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Abstract—Amplitude sampling is a recently proposed approach
to representing an input signal by a sequence of continuous time
instances and discrete amplitude values instead of a sequence
of continuous amplitude values and discrete time instances as
conventional time sampling. This representation can be promis-
ing when it is difficult to implement high-precision quantizers
while the resolution of time can be sufficiently high. A better-
known sampling technique exploiting such representation is
level-crossing sampling, where continuous time instances are
recorded whenever the input signal crosses a pre-defined set
of levels. However, in contrast to time sampling, conditions
for perfectly recovering a bandlimited signal based on level-
crossing sampling are under-explored, except a special case –
zero-crossing sampling, where only the level at zero is considered.
Reconstruction methods for zero-crossing sampling nevertheless
have been shown to lack stability and thus are subject to noise.
Additional constraints on the input signals are needed to ensure
stability. Most reconstruction methods for multi-level-crossing
sampling on the other hand were developed in the context of
data compression rather than perfect signal recovery.

Since amplitude sampling can be defined as sampling a
function transformed reversibly from the input signal, analysis
on this reversible transformation facilitates potential perfect-
reconstruction algorithms. Two algorithms for amplitude sam-
pling are developed, the Bandlimited-Interpolation Approxima-
tion (BIA) and its iterative extension, the Iterative Amplitude
Sampling Reconstruction (IASR). By relating amplitude sampling
with nonuniform time sampling, we compare these algorithms
with empirically the most efficient nonuniform time-sampling
methods, the Voronoi method. Simulations show that not only
does the BIA (same as the IASR with the first iteration) attain
much higher signal-to-error ratio (SER) than the Voronoi method
after the first iteration, but the IASR can generally reconstruct
the original signal with fewer iterations than the Voronoi method.

Index Terms—Sampling theory, level-crossing sampling,
nonuniform sampling and reconstruction, iterative algorithms.

I. INTRODUCTION

Sampling theorems play an important role in signal pro-
cessing as a connection between the analog world and digital
processing. The most well-studied sampling theorem is the
Shannon-Nyquist theorem [1], which formalizes a discrete rep-
resentation of a bandlimited signal. It has profound impact on
communication systems, the digital signal processing industry,
and a great number of extensions have been proposed [2]–[4].
However, the Shannon-Nyquist sampling theorem and most
of its extensions study a time-sampling framework, where
a signal is represented by samples of continuous amplitude
values and discrete time values; as a result, this framework
assumes amplitude values can be measured in high resolution.
However, when time rather than amplitude can be meausred

in high resolution, one may consider representing the signal
by samples of continuous time values and discrete amplitude
values. An example is the level-crossing sampling technique
[5], in which time values are recorded when the input signal
crosses a specified set of amplitude values. A significant result
in level-crossing sampling literature is Logan’s theorem [6],
which studies a specific class of level-crossing sampling –
zero-crossing sampling, in which the level is set to be zero.
The theorem provides sufficient conditions for reconstructing a
signal under zero-crossing sampling. In [7], Petros showed that
although Logan’s theorem lacks stability guarantee, stability
can typically be ensured with additional assumptions on spar-
sity. However, a more generalized theorem for level-crossing
sampling with multiple levels is still under-explored. Most
existing generalized level-crossing sampling methods focus on
a low-power-consumption Analog-to-Digital Converter design
[8]–[10]. They use zero-order hold to attain a piecewise-
constant approximation of the original signal. Studies on
more advanced signal reconstruction techniques are needed
to improve this approximation.

This work studies a framework, referred to as amplitude
sampling, recently proposed in [11]. This framework first
adds a sufficiently large ramp to the input signal to make
it monotonic. If we consider the amplitude of a signal as
a function of time, the attained monotonic function allows
time to be a function of amplitude. Amplitude sampling is
then defined as uniformly sampling the amplitude of this
transformed signal (i.e. uniformly sampling the function of
amplitude) and thus acquiring a time sequence. Our goal
is to recover the original signal from this time sequence.
With this analytic definition of amplitude sampling, one may
study the properties of the transformed signal and leverage
these properties to develop a potentially theoretically more
accurate reconstruction method than most multi-level-crossing
sampling methods. We will also show that amplitude sampling
can be algorithmically defined as shown in Figure 3, where
a bounded saw-tooth like signal is added to the input signal
and time is recorded whenever the resulting signal crosses
a fixed level. This algorithmic definition enables a practical
implementation of amplitude sampling.

To provide theoretical analysis, we will introduce the
amplitude-time function, defined based on the transformed
signal. Its properties in both the time domain and the frequency
domain will be studied. With these properties, two recon-
struction methods are developed: the bandlimited-interpolation
approximation (BIA) and an iterative extension of the BIA, the
iterative amplitude sampling reconstruction (IASR). Since the
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samples are a series of nonuniform time instances, the original
signal can also be reconstructed by a nonuniform sampling
algorithm. By comparing the two developed algorithms with
empirically the most efficient nonuniform sampling recon-
struction algorithm, the Voronoi method [12], we show that
in most simulation results, the IASR converges within fewer
iterations than the Voronoi method. Moreover, parameters in
the IASR can be designed to further improve the convergence
rate.

II. INTERPRETATIONS OF AMPLITUDE SAMPLING

A. Analytic Definition of an Amplitude-Time Function

In this section, we formalize the procedure of amplitude
sampling. The key idea here is to leverage uniform time-
sampling theorem. If we assume an input signal g(t) strictly
monotonic, then the inverse function t(g) will also be strictly
monotonic. Applying uniform level-crossing sampling on g(t)
is equivalent to uniformly “time”-sampling t(g). If instead we
assume the first derivatives of the input signal bounded, then
we can transform an input signal to a monotonic function by
adding a sufficiently large ramp. This procedure is described
below:

y = g(t) = f(t) + αt, (1)

where we denote f(t) as the input signal and g(t) as the mono-
tonic function, and α is chosen so that g′(t) = f ′(t) + α > 0
for all t1. Notice that the first derivative of a bandlimited signal
with bandwidth W is bounded by ||f ||∞W by Bernstein’s in-
equality (||·||∞ denotes the infinity norm). Therefore bandlim-
ited signals satisfy the bounded-first-derivative assumption and
a sufficiently large α can be found to attain a monotonic
function g(t). The variable y can be thought of as amplitude.
The inverse function of g(t) = y will be g−1(y) = t, which is
still a monotonic function. By subtracting 1

αy from the inverse
function, we define the amplitude-time function h(y) as

h(y) = g−1(y)− 1

α
y. (2)

This procedure is illustrated in Fig. 1. Notice that h(y) is
bounded if f(t) is bounded since

h(f(t) + αt) = t− 1

α
(f(t) + αt)

= − 1

α
f(t). (3)

From Eq. (3), we obtain a relationship between f and h
in a function-composition form [13]. Moreover, since α is
chosen so that g(t) is strictly monotonic and thus invertible,
this relationship uniquely determines h from f .

