stimuli per

task.

It is beneficial to change the task design from the design in the Validation Stage

to the design in the Deployment Stage. The reason is as follows. It requires more

cognitive awareness to perform an anti-saccade task than a pro-saccade task, since a

subject needs to inhibit an eye movement towards the stimulus and initiate an eye

movement away from the stimulus. However, interestingly, we can see similar effects

introduced by the task design in the Validation Stage. We notice that in the Validation

Stage, during the stimulus presentation, both the white squares were presented. As a

result, although we instructed a subject to look towards the white square surrounded
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Figure 2-2: Saccade tasks in the Deployment Stage: (a) Pro-saccade task: Look
toward the stimulus. (b) Anti-saccade task: Look away from the stimulus.

by a yellow square, the other white square may still hinder the subject from moving

their eyes towards the stimulus. By presenting only one white square during the

stimulus period in the design in the Deployment Stage, we can ensure that there is no

such inhibition during a pro-saccade task. Therefore, the design in the Deployment

Stage not only was similar to the tasks in the literature, it also allowed us to study

the effect of inhibition on eye movement features by comparing the features from an

anti-saccade task with those from a pro-saccade task. Since the inhibition of an eye

movement towards the stimulus was studied in [13] to be related with the subcortical

areas, such study can help us understand how disease progression affects those brain

regions.

2.2 Recording Setup

2.2.1 Validation Stage

The video recording of volunteers in both stages was approved by MIT’s Committee

on the Use of Humans as Experimental Subjects, and informed consent was obtained

from each participant prior to recording. In the Validation Stage, subjects were

seated centrally in front of a laptop at a distance of about 1 m, with their chin
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Figure 2-3: Diagram of the video recording set-up in the Validation Stage. A subject
is seated facing an iPhone, (in some experiments) a high-speed camera, and a laptop
displaying the visual stimulus task. A synchronized monitor behind the subject also
displays the visual stimulus task so the cameras capture the eye movements and the
visual task simultaneously.
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Table 2.1: Validation Stage Camera & Recording Specifications

Frame
Rate

Resolution ISO
Pixel
Size

Shutter
Type

Cost

iPhone 6 240 fps 1,280×720 32-160 1.5 µm Rolling $200-400

Phantom
v2511

500 fps 1,280×720 6,400-32,000 28 µm Global ∼$150,000

placed comfortably on a soft chinrest to minimize head movements (Figure 2-3). The

sequence of visual stimuli were presented on the laptop screen. A second monitor was

placed behind the subject’s head, facing and mirroring the laptop screen. An iPhone 6

was placed centrally between the subject and the laptop screen at a distance of about

0.5 m from the subject and with the rear-facing (non-selfie) camera facing the subject.

The laptop position was chosen to generate eye movements of 10◦ amplitude, and the

camera position was chosen to capture the subject’s face and the mirrored screen

during the task, thus capturing the eye movement and the visual stimulus sequence

in the same recording. Video recordings were made in slow-motion mode, resulting

in recordings at 240 frames per second (fps) and a resolution of 1280×720 pixels. In

a subset of recordings, we additionally and simultaneously collected reference videos

with a high-speed camera (Phantom v2511) at 500 fps and a resolution of 1280×720

pixels (see Table 2.1). The distance from the high-speed camera to the subject was

about 0.9 m; the camera lenses focused on the subject’s eyes. Most recordings were

acquired under fluorescent lighting. To understand the robustness of the recordings

to realistic variations in ambient conditions, we collected a separate set of recordings

while varying the lighting conditions with the help of LED panels, and subjects were

recorded with and without glasses.

2.2.2 Deployment Stage

Recall that in the Validation Stage, we displayed the visual reaction task on a laptop

and recorded the subjects with an iPhone. Synchronization of the recording and

task display was achieved through a second screen that mirrored the laptop screen

and was recorded alongside the subject’s response. Given the elaborate set-up, the
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Figure 2-4: The flow of the app. Blue arrows request the input from the subject.
Orange arrows denotes the response of the app.

recording was limited to our laboratory setting. In the Deployment Stage, our goal

was to allow for ubiquitous recording and hence for subjects to record themselves

in the comfort of their homes or offices. We therefore developed an iOS app so

subjects could record themselves with the frontal (i.e., selfie) camera as the tasks

were displayed on the screen. While the app can run on iPhones, our platform of

choice was the iPad (Generation 2 and 3) for their larger dimensions and hence larger

angular gaze amplitudes (∼12.7 degrees at a distance of 40 cm to the camera).

The flow of the app is shown in Figure 2-4. The app first obtains the subject’s ID

and then reminds the subject of the number of pro- and anti-saccade tasks they have

performed the same day. Subsequently, subjects are prompted to select the number

of stimuli they wish to perform (20 or 40, depending on how they were instructed as

discussed in Section 2.3) and whether they would like to perform a pro- or anti-saccade

task.

To minimize the influence of environmental conditions on the quality of the record-

ings, we initially asked subjects to position the iPad at a distance of 30 to 50 cm.

In subsequent releases for iPads with depth-sensing capability, the app senses the

distance from the subject and provides visual feedback so the subject can position

the iPad within the desired target distance (Figure 2-5). Besides distance, the app

also guides the subject to position themselves in proper lighting conditions, and the

subject will be asked to move to a brighter location if the automatically detected ISO
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Figure 2-5: (a) Recording setup in the Deployment Stage; (b) before showing the
task on the screen, the app displays the face of the subject with a bounding box. If
the distance measurement from the camera to the subject’s face is accessible (i.e.,
between 30 and 50 cm), the box will turn green. If the automatically detected ISO
is greater than 1000, a warning will be shown to guide the subject to move to a
better-illuminated place.

is greater than 1000.

When the subject is ready to perform the task, they start the recording, and a

count-down will be displayed so the subject can begin to focus their attention on

the pro-/anti-saccade task. The task will then be displayed while the frontal camera

simultaneously records the subject’s face. Once the subject completes the tasks, the

app will ask for the subject’s tiredness information. Then the task will ask if the

subject wants to process the first 10 saccades to get immediate feedback about their

saccade latency and error rate. After the task is completed, a detailed set of data

files is saved for each recording, including: (a) the actual video recording, (b) the

timestamps of each recorded frame, (c) the timestamps of each frame displayed on

the screen, and (d) a text file containing information about the recording system (iOS

version, iPad generation), the distance of the iPad to the subject (when available),

and the recorded ISO value at the beginning of the recording.

We can make two remarks about this design. First, to acquire accurate saccade

latency measurements, it is crucial to synchronize the task display on the iPad screen

and the recording from the iPad camera. We detailed and evaluated the synchroniza-
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tion in Appendix A. By requiring the ISO to be less than 1000, we showed that we

can bound the absolute synchronization error to be within 5 ms, which is well within

the standard deviation of a subject’s saccade latency distribution.

The second remark is about the feedback we provided by processing the first

ten saccades. While the results presented in Chapter 3 and Chapter 4 were based

on data processed on server where we processed all the saccades instead of just the

first ten saccades, this immediate feedback demonstrated the possibility to process

the recordings on device. Such design is helpful for two reasons. First, with the

feedback, a subject can evaluate their recording setup and adjust if necessary. If few

saccadic features can be measured from the first ten eye movements, it is likely that

the recording setup can be improved. Second, if data are processed on device, we

may only need to upload the processed eye-movement features to our storage. In this

case, not only can the required memory be reduced, without the subjects’ original

recordings, the privacy of these subjects can be more protected.

2.3 Recruitment Effort

In the Validation Stage, we recorded 19,200 saccadic eye movements from 29 healthy

subjects where most of them are young adults (less than 30 years old). Among

these subjects, eleven subjects have recorded five or more recording sessions. In the

Deployment Stage, our recording setup was much more flexible, allowing us to record

more subjects and more repeated sessions. Therefore, in the Deployment Stage, we

recorded over 235,000 saccadic eye movements from 80 self-reported healthy adult

subjects, ranging in age from 20 to 92 years. The number of single and multiple

recording sessions, grouped by decades of age is shown in Figure 2-6.

2.4 Discussion and Summary

In this chapter, we presented the design of our measurement system to acquire eye

movements without the need for specialized equipment (such as infrared illumination,
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≥

Figure 2-6: Age distribution of subjects with single or multiple recording sessions in
the Deployment Stage.
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chinrest and research-grade cameras). In the Validation Stage, we showed that instead

of a special-purpose camera, we can measure saccade latency using a smartphone

camera. The recording setup, nevertheless, required a laptop to display the task, a

screen synchronized with the laptop to be placed behind the subject, and a researcher

to record both the subject’s eye movement and the synchronized screen using the

back camera of an iPhone. Due to these requirements, the recording setup was not

sufficiently portable for a subject to take recordings on their own in their homes or

offices, which limits the possibility of using such a system to flexibly and ubiquitously

monitor neurocognitive decline or disease progression. In the Deployment Stage, we

designed an iOS app to record a subject with the frontal camera of an iPad while the

subject is following a task shown on the screen. There are two challenges to achieve

this goal.

First, unlike in the clinical setup and in our previous work where an expert re-

searcher takes recordings of a subject, our app needs to guide the subject to record

themselves at a proper distance to the camera and in a well-lit environment. To

resolve this first challenge, before recording a subject, the app displays the subject

on the screen and guides the subject to align their face with a bounding box shown

on the screen. With such guidance, most subjects were recorded at an appropriate

distance. To ensure the environment is well-lit, the app also asks the subject to move

to a better-illuminated environment if the measured ISO is greater than 1000.

Second, the camera recording and the task displayed on the screen need to be

well-synchronized to obtain accurate saccade latency. This can be challenging as

most applications (e.g., video chatting) only require the synchronization error to

be unnoticeable by a human (i.e., less than 80 ms). With careful app design and

evaluation of the synchronization error, we show that we can restrict the absolute

timing error to be within 5 ms, which is well within the standard deviation of a

subject’s saccade latency distribution.

Besides the recording setup, we also significantly increased the number of record-

ings we obtained. With the improvement in our measurement system, in the De-

ployment Stage, we took 6,823 recordings from 80 subjects ranging in age from 20
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years to 92 years, a significantly larger number compared to the number obtained in

the Validation Stage – around 500 recordings from 29 subjects mostly in their 20’s

and 30’s, and most other work collected just one or two recordings from each sub-

ject [17, 53, 52]. Moreover, there were 43 subjects with multiple recording sessions in

the Deployment Stage compared to 11 subjects in the Validation Stage.

In summary, we designed a novel app to guide a subject to record themselves in

a well-lit environment at a proper distance, implemented both pro-saccade and anti-

saccade tasks, and recruited a cohort of subjects spanning the adult age spectrum.

With our portable measurement system, we collected over 235,000 eye movements

in 80 subjects ranging in age from 20 to 92 years, around two orders of magnitude

more than reported in most of the literature. With the data, we can analyze the

relationship between eye-movement features and age and how they change over time

in Chapter 4.
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Chapter 3

Measurement Pipeline

In this chapter, we discussed the algorithms we designed to measure saccade latency

and error rates from the mobile recordings. Our measurement pipeline is shown in

Figure 3-1. The two principal steps are (1) eye-tracking to extract the eye position

from each frame in a video sequence, and (2) feature extraction to measure saccade

latency and error rate.

3.1 Eye Tracking Algorithm

Here, our goal is to estimate where a subject is looking at on the screen over time.

However, instead of aiming for a higher accuracy in gaze position estimation, to ac-

quire accurate saccade latency and error rate, we aim for a higher accuracy in saccade

onset detection. Thus, three eye-tracking algorithms – Starburst [1], iTracker [2], and

phase-based motion magnification [54], were modified to achieve this goal. These

algorithms were chosen because they were developed based on three different con-

cepts – feature/model-based, appearance-based, and phase-based algorithms and have

achieved promising gaze tracking results.
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Figure 3-1: The measurement pipeline includes the mobile-based video recording,
an eye tracking algorithm, a saccade-latency measurement algorithm, and an error
detection algorithm.

3.1.1 Feature- and Model-based Algorithm

Starburst is a feature- and model-based algorithm developed for a head-mounted

eye-tracking system [1]. It relies on infrared (IR) illumination to provide a sharp

boundary between the pupil and iris (Figure 3-2). An initial estimate of the pupil

center is used as a seed, and the pupil-iris boundary is detected using gradient-based

features along rays that extend radially outward from the seed. RANSAC is used

to iteratively fit an ellipse to the detected boundary and arrive at a final estimate of

pupil center for each frame [1]. The fixed camera pose relative to the eyes ensures that

the eye is always in the same region relative to the camera, which makes algorithm

initialization easy across trials. However, the benefits of IR illumination and head-

mounting no longer hold when the eye movement is captured with an iPhone camera

with a varying pose under natural light.

To address these limitations, we develop Starburst-phone. First, we estimate

the iris center instead of the pupil center, considering that in visible-spectrum imaging

the boundary between the iris and the sclera is often more distinct than the pupil-iris

boundary [1] (Figure 3-2). With an iPhone, the camera pose can vary, and thus the

eye-crop position must be manually determined; by assuming minimal head movement

during each test, which lasts under two minutes, the same eye-crop position can be
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Figure 3-2: Eye images with (left) infrared (Figure from [1]) versus (right) natural
light.

used for all frames. Similarly, the pupil center is also manually initialized in the first

frame of each test; however, subsequent frames initialize the pupil center based on

the previous frame, which allows for some minor head movement.

Figure 3-3 shows how the rays are generated from this initialization point and

the gradient along each ray is calculated. We detect the iris contour by choosing the

point with the maximum gradient along each ray rather than choosing the point that

first exceeds a fixed gradient threshold. Since we are now measuring the boundary

between the iris and sclera, the upper eyelid can cause occlusion and the directions

of the rays are restricted accordingly. Due to the reduction in the number of rays, we

fit a circle model to the iris contour rather than an ellipse. A circle has fewer param-

eters compared to an ellipse, giving a more stable estimate with fewer feature points.

Finally, to adapt to the various lighting conditions, histogram equalization must be

selectively applied. Figure 3-6 shows an example eye trace using the Starburst-phone

algorithm.

3.1.2 Appearance-based Algorithm

iTracker uses a convolutional neural network (CNN) that is trained to determine

where a user is looking on a screen (i.e., gaze estimation) based on images taken from

a frontal camera of an iPhone or iPad [2]. These images were collected through an iOS

application named GazeCapture, which includes built-in iOS face and eye detectors.

The inputs of the iTracker include a cropped left eye, a cropped right eye, a cropped
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Figure 3-3: The Starburst-phone algorithm operating under natural light; (left) iris
contour detection that avoids the upper eyelid; (right) iris model fitting.

face, and a face grid indicating the location of the face within the frame. All the

input images have a resolution of 224×224 pixels. The architecture of the CNN is

shown in Figure 3-4.

Before we evaluated the automation of eye crops and face crops as discussed in

Appendix B, we manually annotated six anatomical landmarks on the first frame of

each video clip: the two corners of each eye and the two corners of the mouth. To

crop each eye region, in accordance with [36], we determined the midpoints of the

inner and outer corners of each eye and surrounded these midpoints with squares of

width 1.5 times the distance between the corners (Figure 3-5). We also computed

the centroid of the six annotated landmarks and determined the face-crop region

likewise as the square of width 1.5 times the largest distance of any two of the six

landmarks, centered at the centroid location. Since all images are fed into iTracker

at a resolution of 224×224 pixels, they undergo resizing from the original resolution.

The eye crops are upsampled, while the face crop is downsampled with an anti-alias

filter, using the imresize function in Matlab. We then apply iTracker to each frame

in the video sequence, and the x-coordinate of the estimated gaze location over time

is taken as the horizontal eye-movement trace. Nevertheless, we discovered that in

some challenging scenarios (e.g., the illumination was low or the subject was wearing

glasses), the variations in the output of iTracker can be so large that the saccade

onset becomes ambiguous.

