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Abstract

Matching estimators (Rubin, 1973a, 1977; Rosenbaum, 2002) are widely used
in statistical data analysis. However, the large sample distribution of matching
estimators has been derived only for particular cases (Abadie and Imbens, 2006).
This article establishes a martingale representation for matching estimators.
This representation allows the use of martingale limit theorems to derive the
large sample distribution of matching estimators. As an illustration of the
applicability of the theory, we derive the asymptotic distribution of a matching
estimator when matching is carried out without replacement, a result previously
unavailable in the literature. In addition, we apply the techniques proposed in
this article to derive a correction to the standard error of a sample mean when
missing data are imputed using the “hot deck”, a matching imputation method
widely used in the Current Population Survey (CPS) and other large surveys
in the social sciences. We demonstrate the empirical relevance of our methods
using two Monte Carlo designs based on actual data sets. In these Monte Carlo
exercises the large sample distribution of matching estimators derived in this
article provides an accurate approximation to the small sample behavior of
these estimators. In addition, our simulations show that standard errors that
do not take into account hot deck imputation of missing data may be severely
downward biased, while standard errors that incorporate the correction for hot
deck imputation perform extremely well.
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I. Introduction

Matching methods provide simple and intuitive tools for adjusting the distribution of co-

variates among samples from different populations. Probably because of their transparency

and intuitive appeal, matching methods are widely used in evaluation research to estimate

treatment effects when all treatment confounders are observed (Rubin, 1977; Dehejia and

Wahba, 1999; Rosenbaum, 2002, Hansen, 2004). Matching is also used for the analysis

of missing data, where it is often referred to as “hot deck imputation” (Little and Rubin,

2002). As a notorious example, missing weekly earnings are currently imputed using hot

deck methods for more than 30 percent of the records with weekly earnings data in the

monthly U.S. Current Population Survey (CPS) files (Bollinger and Hirsch, 2009).

In spite of the pervasiveness of matching methods, the asymptotic distribution of match-

ing estimators has been derived only for special cases (Abadie and Imbens, 2006). In the

absence of large sample approximation results to the distribution of matching estimators,

empirical researchers employing matching methods have sometimes used the bootstrap as

a basis for inference. However, recent results have shown that, in general, the bootstrap

does not provide valid large sample inference for matching estimators (Abadie and Im-

bens, 2008). Similarly, the properties of statistics based on data imputed using sequential

hot deck methods, like those employed in the CPS and other large surveys, are not well-

understood, and empirical researchers using these surveys typically ignore missing data

imputation issues when they construct standard errors. Andridge and Little (2010) pro-

vide a recent survey on hot deck imputation methods.

The main contribution of this article is to establish a martingale representation for

matching estimators. This representation allows the use of martingale limit theorems (Hall

and Heyde, 1980; Billingsley, 1995; Shorack, 2000) to derive the asymptotic distribution

of matching estimators. Because the martingale representation applies to a large class

of matching estimators, the applicability of the methods presented in this article is very

broad. Despite its simplicity and immediate implications, the martingale representation

of matching estimators described in this article seems to have been previously unnoticed
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in the literature. The use of martingale methods is attractive because the limit behavior

of martingale sequences has been extensively studied in the statistics literature (see, for

example, Hall and Heyde, 1980).

As an illustration of the usefulness of the theory, we apply the martingale methods

proposed in this paper to derive the asymptotic distribution of a matching estimator when

matching is carried out without replacement, a result previously unavailable in the litera-

ture. In addition, we apply the techniques proposed in this article to derive a correction to

the standard error of a sample mean when missing data are imputed using the hot deck.

Finally, we demonstrate the empirical relevance of our methods using two Monte Carlo

designs based on actual data sets. In these Monte Carlo exercises the large sample distri-

bution of matching estimators derived in this article provides an accurate approximation

to the small sample behavior of these estimators. In addition, our simulations show that

standard errors that do not take into account hot deck imputation of missing data may

be severely downward biased while standard errors that incorporate the correction for hot

deck imputation perform extremely well.