A similar procedure can be applied to h(y) to retrieve f(t).
The slope of the ramp is selected to be 1/α so that the inverse
function of t = h(y)+y/α is g(t). After αt is subtracted from
g(t), f(t) is recovered. Therefore another relationship between
f and h can be formulated as

f(h(y) +
1

α
y) = −αh(y). (4)

Fig. 1. The analytic definition of amplitude sampling (Figure adapted from
[11])

Fig. 2. Definition of the transformations mα and m1/α (Figure adapted from
[11])

A similar argument can be made to show that Eq. (4)
uniquely determines f from h. As a result, Eq. (3) and Eq.
(4) describe two invertible transformations between f and h.
As shown in Fig. 2, we denote these transformations as mα

and m1/α respectively. Amplitude sampling is defined as a
procedure to attain uniform samples h(n∆) of h(y). As a
result, amplitude sampling can be realized by transforming f
into h using the transformation mα and uniformly sampling
h to attain h(n∆) as shown in Fig. 1. From Fig. 1 we
also notice that there is a bijection between uniform samples
(n∆, h(n∆)) on h and non-uniform samples (tn, f(tn)) on f
determined by tn = h(n∆) + n∆/α and f(tn) = −αh(n∆).
This observation allows us to recover f using a non-uniform
sampling reconstruction algorithm which will be used for
baseline comparison with our designed algorithms in Section
VI.

B. Algorithmic Definition of Amplitude Sampling

Here we present an equivalent definition of amplitude
sampling. As shown in Fig. 1, samples are taken whenever
f(t) + αt crosses multiples of ∆. One can show that the
attained time instances will not be changed if we subtract any

1We can also choose α such that g′(t) = f ′(t) +α < 0 for all t. Without
lose of generality, in this work we will assume α is chosen to be positive and
satisfy g′(t) = f ′(t) + α > 0.
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Fig. 3. The algorithmic definition of amplitude sampling (Figure adapted
from [11])

multiples of ∆ from f(t) + αt within any sample intervals.
That is, for any m, k ∈ Z, if we let

g̃(t) =

{
f(t) + αt−m∆, if tk < t ≤ tk+1,

f(t) + αt, otherwise,

level-crossing sampling g̃(t) at multiples of ∆ will acquire the
same time sequence {tn}.

As a result, if we define a sawtooth-like signal r(t) as

r(t) = αt+m(t) ·∆, (5)

where m(t) is an integer-valued function such that 0 <
r(t) + f(t) ≤ ∆. Then by showing m(t) does not change in
any interval (tn, tn+1], we know that level-crossing sampling
r(t)+f(t) will attain the same time instances as attained from
level-crossing sampling f(t) + αt. With these time instances,
we can acquire the uniform samples of the amplitude-time
function by calculating h(n∆) = tn − n∆/α. The block
diagram for this sampling procedure is shown in Fig. 3, which
can be an algorithmic definition of amplitude sampling that
is equivalent to the analytic definition. Since the sawtooth-
like signal r(t) is bounded between ∆ + A and ∆ − A
where A is the L∞ norm of f , the block diagram provides
a practical implementation of amplitude sampling. However,
the analysis on amplitude sampling will be much simpler when
we use the analytic definition. Therefore, in Section III and
Section IV we will develop the time-domain properties and the
frequency-domain properties of the amplitude-time functions
by the analytic definition.

III. TIME-DOMAIN PROPERTIES OF AMPLITUDE-TIME
FUNCTIONS

In this section we present the relationship between f and h
in the time domain. We first discuss the preservation of peri-
odicity under the transformation mα. By constraining f(t) to
be bandlimited and periodic, we know that f(t) only contains
finite number of frequency components. This simplification
allows accessible simulation and might potentially help us
analyze how harmonics interact after the transformation mα.
We then develop a matrix-based interpretation of mα, from

which several properties can be derived. Last but not least, we
will depict f(t) and h(y) in the same figure and illustrate
how we can use lines and intersections to find the value
of one function from the other. Based on this illustration,
an iterative implementation of mα is derived. A theoretical
proof of convergence will also be provided. We all also use
this illustration to analyze how the distance between two
functions changes after the transformation mα. This analysis
may be important for finding a theoretical proof for perfect
reconstruction of amplitude sampling.

A. Periodicity

If f(t) is periodic with a period T , i.e.

f(t+ T ) = f(t), (6)

then the following can be obtained:

g(t+ T ) = f(t+ T ) + α(t+ T )

= f(t) + α(t+ T )

= y + αT, (7)

where g(t) = f(t) + αt = y, and thus

t+ T = g−1(y + αT ). (8)

From Eq. (8), we show that h(y) is periodic with period αT :

h(y + αT ) = g−1(y + αT )− 1

α
(y + αT )

= t+ T − 1

α
(y + αT )

= g−1(y)− 1

α
y

= h(y). (9)

Therefore periodicity is preserved under the transformation
mα and if f(t) is periodic with a period T , then h(y) is
periodic with a period αT .

B. Matrix-based Properties

From Eq. (3) and Eq. (4), we notice that when f is fixed
and α is increased, the corresponding function h shrinks in
amplitude but expands in time. This effect can also be observed
from the periodicity property, where the period in h is scaled
by α. To normalize for these effects, we define the scaled
amplitude-time function as

h̃(y) = −αh(αy). (10)

From Eq. (10), a new relationship between f(t) and h̃(y)
which we denote as m̃α can be expressed as

f(y − 1

α
h̃(y)) = h̃(y).

h̃(t+
1

α
f(t)) = f(t). (11)

To avoid ambiguity, we add subscripts to each (scaled)
amplitude-time function. That is, hα,f (y) stands for mα(f)(y)
and h̃α,f (y) stands for m̃α(f)(y). One can check that with
this normalization, we have m1/α ◦mα(f) = f and m̃−α ◦
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Fig. 4. Illustration of relationships among f , h, h̃

m̃α(f) = f . As shown in Figure 4, h̃ can be interpreted as
a tilted f . Furthermore, from Eq. (11), as α goes to infinity,
h̃(t) approaches f(t). Since h̃ is the scaled replica of h, as
h̃ approaches the bandlimited function f , h intuitively will be
more and more similar to a bandlimited function. This intuition
will be strengthened by properties of the Fourier transform of
h presented in Section IV.