To further understand the source of the variations, we tested the output of iTracker
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Figure 3-4: Convolutional neural network architecture used by iTracker and iTracker-
face [2]. iTracker processes the face grid and the eye and face layers (gray and blue),
while iTracker-face only processes the face layers (blue). See Krafka et al. [2] for
details.
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Figure 3-5: Manual eye crops and face crops for input to iTracker. The corners of
the eyes and the mouth are manually determined on the first frame. The bounding
boxes show the regions of eye and face crops derived from these fiducial markers.

when fixing the face grid input and two of the other three inputs (left eye crop, right

eye crop, and face crop) to be the first frame of the video. We discovered that the

variations in the output will be the smallest when we only changed the input to the

face layers. Since the receptive field in the cropped eye only contains parts of the

eye, one potential explanation for the observation could be that the eye layers may be

trained to learn detailed features in the eyes to fine-tune the gaze estimation. On the

contrary, the receptive field in the cropped face may contain a full eye. That is, the

face layers may be trained to learn more global features in the eyes. When the image

becomes blurrier, the detailed eye features will be replaced by noise, which causes the

eye layers more sensitive to noise than the face layers.

Thus, we propose the iTracker-face algorithm, for which we only use the face-

related convolutional layers of iTracker (Figure 3-4 blue layers). Although this choice

does degrade the accuracy of the gaze estimation as discussed in [2], our objective is

to determine the saccade onset (the time when the gaze changes). Figure 3-6 shows

a sample eye-position trace using the iTracker and iTracker-face algorithms. In our

application, iTracker-face generally has higher signal-to-noise ratio than iTracker.

50



(a)

(b)

P
o

s
it

io
n

 (
)

P
o

s
it

io
n

 (
)

Time (ms)

iTracker

iTracker-face

Figure 3-6: The same sample eye-movement trace from (a) iTracker and (b) iTracker-
face.

3.1.3 Phase-based Algorithm

Motions in an image correspond to phase shifts in the frequency domain. To measure

motions in a video, Davis et al. used a complex steerable pyramid wavelet to com-

pute the phase changes across the frames [55, 54]. The complex steerable pyramid

wavelet decomposes an image into complex-valued sub-bands in different scales and

orientations. The phase change in each sub-band across the frames correspond to

some local motions. The scale and the orientation of each sub-band determine the

size and the direction of the motion respectively. If a video only contains one motion,

one can estimate this motion by computing a weighted average of the local motions.

Most of our videos contained only one motion – the horizontal saccadic move-

ment. Since we know the size and the direction of this eye movement, instead of

averaging through filters of different scales and different orientations, we empirically

determined the best scale and orientation. To begin with, we noticed that the eyes

moved approximately by five pixels in our recordings. We therefore chose the fourth-

order octave band filter to provide the best spatial support. Moreover, since we knew

the movement was horizontal, we used a 2-orientation steerable pyramid filter and

only measured phase shifts in the filter corresponding to the horizontal orientation.
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Figure 3-7: Two example eye-movement traces estimated from iTracker-face and the
phase-based method.

We then unwrap the phase under the assumption that the phase change across two

frames should be smaller than π. However, this assumption may fail when there is a

blink.

3.1.4 Robustness of Eye-Tracking Algorithms

After experimenting these algorithms on our data, we noticed that the phase-based

algorithm was very sensitive to movements. As shown in Figure 3-7, while the saccadic

movements in all these traces were noticeable, the phase-based algorithm tended to

pick up other movements in the video (e.g., a change in the reflection in the eyes)

and introduced a positive or negative trend during the fixation period. It is hard to

tell whether such a trend was caused by an eye movement or other movements. As a

result, we chose to remove the phase-based algorithm from our consideration.

On the other hand, Starburst-phone is sensitive to the appearance of the eyes.

In [37], we compared the performance of Starburst-phone, iTracker, and iTracker-face.

We noticed that Starburst-phone can mistakenly detect the rim of glasses or hair as

part of the iris contour. Under insufficient lighting, it also had difficulty detecting

the iris-sclera boundary. Since our model selection in Starburst-phone was based on

the maximum number of fitted points under RANSAC, with fewer points detected
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on the iris contour, the iris fitting will frequently fail. As a result, we also removed

Starburst-phone from our considerations. ([37] provides more detailed analysis among

these three algorithms.)

After noticing that appearance-based algorithms may be the most robust algo-

rithms, we carefully compared the robustness of iTracker and iTracker-face under a va-

riety of environmental conditions that may be encountered outside the well-controlled

clinical setting for eye-movement measurements. We compared the performance of

the algorithms on video sequences of subjects with and without glasses and under

various ambient lighting conditions under the Validation-Stage recording setup. Two

illumination-adjustable LED panel lights were used to vary the illumination during

the recording sessions. In total, four distinct lighting conditions were tested: (1) room

light switched on in addition to the panel lights set to high (278 Lux); (2) room light

switched on without additional lighting support from the LED panels (220 Lux); (3)

room light switched off and the panel lights set to medium (54 Lux); and (4) room

lights switched off and the panel lights set to low (26 Lux). Illuminance was mea-

sured at the participant’s face using an LT40 LED Light Meter (Extech Instruments).

Figure 3-8 shows how the lighting conditions affect image brightness. Five subjects

contributed 120 saccade tasks under each of the four lighting conditions with and

without glasses, for a total of eight test conditions per subject.

The video sequences were processed with both iTracker and iTracker-face, and the

9,600 resultant eye-movement traces were each reviewed by two annotators. Same as

the previous, each annotator independently determined if a trace represented a hori-

zontal saccade movement and had sufficiently high signal-to-noise to allow for credible

saccade-onset determination. Traces that met these criteria were labeled ‘good’; all

other traces were labeled ‘bad’. Traces labelled as ‘bad’ were typically interrupted

by blinks, initially directed toward the opposite direction of stimulus presentation,

or had a low signal-to-noise ratio. To assess the annotator agreement, we computed

both the accuracy (fraction of annotations in which both annotators agreed) and Co-

hen’s kappa coefficient (κ). The algorithm with the highest fraction of ‘good’ saccade

traces, as judged by both annotators, across the different environmental conditions
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278 Lux 220 Lux 54 Lux 26 Lux

Figure 3-8: A sample frame from each video taken under four distinct lighting condi-
tions. From left to right, the pictures are arranged from the highest illuminance (278
Lux) to the lowest (26 Lux).

was deemed the more robust algorithm.

Figure 3-9 reports the inter-rater annotation accuracy, broken down by ‘agreed

good’ and ‘agreed bad’, for both algorithms and each of the eight environmental con-

ditions tested. The average annotation accuracy was 94.1% for eye-movement traces

generated by iTracker-face and 86.8% for iTracker, with corresponding Cohen’s κ

values of 0.802 and 0.730, respectively. These results indicate excellent inter-rater

agreement for the overall annotation task, which means that their judgment can be

used as a benchmark. Their annotations also reveal that important trends exist be-

tween algorithms and across environmental conditions. The inter-rater agreement

is lower when participants wear glasses and tends to decline with decreasing illumi-

nance. For example, at the lowest illuminance level (26 Lux) and with participants

wearing glasses, the annotators agreed in their label of ‘good’ in over 40% of the traces

generated by iTracker-face. In contrast, their agreement of what constitutes a good

saccade trace was less than 8% of the traces generated by iTracker. Obviously poor

illumination conditions result in image sequences with lower contrast which makes it

harder to detect eye features and subtle eye movements. A closer inspection of the

video sequences also revealed that glasses, especially those with dark rims, tend to

cast shadows that can obscure the eye regions. Additionally, some glasses have lenses

with high reflectivity that make the eyes even less visible and therefore difficult to

track.
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Figure 3-9: Annotation accuracy broken down for each of the eight environmental
conditions tested per algorithm. The accuracy (or percentage of agreed annotations)
is additionally broken down into the fraction of agreed-good and agreed-bad eye-
movement traces between two annotators.

Across all eight conditions tested, the average fraction of traces judged as good

by both annotators was consistently and significantly higher for traces generated by

iTracker-face (78.9%) than for those generated by iTracker (50.7%). We conclude

from this analysis that across all environmental conditions tested, iTracker-face is the

more robust algorithm of the two and therefore formed the basis of all subsequent

results reported here.

3.1.5 Automation of Eye-Tracking Algorithms

After iTracker-face was chosen as the eye-tracking algorithm, we replaced the manual

face crop with a Viola-Jones detector. We show in Appendix B that the latencies we

acquired from these two methods were almost identical. (Note that the evaluation

was based on the latency measurement presented in the next section. One may need

to read the next section before reading the appendix.) Hence, we completed the

automation of the eye-tracking building block in the measurement pipeline.
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3.2 Saccade Latency Measurement

In this section, we first discuss our model-based algorithm to detect saccade onset

under the Validation-Stage setup. We show that this algorithm allows us to evaluate

the quality of the latency measurement and identify outliers. With both iTracker-

face and a saccade-onset-detection algorithm, we then compare our results with the

measurements acquired from a research-grade camera. By showing that we can attain

almost identical statistics from mobile devices as from a research grade camera, we

have completed our main goal in the Validation Stage – enabling sacacde latency

measurements using mobile devices.

As we collected more data from adults with a wider age spectrum in the Deploy-

ment Stage, we noticed that the model fit designed in the Validation Stage needs

to be improved to account for various eye movements. In particular, we need to re-

design how we normalize our eye-tracking results to degrees and how we choose an

appropriate window of fit.

3.2.1 Validation-Stage Saccade Onset Detection

To calculate saccade latency, it is necessary to determine the onset of the eye move-

ment toward the target. In prior work, the saccade onset has commonly been defined

as an increase in eye velocity above a predefined threshold [15, 16], such as 30 ◦/s,

where the velocity is commonly determined through numerical differentiation and

subsequent filtering of the raw eye-position tracing [56]. Such saccade-onset determi-

nation requires accurate measurement of gaze and is prone to significant error at low

sampling rates [57].

Here, we instead propose to model the eye-position trace during a saccade task as

a hyperbolic tangent of the form

x̃(t) = A+B · tanh

(
t− C
D

)

and fit the model to the the eye-position tracing from 100 ms before to 500 ms after
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the stimulus presentation (Figure 3-10). The fitting was performed using the non-

linear least-squares solver lsqcurvefit in Matlab to estimate the model parameters

A,B,C,D. Using these optimal model parameters, we determine the saccade onset

as the time when the best-fit solution exceeds 3% of the maximal saccade amplitude,

which is independent of the velocity of the saccade.

In addition to generating well-behaved velocity tracings, this model-based ap-

proach has the benefit of providing a goodness-of-fit metric on the basis of which

the reliability of saccade tracings can be evaluated in an automated manner, as the

normalized root-mean-squared error (NRMSE) between the model fit and the eye-

position trace quantifies the residual discrepancy between the two. Here, the normal-

ization was done to the saccade amplitude (10◦ in our experiments). Measurements

contaminated by excessive noise, artifact, or eye movements in the wrong direction

typically result in a high NRMSE value while reliable measurements result in a low

NRMSE. Thresholding the NRMSE allows for automated rejection of recordings in

which the saccade onsets might have been erroneously detected or the measurements

are subject to excessive variability, noise or artifact.

To evaluate the usefulness of the NRMSE as an automated metric to flag bad

saccades, we used the expert-annotator labels in Section 3.1.4 as the ground truth

for all iTracker-face derived traces described in the previous section and swept the

NRMSE threshold to generate a receiver-operating characteristic (ROC) curve. By

separately considering each annotator’s judgment as the ground truth, we obtained

two ROC curves (Figure 3-11), one for each annotator, and generated associated

95% confidence intervals (CI) by stratified bootstrapping over 2,000 replicates [58].

The two resultant ROCs tracked each other closely and achieved an area under the

curve (AUC) of 0.923 (95% CI: 0.913 – 0.932) and 0.933 (95% CI: 0.923 – 0.943),

respectively. If we consider all traces with a NRMSE<0.1 as ‘good’ saccades, we

achieve average true positive rates of 0.87 and 0.86 and average false positive rates

of 0.20 and 0.16 for the first and second annotator, respectively. In the following, we

selected an NRMSE of 0.1 as the threshold.

The automation of saccade onset detection is crucial. We noticed that annotation
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Figure 3-10: Eye position as estimated by the iTracker-face algorithm (gray) and
hyperbolic tangent fit (black). The dashed line at 0 s indicates the moment of stimulus
presentation. The saccade onset is determined by an increase in saccade amplitude
above 3% of the target saccade amplitude.

of the 9,600 eye-movement traces took each annotator about 12 hours to complete.

Since our goal is to leverage smartphones to make eye-movement recordings and

analyses widely available and ubiquitous, visual inspection of individual tracings is

not an option. As shown in [37], the main drawback of the differentiation methods

used in the literature is that it cannot automatically identify bad saccades.

3.2.2 Comparison across Cameras

To verify that recordings from mobile devices can lead to similar saccade-latency

statistics as those obtained from recordings of high-end, research-grade cameras, we

took simultaneous recordings on four subjects using a low-cost, iPhone 6 camera and

a research-grade camera (Phantom v2511, see Table 2.1 for their specifications).

Figure 3-12 shows the resulting saccade-latency distributions obtained using the

iTracker-face algorithm and the model-based onset detection. The inclusion of the

high-speed camera in the recording set-up resulted in increased distances between the

subject and the cameras, as well as between the subject and the laptop’s screen. The

increased distances result in a smaller horizontal eye movement, which in turn produce

slightly noisier, but acceptable, eye movement traces. Figure 3-12 demonstrates that
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Figure 3-11: Performance of model-based fitting in classifying saccades. The adjudi-
cations of two annotators were taken as the ground truth, with the solid lines being
the corresponding mean ROC curves. The shaded areas indicate the confidence in-
tervals for the true positive rate. The parentheses mark the 95% confidence intervals
for the areas under the curves.
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Figure 3-12: Saccade-latency distributions from four subjects obtained from video
recordings using (a) the iPhone 6 and (b) a Phantom v2511 high-speed camera.

the distributions from both cameras are consistent, with negligible differences in the

mean saccade-latency values and associated standard deviations between the two

recording systems.

3.2.3 Deployment-Stage Saccade Onset Detection

In the Deployment Stage, we expanded upon our study cohort in the Validation Stage

by specifically including self-reported healthy subjects across the adult age spectrum.

Consequently, we observed a larger heterogeneity in saccadic eye-movement patterns

that necessitated revisions to the saccade onset detection developed in the Validation

Stage.

To allow for latency measurements from subjects with slower response times, we

needed to increase the window of fit for the tanh model from 200 ms before to 800 ms

after the stimulus presentation. However, we noticed that by expanding the window,

it is more likely to capture a subject’s eye movements back toward the center position

(Figure 3-13a). Additionally, subjects may perform a series of hypometric saccades

in which the initial saccadic movement does not reach the final position and a second

saccade is made to correct for this undershoot (Figure 3-13b). Correct identification
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Figure 3-13: Examples where tanh cannot be fitted to the entire trace: (a) gaze
returning (b) hypometric saccade [3, 4]. As one can see, to find the saccade latency,
the window where we fit a tanh model should be from A to D.

of hypometric saccades is of relevance since an increased incidence of hypometric

saccades is associated with certain neurodegenerative pathologies [17, 3]. The single

tanh model cannot fit well to these traces if we use a fixed window to determine latency

values. To determine saccade latency, we need to allow for an adaptive window of fit

for the tanh model to identify the initial saccadic movement to be fitted. We also

note that we cannot convert the unit of the eye-movement trace from centimeter to

degree using the best fit tanh model. As a result, we needed to revise our method to

normalize the trace.

Saccade Normalization

We make three assumptions to convert the unit of the eye-movement traces from the

iTracker-face generated centimeter to degree. First, we assume that subjects were

looking at the fixation point during the fixation period. Second, we assume that

subjects did not overshoot their gaze. Finally, we assume that during the stimulus

period, subjects either (a) did not move their eyes at all, (b) gazed at the stimulus,

or (c) gazed at the opposite position of the stimulus.

With these assumptions, we normalize the trace as follows. First, to simplify the

algorithms, we flip the trace if needed so that positive excursions correspond to eye

movements in the correct direction. We then smooth the eye-movement trace with a
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Savitzky-Golay filter [59, 60] (of order 3 and frame length 5) to make the final normal-

ization more robust to noise. Subsequently, we determine two reference points to scale

and shift the eye-movement trace. Our first reference point is set as the starting gaze

position of a trace, that is 200 ms before the stimulus presentation. With the second

assumption, our second reference point is either the maximum or the minimum value

of the smoothed trace, depending on whether the subject makes a correct saccade,

a corrected error, or an uncorrected error. Scaling and shifting coefficients can be

found by shifting the first reference point to zero degree and scaling the second to

either the final expected amplitude (12.7 degrees) or the negative amplitude (−12.7

degrees).