In this article we reserve the term “matching” for procedures that use a small number

of matches per unit. Heckman, Ichimura, and Todd (1998) have proposed estimators

that treat the number of matches as an increasing function of the sample size. Under

certain conditions, these estimators have asymptotically linear representations, so their

large sample distributions can be derived using the standard machinery for asymptotically

linear estimators. In contrast, despite the pervasiveness of matching estimators that use a

small number of matches (e.g., hot deck imputation in the CPS), the previous literature

does not provide a general framework for establishing their large sample properties.

The rest of the article is organized as follows. Section II describes matching estimators.

Section III presents the main result of the article, which establishes a martingale represen-

tation for matching estimators. In section IV, we apply martingale techniques to analyze

the large sample properties of a matching estimator when matching is carried out without

replacement. In section V, we apply martingale techniques to study hot deck imputation.
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Section VI describes the Monte Carlo simulation exercises and reports the results. Section

VII concludes.

II. Matching Estimators

Let W be a binary variable that indicates membership to a particular population of interest.

Empirical researchers often compare the distributions of some variable, Y , between units

with W = 1 and units with W = 0 after adjusting for the differences in a (k× 1) vector of

observed covariates, X. For example, in discrimination litigation research, W may represent

membership in a certain demographic group, Y may represent labor wages, and X may

represent a vector of variables describing job and/or worker characteristics. In evaluation

research, W typically indicates exposure to an active treatment or intervention, Y is an

outcome of interest, and X is a vector of observed confounders. As in that literature, we

will say that units with W = 1 are “treated” and units with W = 0 are “untreated”. Let

τ = E[Y |W = 1]− E
[
E[Y |X,W = 0]

∣∣∣W = 1
]
. (1)

In evaluation research, τ is given a causal interpretation as the “average treatment effect

on the treated” under unconfoundedness assumptions (Rubin, 1977). Applied researchers

often use matching methods to estimate τ . Other parameters of interest that can be

estimated by matching methods include: (i) the “average treatment effect” on the entire

population, which is of widespread interest in evaluation studies, (ii) parameters that focus

on features of the distribution of Y other than the mean, (iii) parameters estimated by

hot deck imputation methods in the presence of missing data. Rosenbaum (2002), Imbens

(2004), and Rubin (2006) provide detailed surveys of the literature. For concreteness, and

to avoid tedious repetition or unnecessary abstraction, in this section we discuss matching

estimation of τ only. While our main focus is on “treatment effect” parameters, in section V

we show that the techniques proposed in this article can be applied in the context of missing

data imputation. The two contexts are intimately related, because estimating treatment

effects can be seen as a missing data problem (Rubin 1974, Rosenbaum and Rubin, 1983).

Also, to avoid notational clutter, we consider only estimators with a fixed number of
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matches, M , per unit. However, as it will be explained later, our techniques can also be

applied to estimators for which the number of matches may differ across units (see, e.g.,

Hansen, 2004).

Consider two random samples of sizes N0 and N1 of untreated and treated units, re-

spectively. Pooling these two samples, we obtain a sample of size N = N0 +N1 containing

both treated and untreated units. For each unit in the pooled sample we observe the triple

(Y,X,W ). For each treated unit i, let JM(i) be the indices of M untreated units with

values in the covariates similar to Xi (where M is some small positive integer). In other

words, JM(i) is a set of M matches for observation i. To simplify notation, we will as-

sume that at least one of the variables in the vector X has a continuous distribution, so

perfect matches happen with probability zero. Let ‖ · ‖ be some norm in Rk (typically the

Euclidean norm). Let 1A be the indicator function for the event A. For matching with

replacement JM(i) consists of the indices of the M untreated observations with the closest

value covariate values to Xi:

JM(i) =

{
j ∈ {1, . . . , N} s.t. Wj = 0,

(
N∑
k=1

(1−Wk) 1{‖Xi−Xj‖≤‖Xi−Xk‖}

)
≤M

}
.