The relationships in Eq. (11) can also be expressed in a
matrix form as [

y

h̃α,f (y)

]
=

[
1 1

α
0 1

] [
t

f(t)

]
. (12)

Note that with the normalization, the matrix-based repre-
sentation of the transformation m̃α forms a two-dimensional
unitriangular group. This fact indicates the invertibility, com-
mutability, and transitivity of the transformation. Moreover, the
matrix form indicates that although the transformation between
f and h̃ is not linear, the transformation between (t, f(t)) and
(y, h̃(y)) is. In addition, we can use this matrix to analyze
how time scaling and amplitude scaling on f affect h̃.

We first interpret time scaling and amplitude scaling on f(t)
in a matrix form. The scaled function f̃(t) = Af(t/B) can
be expressed as [

t̃

f̃(t̃)

]
=

[
B 0
0 A

] [
t

f(t)

]
. (13)

As a result, we could express the procedure of operating
m̃α to transform f̃(t) into h̃α,f̃ (y) as[

ỹ

h̃α,f̃ (ỹ)

]
=

[
1 1

α
0 1

] [
B 0
0 A

] [
t

f(t)

]
=

[
B 0
0 A

] [
1 A

Bα
0 1

] [
t

f(t)

]
=

[
B 0
0 A

] [
y

h̃Bα/A,f (y)

]
. (14)

From Eq. (14), we obtain:

ỹ = By.

h̃α,f̃ (ỹ) = Ah̃Bα/A,f (y). (15)

Eq. (10) and Eq. (15) lead to:

h̃α,f̃ (y) = Ah̃Bα/A,f (
y

B
). (16)

⇒ −αhα,f̃ (αy) = −BαhBα/A,f (
Bα

A

y

B
)

= −BαhBα/A,f (
αy

A
). (17)

⇒ hα,f̃ (y) = BhBα/A,f (
y

A
) (18)

As a result, the amplitude-time function obtained from a
scaled f can also be attained by scaling an amplitude-time
function which is transformed from the unscaled f but with a
scaled α. In fact, when A = 1, Eq. (18) becomes

hα,f̃ (y) = BhBα,f (y); (19)

when A = B, Eq. (18) becomes

hα,f̃ (y) = Bhα,f (y/B). (20)

Eq. (19) shows how the corresponding amplitude-time
function when the time in f is expanded by B can also
be attained by operating the transformation with a scaled
parameter Bα on the original f and scaling the size of the
resulting function. That is, up to a scale in size, an amplitude-
time function can be attained from signals with different time
scales (bandwidths). This observation intuitively tells us that it
could be of similar difficulty between reconstructing a signal
with a higher bandwidth and reconstructing a signal with a
lower bandwidth if we choose the transformation parameter
α correspondingly. On the other hand, Eq. (20) shows that
when the ratio of the amplitude scaling factor A to the time
expanding factor B is fixed, the corresponding amplitude-time
function will be the same except that it will be scaled in time
accordingly. This observation intuitively tells us that instead
of changing the transformation parameter, we can maintain the
difficulty when reconstructing a signal with a larger bandwidth
by magnifying the signal and increasing the sampling rate.
These two observations suggest that while conventional time-
sampling theorems and reconstruction algorithms mostly relate
with merely the bandwidth of a signal, both the amplitude of
the signal and the transformation parameter α will affect the
analysis of amplitude sampling. This discovery will be verified
in the development of the frequency-domain properties of an
amplitude-time function (see Section IV). We further develop
a reconstruction algorithm that takes these extra parameters
into consideration to achieve better performance (see Section
VI).

We also explore the function space spanned by h̃ under
the transformation m̃α. We observe that since the matrix-
based representation of m̃α belongs to the unitriangular matrix
group, operating a sequence of m̃αn can be equivalent to
operating a single transformation. That is,[

y

h̃(y)

]
=

[
1 1

α1

0 1

] [
1 1

α2

0 1

]
. . .

[
1 1

αn
0 1

] [
t

f(t)

]
=

[
1 1

α1
+ 1

α2
+ · · ·+ 1

αn
0 1

] [
t

f(t)

]
.

(21)

In other words, composing m̃α does not expand the function
space spanned by functions generated from {t, f(t)} using
m̃α. We notice that f(t) is also in this space. Moreover,
one may be able to develop an algorithm to modify the
amplitude-time function when α is not accurate by composing
transformations. However, this idea is still unexplored.
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Fig. 5. Determination of the value h̃(t0) = f(t0 − 1
α
h(t0)) and the value

v(t0) = f(t0 + 1
α
f(t0)) from the plot of f(t).

Fig. 6. An illustration of how the value hn(t0) = f(t0 − 1
α
hn−1(t0))

approaches h̃(t0) through iterations.

C. Implementation of mα

Before showing the implementation of the transformation
mα, we first give an illustration of the transformation m̃α.

From Eq. (11), we observe that finding h̃(t0) is equivalent to
finding t1 such that t0 = t1+ 1

αf(t1) and then taking the value
f(t1) as h̃(t0). As shown in Figure 5, t1 can be determined
by drawing a line with a slope −α through (t0, 0). With the
knowledge of t1, the value h̃(t0) = h̃(t1 + 1

αf(t1)) = f(t1)
can be measured as indicated in the plot.

The same idea can be applied to other function-composition
forms. For example, as shown in Fig. 5, the value v(t0) =
f(t0 + 1

αf(t0)) can be observed by drawing a line with slope
−α through (t0, f(t0)), since this line finds the value t2 = t0+
1
αf(t0). Figure 5 also shows that h̃(t0) is obtained by finding a
value before time t0 while v(t0) is obtained by finding a value
after time t0. Therefore, instead of finding f(t0 + 1

αf(t0)), we
pursue the value h0(t0) = f(t0− 1

αf(t0)), which can be shown
in Figure 6.

Now we iteratively update our approximation of h̃ by
composing f with the function obtained from the last iteration.
As shown in Figure 6, if f is composed with t− 1

αh0(t), the
value h1(t0) = f(t0 − 1

αh0(t0)) can still be observed in the
plot of f . Moreover, the iteration hn+1(t0) = f(t0− 1

αhn(t0))

appears to converge to h̃(t0), where n denotes the index of
the iteration. We now prove in the following theorem that not
only such iteration uniquely converges to h̃(t), its convergence
rate can also be determined.