More precisely, we consider three scenarios. (a) Operating on the output of

iTracker-face, if the difference between the maximum value and the starting gaze

position is greater than 0.2 cm, we assume that the subjects have made a correct

saccade or a corrected error, and we scale the second reference point to the positive

expected amplitude value. (b) If the difference between the maximum value and the

starting gaze position is smaller than 0.2 cm but the absolute difference between the

minimum value and the starting gaze position is greater than 0.2 cm, we assume that

the subjects have made an uncorrected error and we scale the second reference point

to the negative expected amplitude value. (c) If neither of these criteria is met, we

assume that the subjects have made only subtle eye movements or that the eyes were

occluded.

In the first two scenarios, we find the scaling and shifting coefficients from the

smoothed trace and normalize the original trace using these coefficients. One key ob-

servation of this normalization is that after normalization, traces with the same shape

will become identical. This characteristic ensures that if the saccade-latency measure-

ment algorithm and the error-detection algorithm are designed using this normalized

trace, the algorithms will be scale-and-shift-invariant. That is, eye movement features

are measured only based on the shape of a trace. In the third scenario, we noticed

on visual inspection of the video recordings that the sizes of the eye movement were

often comparable with noise and subtle head movement. To account for such observa-
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Declared a Correct 
Saccade (dC)

Low Signal (LS): 1%
(±4%)

Declared an Error (dE): 16%
(±15%)

NRMSE < 0.1 : 80%
(±18%)(Good Saccade)

NRMSE ≥ 0.1 : 3%
(±5%)(Bad Saccade)

A Video of Eye 
Movements

Non Low Signal (NLS)

Figure 3-14: Breakdown of saccades collected in the Deployment Stage into error
saccades, good saccades, bad saccades, and “LS” (low signal).

tions, we label such traces as “LS” (Low Signal) to acknowledge the fact that we are

uncertain whether there is an actual eye movement even by visualizing the original

videos. Traces labeled LS will be excluded from the saccade-latency measurement

and the error-detection algorithm.

Adaptive Window of Fit

With the normalization, we next describe how we updated the window of fit for

saccade latency measurement. Returning to the examples in Figure 3-13, during the

period from A to B and C to D, the subject’s eyes are fixated. During the period

from B to C, the subject performed a correct saccade, in the sense that the eyes

moved in the correct direction. As a result, the proper window of fit is the first

sequence of fixation, directionally correct eye movement, and fixation. This period

can be identified using the velocity of the gaze. We estimate the velocity of the gaze

by computing the first-order derivative of the Savitzky-Golay filtered trace to avoid

amplifying high-frequency noise.

We then classify a sequence of time instances as a correct saccade period if the

velocity values cross 30 degrees/s, as an incorrect saccade period if the velocity values

cross −30 degrees/s, and as a fixation period otherwise. When there are more than

one correct saccade periods, we will fit our model to the one that first crosses a third

of the amplitude. Figure 3-15 shows that by choosing the window of fit to be the

period associated with the sequence of fixation, directionally correct eye movement,
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and fixation, we can fit the tanh model to traces with multiple transitions and measure

their saccade latencies. We compared the previously described fixed-window approach

with the adaptive-window approach and observed that the proportion of saccades with

a NRMSE> 0.1 dropped from 17% to 3% with the adaptive-window approach. Hence,

by moving to the adaptive-window approach, we were able to compute significantly

more latencies with this improved saccade-latency measurement algorithm.

3.3 Error Rate Measurement

In the Deployment Stage, we also extended our eye-movement features to include

error rate. Here, we present how we designed a robust error-detection algorithm and

appropriately defined error rate that takes into account the possibility that it might

not always be possible to determine the direction of an eye movement from app-based

recordings.

3.3.1 Error Detection

In the clinical literature, a directional error is defined as an initial eye movement

in the wrong direction [52]. Manual annotation is often involved in the determina-

tion of these errors [17, 16]. Because such clinical studies have traditionally relied

on specialized environments and eye-tracking equipment, including use of chinrests,

infrared illumination, and research-grade cameras, there were usually comparatively

few traces collected per subject and the traces tended to be clean. As a result, man-

ual annotation of traces is possible in these cases. In contrast, to enable collection of

large amounts of data, we use mobile-device cameras and do not use a chinrest. As

a result, we obtained significantly many more traces, though some were affected by

glares or head movements. Our goal is thus to reject poor recordings and develop an

accurate and robust error detection algorithm.

As mentioned in Section 3.2.3, we exclude the traces labeled LS, since we can-

not distinguish between saccadic eye movements and noise/head movements. Out of

the remaining traces, we noticed that a typical error trace shows a period of fixa-
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Figure 3-15: Tanh fitting example: (a) gaze returning (b) hypometric saccade. The
top panels show the eye movement traces obtained from iTracker-face after normaliza-
tion. The dark lines show the fitted hyperbolic tangent models. The bottom panels
show the velocity of the eye movements and the velocity threshold (the dash lines).
With such a threshold, we label different parts of the trace as fixation (F), correct
saccade (C), or error saccade (E). The window of fit is chosen as the first “fixation(F)-
correct saccade(C)-fixation(F)” period that crosses a third of the amplitude.
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tion followed by a directionally incorrect eye movement (as shown in the top panel

of Figure 3-16). Since our goal is to detect such a change, we developed our algo-

rithm based on the change detection literature [61]. In particular, we extended the

cumulative sum (CUSUM) algorithm [62] for our purposes.

We first assume that our measured eye movement trace xt at time t is composed

of an eye movement θt and an additive measurement noise εt. We then use a recursive

least square filter to estimate the eye movement θ̂t according to

θ̂t = λθ̂t−1 + (1− λ)xt, (3.1)

where λ determines how much the estimation θ̂t relies on the current data point xt

versus the past data. The residual error then becomes ε̂t = xt− θ̂t. If there is neither

a positive trend nor a negative trend in xt, ε̂ will be centered around zero. As a

result, when we consider the cumulative sum of the residual error st = st−1 + ε̂t, st

will be centered around zero as well. However, if there is a negative trend in xt as

shown in Figure 3-16, st will become progressively more negative. We can then use

a threshold to determine whether st is sufficiently negative such that εt is unlikely to

just represent additive measurement noise.

To distinguish between correct saccades and incorrect saccades, we define two

separate variables for st: gnt = max{gnt−1 − ε̂t, 0} and gpt = max{gpt−1 + ε̂t, 0}.

That is, gnt accumulates negative trends and gpt accumulates positive trends. As a

result, when gnt and gpt cross the pre-determined threshold, we detect an incorrect

and a correct saccade, respectively. To apply the definition of a directional error as

an initial eye movement towards the wrong direction, we detect an error if gnt crosses

the pre-determined threshold after 0 ms and before gpt crosses the pre-determined

threshold.

Here, we chose to scale the threshold with respect to the estimated (corrected)

saccade amplitude. We notice that if there is no error in a trace, gnt will be around

zero while gpt will approximate the amplitude of the saccade (Figure 3-16). When

there is an error, gpt will approximate the amplitude of the corrected saccade. On
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Figure 3-16: Error detection example. The top panel shows the x coordinates of the
iTracker-face output over time (xt). The middle and the bottom panel show gpt and
gnt. The dashed line indicates the threshold T . When gpt and gnt cross the threshold
T , tcorrect and terror are detected, respectively. In this case, since 0 < terror < tcorrect,
an error is detected.
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the other hand, when there is an uncorrected directional error, gnt will approximate

the amplitude of the saccade. As a result, we approximate the (corrected) saccade

amplitude by maxt{gpt, gnt}. We further observe that if the saccade amplitude be-

fore the normalization is sufficiently large, the saccade will be less affected by head

movement and noise. Thus, we can consider lowering the threshold to detect smaller

errors. On the other hand, if the original saccade amplitude is closer to the size of

the head movement and noise, the threshold needs to be sufficiently large to avoid

artifacts from being detected. Recall that in Section 3.2.3, we scale the trace and

shift it to normalize it from centimeters to degrees. We can use the scaling coefficient

(denoted as B in Algorithm) as a metric to evaluate the size of the original saccade

amplitude. If B is small (< 8), it means that the original amplitude is large and the

threshold could be smaller. If B is large (≥ 8), we will use a fixed threshold. Here, the

value 8 can be considered as a hyperparameter that we can tune. The final threshold

is maxt{gpt, gnt} ·min{B, 8} · T . The complete algorithm is shown in Algorithm.

To determine the threshold T , we asked four subjects to perform six anti-saccade

tasks of 40 stimuli each. Two expert annotators reviewed the videos and annotated

the directional errors. Out of the 4 · 6 · 40 = 960 saccadic eye movements, there

were only two disagreements between the annotators which were resolved after these

two disagreements were reviewed together. With the annotated data set at hand,

we swept the threshold T and determined the true positive and false positive rates

for detecting a directional error (Figure 3-17). When the threshold is lower than the

noise level, gpt and gnt may cross the threshold due to noise rather than a saccadic

eye movement. That is, gpt may be equally likely to cross the threshold as gnt. Recall

that we only detect a trace as an error if gnt crosses the threshold before gpt. As

T goes to zero, the true positive rate and the false positive rate go to 0.5. On the

other hand, if the threshold is too large, the amplitude of an incorrect saccade may be

smaller than the threshold and the error may not be detected. When T is larger than

the noise level but smaller than the amplitude of an error, we can get high sensitivity

and specificity. By choosing T = 0.03, we can achieve a sensitivity of 0.97 and a

specificity of 0.97 for detecting a directional error.
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Algorithm: Error Detection

input : x = [x1, . . . , xN ], B, x1 is chosen to be the first instance after
the stimulus presentation, B is the scaling coefficient in the
saccade normalization

output : terror, tcorrect (An error is only detected if the first element in
terror is smaller than the first element in tcorrect.)

parameter: λ, T
for round=0:1 do

θ̂ = x1, terror = [], gn = [0], gp = [0];
for t=2:N do

θ̂ = λθ̂ + (1− λ)x[t];

ε̂ = x[t]− θ̂;
gn.append(max{gn[t− 1]− ε̂, 0});
gp.append(max{gn[t− 1] + ε̂, 0});
if round==1 then

if gn[t] > A · T then
terror.append(t);
gn[t] = 0;

θ̂ = x[t];

end
if gp[t] > A · T then

tcorrect.append(t);
gp[t] = 0;

θ̂ = x[t];

end

end

end
A = min{8, B} ·max{gp, gn};

end
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Figure 3-17: The true positive rate and the false positive rate as we increased the
error detection threshold T from 0 to 0.1. We chose T = 0.03 as our final threshold
to achieve a sensitivity of 0.97 and a specificity of 0.97.
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3.3.2 Error Rate Definition

In the clinical literature, error rate is often defined as the proportion of errors, though

it is not usually discussed whether noisy traces are excluded from such calculation.

Given the use of special-purpose equipment and optimized environmental conditions

in clinical research studies, such recordings may have very few noisy traces. Without

a chinrest and a controlled laboratory setup, we obtained more noisy traces. We

carefully identified the causes of these noisy traces: glares, head movements, eyelids

drooping. Many of these causes could be reduced with more careful instruction.

However, even with careful instruction, it is hard to eliminate all these causes, due

to the nature of the much more relaxed and varying recording environment and the

large number of recordings. As a result, it is important to define an error rate that

takes these noisy traces into consideration.

An eye movement was either declared a correct saccade (dC), declared an error

(dE), or labeled low signal (LS). If we define the error rate as the proportion of errors

out of all the traces, we might significantly underestimate the error rate in records

with a lot of eye movements in the LS category. A better approach might be to define

the error rate in a recording as #dE/(#traces-#LS), as explained in Eq. (3.2). The

question then arises under which conditions the error rate so defined approximates

the (empirical) probability of an error.

Under the assumption that

• P (dE|C) ≈ 0, P (dC|E) ≈ 0,

• P (LS|E) ≈ P (LS|C),

where E denotes errors and C denotes correct saccades, we can express the error rate
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as
P (dE)

1− P (LS)

=
P (dE|E)P (E) + P (dE|C)P (C)

1− P (LS|E)P (E)− P (LS|C)P (C)

≈ P (dE|E)P (E)

P (E)[1− P (LS|E)] + P (C)[1− P (LS|C)]

≈ [1− P (LS|E)]P (E)

[1− P (LS|E)]P (E) + [1− P (LS|C)]P (C)

≈ P (E)

P (E) + P (C)

=P (E)

(3.2)

where we made use of the fact that a trace is either an error or a correct saccade,

i.e., P (E) + P (C) = 1. The first assumption states that the false positive and the

false negative are essentially zero. As discussed in Section 3.3.1, our error detection

algorithm achieved a sensitivity of 0.97 and a specificity of 0.97. Therefore, the first

two assumptions are indeed met. The second assumption states that a correct saccade

is equally likely to be declared LS as an error saccade. Since our determination of

LS is simply based on the size of the trace, this condition is met as well. Therefore,

it is reasonable to define the error rate as #dE/(#traces-#LS) as an estimate of the

(empirical) probability of an error.

3.4 Discussion and Summary

In this chapter, we present our measurement pipeline – the eye-tracking algorithm, the

algorithm to measure saccade latency, and the algorithm to measure error rate. Sev-

eral technological challenges needed to be overcome to allow for these eye-movement

measurements outside a specialized clinical environment. Among these technological

challenges were the reliability on infrared (IR) light to estimate the position of the

eye and the use of research-grade cameras that yield distinct images of the eyes.

To extract the position of the gaze from each frame in a video sequence, we pro-

posed iTracker-face, a modified version of a deep convolutional neural network for

gaze estimation on smartphones that does not rely on IR illumination. In our appli-
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cation, iTracker-face is more robust to lower image quality than iTracker, providing

eye-movement traces with a higher signal-to-noise ratio. Once the eye-movement

traces are extracted with iTracker-face, our eye movement model is fitted to the in-

dividual traces to determine the onset of the eye movement toward the target. This

model-based approach has the added benefit of providing a goodness-of-fit metric

that allows for automated rejection of unreliable data, an instrumental contribution

toward making saccade latency determination broadly available as large cohorts of

patients and self-reported healthy subjects start recording saccadic eye movements

on a continuous basis.

Because the environmental conditions outside of a typical clinical setting are vari-

able, the evaluation of the robustness of our eye-tracking algorithm is paramount and

strengthens our ability to measure saccade latency in complex real-world scenarios.

Our robustness evaluation shows that iTracker-face was consistently and significantly

more robust than iTracker across all testing conditions, as ascertained by two anno-

tators that manually reviewed 9,600 eye-movement traces. Because the agreement

between annotators was high (as given by the accuracy and Cohen’s kappa coeffi-

cient), their annotations were used to determine an optimal threshold value for the

NRMSE that automatically eliminates eye-movement traces that provide unreliable

saccade latency estimates. Our evaluation of the sensitivity and specificity of this

approach suggests very high sensitivity and specificity for automated signal quality

determination compared against human annotators, and in a variety of environmental

conditions that are expected to be encountered in everyday recordings.

After we demonstrated that we can measure pro-saccade latency outside a clinical

environment, we further improved our algorithms to measure both saccade latency

and error rate from app-based recordings from a much larger population. Our first

observation is that in cases where eye movements are too small in amplitude or when

the eyes are occluded, the eye movement signals can be smaller than noise. In these

cases, we cannot tell the direction of the eye movement either from the trace or from

the original video. As a result, we cannot classify these traces into a correct or an

erroneous eye movement and cannot determine the saccade onset. We show that we
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can identify these traces using the raw output of iTracker-face, label these traces as

the ”LS”s (low signal), and exclude them from the saccade latency measurement and

error detection.

Our second observation is that, since we now implement both pro- and anti-

saccade tasks and that anti-saccade latencies are usually larger than pro-saccade

latencies, we need to increase the size of the window where we fit our tanh model.