For matching without replacement, the elements of {JM(i) s.t. Wi = 1} are non-overlapping

subsets of {j ∈ {1, . . . , N} s.t. Wj = 0}, chosen to minimize the sum of the matching dis-

crepancies:
N∑
i=1

Wi

∑
j∈JM (i)

‖Xi −Xj‖.

In both cases, the matching estimator of τ is defined as:

τ̂ =
1

N1

N∑
i=1

Wi

(
Yi −

1

M

∑
j∈JM (i)

Yj

)
. (2)

Many other matching schemes are possible (see, e.g., Gu and Rosenbaum, 1993; Rosen-

baum, 2002; Hansen, 2004; Diamond and Sekhon, 2008; Iacus, King, and Porro, 2009),

and the results in this article are of broad generality. However, as discussed above, our re-

sults pertain to matching estimators that employ a small number, M , of matches per unit.
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Heckman, Ichimura, and Todd (1998) have proposed “kernel matching” estimators, which

require that the number of matches increase with the sample size (with M →∞ as N →∞)

in order to consistently estimate the conditional expectation function E[Y |X,W = 0] in

equation (1). In addition, the results of this article apply to estimators that match directly

on the covariates, X, and do not directly apply to matching on the estimated propensity

score (Rosenbaum and Rubin, 1983). Abadie and Imbens (2010) derive an adjustment to

the distribution of the propensity score matching estimators for the case when the propen-

sity score is not known, so matching is done on a first step estimator of the propensity

score.

III. A Martingale Representation for Matching Estimators

This section derives a martingale representation for matching estimators. For w ∈ {0, 1},

let µw(x) = E[Y |X = x,W = w] and σ2
w(x) = var(Y |X = x,W = w). Given equation (2),

we can write τ̂ − τ = DN +RN , where

DN =
1

N1

N∑
i=1

Wi

(
µ1(Xi)− µ0(Xi)− τ

)
+

1

N1

N∑
i=1

Wi

((
Yi − µ1(Xi)

)
− 1

M

∑
j∈JM (i)

(
Yj − µ0(Xj)

)
,

and

RN =
1

N1

N∑
i=1

Wi

(
µ0(Xi)−

1

M

∑
j∈JM (i)

µ0(Xj)
)
.

The term RN is the conditional bias of matching estimator described in Abadie and Imbens

(2006). This term is zero if all matches are perfect (that is, if all matching discrepancies,

Xi − Xj for j ∈ JM(i), are zero), or if the regression µ0 is a constant function. In most

cases of interest, however, this term is different from zero, as perfect matches happen with

probability zero for continuous covariates. The order of magnitude of RN depends on the

number of continuous covariates, as well as the magnitude of N0 relative to N1. Under

appropriate conditions
√
N1RN converges in probability to zero (see section IV for the case

of matching without replacement, or Abadie and Imbens, 2006, for the case of matching
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with replacement).

Next, it will be shown that the term DN is a martingale array with respect to a certain

filtration. First notice that:

DN =
1

N1

N∑
i=1

Wi

(
µ1(Xi)− µ0(Xi)− τ

)
+

1

N1

N∑
i=1

(
Wi − (1−Wi)

KN,i

M

)(
Yi − µWi

(Xi)
)
,

where KN,i is the number of times that observation i (with Wi = 0) is used as a match:

KN,i =
N∑
j=1

1{i∈JM (j)}.

Therefore, we can write: √
N1DN =

2N∑
k=1

ξN,k,

where

ξN,k =


1√
N1

Wk

(
µ1(Xk)− µ0(Xk)− τ

)
if 1 ≤ k ≤ N,

1√
N1

(
Wk−N − (1−Wk−N)

KN,k−N

M

)(
Yk−N − µWk−N (Xk−N)

)
if N + 1 ≤ k ≤ 2N.

Let XN = {X1, . . . , XN} and WN = {W1, . . . ,WN}. Consider the σ-fields FN,k = σ{WN ,

X1, . . . , Xk} for 1 ≤ k ≤ N and FN,k = σ{WN ,XN , Y1, . . . , Yk−N} for N + 1 ≤ k ≤ 2N .