Theorem 1: The function hn+1(t) = f(t− 1
αhn(t)) will con-

verges linearly to h(t) where h = mα(f) if λ = sup |f
′(t)|
|α| <

1; in such case λ is the convergence rate.
Proof 1: We recognize that as n goes to infinity the second

equation of Eq. (11) and the iteration hn+1(t) = f(t− 1
αhn(t))

become the same if the limit exists. Moreover, Figure 6
suggests an explanation by the fixed-point theorem [14].
We first re-formulate the problem as finding t1 such that

Fig. 7. Illustration of L1 difference between f1 and f2 and between h1 and
h2. The gray areas in the figures have the same size.

t1 = t0 − 1
αf(t1) := pt0(t1). If pt0(t) satisfies the Lipschitz

condition [15], i.e.

|pt0(a)− pt0(b)| ≤ λ|a− b| (22)

for some |λ| < 1, where λ = sup |f
′(t)|
α , then the iteration will

uniquely converge to the fixed point pt0(t1) = t1. Since g(t)
is required to be invertible, which implies f ′(t)+α > 0 for all
t, we only need to add a constraint on the positive derivative
of f(t) to ensure that α > sup|f ′(t)| so that |λ| < 1 can be
satisfied. By the fixed-point theorem, we also observe that the
algorithm is of linear convergence with a convergence rate λ.
Since λ decreases as α increases, it shows that the algorithm
can converge faster with a larger α.

D. Distance between Two Functions

In this section, we analyze how the distance between two
functions translates to the distance between their correspond-
ing amplitude-time functions. That is, if we let h1 = mαf1

and h2 = mαf2, we want to find β and γ such that
β‖f1 − f2‖ ≤ ‖h1 − h2‖ ≤ γ‖f1 − f2‖. Figure 7 illustrates
that β and γ for the L1 norm is one, since the area between
f1 and f2 is the same as the area between g1 and g2 where
gi(t) = fi(t) +αt, the area between h1 and h2 is the same as
the area between g−1

1 and g−1
2 where g−1

i (y) = hi(y) + 1
αy,

and the difference between g1 and g2 defines the same area
as the difference between g−1

1 and g−1
2 .

Figure 8 on the other hand illustrates how to find β and γ
for the L∞ norm. As shown in Figure 5, we can determine
h̃(t) by finding the intersection between f(t) and a line. As a
result, the absolute difference between h̃1(t) and h̃2(t) can be
shown to be the length of the red vertical line in Figure 8(a).
We also know that there is a 1-1 correspondence between t0
and t1 and between t0 and t2. Figure 8(b) shows that given
a t1 where a line drawn from (t0, 0) intersects with h̃1 and
given a t2 where that line intersects with h̃2, f1 can only be
between the two black lines due to mean value theorem and
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(a) (b)

Fig. 8. (a) Illustration of finding h̃1(t0) and h̃2(t0) from f1(t) and f2(t); (b) The gray areas indicate where f1(t) can lie. As a result, f1(t2) needs to
locate between p2 and p4. That is, the absolute difference between f1(t2) and f2(t2) is bounded by the distance between p1 and p2 and that between p1
and p4. The distance between p1 and p3 is the same as the absolute difference between h̃1(t0) and h̃2(t0). Then we can use the difference between f1(t2)
and f2(t2) to bound the difference between h̃1(t0) and h̃2(t0).

the Bernstein inequality. As a result, we have the followings:

α

α+Aσ
|f1(t2)− f2(t2)| ≤ |h̃1(t0)− h̃2(t0)|,

|h̃1(t0)− h̃2(t0)| ≤ α

α−Aσ
|f1(t2)− f2(t2)|

⇒ α

α+Aσ
|f1(t2)− f2(t2)| ≤ ‖h̃1 − h̃2‖∞,

|h̃1(t0)− h̃2(t0)| ≤ α

α−Aσ
‖f1 − f2‖∞

⇒ α

α+Aσ
‖f1 − f2‖∞ ≤ ‖h̃1 − h̃2‖∞ ≤

α

α−Aσ
‖f1 − f2‖∞

⇒ 1

α+Aσ
‖f1 − f2‖∞ ≤ ‖h1 − h2‖∞ ≤

1

α−Aσ
‖f1 − f2‖∞,

(23)
where the second to the last equation follows from the 1-1
mapping of t0 and t2.

IV. FREQUENCY-DOMAIN PROPERTIES OF
AMPLITUDE-TIME FUNCTIONS

In this section, we discuss the frequency-domain properties
of amplitude-time functions. Recall that our goal is to recover
f from uniform samples of h. If h is bandlimited, f can be
reconstructed by applying bandlimited interpolations on the
samples h(n∆) and using the transformation m1/α to retrieve
f . However, in this section, we will show that f and h cannot
both be bandlimited unless they are constants.2 Therefore, if
we assume f to be bandlimited, the resulting function attained
from the previous procedure will not be bandlimited and thus
will be different from f . Nevertheless, the Fourier transform
of h is shown to exponentially decay in frequency [11]. A
sketch of the proof is provided.3 These properties indicate
that if f is bandlimited, although an amplitude-time function
generally cannot be reconstructed from its uniform amplitude
samples by bandlimited interpolation, the aliasing introduced
from sampling h can be negligible if the sampling rate is
sufficiently high.

2 [11] provides a different proof.
3The sketch of the proof presented in this work is not complete and is

different from the proof presented in [11]. Please refer to [11] for a complete
proof of the theorem.

A. Bandlimitedness

Here we prove that h(y) is not bandlimited unless f(t) is
a constant by contradiction as the following.

Theorem 2: For any α 6= 0, the amplitude-time function
h = mα(f) and f cannot be both bandlimited unless they are
constant functions.

Proof 2: If h(y) is bandlimited, h(y) can be analytically
extended to the entire complex plane and becomes an en-
tire function of order one [16]. Since f is assumed to be
bandlimited, after analytic extension, f(t) and f(t) + αt
are also entire functions of order one. Moreover, since the
composition of two entire functions remains an entire function,
a function u(z) = h(f(z) + αz) will be entire if h is entire
(z is any complex number). From Eq. (3), we know that
u(z)|z∈R = − 1

αf(z). Since both h(f(z) + αz) and − 1
αf(z)

are analytic on the whole complex plane and the values on
the real line of h(f(z) + αz) and − 1

αf(z) are the same, by
analytic continuation4, it implies that h(f(z)+αz) = − 1

αf(z)
for all z ∈ C. However, from [18], if h(f(z)+αz) is an entire
function of a finite order and both h and f are entire functions,
then either f(z) is polynomial or h(z) is of order zero. Since
we assume h(z) to be an entire function of order one, we
remove the second possibility. Since f(z) is bandlimited, f(z)
being polynomial will imply it to be a constant function.
Therefore, h(z) is bandlimited if and only if f(z) is a constant.
In such case h is also a constant.