However, by doing so, we also increase the potential of including more than one

saccade movement in the window. For example, subjects may make a hypometric

saccade or return their gaze towards the center of the screen. Being able to measure

saccade latency from these traces is crucial, especially when these eye movements

indicate a certain phenotype. For instance, patients with Parkinson’s disease may

make more hypometric saccades [3, 17] than patients age-matched controls. Our

previous saccade latency measurement algorithm cannot measure latencies from these

traces since a tanh model with a fixed window cannot fit well on these traces. Here,

we show how we can find the appropriate windows of fit for these traces and thus

enable saccade latency measurement. By doing so, we keep 96% of the traces to be

either a good saccade (the saccade with NRMSE ≤ 0.1) or an error saccade, which is

much more than 82% of the traces to be either a good saccade or an error if we use

a fixed window.

Our third observation is that, to detect directional error is the same as to detect

a change in the negative direction in an eye-movement trace. We extend the CUSUM

algorithm for this purpose and show that our error detection algorithm can achieve

a sensitivity of 97% and a specificity of 97%. Our final observation is that, given

the absence of infrared illumination, high-speed cameras, and chinrests, there may

be more LSs and bad saccades (saccades with NRMSE > 0.1) in recordings where

the subject did not record themselves properly or had several head movements. If we

still define the error rate as the proportion of errors out of all the saccades as in the

clinical literature, we may underestimate the error rate. As a result, after discarding

undesirable recordings (recordings with more than half of the saccades being LSs or

bad saccades), we define the error rate as the proportion of errors excluding LSs and
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show that this definition is a reasonable approximation for the error rate used in the

clinical literature.

All in all, we concluded that we have automated saccade-latency and error-rate

measurements from app-based recordings. This achievement enables us to analyze

these eye-movement features in Chapter 4.
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Chapter 4

Characterization of Eye-movement

Features

The motivation of our work is to track individual eye-movement features over time and

analyze the correlation between these features and disease progression. To achieve

this goal, we need to first understand how eye-movement features change over time

in healthy subjects. With the recording system and algorithms demonstrated in

Chapter 2 and 3, we have collected longitudinal eye-movement features from healthy

subjects. We can then use these data to identify characteristics that are unrelated to

disease progression and may become confounding factors. After that, we can design an

individualized model that can incorporate these characteristics and may be extended

to a disease-progression model so that our ultimate goal can be achieved.

4.1 Eye-movement Characteristics

In this section, we first summarize our data collection efforts. From these data, we

notice significant intra- and inter-subject variability. With the belief that all our

subjects are healthy, we can assume that the variability is not caused by different

disease states. Thus, it is important to characterize the variability in healthy subjects

so that we can identify the variability caused by disease progression once we have

data from patients. To do so, we study subjects’ eye-movement distributions, the
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day-to-day variations of their eye-movement features, and the correlation across their

eye-movement features. We also analyze how age may affect these eye-movement

features. With a better understanding of the eye-movement features, we can then

develop an individualized model that characterizes these features in Section 4.2.

4.1.1 Data Collection Summary

In this section, we summarized our data-collection efforts in the Validation Stage and

the Deployment Stage.

Validation Stage

In the Validation Stage, we recorded 19,200 saccadic eye movements across 160 exper-

imental sessions in 29 self-reported healthy subjects (20 males, 9 females; median age:

27 years; age range: 22–64 years), including five or more repeat recording sessions

in a subset of eleven subjects. In two recording sessions, the Viola-Jones algorithm

failed to detect the face of the subject, so the results presented here are based on 158

experimental sessions in 29 subjects.

When we aggregated the saccade latency measurements greater than 80 ms and

NRMSE<0.1 for each subject, the mean latencies across the 29 subjects typically

ranged from 120 ms to 200 ms (Figure 4-1), with one subject having a mean saccade

latency of 290 ms. (Review of the latter subject’s video sequences, eye-movement

traces, and health questionnaire did not provide a credible reason to exclude this

subject from our analysis.) While it is common practice in clinical studies to only

report the population mean or median saccade latency, such aggregation results in

loss of information encoded in each subject’s full saccade latency distribution.

Deployment Stage

With a more flexible system in the Deployment Stage, we have collected 6,823 videos

and 236,900 eye movements from 80 subjects across the adult age spectrum. We

observe that in videos with a substantial number of LSs, subjects’ eyes were often
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Figure 4-1: Distribution of the mean saccade latencies in the Validation Stage from 29
self-reported healthy individuals, including one subject whose mean saccade latency
is 290 ms.

partially occluded due to eyelid droop. Videos with a large number of bad saccades

tend to contain more head movements. As a result, the number of LSs and bad sac-

cades indicates whether a subject recorded themselves properly. We therefore discard

a video if more than half of the saccades are LSs or bad saccades. After discard-

ing the videos with too many LSs and bad saccades, we retained 6,787 videos and

235,520 eye movements from 80 subjects. Out of the remaining videos, we calculated

the mean (standard deviation) of the proportions of each label in a video. There are

1% (4%) of LSs and 3% (5%) of bad saccades. That is, on average, 96% of the sac-

cades are good saccades or declared errors. We noticed that, since in the Deployment

Stage we also implemented anti-saccade tasks, the proportion of errors is much larger

than the proportion in the Validation Stage. Moreover, with the improvement of the

saccade-latency measurement, the proportion of bad saccades is much lower.

As shown in Figure 2-6, there are also more subjects with multiple recording

sessions in the Deployment Stage than in the Validation Stage where there were 11

subjects. In Figure 4-2, we show the distribution of the number of days of recordings

per subject with multiple recording sessions.
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Figure 4-2: Distribution of the number of days of recordings from subjects with
multiple recording sessions.

4.1.2 Individual Distribution Modeling

With the accessibility to sizable data, we can study individual distributions, instead

of only reporting the population mean as in most clinical literature. Figure 4-3 shows

normalized saccade-latency distributions for five subjects measured in the Validation

Stage. These subjects were selected to illustrate the range of intra- and inter-subject

variation among our study cohort. The distributions show variable degrees dispersion

and skewness, with some subjects having a significant fraction of latencies above 200

ms.

It has been suggested that reaction times follow log-normal distributions [63]. We

tested this hypothesis on our recordings by fitting a log-normal distribution to the sac-

cade latency distributions of the individual recording sessions, and also to the saccade

latency distribution of each subject for which we aggregated each subject’s measure-

ments across recording sessions. The log-normal distributions were truncated at 80

ms to reflect the censoring we imposed on the minimum saccade latency. The details

of the log-normal fitting was described in Appendix C. The Kolmogorov-Smirnov test

was used with the significance level set to 0.05 to test the null hypothesis that the

saccade-latency distributions can be described by a truncated log-normal distribution.

Of the 158 individual saccade-latency distributions (one for each recording session)
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Figure 4-3: Saccade latency distributions for five self-reported healthy individuals
from the Validation Stage. µ is the sample mean, σ is the associated sample standard
deviation, and n is the total number of observations. Saccade latencies below 80 ms
were censored. The estimated log-normal probability density functions are shown in
red.

across all subjects, 155 (or 98.1%) distributions were not significantly different from

a log-normal distribution (p<0.05). When the data from across different recordings

sessions were aggregated into a single distribution for each subject, 26 out of the 29

(89.7%) distributions were not significantly different from a log-normal distribution

(p<0.05).

4.1.3 Day-to-day Variations

Besides the variations in the distributions, there are also day-to-day variations. To

analyze these variations, we group the measurements by days. For each day of mea-

surements, we calculate four eye-movement features – median pro-saccade latency,

pro-saccade error rate, median anti-saccade latency, and anti-saccade error rate. We

use the median rather than the mean to reduce the impact of outliers. We then

can estimate the day-to-day variations by calculating the standard deviation of these

daily eye-movement features. Figure 4-4 shows the distribution of the standard de-

viations from subjects with more than five days of recordings. We notice significant

inter-subject variability in the day-to-day variations. Since we assume that these day-

to-day variations are not caused by disease progression, we aim to examine potential

sources of these day-to-day variations as these sources may be confounding factors to

disease progression.

The day-to-day variations can be introduced by measurement errors, changes in
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Figure 4-4: The histogram of the standard deviation of four daily eye-movement
features – pro/anti-saccade latency/error rate from subjects with more than five days
of recordings.
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the task-performing strategies, and fatigue effects. As discussed in [64], measurement

errors can be classified into random errors and systematic errors. Since random

errors affect the measurements of each saccade randomly, they only contribute to the

variations within a day. On the contrary, systematic errors bias all measurements

in a recording session, and thus these errors contribute to the day-to-day variations.

These systematic errors can, for example, be caused by the differences in the recording

setup. To analyze the effect size of random errors, we can use bootstrapping to

estimate the variations within a day. Figure 4-5 shows the four eye-movement features

over days from two example subjects with the 95% confidence interval estimated by

bootstrapping. We see that the variations across days are larger than the variations

within a day. Therefore, we know that random errors cannot fully explain the day-

to-day variations.

Besides systematic errors, the day-to-day variations can also be caused by a sub-

ject’s task-performing strategy. This effect can be illustrated by Subject 4 in Fig-

ure 4-5. We observe that the trajectories of pro/anti-saccade latency are similar. The

trajectories of pro/anti-saccade error rate are also similar. However, the trajectories

of latency and error rate are opposite to each other. More precisely, we notice that

latencies measured around Day 35 are larger whereas error rates measured around

Day 35 are smaller. We hypothesize that the subject was trading-off between accu-

racy and speed when performing the tasks. That is, by moving their eyes faster, a

subject may attain a lower latency and a higher error rate, and vice versa. However,

not every subject has a clear strategy. As shown in Figure 4-5, Subject 5’s strategy

is not as clear as Subject 4’s. A strategy naturally introduces correlation across fea-

tures, which we analyze in the next section. Studying these correlations can help us

understand how strategies vary across subjects.

Next, we study fatigue effects on day-to-day variations. As mentioned in Sec-

tion 2.2, after each recording, the app asks the subject to answer how tired they felt

on a score from 1 (not tired at all) to 5 (very tired). Similar to the eye-movement

features, we can group the recordings within a day and calculate the median fatigue

level. However, as shown in Figure 4-6, 4-7, 4-8, 4-9, these scores do not seem to cor-
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Figure 4-5: Median saccade latency and error rate over days from two subjects. The
error bars indicate 95% confidence intervals. Here the index numbers for the subjects
follow the experiment result shown in Figure 4-14 where Subject 4 and 5 are the
subjects with the fourth and fifth most data in the experiment.
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Figure 4-6: The daily median pro-saccade latency and the corresponding median
self-reported fatigue level from six example subjects.

relate with any eye-movement features. Nevertheless, for several reasons, we cannot

conclude that tiredness has no effect on eye-movement features. First, some subjects

may interpret the tiredness as mental exhaustion while others interpret it as the sore-

ness in the eyes. In addition, there may be confounding factors. For example, some

subjects mentioned that their minds wandered off while performing the tasks. There-

fore, we may need to consider asking subjects how focused they are during the task

instead. Third, we notice that subjects tend not to choose 5 (very tired). Therefore,

we hypothesize that a score from 1 to 3 might be more indicative.

Finally, we notice that in Subject 4 in Figure 4-5, the eye-movement features

change gradually over time. It suggests that there is correlation across time. Sys-

tematic errors, task-performing strategies, and tiredness all may be the cause of this

correlation. By contrast, the anti-saccade error rate in Subject 5 in Figure 4-5 changes

more abruptly. The individualized model we develop should be able to learn these

different characteristics.
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Figure 4-7: The daily pro-saccade error rate and the corresponding median self-
reported fatigue level from six example subjects.
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Figure 4-8: The daily median anti-saccade latency and the corresponding median
self-reported fatigue level from six example subjects.
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Figure 4-9: The daily anti-saccade error rate and the corresponding median self-
reported fatigue level from six example subjects.

4.1.4 Correlation across Eye-Movement Features

As mentioned in the last section, the task-performing strategies may introduce the

correlation across the eye-movement features. As shown in Figure 4-5, Subject 4 and

5 may have different strategies. To further understand the strategy differences among

subjects, Figure 4-10 shows the correlations across the eye-movement features from

five example subjects. Here, Subject 1 and 4 present a trade-off between latency

and error rate. The strategies in Subject 2, 3 are slightly different from the latency

and error rate trade-off. It is not clear what Subject 5’s strategy is. To design an

individualized longitudinal model, we need to design individualized parameters to

learn the correlations across eye-movement features to account for these differences.

4.1.5 Relationship between Eye-Movement Features and Age

With the data collected in the Deployment Stage, we can also analyze the responses

of eye movement features in different age groups (Figure 2-6). This is important

because it gives us a baseline when we compare the results with data from patients.
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Figure 4-10: The correlation across the four eye-movement features from five example
subjects. Stars mark the significance.

We calculate the mean saccade latency and error rate for each individual and then

compute the mean and standard error of the individual mean saccade latencies and

error rates per age group. As a result, the mean of an age group is not biased towards

those subjects who provided more recordings. To evaluate the correlation between

age and eye movement features, we compared our result with [65, 66], where data

were collected from specialized equipment (DC electrooculography with a head rest)

in a controlled environment. We notice that [65] defined an anticipatory saccade as

any saccade (including errors) with latency < 90 ms. To evaluate how changing this

threshold may affect the result, we show the data with and without this anticipation

threshold (Figure 4-11).

Several observations are worth noting. First, since anti-saccade tasks are more

complex and require more cognitive processing [16, 17, 15], the mean anti-saccade

latency and anti-saccade error rate in every age group is larger than the corresponding

mean pro-saccade latency and pro-saccade error rate. Moreover, we see that the

saccade latency is positively correlated with age, whereas the correlation between error

rate and age is not significant. These observations are in agreement with the data by
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Figure 4-11: Eye movement features as a function of age with saccades > 0 ms: (a)
mean saccade latency (b) mean error rate, and with saccades > 90 ms: (c) mean
saccade latency (d) mean error rate. The bars showed one standard error.
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Muñoz et al. [65], though the actual saccade latency values in our study tend to be

lower than those reported by Muñoz et al. Our results suggest that our measurement

system and processing pipeline can identify similar trends as shown in the clinical

literature. Another observation is that the definition of anticipatory saccades affects

the measured pro-saccade latency and error rate. On one hand, this observation is

reasonable, since pro-saccade tasks are much easier to perform and errors tend to be

caused by anticipation. On the other hand, while there is no consistent definition of

anticipatory saccades in the literature, our observation highlights that they should be

carefully defined.

We analyzed not only the mean but also the distribution of saccade latencies.

To do so, we analyzed the mean pro-saccade latency of each subject in seven age

groups and chose from each age group the subject with the median mean pro-saccade

latency as the representative subject. In Figure 4-12, we showed example saccade

latency distributions of these representative subjects. As in the Validation Stage, we

still observed that there are significant intra- and inter-subject variations in saccade

latency across our study cohort, which suggests that aggregated results may lose the

information encoded in individual distributions.

4.2 Longitudinal Model

In this section, we design a Gaussian Process (GP) model that 1) can character-

ize longitudinal eye-movement features from healthy subjects and 2) is sufficiently

flexible to be extended to a disease progression model. GP is popular for disease

progression modeling for two reasons. First, GP is a nonparametric model and its

complexity can be adapted to the complexity of the training data. Compared to a

linear model which can only characterize a linear function, GP can characterize an

infinite dimensional function. Thus, it is more flexible than a linear model or any

model consisting of a finite number of basis functions. Secondly, because any finite

samples from GP form a Gaussian distribution, its learning and inference steps are

theoretically feasible. However, because the model adapts to the complexity of the
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Figure 4-12: Representative normalized distributions, shown as probability density
functions (PDFs), of pro-saccade (blue) and anti-saccade (red) latencies for each
decade in age of the study population. Subjects whose mean pro-saccade latency is
the median of the corresponding age group were chosen to represent each group. No
censoring was applied to eliminate anticipatory saccades. AVG: average latency; SD:
standard deviation; N: number of eye movements.
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training data, the computation complexity of both learning and inference increases

significantly as the size of the data grows. [67] provides a review of work on scalable

GPs. While the computation complexity is not a concern with the amount of data we

currently have, we show in Section 4.2.5 that stochastic variational inference for GP

(SVI-GP) [68, 50] can be applied to our model to reduce the computation complexity.

We design candidate models and present the motivations behind the design in Ap-

pendix D. We then evaluate the performances of these candidate models and discuss

how the final model can be extended to a disease progression model.