Then, and this is the key insight in this article,{
i∑

j=1

ξN,j,FN,i, 1 ≤ i ≤ 2N

}

is a martingale for each N ≥ 1. As a result, the asymptotic behavior of
√
N1DN can

be analyzed using martingale methods. This martingale representation holds no matter

whether matching is done with or without replacement, whether a fixed or a variable

number of matches per unit are used, or which particular distance metric is employed

to measure the matching discrepancies. Regardless of the choice of matching scheme, if

matches depend only on the covariates X, a martingale representation holds for
√
N1DN .
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The reason is that no matter how matching is implemented, (i) the number of times that

unit k is used as a match, KN,k, is a deterministic function of XN and WN , and (ii)

E[Yk − µWk
(Xk) |XN ,WN , Y1, . . . , Yk−1] = 0.

So far, we have considered the case where KN,i is fixed given XN and WN , for all

1 ≤ i ≤ N . This assumption does not hold for certain matching schemes that break

matching ties using randomization. Notice, however, that any sequence of randomized

tie-breaks can be included in the set of variables that span FN,k for N + 1 ≤ k ≤ 2N to

preserve the martingale representation of DN . As a result, our derivations extend easily to

randomized matching methods.

IV. Application: Matching without Replacement

In this section, we illustrate the usefulness of the martingale representation of matching

estimators by deriving the asymptotic distribution of a matching estimator when matching

is done without replacement, so KN,i ∈ {0, 1} for every unit i with Wi = 0. To simplify the

exposition we obviate some regularity conditions in the derivations. A precise statement

of the result, including all regularity conditions, is provided at the end of the section.

For 1 ≤ k ≤ N , the conditional variances of the martingale differences are given by:

E[ξ2N,k|FN,k−1] =
1

N1

WkE[(µ1(Xk)− µ0(Xk)− τ)2|FN,k−1]

=
1

N1

WkE[(µ1(Xk)− µ0(Xk)− τ)2|Wk = 1].

For N + 1 ≤ k ≤ 2N , the conditional variances of the martingale differences are given by:

E[ξ2N,k|FN,k−1] =
1

N1

E

[(
Wk−N − (1−Wk−N)

KN,k−N

M

)2 (
Yk−N − µWk−N (Xk−N)

)2∣∣∣∣∣FN,k−1
]

=
1

N1

(
Wk−Nσ

2
1(Xk−N) + (1−Wk−N)

KN,k−N

M2
σ2
0(Xk−N)

)
=

1

N1

Wk−N

(
σ2
1(Xk−N) +

σ2
0(Xk−N)

M

)
+ rN,k−N ,

where

rN,k−N =
1

N1

(
(1−Wk−N)

KN,k−N

M2
σ2
0(Xk−N)−Wk−N

σ2
0(Xk−N)

M

)
.
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Assume that the conditional variance function σ2
0(x) is Lipschitz-continuous, with Lipschitz

constant equal to cσ2
0
. For 1 ≤ i ≤ N such that Wi = 1, let ‖U (M,m)

N0,N1,i
‖ be the m-th matching

discrepancy for treated unit i when untreated units are matched without replacement to

treated units in such a way that the sum of the matching discrepancies is minimized.

That is, if unit i is a treated observation, and unit j is the m-th match for unit i, then

‖U (M,m)
N0,N1,i

‖ = ‖Xi −Xj‖. Lipschitz-continuity of σ2
0(x) implies:∣∣∣∣∣

2N∑
k=N+1

rN,k−N

∣∣∣∣∣ ≤ cσ2
0

M2

1

N1

N∑
i=1

M∑
m=1

Wi‖U (M,m)
N0,N1,i

‖.