B. Decay Rate in the Frequencies

Although h(y) is not bandlimited in general, it is shown
in [11] that its Fourier transform exponentially decays as
frequency increases. In this section, we present a sketch of the
proof which is somewhat different from that in [11]. Notice
that in this section we will let both y and t be complex
variables. From [16], we have the following theorem:

Theorem 3: [16] The Fourier transform of h(y) exponen-
tially decays, i.e. ĥ(ξ)eσ|ξ| ∈ L2, if and only if the following
two conditions are satisfied:

(a) h(y) can be analytically extended in a strip |={y}| < σ.

4The theorem of analytic continuation can be found in most complex
analysis book, e.g. [17].
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Fig. 9. The strip U and the strip V defined the open space where g(t) and
g−1(y) are locally invertible respectively. The strip V then determines the
decay rate of the Fourier transform of the amplitude-time function h.

(b) ‖h(y)‖∞ ≤ C uniformly in the strip for some constant
C.

Here ĥ(ξ) is the Fourier transform of h with ξ being the radial
frequency. The variable y is a complex number and thus can
be written as y = y1 + iy2 where y1, y2 ∈ R, and ={y} = y2.

In this section, we outline a procedure to show (a). From
Eq. (3), Fig. 9 is obtained. If we can find a strip with a width
V > 0 where g−1 is well-defined and analytic,5 then h(y) =
g−1(y) − 1

αy is analytic in a strip with the width V , which
satisfies (a). By (a) the width will indicate the decay rate of
the Fourier transform of h.

From the Inverse Function Theorem [17], if g′(t) 6= 0,
g(t) is locally injective. However, locally injective generally
cannot imply globally injective; g(t) is required to be globally
injective on the preimage of the strip in the Y-plane to ensure
g−1 to be well-defined in the strip. Here we only show a
method to determine a region in the Y-plane where g−1 can
be locally well-defined and thus h is locally well-defined. A
proof to show h(y) is well-defined in the strip, i.e. g(t) is
globally injective on the preimage of the strip in the Y-plane,
can be found in [11]. Since h is continuous and the boundary
is mapped to the boundary by Open Mapping Theorem [17],
a lower bound of the width of the strip can be found in the
Y-plane.

If the bandwidth of f(t) is smaller than W , by Bernstein’s
inequalities [19], we have

|f(t)| ≤ ‖f‖C(<)e
W |={t}|, (24)

and
|f ′(t)| ≤W‖f‖C(<)e

W |={t}|, (25)

where ‖f‖C(<) refers to the infinity norm when f is restricted
to the real line. Then without lost of generality if we assume
α is sufficiently large, we can derive the followings:

g′(t) = f ′(t) + α.

|g′(t)| ≥ | |f ′(t)| − |α| |
≥ α−W‖f‖C(<)e

W |={t}|

= α−AWeW |={t}|,

(26)

5Y-plane denotes the complex-plane extension of y and T-plane denotes the
complex-plane extension of t.

where we let A = ‖f‖C(<).
From Eq. (25) we know if

|={t}| ≤ 1

W
log

α

AW
, (27)

then

|f ′(t)| ≤ AWeW |={t}| (28)
≤ α. (29)

Then from Eq. (26) we know that for any t satisfying Eq.
(27), g′(t) 6= 0. Therefore, g(t) is locally injective in a strip
with width |U | = 1

W log α
AW . To determine V , we need to

find V = min|={t}|=U |={g(t)}|. By Eq. (24),

|={g(t)}| ≥ | − |={f(t)}|+ |={αt}| |
≥ −AeW |U | + α|U |

=
α

W
log

α

AW
− α

W
= V, (30)

since |={t}| ≤ U .
From Eq. (30), we obtain a conjecture:
Conjecture 1: The Fourier transform of h(y) exponentially

decays, i.e. ĥ(ξ)eσ|ξ| ∈ L2 where h is the amplitude-time
function transformed with a transformation parameter α from
a function with a bandwidth W and σ = α

W log α
AW −

α
W

where A = ‖f‖C(<).
It turns out the decay rate shown in Eq. (30) is slightly

smaller than the following theorem.
Theorem 4: [11] The Fourier transform of h(y) exponen-

tially decays, i.e. ĥ(ξ)eσ|ξ| ∈ L2 where h is the amplitude-time
function transformed with a transformation parameter α from
a function with a bandwidth W and σ = α

W log α
AW −

α−AW
W

where A = ‖f‖C(<).
The difference between the conjecture and the theorem is

caused by how many orders of the Bernstein’s ineuqalities are
used. Only the zeroth and the first order of the Bernstein’s
inequalities are utilized in the conjecture. [11] used more
orders of Bernstein’s inequalities to show global invertibility
and determine the decay rate. However, after h is scaled as
in Eq. (10), the decay rate shown in Eq. (30) and the decay
rate shown in [11] will be the same as α goes to infinity. As
discussed in Section III, intuitively h will become more like
a bandlimied function as α increases. This theorem supports
this intuition by showing the decay rate will increase with a
larger α. It is also interesting to notice that the decay rate
is dependent on the amplitude of f . As discussed in Section
III, when dealing with a function with a larger bandwidth,
by shrinking the amplitude f correspondingly, we are able to
attain the same amplitude-time function except with a scale in
time. This observation is supported by the factor AW in the
theorem.

V. RECONSTRUCTION

In this section, we explore methods to recover a bandlimited
function f from samples of its amplitude-time function. The
first algorithm, the Bandlimited-Interpolation Approximation
(BIA), approximates h(y) by the bandlimited interpolation of
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Fig. 10. The block diagram for the Bandlimited-interpolation approximation
(BIA) algorithm

h(n∆) and transforms the resulting approximate amplitude-
time function ȟ(y) into the approximate signal f̌(t) by the
transformation m1/α. Another reconstruction algorithm, the
Iterative Amplitude Sampling Reconstruction (IASR), itera-
tively keeps the approximate signal in each iteration bandlim-
ited and updates the approximation regarding the difference
between samples of its amplitude-time function and the sam-
ples h(n∆).

Nonuniform time-sampling reconstruction algorithms can
also be used to reconstrct f . As discussed in Section II,
each sample (n∆, h(n∆)) can be bijectively mapped to a
point (tn, f(tn)) in f . Therefore, other than reconstructing
f directly from the uniform samples of h, an alternative is
to first map the uniform samples of h to the nonuniform
samples of f and then implement nonuniform time-sampling
reconstruction methods. Since our proposed algorithm is it-
erative, it is reasonable to compare our performance with an
iterative nonuniform time-sampling reconstruction algorithm.
Moreover, since the Voronoi method was shown to perform the
best in numerical results [12], we compare our algorithms with
the Voronoi method. The simulation result will be presented
in Section VI.