4.2.1 Data Preprocessing and Notations

Same as in Section 4.1.3, we group the measurements by day. We calculate the median

pro/anti-saccacde latency and pro/anti-saccade error rate per day. Since the day-to-

day variations vary across subjects, we normalize each subject’s data by the mean

and variance before fitting the data to the model. There are several implications

from this preprocessing step. To begin with, with the variations normalized, the

model is designed to learn the shape of the longitudinal data instead of the scale

of the variability. Moreover, since after re-scaling, the variability across subjects is

similar, the model we design to fit all subjects can be simpler and can be less prone

to over-fitting. However, if the scale of the day-to-day variations are indications of

difference disease states, we may need to extend the model.

Before introducing the candidate models, we first define the notations. We con-

sider eye movement features yp = {ypi}4i=1 where ypi = {ypin}Np

n=1, p denotes the p-th

subject, i denotes the i-th feature, n denotes the n-th day of measurements, and Np

denotes the number of days of measurements from the p-th subject. We denote the

corresponding day of measurements as tp = {tpn}Np

n=1. Notice that we can still use GP

to do inference if there is any missing measurements. Such condition may happen

when 1) a subject decides to only take pro-saccade tasks or anti-saccade tasks in a

day 2) the recordings are discarded because more than half of the saccades are LSs.
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4.2.2 Model Setup

With the notations, we can present our candidate models. In addition, we provide

some remarks about the strengths and the weaknesses of these models. The motiva-

tion behind these models is discussed in Appendix D.

Baseline model

p(yp|gp) =
4∏
i=1

N∏
n=1

N(ypin;µpi, σ
2
i ), (4.1)

where µpi is the mean of the i-th feature from the p-th subject.

Remark: The baseline model assumes the day-to-day variations can be modeled

as random noise. Therefore, the correlation across time and the correlation across

the eye-movement features are assumed zero.

Multi-task model

p(yp|gp) =
4∏
i=1

N∏
n=1

N(ypin;wpigp(tn), σ2
i ), (4.2)

where

gp ∼ GP (0, Kg(t, t′)), (4.3)

and Kg(t, t′) = (ag)2 exp{− |t−t
′|

lg
}.

Remark: This model is a simplification of the multi-task model described in

Appendix D. There are two reasons why we choose a simplified form. The first

reason is interpretability. Motivated by Subject 4 in Figure 4-5, we assume that

there is an underlying process gp(tn) shared across the four eye-movement features,

and that the scale wpi of this underlying process on each feature is associated with

each subject’s task-performing strategy. For example, the signs of wpi for pro-saccade

latency and anti-saccade latency will be the same for Subject 4. The second reason

is to avoid overfitting. With the number of data we have per subjects, learning four

individualized parameters per subject is a reasonable choice.

In contrast to wpi that is learned per subject per feature, the hyperparameters

σ2
i , a

g and lg are shared across subjects. We notice that if for subject p, the effect
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size of the shared process on feature i is smaller(larger) than another subject, i.e.,

|wpi| < |wpi′| (|wpi| > |wpi′|), then since ag is shared across subjects, |wpigp(t)| will also

be smaller(larger). However, since σi is shared across subjects, it cannot be learned

to be larger(smaller) to compensate for a smaller(larger) |wpigp(t)|. Therefore, this

model may suffer if the effect size of the shared process on the features is not uniform

across subjects.

Feature-specific model

p(yp|hp) =
4∏
i=1

N∏
n=1

N(ypin;hpi(tn), σ2
i ), (4.4)

where

hpi ∼ GP (0, Kh
i (t, t′)), (4.5)

and Kh
i (t, t′) = (ahi )

2 exp{− |t−t
′|

lhi
}.

Remark: This model assumes that all features are independent. This assumption

contradicts with the observation in Figure 4-5. While one may still use this model

to predict the values of missing eye-movement features, this model cannot learn indi-

vidualized strategies. However, this model can be extended as suggested by [39, 40]

to account for the correlation across the subjects.

Mixed model

Motivated by the limitations in the presented multi-task model and the feature-

specific model, we designed a mixed model as follows:

p(yp|gp) =
4∏
i=1

N∏
n=1

N(ypin;wpigp(tn) + hpi(tn), σ2
i ), (4.6)
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where

gp ∼ GP (0, Kg(t, t′)),

hpi ∼ GP (0, Kh
pi(t, t

′),

Kg(t, t′) = exp{−|t− t
′|

lg
},

Kh
pi(t, t

′) = a2i (1− w̃2
pi) exp{−|t− t

′|
lhi
},

(4.7)

and

wpi = aiw̃pi, w̃pi ∈ (−1, 1). (4.8)

Remark: As noted in the remark in the multi-task model, the multi-task model

assumes that the effect size of the shared process is uniform across subjects. However,

this belief contradicts with the intuition shown in Figure 4-5, where the data from

Subject 4 can be explained by a shared process but not the data from Subject 5. Thus,

in this model, we include a feature-specific GP. We notice that here if a subject’s |w̃pi|

is small, then the term |wpigp(t)| will be small. However, with a smaller |w̃pi|, the

covariance function of the hpi(t) will be larger. As a result, |hpi(t)| will be larger.

That is, |w̃pi| not only controls how the four features are correlated, it also controls

the effect size of the shared process.

4.2.3 Model Learning

The hyperparameters include {wpi, w̃pi, ag, ahi , ai, lg, lhi , σi}. As suggested by [47], these

hyperparameters are learned by maximizing the likelihood functions. The maximiza-

tion is performed using gradient descent with momentum (learning rate= 0.001 and

momentum= 0.9).

4.2.4 Model Evaluations

To evaluate the candidate models, we use two performance metrics – normalized L2

error and normalized log-likelihood. Say the testing data is (t∗, y∗) with N∗ data

points and the algorithm predicts the values at t∗ to be distributed as N(µ∗,Σ∗).

The normalized L2 error can be defined as ‖y∗−µ∗‖2‖y∗‖2 . Notice that since we remove
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the mean before fitting the data, for the baseline model, we have µ∗ = 0. Therefore,

the normalized L2 error for the baseline model is one. However, the normalized L2

error does not quantify the uncertainty estimate Σ∗. To incorporate the uncertainty

estimate, we can define the normalized log-likelihood as follows:

1

N∗
log p(y∗) = −1

2
log(2π)− 1

2N∗
log |Σ∗| −

1

2N∗
(y∗ − µ∗)TΣ−1∗ (y∗ − µ∗). (4.9)

A model performs well when the normalized L2 is small and the normalized log-

likelihood is large.

We first evaluate the performance of these models over different number of days

of recordings. We can imagine that since the mixed model is the most complex, it

may overfit if the training data is not sufficiently large. However, the other candidate

models do not provide the same flexibility in modeling the task-performing strategies

as the mixed model. Therefore, as we collect more data, the mixed model may

outperform the other models. After we understand how many days of recordings is

sufficient to characterize a subject’s eye-movement features, we next evaluate how

well the candidate models characterize the correlation across features from subjects

with sufficiently many data. Finally, we evaluate whether a linear trend should be

included in the model, which may account for learning effects.

Number of Days of Recordings

In order to understand how many days of recordings is needed, we analyze subjects

with more than 60 days of recordings. As shown in Figure 4-2, there are five subjects

with more than 60 days of recordings. We remove one subject because the subject’s

pro-saccade latency is larger than the anti-saccade latency and we are uncertain

whether the subject understands the task. To test the performance of the models

with N = 15, 25, 35, 45, 60 days of recordings, we keep the first N days of recordings

and perform 3-fold cross validation with data missing at random. For each fold, we

average over the subjects and acquire one normalized L2 and one normalized log-

likelihood. In Figure 4-13, we take average over the three folds and the error bars
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mark the maximum and the minimum values from the three folds.

Several observations can be made. First, we notice that GP-based models out-

perform the baseline when there are more than 25 days of recordings regarding both

normalized L2 and log-likelihood. Since the baseline model does not assume correla-

tion across time, this observation suggests that there may be correlation across time.

That is, we can characterize eye-movement features from healthy subjects better than

assuming that healthy subjects have fixed eye-movement features and all the day-to-

day variations are caused by random noise. In addition, with more than 25 days of

recordings, a mixed model performs the best, followed in order by the feature-specific

model, the multi-task model, and the baseline. Without assuming the correlation

across the features, the feature-specific model can still perform similarly to a mixed

model since it can predict a missing data point using its neighboring data. However,

the mixed model outperforms the feature-specific model since the correlation across

the features can help the prediction and reduce the uncertainty in the prediction.

The multi-task model also learns the correlation across the features by assuming an

underlying shared process across the four eye-movement features. However, as ex-

plained in the remark in Section 4.2.2, the multi-task model assumes that besides the

shared process across all four features, all the other day-to-day variations are caused

by noise. Therefore, it may not characterize eye-movement features from some sub-

jects such as Subject 5. As a result, it generally performs worse than the mixed model

and the feature-specific model.

Correlation across Features

In the last section, we notice that a GP model can use the correlation across time

to predict the missing data from neighboring data. To evaluate how well a model

characterizes the correlation across the features, we remove a continuous segment of

a feature instead of randomly removing data as in the previous experiment. In this

case, a GP model cannot use the neighboring data to predict the missing data but

use the other features. More precisely, for each subject, we cut the data into three

segments and remove the middle segment of each of the four features, one at a time.
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Figure 4-13: The performance of the baseline and the three GP models with different
number of days of recordings regarding (a) normalized L2 and (b) normalized log-
likelihood. The experiments were performed using 3-fold cross validation. The error
bars show the maximum and minimum values from the three folds.

That is, there are two thirds of the recordings with four features intact and one thirds

of the recordings missing one feature. We test it on subjects with more than 45 days of

recordings since in there would be 30 (>25) days of recordings with the four features

for the models to learn the correlation. We then average over the four features and

show the performance of the models in Figure 4-14.

We notice that regarding normalized L2, the performance of the feature-specific

model is comparable to the baseline in all five subjects. This is to be expected

since the model assumes all the features are independent. As shown in Figure 4-

10, almost all the features from Subject 1 and Subject 4 are significantly correlated.

As a result, we see in Figure 4-14 that the multi-task model and the mixed model

perform better than the baseline in Subject 1 and Subject 4. To observe it more

closely, we show in Figure 4-15 how the missing pro-saccade values from Subject 4

are predicted by the three GP models. As shown in Figure 4-5, it is clear that the

missing data can be predicted from the anti-saccade latency. We see that in Figure 4-

15(b), since the feature-specific model fits each model independently, it can only

assume the pro-saccade latency increases gradually from Day 25 to Day 60. However,

with the assumption of a shared process, both the multi-task model and the mixed

model can predict the trend of the missing data using the anti-saccade latency. In

addition, since the mixed model is more flexible than the multi-task model regarding
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Figure 4-14: The performance of the baseline and the three GP models on subjects
with more than 45 days of data regarding (a) normalized L2 and (b) normalized log-
likelihood. Subjects are ordered by their number of recordings in decreasing order.

the effect size of the shared process, we see that the mixed model performs better than

the multi-task model. As for normalized log-likelihood, we see that the mixed model

generally performs the best. However, in Subject 5, the baseline model performs the

best. If we look at the correlations across Subject 5’s features in Figure 4-10, we

notice that the features are not significantly correlated. As a result, a baseline model

may be least prone to over-fitting and can perform the best.

We further compare the learned correlation from the mixed model with the esti-

mated correlation from the data. As shown in Figure 4-16, the model can learn the

signs of the correlation correctly if the correlation is significant. However, we also

notice that the learned correlations seem to be smaller in general when compared to

the estimated correlations from the data. There may be two reasons behind it. First,

the mixed model only assumes a shared process across the four features. As presented

in Appendix D, without considering the impact of the noise, it assumes a rank-one

correlation across the features, which is a simplification. Second, the correlations are

only learned from two thirds of the data. We expect the model to learn the correlation

better as more data are used in the training process.
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Figure 4-15: The performance of the three GP models on Subject 4 in Figure 4-5 with
missing pro-saccade latency values – (a) the multi-task model, (b) the feature-specific
model, and (c) the mixed model. The training data, the testing data, the predictions,
the learned shared processes, and the two-standard-deviation bounds are shown. In
the multi-task model, the prediction is the same as the learned shared process.

Linear Trend

In the mixed GP model, we assume the mean functions of hi(t) to be zero. In this

section, we test whether the model performs better if we instead assume the mean

functions to be linear. That is, whether there is a significant linear trend in the data.

To do so, we modify the mixed model as follows:

p(yp|gp) =
4∏
i=1

N∏
n=1

N(ypin;wpigp(tn) + hpi(tn), σ2
i ), (4.10)

where

gp ∼ GP (0, Kg(t, t′)),

hpi ∼ GP (Φ
(i)
ind(t)

T bpi, K
h
pi(t, t

′),

Kg(t, t′) = exp{−|t− t
′|

lg
},

Kh
pi(t, t

′) = a2i (1− w̃2
pi) exp{−|t− t

′|
lhi
},

wpi = aiw̃pi, w̃pi ∈ (−1, 1),

(4.11)

and

bpi ∼ N(0, B(i)). (4.12)

Here, Φind(i)(t) are the two bases (the slope and the intersection) for the linear func-

tions and bpi are the corresponding coefficients. We assume that not all subjects may
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Figure 4-16: The correlation estimated from the data versus the correlation learned
by the mixed model.
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Figure 4-17: The performance of the baseline, the mixed model, and the mixed
model with a linear trend on subjects with more than 45 days of data regarding
(a) normalized L2 and (b) normalized log-likelihood. Subjects are ordered by their
number of recordings in decreasing order.

present a linear trend. As a result, these coefficients are learned for each individual

p and are drawn from a population distribution N(0, B(i)). We simplify the setup by

assuming that B(i) is diagonal. That is, there are two hyperparameters to learn for

each i. In total, this model has eight more hyperparameters to learn than the mixed

GP model.

To test whether a model with a linear trend helps, we test 3-fold cross validation

on randomly missing data from subjects with more than 45 days of data. As shown

in Figure 4-17, we observe that the performances with and without a linear trend are

almost identical. Likely due to overfitting, the performance with a linear trend model

is slightly worse the performance without a linear trend.

4.2.5 Extension

While the mixed model generally characterizes the data we have collected, it may

need to be modified to account for the correlation across subjects as we collect data

from more subjects. For example, we may discover that the data can be grouped into

sub-population based on covariates such as gender, age, education levels, as suggested

in [39, 40]. Moreover, once we have data from patients, we need to evaluate whether we
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can use the data to learn their underlying disease progression. Thus, in Section 4.2.5,

we propose how the multi-effect model in [39, 40] can be applied to our mixed model

to characterize the effects of covariates and potentially learn the disease progression.

Another consideration is the computation complexity. The computation complex-

ity for a multitask GP is O(P 3N3), which grows significantly as N increases. There-

fore, we also show how stochastic variational inference for GP [68] can be applied to

our extended model. By using M induced points, the computation complexity can

be reduced to O(P 3M3).

Model Extension for Patients

As in the mixed model, the extended model can be written as follows:

p(yp|gp, hp) =
4∏
i=1

N∏
n=1

N(ypin;wigp(tn) + hpi(tn), σ2
i ) (4.13)

To incorporate the individual effect, the sub-population effect, and the population

effect as discussed in [39, 40] and in Appendix D, we can assume hpi as follows:

hpi ∼ GP (Φ(i)
pop(t)

TΛ(i)xp + Φ
(i)
sub(t)

Tβcp,i + Φ
(i)
ind(t)

T bpi, K
h
i (t, t′)), (4.14)

cp|xp ∼Multinomial(πcp), πcp ∝ expwTc xp, (4.15)

where cp is the cluster subject p belongs to. Once the cluster subject p belongs to is

determined, a corresponding coefficient vector βcp,i is assigned. Notice that Eq.(4.14)

looks almost the same as Eq.(D.8), except that here the model is simplified. In [40],

if two subjects belong to the same cluster, their features may still belong to different

clusters. In our case, if two subjects belong to the same cluster, their sub-population

effects will be the same.
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Similar to the model in [40], we assume

bpi ∼ N(0, B(i)). (4.16)

Notice that here we do not let bp ∼ N(0, B). Therefore, in this model, the depen-

dency across hpi is learned only through the sub-population term. One may consider

generalizing this model to further impose dependency across features in the individual

component. We do not consider it in this model to keep the model simpler.