A. Bandlimited Interpretation Approximation (BIA)

We first approximate h(y) by the bandlimited interpola-
tion of its uniform samples {h(n∆)}. However, since the
bandlimited-interpolation function ȟ(y) by definition is ban-
dlimited, it cannot be the same as h(y) as discussed in Section
IV. Nevertheless, according to [11], ‖ȟ(y)−h(y)‖∞ ≤ Ce−

σ
∆

for some constant C > 0 where σ = α
W log( α

AW ) − α−AW
W .

That is, the error measured in the L∞ norm between ȟ(y) and
h(y) decreases exponentially fast as 1/∆ increases. We then
use f̌(t), the function transformed from ȟ(y) by m1/α, as the
resulting approximation of f(t). Similarly, f̌(t) cannot be the
same as f(t) since f̌(t) will not be bandlimited.6

B. Iterative Amplitude Sampling Reconstruction (IASR)

As discussed in the previous section, the BIA cannot per-
fectly recover the original signal because the resulting function
f̌(t) is not bandlimited. This observation suggests processing
f̌(t) through a low-pass filter to attain a bandlimited approx-
imation f̆0(t). Since the values of the samples h(n∆) are
known, we can further transform f̆0(t) back to the amplitude
domain by mα and re-sample it to obtain {h̆0(n∆)}. Since
{h̆0(n∆)} are not the same as {h(n∆)}, this suggests an

6It should be noticed that ȟ(y)+y/α should be invertible. This would affect
the range of ∆ we can choose when we implement amplitude sampling. A
necessary and sufficient condition on ∆ has not yet been found to ensure
the invertibility. Moreover, the error bound between f(t) and f̌(t) is still
unknown.

iterative algorithm in which h̆0(n∆) is subtracted from h(n∆)
and the error samples eh,1(n∆) = h̆0(n∆) − h(n∆) are
interpolated and transformed to obtain ef,1(t) and then is
added back to f̆0(t). The iteration process is summarized in
Figure 11.

We show in the Appendix that if the IASR converges,
perfect reconstruction can be ensured if the sampling rate
1/∆ is higher than W/(απ). However, to analyze whether the
IASR converges, we cannot emulate the conventional analysis
on iterative nonuniform sampling algorithms as outlined in
Proposition 1 (see Appendix). As shown in Figure 11, our it-
eration can be formulated as fk+1 = fk+B(h−mαfk) = fk+
B(mαf−mαfk). It is different from fk+1 = fk+A(f−fk) as
in Eq. (40). A way to prove the convergence of the IASR is to
show ‖B(mαf−mαfk)‖ ≤ ‖B‖‖mαf−mαfk‖ < γ‖f−fk‖
for some γ < 1. The operator B consists of a bandlimited
interpolation, a low-pass filtering, and an m1/α transformation.
While it is easier to analyze how bandlimited interpolation and
low-pass filter affects the L2 norm, so far we can only show
how mα affects L1 norm and the L∞ norm as discussed in
Section III. The nonlinearity of mα makes it difficult to ana-
lyze the L2 norm of ‖mαf−mαfk‖ and therefore whether the
IASR converges remains open. However, the simulation results
in Section VI suggest that the IASR algorithm converges as
long as 1/∆ > W/(απ).

C. Voronoi Method

As discussed in Section II , there is a bijection between
(y, h(y)) and (t, f(t)). With the knowledge of α, we can
correspond {(n∆, h(n∆))} to {(tn, f(tn))} by letting tn =
h(n∆) + n∆/α and f(tn) = −αh(n∆). As a result, we can
use non-uniform reconstruction algorithm to recover f based
on {(tn, f(tn))}. Here we chose the Voronoi method since it
is studied to empirically converge to the original signal with
the fastest rate. Figure 12 shows the block diagram for the
Voronoi method. The rate and the proof of convergence can
be found in the Appendix.

VI. SIMULATION RESULTS

In this section, we compare the performance of the BIA,
the IASR, and the Voronoi algorithms on randomly generated
bandlimited signals based on their signal-to-error ratio (SER)
defined as:

SER(dB) = 10 log10(
||f ||22
||f − f̆ ||22

), (31)

where f̆ denotes the reconstructed signal.
The effects of three parameters are evaluated – the trans-

formation parameter α, the sampling interval ∆, and the
bandwidth of the original signal W . Details of the generation
of the bandlimited signals can be found in [20]. Since the
approximate signal from the BIA method and that from the
first iteration of the IASR method only differ in whether the
signal is processed by a low-pass filter, their corresponding
SER values are similar. As a result, in the figure we only
show the SER of the IASR and the Voronoi method measured
in each iteration.
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Fig. 11. The block diagram for the Iterative Amplitude Sampling Reconstruction (IASR) algorithm. The variable k denotes the kth iteration.

Fig. 12. The block diagram for the Voronoi method. The variable k denotes the kth iteration.

From Fig. 13, we observe that generally the IASR algorithm
achieves higher SER than the Voronoi method in the first iter-
ation. Moreover, the IASR converges faster than the Voronoi
method. The difference in the convergence rate is particularly
substantial when the sampling rate is closer to the Nyquist
sampling rate.

When α increases, ∆ decreases, or W decreases, the con-
vergence rates of both the IASR and the Voronoi methods in-
crease. Furthermore, the SER measured after the first iteration
of the IASR also increases with these changes while the SER
measured after the first iteration of the Voronoi method hardly
changes. The effects of these parameters on the IASR can
be intuitively explained by Theorem 4. Since the exponential
decay rate of the amplitude-time function in frequency grows
as α increases or W decreases, the aliasing effect introduced
by the bandlimited approximation is reduced.7 The size of
∆ on the other hand determines how much area outside the
sampling frequency will be. With a smaller ∆, the area outside
1/∆ will be smaller8 and thus the amount of aliasing can
be reduced. By reducing the error introduced by the aliasing
effect, the performance of the IASR will be improved in each
iteration.

The effects of these parameters on the convergence rate of
the Voronoi method on the other hand can be explained by
the theoretical convergence rate discussed in the Appendix.
However, since the approximation of the Voronoi method
after the first iteration is based on the zero-order hold, these
parameters can hardly affect the performance of the Voronoi
method after the first iteration.

Since the average sampling rate of f is α/∆, we would
also like to evaluate the effect of α when the sampling rate
is fixed. Fig. 14 shows that we can improve the conver-
gence rate by increasing α, this observation can as well be
intuitively explained by the reduction in the aliasing effect
of the bandlimited approximation since while (α|ξ|)/W is

7This explanation nonetheless needs further analysis because the exponen-
tial decay can only apply to sufficiently large frequencies.

8This explanation also assumes that 1/∆ is sufficiently large and therefore
the exponential decay can be applied.

fixed, the convergence rate shown in Theorem 4 will still be
affected by how α and AW differ. As a result, the design
parameter α allows us to potentially speed up the convergence
while keeping the sampling rate on the original signal. Since
the IASR exploits the properties of the amplitude sampling,
particularly the exponential decay rate of the Fourier transform
of the amplitude-time function, while the Voronoi method
was not developed for amplitude sampling and thus does not
assume any sampling method, it is reasonable that in general
the IASR attains a substantially larger convergence rate and
achieves better approximation after the first iteration.

VII. CONCLUSION

In this work, we studied amplitude sampling, a recently
proposed method to represent signals by continuous-time-
and discrete-amplitude-valued samples rather than by discrete-
time- and continuous-amplitude-valued samples as conven-
tional time-sampling techniques. Since amplitude sampling
can be defined by uniformly sampling the amplitude-time
function, which is transformed from the input signal using
a reversible transformation, mα, by studying properties of
this amplitude-time function, we can develop reconstruction
approaches that leverage these properties and due to the
reversibility may potentially perfectly recover the input signal.
In this work, properties of an amplitude-time function in
both the time domain and in the frequency domain were
examined. Based on these properties, we developed two re-
construction algorithms, the Bandlimited Interpolation Ap-
proximation (BIA) and its iterative extension, the Iterative
Amplitude Sampling Reconstruction (IASR), and compared
them with empirically the most efficient non-uniform sampling
algorithm, the Voronoi method. We showed that the IASR
not only outperformed the Voronoi by attaining much better
approximation after the first iteration and achieving much
larger convergence rate, it also allows further improvement on
the convergence rate by changing the transformation parameter
α without changing the sampling rate. Two conference papers
are published based on these results [21], [22].
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Fig. 13. Comparison on how the performance of the IASR and the Voronoi method change with different α, ∆, and W .

Fig. 14. Comparison on how the performance of the IASR and the Voronoi
method change with different α but a fixed sampling rate.

APPENDIX A
BACKGROUND ON UNIQUENESS SEQUENCE AND

SAMPLING SEQUENCE

Here we provide some background that will be useful later.
A uniqueness sequence is defined as follows:
Definition 1: [23], [24] The set of points {tn} is a unique-

ness sequence for B(S) if there are no two different functions
f, g ∈ B(S) that agree in {tn}.

The notation B(S) denotes the space of square integrable
signals with a finite support S in the frequency domain. It
is clear that if two different functions f(t) and g(t) with the
same support in frequency agree at t = {tn}, then we cannot
reconstruct both f and g based on these samples without any
other assumption. That is, {f(tn)} can be a representation of
f(t) in B(S) if and only if {tn} is a uniqueness sequence.

The idea of representing a signal by its nonuniform sam-
pling can be traced back to Cauchy as stated in Black’s
paper [25]. Black also discussed scenarios where nonuniform
sampling is encountered, for example, random sampling for
nonsynchronous multiplexing [25]. They stated possible con-
ditions for a uniqueness sequence for a bandlimited-signal
space. These conditions were later proved by [26], [27] in
the following theorem:

Theorem 5: [26] If the average sampling rate of the
nonuniform samples (tn, f(tn)) is higher than the Nyquist
rate m(S)/(2π) where m(S) denotes the measure of S, the
nonuniform samples can uniquely represent a bandlimited
signal. That is, {tn} is a uniqueness sequence.

A more rigorous statement can be found in [27], in which
Beutler also proved the theorem but in a more general math-
ematical setting.

However, Theorem 5 is not useful in practice since it does
not imply how a finite-energy perturbation on samples affects
the reconstructed signal. The resulting error can be unbounded.
In reality we can hardly design an algorithm with infinite
precision and no error introduced. The definition of a sampling
sequence was established to resolve this issue:

Definition 2: [23] The set of points {tn} is a sampling
sequence for B(S) if there exists a constant K such that∫ ∞

−∞
‖f(t)‖2dt ≤ K

∑
‖f(tn)‖2 (32)

for all f(t) ∈ B(S).
We first notice that Definition 2 implies {tn} is also a

uniqueness sequence but the converse does not hold. Definition
2 ensures that the error induced by noisy samples will be
bounded if the noise is bounded; sampling on a sampling
sequence is called stable sampling. Before presenting the
conditions for a sampling sequence, we provide the definition
of the Beurling lower density:

Definition 3: [28], [29] The Beurling lower density of a
sequence {tn} is defined as

D−({tn}) = lim infr→∞ inf
a

1

r
]{{tn} ∩ [a, a+ r]}. (33)

We now can state the necessary and sufficient conditions
for a sampling sequence in the following theorem that was
proved in [23] :

Theorem 6: [23] A sequence {tn} is a set of stable sampling
for B(S) if the Beurling lower density D−({tn}) is at least
m(S)

2π , where m(S) is the measurement of the support of S.
In cases where there are infinite samples in the past or within

a finite interval, since such samples constitute a uniqueness
sequence but not a sampling sequence, a small perturbation
can lead to a substantially different reconstructed signal. From
Theorem 5 and 6, if the Beurling lower density is higher
than the Nyquist rate, uniqueness is ensured and stable re-
construction is possible. Several reconstruction methods have
been proposed under this condition. [3], [4] provided great
reviews of these reconstruction methods.
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APPENDIX B
PROOF OF PERFECT RECONSTRUCTION WHEN THE IASR

CONVERGES

When the IASR converges, we know that the amplitude-
time function of the reconstructed signal and the amplitude-
time function of the original signal agree at n∆ for all n.
These samples (n∆, h(n∆)) can be bijectively mapped to
(tn, f(tn)). That is, the reconstructed signal and the original
signal agree at tn for all n. As a result, to show that when
the IASR converges the reconstructed signal is identical to the
original signal, it is sufficient to show that {tn} is a sampling
sequence, which from Theorem 6 can be shown by checking if
the Beurling lower density is larger than the Nyquist sampling
density. A satisfaction of this requirement ensures not only
perfect reconstruction but also stability.