As for gp, we continue to assume that the mean function is zero. That is,

gp ∼ GP (0, Kg(t, t′)). (4.17)

As explained in Appendix D, the dependency across the features imposed by gp is

designed to model the task-performing strategies whereas the dependency imposed

by the sub-population effect is designed to model how the disease progression affects

all four features.

The derivation of how inference can be performed on this model is shown in

Appendix E. We can imagine that the mean functions of the GP models can be used

to characterize the underlying disease progression. However, since we do not have

data from patients, we leave the evaluation of this model for future work.

Stochastic Variational Inference

Several work has been proposed to reduce computation complexity for GP. We show

in Appendix F that we can apply stochastic variational inference for GP [68] to our

extended model.

4.3 Discussion and Summary

Our ultimate goal of this work is to evaluate whether eye-movement features can be

used to track the progression of neurodegenerative diseases. Unfortunately, there are

few studies that track the longitudinal changes in saccade latency among patients [19,
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20], especially within the same cohort. Because the data in these studies were collected

in clinical environments and the analyses usually involved manual removal of outliers,

longitudinal measurements are sparse (typically with an interval greater than six

months). Therefore, current methods cannot assess disease progression sufficiently

frequently to detect disease onset or efficiently evaluate treatment effects.

With the system and the methods developed in Chapter 2 and Chapter 3, we are

able to collect significantly more saccades and more sessions per subject than previ-

ously possible – 6,787 recordings and 235,520 eye movements from 80 subjects, 45 of

whom with multiple recording sessions. These sizable data allow us to study the intra-

and inter-subject variability of individual saccade distributions, the day-to-day varia-

tions in the eye-movement features, the correlation across the eye-movement features,

and the correlation between the features and age. By understanding the character-

istics of the eye-movement features from healthy subjects, we can put into better

context the changes seen in patients with neurodegenerative disease and potentially

use these features to track the disease progression.

4.3.1 Intra- and inter-subject variability in distributions

The rich information regarding the distinctive shape and parameters of the individual

distributions is lost when saccade latency values are pooled, which is the case in most

literature. As seen in Figure 4-3, some individuals have a tendency to make more sac-

cades with shorter latencies and others to make more saccades with longer latencies.

In combining all the data into a single distribution, these individual characteristics –

that have been linked to specific brain pathologies [69, 70] – are lost. Saccade latency

intra-subject variability is also lost when data is pooled. If instead the information

regarding this variability were preserved, it could be used as a feature to assess the

cognitive state of a subject. For example, some studies suggest that intra-subject

variability is larger in some conditions compared to normal subjects [71, 72]. Our ac-

cessible, low-cost measurement system enables widespread data collection and hence

avoids having to combine data from different subjects, allowing us to preserve the

distinctive information in each individual saccade latency distribution (Figure 4-3).
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In addition to the large intra- and inter-subject variability, we observed that the

saccade latency distribution of the majority of the subjects may be modeled as a

log-normal distribution. This observation is consistent with [73], in which neural

mechanisms are discussed that might give rise to log-normally distributed reaction

times. It might therefore be sufficient to characterize individual saccade-latency dis-

tributions using the two parameters of a log-normal distribution (log−mean and

log−variance) and analyze how these parameters change through time.

In this work, when we build the individualized longitudinal model, we only analyze

the daily median saccade latency over time. One can imagine that the model can be

extended to characterize the changes in the daily distributions by including higher

moments (e.g., variance) or by tracking the two parameters of the log-normal models.

Since the variance of the estimate of a higher moment may be larger, one may need to

consider grouping several days of data to reduce the variance. We leave this analysis

for future work.

4.3.2 Day-to-day variations

Our longitudinal data collection also enables us to study the day-to-day variations in

the eye-movement features. Figure 4-4 shows that not only there is significant inter-

subject variability in the saccade latency distributions, there is also significant inter-

subject variability in the day-to-day variations. We further analyze the variations

within a day using bootstrapping and show that the variations within a day is smaller

than the variations across the days. This observation suggests that the source of the

day-to-day variations cannot be solely explained by random measurement noise.

To examine the fatigue effects on the day-to-day variations, we inspect the correla-

tion between the day-to-day variations and the self-reported tiredness levels. However,

we cannot conclude the fatigue effects due to potential confounding factors such as

a subject’s concentration level and a subject’s tendency to not choose the extreme

scores. We may need to improve the tiredness question we ask at the end of each

recording to acquire more meaningful data. We may also consider more objective

measurements such as eyelid droops and the number of blinks.
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4.3.3 Correlation across eye-movement features

Another source of day-to-day variations is the change of a subject’s task-performing

strategy. A subject may be testing different strategies throughout the course of the

recordings. As shown in Figure 4-5, Subject 4 seems to tradeoff between speed and

accuracy. Therefore, when the latency values decrease, the error rates rise, and vice

versa. This task-performing strategy introduces the correlation across eye-movement

features. As shown in Figure 4-10, we see that Subject 1 and Subject 4 present

significant correlations across the eye-movement features whereas the correlations

across the eye-movement features in Subject 5 are insignificant. This observation

suggests that not all subjects have similar strategies. Therefore, when we design an

individualized longitudinal model, we need to model individualized correlations.

4.3.4 Age and eye-movement features

Since we also collect data from subjects across the adult spectrum, we can study the

correlation between the eye-movement features and age and compare the result with

the literature. As in the literature, we observe that anti-saccade latency and error rate

tend to be larger than pro-saccade latency and error rate, respectively. Across the

age range, we also observe that saccade latency is positively correlated with age while

a strong relationship between error rate and age is not apparent. This observation

also matches the observation in prior work [65, 66]. Although our saccade latency

values are smaller than values reported in [65, 66], our values are within the range of

latency values reported in the clinical literature [52, 16, 31, 74]. Several hypotheses

can be made to explain why our values may be smaller. First, our recording setup is

less constrained. As mentioned in [9], recording subjects in dedicated environments

may affect a subject’s cognitive awareness. Second, our subjects are mostly graduate

students or professors. It is likely that education level may affect reaction time. We

also have fewer subjects in the 70’s and 80’s than in other age brackets. While one of

the three subjects in the 70’s has latency values much closer to the values reported

in the literature, two other subjects have smaller latency values.
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We also observe that the definition of an anticipatory saccade may significantly

affect the measured pro-saccade latency and error rate. While the definition is not

consistent across the clinical literature, our observation suggests that a more careful

investigation into the effect of picking a latency threshold for anticipatory saccages

on mean saccade latency is warranted. Some investigations designed tasks to avoid

anticipatory saccades [75, 76], for example, by randomizing the length of the fixation

period or by including more positions where a stimulus can be presented. However,

we suspect that these modifications may result in an increased error rate. Since we

aim to design and validate our error detection algorithm in this work, we did not

implement either of these modifications. Nevertheless, it is worth analyzing how

these modifications may affect saccade latency and error rate.

4.3.5 Longitudinal Model

With a better understanding of how eye-movement features change over time in

healthy subjects, we can design individualized longitudinal models that can char-

acterize the features in the hope that the models can be extended for monitoring

disease progression. GP models have been commonly used in disease progression

modeling [39, 40, 41]. In particular, we evaluated the performances of three GP mod-

els. While all these models are special cases of a multi-task GP model, the mixed

model particularly was designed based on the intuition we learned about individual

task-performing strategies. The mixed model can model the effect size of the strategy

flexibly. We compare the three GP models with a baseline model where we assume

that the day-to-day variations are caused by random noise. We notice that when

we have collected more than 25 days of recordings, all three models out-perform the

baseline. It suggests that the eye-movement features are correlated over time and

that we can characterize the eye-movement features better than assuming that they

are fixed over time in healthy subjects. In addition, we evaluate the abilities of the

three GP models in characterizing the correlation across the eye-movement features.

We see that the mixed model performs the best when the correlations across the eye-

movement features are significant. We further inspect the correlations learned by the

108



mixed model. We notice that the signs of the correlations can be learned correctly

when they are significant, which means that the mixed model may learn individual

task-performing strategies.

Last but not least, we test whether the performance can be improved by adding

a linear trend in the mixed model. We notice that the performance hardly changes

after we assume a linear trend. We hypothesize that it is because 1) the learning

effect only lasts for a short period of time and may not be noticeable after 25 days of

recordings 2) the eye-movement features were not affected by disease progression.

Given the number of recordings we have collected, we imagine that while the

mixed model can be a good candidate model, it can be improved to better characterize

more subjects and data collected over a much longer period. We suggest two different

extensions of our current model. The first extension is motivated by [39, 40] to account

for the correlation across subjects. The second extension is motivated by [68, 50] to

reduce the computation complexity. We imagine that as more types of eye-movement

features are collected, one may also consider a model extension that assumes sparsity

in the correlation across eye-movement features as in [41].

In summary, in this chapter, we have studied longitudinal characteristics of pro/anti-

saccade latency/error rate from healthy subjects, which was barely studied in the

literature due to the constrained environment setup. We then use the studied char-

acteristics to design a GP model that can track saccade latency and error rate from

healthy subjects with more than 25 days of recordings, learn the correlation across the

features, and be extended for disease progression modeling. Thus, we can conclude

that we have enabled individualized tracking of saccade latency and error rate from

healthy subjects, which can help put into context how disease progression may affect

these eye movement features.

109



110



Chapter 5

Conclusion and Next Steps

5.1 Conclusion

In this thesis, we developed, validated, and deployed an app to allow for self-recording

of pro/anti-saccade tasks. We then present a robust and automated pipeline to mea-

sure saccade latency and error rate from these mobile-device recordings. The pipeline

includes a) an eye-tracking algorithm –iTracker-face that is robust to various record-

ing conditions, b) a tanh model for saccade latency measurement that allows for

automated outlier rejection, and c) an error-rate measurement algorithm that can

automatically detect low-signal recordings that should not be further analyzed and

can identify directionally erroneous eye movements.

With this platform in place, we collected over 235,000 eye movements from 80

self-reported healthy volunteers ranging in age from 20 to 92 years, two orders of

magnitude more measurements than in most previous work. These data enabled us

to study the day-to-day variations in saccade latency and error rate from healthy

subjects. We observed significant intra- and inter-subject variability in these day-

to-day variations, which highlights the importance of individualized tracking of eye-

movement features. We then showed that we can track the eye-movement features

from healthy subjects with more than 25 days of recordings using an individualized GP

model. Such a model can help put into context how neurocognitive impairment may

affect eye-movement features. In summary, by enabling app-based saccade latency
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measurements and error rate determination, our work paves the way to use these

digital biomarkers to aid in the quantification of neurocognitive decline and possibly

from the comfort of a subject’s home.

5.2 Future Work

5.2.1 System

We have shown that our app-based eye-movement measurement is user-friendly for

healthy subjects. However, it may need to be improved once we have interacted with

patients. First, we need to re-adjust the app and task design to ensure that the

measurement is user-friendly for patients. Additionally, we may need to keep the app

engaging. As mentioned in [26], the disease stage affects a subject’s willingness to

participate in a study. We may need to think about how to motivate patients to take

recordings on a regular basis without making it burdensome. To achieve these goals,

we should interact with patients and iterate the app design.

Moreover, our app is not restricted to monitor the progression of neurodegener-

ative diseases. Since saccade latency and error rate are assessments of a person’s

neurocognitive states, one may also consider using our app to test the impact of

alcohol and anesthesia on cognitive ability.

In the long run, one may consider replacing our saccade task with a standard

reading task, since the latter can be incorporated into a subject’s usual reading rou-

tine rather than actively requiring a subject to perform a task [77]. However, the

implementation of such an extension is extremely challenging because the precision

of the gaze estimation required for such a task is much finer than our saccade task.

As a result, it is not yet possible with the current state-of-the-art eye-tracking algo-

rithm [78].
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5.2.2 Methods

We have enabled app-based measurements of four eye-movement features – pro/anti-

saccade latency/error rate. Eye-movement features such as gaze amplitude and veloc-

ity [3] may also be affected by disease progression. Thus, we may consider expanding

on the types of eye-movement features we can measure to achieve a better under-

standing of the progression of neurodegenerative diseases. Moreover, as discussed

in [26, 45], different modalities of symptoms may be related to different disease states.

It is likely that no single modality can perfectly model the progression of a disease.

Therefore, besides expanding on the types of eye-movement features we can measure,

we should also expand on the modalities of the features, for example, by including

gait and speech.

5.2.3 Data Analysis

In Section 4.2.5, we mentioned two potential extensions of our models. However, these

extensions do not take into account the following considerations. First, currently we

normalize the data by their day-to-day variations before fitting a model to them. If

their day-to-day variations are affected by disease progression, we may need to modify

the model accordingly. Second, as shown in Section 4.1.2, subjects have various

latency distributions. Since we only consider the values of daily median latency, we

do not consider how the distributions may also be affected by the disease progression.

We may consider including more moments in the eye-movement features or consider

the log-normal distribution model fit. Third, the model assumes stationarity. If it

does not hold, we may need to modify the model accordingly.

Monitor of the disease progression becomes very challenging with the impact of

medication. Medication may affect the eye-movement features without affecting the

disease states. It requires careful analysis on how to separate short-term effects of the

medication from long-term effects of the medication. Xu et al. provided a framework

to estimate individual treatment response [79]. Whether this model can be applied

to ours is worth studying.
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Appendix A

App Synchronization

In this appendix, we detail how we bound the error associated with saccade latency

determination using the app. The accuracy of the saccade latency determination

depends on the following four timings:

• the real timing of the i-th stimulus presentation time si,

• the estimated timing of the i-th stimulus presentation time ŝi from the screen

timestamps,

• the real timing of the i-th saccade onset oi,

• the estimated timing of the i-th saccade onset ôi.

The i-th saccade latency is oi−si whereas the estimated i-th saccade latency is ôi− ŝi.

Therefore, the accuracy of the i-th saccade latency estimation is (oi− si)− (ôi− ŝi) =

(oi− ôi)− (si− ŝi). We can define Ds
i

..= si− ŝi as the error in the screen timestamps

for the i-th stimulus. Similarly, we have oi − ôi = Dr
i + Dt

i where Dr
i is the error in

the recording timestamps for the i-th saccade and Dt
i is the error introduced by the

tanh fitting algorithm. The accuracy of the saccade latency estimation then becomes

Dr
i −Ds

i + Dt
i . While Dt

i was evaluated in [80] to be close to zero, Di
..= Dr

i −Ds
i is

affected by queued access to the processor clock and is related to our app design.

To estimate Di, we designed the following experiment. We placed the device

in front of a mirror and ran a 40-saccade task. With the mirror, we can identify
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the recording frame in which each of the 40 stimuli appears first. In Fig. A-1, for

example, the first stimulus was presented in Frame 85. With the 40 frame indices

and the associated recording timestamps, we can translate these indices into time

instants r̂i (ms), i = 1, . . . , 40. In Fig. A-1, r̂1 ≈ 4398.8322 s. Similarly, from the

screen timestamps, we can obtain the time ŝi when the i-th stimulus is shown on the

screen. Figure A-2, shows ŝ1 to be approximately 4398.8324 s.

Since the stimulus appearing on the screen would be captured by the next camera

frame and the time difference between two frames is 1000
60

ms in a 60-fps recording, with

the errors Dr
i and Ds

i in the timestamps, we have r̂i +Dr
i − 1000

60
< ŝi +Ds

i ≤ r̂i +Dr
i .

That is, r̂i − 1000
60

< ŝi − Di ≤ r̂i where Di is exactly the error in the saccade

latency estimation introduced by the synchronization error between the screen and

the recording.

From the recording timestamps, we can only find one time instant r̃i(D) as a

function of D that satisfies r̃i(D) − 1000
60

< ŝi + D ≤ r̃i(D). In other words, if each

recording timestamp is denoted as tj where j denotes the frame index as in Fig. A-1,

then r̃i(D) := min{tj|tj ≥ si + D}. If our estimated synchronization error D̂ = Di,

we will have r̃i(D̂) = ri. As a result, we can then define

D̂ = arg min
D

∑
i

|r̃i(D)− ri|. (A.1)

With careful app design, we can ensure
∑

i |r̃i(D̂) − ri| = 0. That is, we achieve

D̂ = Di where the estimation of the synchronization error is correct and is constant

throughout each recording.

We observed that an iOS camera changes its shutter duration and ISO based on

the lighting condition, which may affect the accuracy of the recording timestamps. We

showed in Fig. A-3 that the shutter duration does not affect the synchronization error

while ISO is positively correlated with the absolute value of the synchronization error.

As a result, we set the shutter duration to 16 ms, which is close to the maximum

duration 1000/60 ms in a 60-fps recording, to allow for adequate light. To bound

the absoulte synchronization error to be within 5 ms, we restrict the ISO values to
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be less than 1000 by asking the subject to move to a brighter environment if the

automatically determined ISO exceeds 1000.
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Recording 
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Figure A-1: Example for determining r̂i, the time when the i-th stimulus appears. In
this example, the first stimulus appears in recording frame 85 at r̂1 = 4398.8322 s.

Picture 
Index

Screen 
Time

Display Picture 11 Display Picture 13

Figure A-2: Example for acquiring si, the time when the i-th stimulus presents on the
screen. Picture 11 is a black image, and Picture 13 is the image with a left stimulus.
The first stimulus shows up when Picture 13 is displayed. As a result, in this example,
ŝ1 = 4398.8324 s.

(𝑎)

෡ 𝐷
(m

s)

(𝑏)

Shutter Duration (ms) ISO

෡ 𝐷
(m

s)

Figure A-3: The estimated synchronization error as a function of (a) shutter duration
and (b) ISO. Each dot denotes one recording.
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Appendix B

Face Crop Automation and

Chinrest Removal

B.1 Face-crop Automation

To fully automate the signal-processing pipeline of Fig. 3-1, we replaced the manual

face annotation and cropping (Fig. 3-5) with an automated face-detection step. We

tested this automation by recording subjects with a chinrest. With the head sup-

ported by the chinrest, we can expect the position of the face to remain relatively

stable throughout a sequence of saccade tasks and the manually determined face

region to remain valid throughout the subsequent frames of a video recording. To

automate the face-region determination, we used the Viola-Jones face detector [5] and

evaluated the changes in the estimated saccade latencies after this automation on 158

sessions of recordings. The mean absolute differences in the mean per-session saccade

latencies with an NRMSE<0.1 was 1.10 ms with an associated standard deviation of

1.24 ms (Fig. B-1). We therefore conclude that automating the face-detection step

does not materially affect the saccade-latency determination in normal subjects. This

result may be understood by considering that the convolutional layers in iTracker are

trained to properly adjust gaze estimation under translation and scaling differences

in the cropped face. As a result, the shape of the resulting eye-movement traces are

hardly changed given slight differences in the cropped regions of the face.
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Figure B-1: The absolute difference in mean saccade latencies between face crop
based on manual face annotation and automated face detection using the Viola-Jones
algorithm [5].

B.2 Chinrest Removal

Ideally, we would like to enable eye-movement capture and analysis without the need

for restraining the head. Without the chinrest in place, the assumption of limited

head movement throughout the (approximately) two-minute 40-saccade sequence is

bound to be violated. However, the assumption might still be reasonable over the

course of a single saccadic eye movement, of which we typically analyze 600 ms (from

100 ms before till 500 ms after stimulus presentation). To test this hypothesis, we

conducted two sessions of video recordings in four subjects each with and without

the participants’ heads resting on the chinrest (16 sessions in total). We applied the

Viola-Jones face detector to the first frame of each individual saccade tracing and used

the detected face region from the first frame and applied it to every subsequent frame.

If there had been any significant head movements within a single saccade trial, we

would have expected the tanh model to no longer attain low NRMSE fits. When the

Viola-Jones face detector was applied to iTracker-face derived eye-movement traces

on recordings obtained with and without chinrest, most of the traces have compara-

ble signal-to-noise (Fig. B-2). After confirming that the null hypothesis of normally

distributed mean saccade latency cannot be rejected at the 0.05 level (using the

Anderson-Darling test), we performed a formal analysis of variance (ANOVA) to as-

sess whether a significant difference existed between mean saccade latencies measured
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Figure B-2: Two examples of saccadic eye-movement traces in the same subject. (a)
Recording with chinrest, and (b) recording without chinrest. They have a comparable
signal-to-noise level.

with and without chinrest. The ANOVA null hypothesis of a significant difference

was rejected (p = 0.59). We therefore conclude that in our cohort of self-reported

healthy volunteers, the chinrest is not essential to obtaining recordings of sufficient

quality for saccade-onset detection and saccade-latency determination.

The selection of iTracker-face to generate the eye-movement tracings, the NRMSE

threshold value of 0.1 to select traces for inclusion in our analysis, and the Viola-Jones

algorithm for automated face detection on the first frame of each saccade task video

sequence completes the automation of the saccade-latency determination pipeline of

Fig. 3-1. In the next section, we apply this pipeline to determine the intra- and inter-

subject variability in saccade-latency measurements obtained from video sequences

of self-reported healthy subjects, and explore the statistical modeling of the saccade-

latency distributions.
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Appendix C

Lognormal Distribution Fitting

To robustly fit a log-normal model to the session-by-session or aggregate (by subject)

saccade-latency distributions, we log-transformed the saccade latency values and fit

a probit model [81] to estimate the parameters of the log-normal model.

However, since we assume that a saccade with latency value smaller than 80 ms

may be anticipatory, log-latency values below log(80) may not follow the same normal

distribution as values above. As a result, we cannot estimate the mean and standard

deviation of the log-normal model by calculating the mean and standard deviation of

the entire log-latency data.

To address this difficulty, we consider a probit model [81], which fits normally

distributed data into a linear model.

It calculates the cumulative density function FX(x) = P (X ≤ x) of the data X,

and find a transformation function g(z) so that g(FX(x)) becomes linear. With our

assumption, we then can assume that for x ≥ log(80), g(F (x)) is linear. Since one

can use the slope and the x-axis intersection of the linear model to find the mean and

standard deviation of the normally distributed data, we then can apply the linear

model only on log saccade latencies greater than log(80) to find the log mean and

log standard deviation. With a probit model, we are able to fit a distribution on the

desired portion of the data (without fitting the anticipatory data). We can express

the procedures as follows:
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Figure C-1: The probit plot for the log-latency values of subject 001. The blue line
shows the linear fit.

If X ∼ N (µ, σ2), then one can show that

√
2erf−1(2(FX(x)− 1)) =

x− µ
σ

, (C.1)

where erf−1(·) denotes the inverse of the error function, which is defined as

erf(x) =
2√
π

∫ x

0

e−t
2

dt, (C.2)

and FX(x) denotes the cumulated density function of X.

If our y-axis is y = g(x) =
√

2erf−1(2(FX(x)− 1)), then the relationship between

x and y should be linear (this is the probit model). The mean of the data X will be

the intersection of the line with the x-axis, and the standard deviation will be the

reciprocal of the slope.

A typical probit plot for a normal subject’s log-saccade latency values is shown

in Fig. C-1. Instead of fitting a linear line on data with log latency values above

log(80), we fit a linear model on data points lying between 0.05 quantile and 0.95

quantile so that the estimated parameters will be even more robust to outliers. If the

fitting line has a form of y = ax + b, then we estimate the mean value to be −b/a

and the standard deviation to be 1/a. After the mean and the standard deviation of

the log-normal model are estimated, we define the model for each distribution as the

estimated log-normal model truncated at 80 ms.
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Appendix D

Gaussian Process Models

Here we give a concise review of Gaussian Process (GP) models that motivate our

model development. An in-depth overview can be found in [47]. In this chapter, we

first introduce a one-dimensional GP model (where the output is one-dimensional)

and show its learning and inference steps. We then discuss how such a model can

be extended to a multi-dimensional GP. In particular, we study multi-task GPs and

multi-level GPs.

D.1 One Dimensional Gaussian Process

A Gaussian process can be defined as follows: it is a random process where any

finite samples are Gaussian distributed. In our work, the input and output to our

model are time and eye-movement features respectively. As a result, our input is

one-dimensional. In general, the input to a GP model can be multi-dimensional.

However, to be consistent with the notations we use in Section 4.2.1, we keep the

input as time t. We refer curious readers to [47] for the extension.

A GP model can be fully characterized by its mean function and covariance func-

tion. Let

f(t) ∼ GP (m(t), k(t, t′)), (D.1)

where m(t) is the mean function and k(t, t′) is the covariance function. If m(t) is
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not zero, we can simply re-define f(t) as f(t) − m(t). Therefore, without loss of

generality, we can assume m(t) = 0. It is usually assumed that the measurements

can be modeled as a GP with some noise, i.e.,

y(t) ∼ (f(t), σ2), (D.2)

where the variance of the noise is σ2. Assume that the training data is (t, y) =

{(tn, yn)}Nn=1 where N is the number of samples, to predict the value f∗ at t∗, we can

formulate the following: y
f∗

) ∼ N(0,

k(t, t) + σ2In k(t, t∗)

k(t∗, t) k(t∗, t∗)

),

where In is an identity matrix of size n by n. We can then predict f∗ using conditional

distribution to attain

f∗ ∼ N(KT
∗ [K + σ2In]−1y,K∗∗ −KT

∗ [K + σ2In]−1K∗), (D.3)

where K∗ = k(t, t∗), K = k(t, t), and K∗∗ = k(t∗, t∗).

Now we know how inference is performed if we know k(t, t′). The question is

reduced to how to define k(t, t′) and how to learn it. In [47], several covariance

functions are introduced. For our purpose, we use an Ornstein-Uhlenbeck (OU) prcess

which is described as follows:

K(t, t′) = a2 exp{−l−1|t− t′|} (D.4)

Here, a and l are hyperparameters to be learned from the data. This covariance

function is widely used in real-world data (probably more explanation). (Probably

some figures to show what is the meaning behind these hyperparameters.) The hy-

perparameters σ, a, l are commonly trained using maximum log-likelihood. That is,

besides inference, we also know how learning is performed.
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D.2 Multi-dimensional Gaussian Process

To extend a one-dimensional GP to a multi-dimensional GP, we need to model the

correlation across the outputs. In particular, we first present a multi-task GP [48],

which is used to model the correlation across the eye-movement features in our work.

Then, we present a multi-level GP designed by [39, 40]. The idea from [39, 40] can

help us extend our model to incorporate the correlation across subjects.

D.2.1 Multi-task Gaussian Process

The idea of a multi-task GP is known as linear models of coregionalization (LMC) in

the geostatistics literature [49]. In this subsection, we gradually motivate a multi-task

GP in a manner similar to the presentation in [82].

We first consider modeling the output features as a linear combination of latent

processes. That is, we consider fi(t) = ΣQ
q=1wiqgq(t) where gq(t) ∼ GP (0, Ktime,q(t, t

′)).

Notice that the analogy to this model in linear algebra is to find the linearly indepen-

dent vectors that span a vector space. The covariance function Ktime,q(t, t
′)) describes

the correlation across time. With such a model, we can have the following observation:

K(t, t) = Var(



f1(t1)
...

f1(tN)
...

fP (tN)


) = ΣQ

q=1


w2

1q . . . w1qwPq

w2qw1q . . . w2jwPq
...

. . .
...

wPqw1q . . . w2
Pq

⊗Ktime,q(t, t).

If we write

K(t, t) = ΣQ
q=1Kfeature,q ⊗Ktime,q(t, t), (D.5)

then we have:

Kfeature,q =


w2

1q . . . w1qwPq

w2qw1q . . . w2jwPq
...

. . .
...

wPqw1q . . . w2
Pq

 = wqw
T
q ,
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where wq = [w1q, w2q, . . . , wPq]
T . That is, Kfeature,q is a rank-1 matrix and it captures

the correlation across features. Therefore, we can further generalize the model to

become fi(t) = ΣQ
q=1Σ

R
j=1wiqjgq(t). That is, we are allowing multiple copies of gq(t).

Then, we will have Kfeature,q = ΣR
j=1wqjw

T
qj. In this case, the rank of Kfeature,q will

become R if wqj are independent where wqj = [w1qj, w2qj, . . . , wPqj]
T .

D.2.2 Multi-level Gaussian Process

As for modeling the correlation across subjects, a pair-wise correlation model such

as K(t, t′) is not suitable. A multi-level model characterizes the correlation across

subjects by comparing these subjects with a population mean. For example, [39, 40]

use the mean function of a GP model to characterize the difference between individual

and population. [39] designed a model for univariate longitudinal data where as [40]

extended the model for multivariate longitudinal data. Since we can modify the mean

function of our model similarly to account for correlation across subjects as shown in

Section 4.2.5, we present the model in [40] here.

The authors modeled the heterogeneity across individuals by considering three

levels of resolution in the mean function of the GP model: population, subpopulation,

and individual levels. We can express the model as:

ypi(t) ∼ N(fpi(t), σ
2
i ) (D.6)

fpi(t) ∼ GP (Φ(i)
pop(t)

TΛ(i)xp︸ ︷︷ ︸
PopulationLevel

+ Φ
(i)
sub(t)

Tβ(i)
zpi︸ ︷︷ ︸

SubpopulationLevel

+ Φ
(i)
ind(t)

T bpi︸ ︷︷ ︸
IndividualLevel

, Ki(t, t
′)) (D.7)

• The population level: The population level was meant to design the population

effect of the baseline covariates such as gender, race, and age. The effect is

assumed to be linear. Here, Φ
(i)
pop(t) ∈ R2 is a basis function for the i-th feature

which is modeled as a linear expansion of time in [40]. The matrix Λ(i) deter-

mines the mapping from the baseline covariates to the coefficients of the basis

function Φ
(i)
pop(t). This matrix is a hyperparameter to be learned from the data
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and is shared across subjects.

• The subpopulation level: The subpopulation level would affect subjects in the

same cluster in similar ways. The model can be designed to learn the clusters

based on the baseline covariates. Consider there are K clusters of individuals.

We can model the likelihood of subject p to belong to cluster cp as the following:

cp ∼Multinomial(πp), πp,k =
ew

T
k xp∑K

k′=1 e
wk′

T xp
. (D.8)

For each feature i, consider there are Gi clusters, where zpi ∈ {1, . . . , Gi}. We

can then assume that given subject p belongs to cluster cp, the likelihood of

their i-th feature belonging to cluster zpi is as follows:

zpi|cp ∼Multinomial(Ψ(i)
cp ), (D.9)

where Ψ
(i)
cp is a hyperparameter to be learned from the data.

That is, once we know which cluster a subject belongs to, we can learn the

distributions of the clusters their features belong to. Based on the cluster zpi

each feature belongs to, a set of coefficients β
(i)
zpi are assigned. These coefficients

are also hyperparameters to be learned from the data. Φ
(i)
sub(t) are basis func-

tions. They were chosen to be B-spline basis expansion with degree two and

eight interior knots evenly spaced in time.

Remark: We notice that both the multi-task model and the subpopulation

level account for the correlation across the features. The multi-task model

controls the correlation across the features at any given time. In our work,

this correlation can be explained as how a person performs a task. A negative

correlation between latency and error rate may imply a strategy to trade off

between these two features. The subpopulation level controls the correlation

across the coefficients of the basis functions. To make it more intuitive, if the

basis functions are linear, then the subpopulation level learns the correlation

across the “slopes” of the features. That is, the subpopulation level models
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what the overall trends of the features are and how they are correlated. For

example, the disease progression may affect the overall trends of the features.

In this case, we may model the disease progression as in [40].

• The individual level:

This term changes per subject and is designed to capture individual characteris-

tics. Here, [40] modeled it using linear expansion of time. To learn bpi ∈ R2, the

slope and the intercept coefficient for subject p, we may assume bpi ∼ N(0, B(i)).

The covariance matrix Σ(i) is a hyperparameter shared across subjects and can

be learned from the data.

• The covariance function for each subject:

Ki(t, t
′) = a2i exp{−l−1i |t−t′|}. Here, ai and li are hyperparameters to be learned

from the data and are shared across subjects.
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Appendix E

Learning and Inference Steps for

the Extended Model

Here we look at the inference for the p-th subject. Since there is no confusion, we

denote yp as y. We notice that when we fix the cluster cp subject p belongs to, the

distribution of the eye-movement features is Gaussian. Therefore, by introducing

the sub-population effect, the distribution of the eye-movement features becomes a

mixture of Gaussians. As a result, to derive the inference, we can first derive the

inference when the cluster cp is fixed and simply use the mixture-model assumption

to derive the rest. We re-order the indices in y and wrote it as a column vector

y = [yT1 , . . . , y
T
P ]T . If we let fi(t) = ΣQ

j=1wijgj(t) + hi(t), then we have Cov(fi, fi′|c) =

ΣQ
j wijwi′jCov(gj, gj) if i 6= i′ and Cov(fi, fi) = ΣQ

j w
2
ijCov(gj, gj)+Cov(hi, hi|c). (This

is because Cov(hi, h
′
i|c) = 0 if i 6= i′.)