From Section II, we know tn = n∆−f(tn)
α . Finding the

number of sampling between time a and time a + r is
equivalent to finding the number of integer n such that

a ≤ n∆− f(tn)

α
≤ a+ r.

⇔f(tn) + αa

∆
≤ n ≤ f(tn) + α(a+ r)

∆
. (34)

Consider m such that
A+ αa

∆
≤ m ≤ −A+ α(a+ r)

∆
, (35)

where A is chosen so that −A ≤ f(·) ≤ A. With the choice
of A, any m satisfying Eq. (35) will also satisfies Eq. (34).
That is,

1

r
]{{tm} ∩ [a, a+ r]} ≤ 1

r
]{{tn} ∩ [a, a+ r]}. (36)

From Eq. (35) and Eq. (36), we obtain

1

r
(b−A+ α(a+ r)

∆
c − dA+ αa

∆
e+ 1)

≤ 1

r
]{{tm} ∩ [a, a+ r]}

⇒1

r
(
−2A+ αr

∆
− 1) ≤ 1

r
]{{tm} ∩ [a, a+ r]}

⇒1

r
(
−2A+ αr

∆
− 1) ≤ 1

r
]{{tn} ∩ [a, a+ r]} (37)

for every a and r.
We now can give a lower bound on the Beurling lower

density:

D−({tn}) = lim infr→∞ inf
a

1

r
]{{tn} ∩ [a, a+ r]} ≥ α

∆
.

(38)
Therefore, if α

∆ > W
π and if the iterative reconstruction algo-

rithm converges, the function that the reconstruction algorithm
converges to will be f(t).

APPENDIX C
BACKGROUND ON THE VORONOI METHOD

In this section, we provide some background on iterative
nonuniform-sampling reconstruction, in particular the Voronoi
method. We first present a general technique for developing
an iterative reconstruction algorithm, where we follow the

discussion in [12]. Then we will show how the Voronoi method
utilizes the technique. The convergence rate when the Voronoi
method is applied to the amplitude sampling will then be
derived.

We first state a proposition presented in [12]:
Proposition 1: [12] Let A be a bounded operator on a

Banach space (B, ‖ · ‖B) such that there exists some γ < 1

‖f −Af‖B ≤ γ‖f‖B , (39)

for all f in B. Then A is invertible on B and f can
be recovered from Af by the following iteration algorithm.
Setting f0 = 0 and

fn+1 = fn + A(f − fn), (40)

we have limn→∞ fn = f and

‖f − fn‖B ≤ γn+1‖f‖B . (41)

Notice that the linear convergence shown in Eq. (41) can
be observed by rewriting Eq. (40) as f − fn+1 = f − fn −
A(f − fn) = (Id − A)(f − fn). Since from Eq. (39), we
know ‖I − A‖ ≤ γ, we therefore obtain ‖f − fn+1‖B =
‖(Id−A)(f − fn)‖B < γ‖f − fn‖B . By Banach fixed point
theorem [30], we have limn→∞ fn = f and ‖f − fn‖B ≤
γn+1‖f − f0‖B which is exactly Eq. (41).

The strategy of Proposition 1 has been applied in a numer-
ous nonuniform sampling reconstruction algorithms [31], [32].
Due to the linearity in Eq. (40), once the operator A is found
and a parameter γ < 1 is determined to satisfy Eq. (39), this
strategy is easy to be implemented; moreover, it guarantees
a geometric convergence rate. To find a class of sampling
spaces that are applicable to this proposition, [12] focused
on the study of frames. [12] indicated that if a sequence of
frames can be discovered, then A can be defined as the frame
operator9 and can be proved to satisfy Eq. (39). Furthermore,
the convergence rate and the stability can be determined by the
upper and lower frame bounds. One of the algorithms using
frame operators is the Voronoi method, which was shown to
be practical due to its simplicity, fast convergence rate, and
robustness compared to several other iterative methods [12].
Here we provide a theorem on its convergence.

Assume that there is a nonuniform time sequence {tn} at
which samples are obtained. We denote χn as the charac-
teristic function of half interval [tn, tn+1); i.e. χn(t) = 1 if
t ∈ [tn, tn+1) and zero otherwise. We then obtain a zero-order
hold approximation of f by

∑
n∈N f(tn)χn(t). The operator

A is defined as the zero-order-hold approximation with a low-
pass filter with a cutoff frequency the same as the bandwidth
of f . That is, Af = P (

∑
n∈N f(tn)χn(t)) where the operator

P represents the low-pass filter. With the operator A, we can
state the following theorem:

Theorem 7: [12] If δ = sup(tn+1 − tn) < π
W where W is

the bandwidth of f(t), then f is uniquely determined by its
samples f(tn) and can be reconstructed iteratively as follows:

f0 = Af = P (
∑
n∈N

f(tn)χn(t)).fk+1 = fk+A(f−fk). (42)

9Both the definition of frames and the way to relate A with a frame operator
can be found in [12].
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Then limn→∞ fn = f and

‖f − fk‖B ≤ (
δW

π
)k+1‖f‖B . (43)

This theorem shows that the Voronoi converges linearly with
the convergence rate r = δW

π .10 The proof of this theorem
can be found in [12]. We should notice that the convergence
rate is determined by the maximum time difference δ and the
bandwidth W . Since δ is not the Beurling lower density (or the
average sampling rate in generic cases), it is more restrictive
than the requirement for a unique and stable sequence as in
Theorem 6. In fact, when we apply the Voronoi method to
amplitude sampling, we can derive the followings.

f(tn) + αtn = n∆.

f(tn+1) + αtn+1 = (n+ 1)∆.

⇒tn+1 − tn =
∆− (f(tn+1)− f(tn))

α
. (44)

By mean value theorem [33], there exists ηn ∈ (tn, tn+1) such
that f(tn+1)−f(tn) = f ′(ηn)(tn+1− tn). Therefore, Eq. (44
can be rewritten as

tn+1 − tn +
f ′(ηn)(tn+1 − tn)

α
=

∆

α
.

⇒tn+1 − tn =
∆

α

1

1 + f ′(ηn)
α

. (45)

The condition for Theorem 7 to be applicable can be related
to ∆ as follows:

tn+1 − tn =
∆

α

1

1 + f ′(ηn)
α

<
π

W
. (46)

Notice that δ is affected by the transformation parameter α
and the first derivative of the original signal f . If we choose α
so that 1+ f ′(·)

α > K > 0 for some K (notice that K < 1 since
f is not monotonic), then we require ∆/α < inf(1 + f ′(t)

α ) πW
for the Voronoi method to be applicable, while we only require
∆/α < π

W for the corresponding time sequence {tn} to be a
sampling sequence.
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