If we write it in matrices it will look like this:

Var(



f1(t1)

.

.

.

f1(tN )

.

.

.

fP (tN )


|c) = Σ

Q
j=1



w2
1j . . . w1jwPj

w2jw1j . . . w2jwPj

.

.

.
. .

.
.
.
.

wPjw1j . . . w2
Pj


⊗ Cov(gj , gj) +



Cov(h1, h1|c) 0 . . . 0

0 Cov(h2, h2|c) . . . 0

.

.

.

.

.

.
.
.
.

.

.

.

0 . . . . . . Cov(hP , hP |c)


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which will become

Var(



f1(t1)

.

.

.

f1(tN )

.

.

.

fP (tN )


|c) = Σ

Q
j=1


w1j

.

.

.

wPj


[
w1j . . . wPj

]
⊗ Cov(gj , gj) +



Cov(h1, h1|c) 0 . . . 0

0 Cov(h2, h2|c) . . . 0

.

.

.

.

.

.
. .

.
.
.
.

0 . . . . . . Cov(hP , hP |c)



By denoting the first term as Kgg and the second term as Khh, we have:

Var(



y11
...

y1N
...

yPN


|c) = Kgg +Khh|c +


1
β1
IN 0 . . . 0

0 1
β2
IN . . . 0

...
...

. . .
...

0 . . . . . . 1
βP
IN


.

If we denote the noise term as Σ, we can similarly get: y
f∗

 |c ∼ N(

0

0

 ,
Kgg +Khh|c + Σ Kgg∗ +Khh∗|c

Kg∗g +Kh∗h|c Kg∗g∗ +Kh∗h∗|c

),

where Kgg∗ , Khh∗|c, Kg∗g∗ , Kh∗h∗|c are all defined similarly.

We can then get

p(f∗|y, t, t∗, c) = N(f∗|Kf∗f |c(Kff |c+Σ)−1y,Kf∗f∗|c−Kf∗f |c(Kff |c+Σ)−1Kff∗|c), (E.1)

where Kff |c = Kgg +Khh|c, Kf∗f = Kg∗g +Kh∗h|c.

Note that to separate out the impact of the mean functions as in Section 2.7
in [47], we can rewrite Khh|c as Khh0|c +Khh1|c where Khh0|c is the covariance matrix
when we do not assume any mean function, and Khh1|c can be expressed as follows:

Khh1|c =



Φh
ind,1(t)T 0 . . . 0

0 Φh
ind,2(t)T . . . 0

.

.

.

.

.

.
.
.
.

.

.

.

0 . . . . . . Φh
ind,P (t)T





Bh
1 0 . . . 0

0 Bh
2 . . . 0

.

.

.

.

.

.
.
.
.

.

.

.

0 . . . . . . Bh
p





Φh
ind,1(t) 0 . . . 0

0 Φh
ind,2(t) . . . 0

.

.

.

.

.

.
.
.
.

.

.

.

0 . . . . . . Φh
ind,P (t)


.
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Here we notice that neither Khh1|c nor Khh0|c depends on c. As a result, we can

remove c in the notation and write Khh1 = Φ̃T B̃Φ̃ and let K = Kgg +Khh0 + Σ. We

then could have likelihood function as

log p(y|t, B̃, c) = −1

2
yTK−1y+

1

2
yTCy−1

2
log |K|−1

2
log B̃−1

2
logA+constant, (E.2)

where A = B̃−1 + Φ̃K−1Φ̃T and C = K−1Φ̃TA−1Φ̃K−1. The prediction then will be

p(f∗|y, x, x∗, c) = N(f∗|Φh
sub,i(t∗)

T rhsub,c,i + f∗0 +RTβ,Kf∗0f∗0 +RTA−1R), (E.3)

where f∗0 and Kf∗0f∗0 denote the mean and covariance functions without the impact

of the mean functions, R = Φ̃∗ − Φ̃K−1K∗, and β = A−1Φ̃K−1y. The derivation for

p(f∗|y, x, x∗, c) follows the derivation for a Gaussian mixture model.
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Appendix F

Stochastic Variational Inference for

the Extended Model

Here the model is slightly more generalized than presented in Section 4.2.5. We

assume:

p(y|g, h) =
P∏
i=1

N∏
n=1

N(yin; ΣQ
j=1wijgj(tn) + hi(tn), β−1i ), (F.1)

where

hi ∼ GP (Φh
sub,i(t)

T rhsub,c,i + Φh
i (t)

T rhi , K
h
i (t, t′)), (F.2)

c|x ∼Multinomial(πc), πc ∝ expwTc x, (F.3)

rhi ∼ N(0, Bh
i ), (F.4)

gj ∼ GP (Φj(t)
T rjp, Kj(t, t

′)), (F.5)

rjp ∼ N(0, Bj). (F.6)
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F.1 ELBO calculation

The idea to reduce complexity is to introduce inducing variables u and v (parallel

to g and h correspondingly) with M data points and use variational inference to

approximate the posterior probability p(u, v, c|y). The approximate distribution is

q(u, v, c) =

Q∏
j=1

N(uj;mj, Sj)
P∏
i=1

N(vi;m
h
i , S

h
i )p(c). (F.7)

KL(q(u, v, c)||p(u, v, c|y))

=Eq(u,v,c)[log
q(u, v, c)

p(u, v, c|y)
] ≥ 0

= log p(y)− (Eq(u,v,c)[log p(u, v, c, y)]− Eq[log q(u, v, c)])

= log p(y)− (Eq(u,v,c)[log p(y|u, v, c)] + Eq[log p(u, v, c)]− Eq[log q(u, v, c)])

= log p(y)− (Eq(u,v,c)[log p(y|u, v, c)]−KL(q(u)||p(u))−KL(q(v)||p(v)))

(F.8)

The variational lower bound then becomes

log p(y) ≥ Eq(u,v,c)[log p(y|u, v, c)]−KL(q(u)||p(u))−KL(q(v)||p(v)) = ELBO (F.9)

We now evaluate each term in Eq.(F.9). For the first term, we notice that

log p(y|u, v, c) = logEp(g,h|u,v,c)[p(y|g, h, c)]

≥ Ep(g,h|u,v,c)[log p(y|g, h, c)]
(F.10)

The inequality is introduced to reduce the computation complexity from O(P 3N3)

to O(P 3M3).

Now we need to evaluate Ep(g,h|u,v,c)[log p(y|g, h, c)]. This will require the following

identity. Assume p(y|g, h) = N(y; ΣQ
j=1Wjgj + Wh, β−1I) with p(gj) = N(gj;mj, Sj)
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and p(h) = N(h;m,S).∫
log p(y|g, h)dp(g)dp(h)

= logN(y; ΣQ
j=1Wjmj +Wm,β−1I)− 1

2
βtrW TWS − 1

2
βtrΣQ

j=1W
T
j WjSj.

(F.11)

To apply Eq.(F.11) on Ep(g,h|u,v,c)[log p(y|g, h, c)], we need to first evaluate p(g|u) and

p(h|v, c). We let the inducing input be zj and zhi correspondingly. We have

p(g|u) =
∏

N(gj;µj, Kgj)

p(u) =
∏

N(uj; 0, Kuj)

p(h|v, c) =
∏

N(hi;µ
h
ic, Khi)

p(v) =
∏

N(vi; 0, Kvi)

(F.12)

where

µj = Kj(t, zj)Kj(zj, zj)
−1uj +RT

j r̄j = Ajuj

Kgj = Kj(t, t)−Kj(t, zj)Kj(zj, zj)
−1Kj(zj, t)

+RT
j (B−1j + Φj(zj)Kj(zj, zj)

−1Φj(zj)
T )−1Rj

r̄j = [B−1j + Φj(zj)Kj(zj, zj)
−1Φj(zj)

T ]−1[Φj(zj)Kj(zj, zj)
−1uj]

Rj = Φj(t)− Φj(zj)Kj(zj, zj)
−1Kj(zj, t)

(F.13)

Kuj = Kj(zj, zj) + Φj(zj)
TBjΦj(zj) (F.14)

µhic = Kh
i (x, zhi )Kh

i (zhi , z
h
i )−1vi + (Rh

i )T r̄hi + Φh
sub,i(t)

T rhsub,c,i = Ahi vi + Φh
sub,i(t)

T rhsub,c,i

Khi = Kh
i (x, x)−Kh

i (x, zhi )Kh
i (zhi , z

h
i )−1Kh

i (zhi , x)

+ (Rh
i )T ((Bh

i )−1 + Φh
i (z

h
i )Kh

i (zhi , z
h
i )−1Φh

i (zi)
hT )−1Rh

i

r̄hi = [(Bh
i )−1 + Φh

i (z
h
i )Kh

i (zhi , z
h
i )−1Φh

i (z
h
i )T ]−1[Φh

i (z
h
i )Kh

i (zhi , z
h
i )−1vi]

Rh
i = Φh

i (x)− Φh
i (z

h
i )Kh

i (zhi , z
h
i )−1Kh

i (zhi , x)

(F.15)
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Kvi = Kj(z
h
i , z

h
i ) + Φh

i (z
h
i )TBh

i Φh
i (z

h
i ). (F.16)

Since log p(y|h, g, c) = Σi,n logN(yin; ΣQ
j=1wijgj(xn) + hic(xn), β−1i ), by Eq(F.11)

we have

Ep(g,h|u,v,c)[log p(y|g, h, c)]

=Σi,n logN(yin; ΣQ
j=1wijµj + µhic, β

−1
i )− 1

2
βi(Khi)nn −

1

2
βiΣ

Q
j=1w

2
ij(Kgj)nn.

(F.17)

Now we apply Eq(F.11) on Eq(u,v,c)[logN(yin; ΣQ
j=1wijµj + µhic, β

−1
i )], we get

Ep(c)Eq(u,v|c)[logN(yin; ΣQ
j=1wijAj(n, :)uj + Ahi (n, :)vi + ΦT

sub,ir
h
sub,i,c, β

−1
i )|c]

=
∑
c

p(c) logN(yin; ΣQ
j=1wijAj(n, :)mj + Ahi (n, :)m

h
i + Φh

sub,ir
h
sub,i,c, β

−1
i )

− 1

2
βitrΛ

h
inS

h
i −

1

2
βiΣ

Q
j=1w

2
ijtrΛjnSj,

(F.18)

where

Λjn = Aj(n, :)
TAj(n, :)

Λh
in = Ahi (n, :)

TAhi (n, :).
(F.19)

What is left in Eq.(F.9) is the two KL divergence terms. We can use the identity

for KL divergence of two M-dimensional multivariate Gaussian distributions. Assume

q ∼ N(µ1,Σ1) and p ∼ N(µ2,Σ2). Then

KL(q||p) =
1

2
log |Σ2Σ

−1
1 |+

1

2
trΣ−12 [(µ2 − µ1)(µ2 − µ1)

T + Σ1]−
M

2
. (F.20)

When we try to maximize ELBO, we can ignore the constant. As a result, we now
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can use Eq.(F.17),Eq.(F.18),Eq.(F.20) to rewrite Eq.(F.9) as

ELBO = L = Σi,n[
∑
c

p(c) logN(yin; µ̃inc, β
−1
i )

− 1

2
βi(Khi)nn −

1

2
βiΣ

Q
j=1w

2
ij(Kgj)nn

− 1

2
βitrΛ

h
inS

h
i −

1

2
βiΣ

Q
j=1w

2
ijtrΛjnSj]

− ΣQ
j=1[

1

2
log |KujS

−1
j |+

1

2
trK−1uj (mjm

T
j + Sj)]

− ΣP
i=1[

1

2
log |Kvi(S

h
i )−1|+ 1

2
trK−1vi (mh

i (m
h
i )
T + Shi )],

(F.21)

where

µ̃inc = ΣQ
j=1wijAj(n, :)mj + Ahi (n, :)m

h
i + Φh

sub,i(tn)T rhsub,i,c. (F.22)

F.2 Stochastic Variational Inference

Our goal is to optimize ELBO. We first consider the derivatives of L with respect

to mj, Sj,m
h
i , S

h
i . Say oi denotes the indices where yi exist. The derivatives are as

follows:

∂L

∂mj

= ΣP
i=1βiwijAj(oi)

T [yi − ΣQ
j′=1wij′Aj′(oi)mj′ − Ahi (oi)mh

i ]−K−1uj mj

= ΣP
i=1βiwijAj(oi)

Ty
/j
i − [K−1uj + ΣP

i=1βiw
2
ijAj(oi)

TAj(oi)]mj

∂L

∂Sj
=

1

2
S−1j −

1

2
[K−1uj + ΣP

i=1βiw
2
ijAj(oi)

TAj(oi)]

∂L

∂mh
i

=
∑
c

p(c)βiA
h
i (oi)

T [yi − ΣQ
j=1wijAj(oi)mj − Ahi (oi)mh

i − Φh
sub,i(tn)T rhsub,i,c]

−K−1vi mh
i

= βiA
h
i (oi)

Ty
/h
i − [K−1vi + βiA

h
i (oi)

TAhi (oi)]m
h
i

−
∑
c

p(c)βiA
h
i (oi)

TΦh
sub,i(tn)T rhsub,i,c

∂L

∂Shi
=

1

2
(Shi )−1 − 1

2
[K−1vi + βiA

h
i (oi)

TAhi (oi)],

(F.23)
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where

y
/j
i = yi − Ahi (oi)mh

i − Σj′ 6=jwij′Aj′(oi)mj′

y
/h
i = yi − ΣQ

j=1wijAj(oi)mj

(F.24)

As shown in [68, 50], the natural gradient simplifies the formulations for updating

the canonical parameters Ψ1j = S−1j mj,Ψ2j = −1
2
S−1j , since the natural gradients

turned out to be ∂L/∂mj and ∂L/∂Sj. Thus we have:

Ψ1j(k+1) = S−1j(k)mj(k) + l(ΣP
i=1βiwijAj(oi)

Ty
/j
i − S−1j(k)mj(k))

Ψ2j(k+1) = −1

2
S−1j(k) + l(

1

2
S−1j(k) −

1

2
Λ),

(F.25)

where

Λ = K−1uj + ΣP
i=1βiw

2
ijAj(oi)

TAj(oi). (F.26)

Similarly, we have

Ψh
1i(k+1) = (Shi(k))

−1mh
i(k)

+ l[βiA
h
i (oi)

Ty
/h
i − (Shi(k))

−1mh
i(k) −

∑
c

p(c)βiA
h
i (oi)

TΦh
sub,i(tn)T rhsub,c,i]

Ψh
2i(k+1) = −1

2
(Shi(k))

−1 + l[
1

2
(Shi(k))

−1 − 1

2
Λh],

(F.27)

where

Λh = K−1vi + βiA
h
i (oi)

TAhi (oi). (F.28)

The hyperparameters includes all the coefficients in the covariance functions Kj

and Kh
i , the noise βi, the inducing inputs Zj, Z

h
i , the matrices Bj and Bh

i , and

the mapping wc for the sub-population effect. These hyperparameters can also be

learned by optimizing over ELBO. That is, one can interleave the optimization over

the variational parameters and the hyperparameters.

Prediction: Let p(gj∗|y, t∗) = N(gj∗;µj∗, sj∗) and p(hi∗|y, t∗) = N(hi∗;µ
h
i∗, s

h
i∗),

and also let gj∗ = Aj∗uj + εj where Aj∗ can be derived similarly as Aj and εj ∼

N(0, Kgj∗). We also know that uj = mj + ε̃j where ε̃j ∼ N(0, Sj). As a result,

Aj∗uj ∼ N(Aj∗mj, Aj∗SjA
T
j∗) and µj∗ = Aj∗mj and sj∗ = Kgj∗+Aj∗SjA

T
j∗. Similarly,
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we could calculate p(hi∗|y, t∗, c) = N(hi∗;µ
h
ic∗, s

h
i∗). The rest of the derivation follows

the assumption of a Gaussian mixture.
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