Because the average matching discrepancy converges to zero in probability (see Proposition

1 in the appendix for a stronger result), the Weak Law of Large Numbers implies

2N∑
k=1

E[ξ2N,k|FN,k−1]
p→ σ2,

where

σ2 = E[(µ1(X)− µ0(X)− τ)2|W = 1] + E

[
σ2
1(X) +

σ2
0(X)

M

∣∣∣W = 1

]
. (3)

In view of this result, to apply a Martingale Central Limit Theorem to DN , it is sufficient

to check the Lindeberg condition,

2N∑
k=1

E[ξ2N,k1{|ξN,k|≥ε}]→ 0 for all ε > 0

(Billingsley, 1995, see Hall and Heyde, 1980, and Shorack, 2000, for alternative conditions).

Because for all δ > 0, |ξN,k|21{|ξN,k|≥ε}εδ ≤ |ξN,k|2+δ, it follows that Lindeberg’s condition is

implied by Lyapounov’s condition:

2N∑
k=1

E[|ξN,k|2+δ]→ 0 for some δ > 0,

For the matching estimators considered in this section, Lyapounov’s condition can be es-

tablished imposing regularity conditions on the existence of moments (like condition (iii)

in the statement of Theorem 1 below). Then, the Central Limit Theorem for Triangular

Martingale Arrays implies: √
N1DN

d−→ N(0, σ2).
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The proof concludes by showing that
√
N1RN

p→ 0. If µ0 is Lipschitz-continuous, then

there exists a constant cµ0 such that

√
N1RN ≤ cµ0

1√
N1

1

M

N∑
i=1

M∑
m=1

Wi‖U (M,m)
N0,N1,i

‖.

Proposition 1 in the appendix shows that under some conditions, and if there exists c > 0

and r > k where k is the number of (continuous) covariates, such that N r
1/N0 ≤ c, then,

1√
N1

N∑
i=1

M∑
m=1

Wi‖U (M,m)
N0,N1,i

‖ p→ 0,

so
√
N1RN vanishes asymptotically.

We now collect in a Theorem the result of this section along with precise regularity

conditions.

Theorem 1: Suppose that (i) {Yi, Xi,Wi}Ni=1 is a pooled sample of N1 treated and N0 un-

treated observations obtained by random sampling from their respective population counter-

parts, (ii) the support of X given W = 1 is a subset of the support of X given W = 0,

(iii) for some δ > 0, and w = 0, 1, E[|Y |2+δ|X = x,W = w] is bounded on the support

of X given W = w, (iv) the functions µ0(·) and σ2
0(·) are Lipschitz-continuous, and (v)

(1/
√
N1)

∑N
i=1

∑M
m=1Wi‖U (M,m)

N0,N1,i
‖ p→ 0 as N1 → ∞. Then,

√
N1(τ̂ − τ)

d→ N(0, σ2) as

N1 →∞.

Assumption (v) in Theorem 1 is not primitive and Proposition 1 in the appendix provides

a set of primitive regularity conditions under which assumption (v) holds. The conditions

of Proposition 1 assume that all covariates have continuous distributions. This is done

without loss of generality for large enough samples. As sample sizes increase discrete

covariates with a finite number of support points are perfectly matched, so they can be

easily dealt with by conditioning on their values, in which case k is equal to the number of

continuous covariates in X. In practice, however, discrete covariates may not be perfectly

matched, and may therefore contribute to the bias of the matching estimator.

The proof of Proposition 1 indicates that the support conditions in this proposition can

also be relaxed. However, the requirement that the size of the untreated group is of larger
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order of magnitude than the size of the treated group (implied by N r
1/N0 ≤ c for c > 0 and

r > k) is crucial to the result in the proposition. To see that r = 1 is not sufficient (even

in the one-dimensional case where k = 1), consider the case with M = 1 and N0 = N1.

Then, because matching is done without replacement and all treated units are matched,

the matching estimator is equal to the difference in sample means of Y between treated

and nontreated, regardless of the total sample size N .

Proposition 1 provides conditions under which matching discrepancies are negligible

in large samples. In practical terms, Proposition 1 demonstrates the benefits of having a

large “donor pool” of control units for matching estimators. However, for any given sample

matching discrepancies are observed, and researchers can assess the quality of the matches

directly from the data.

When matching discrepancies are large the resulting bias can be eliminated or reduced

using the bias correction techniques in Rubin (1973b), Quade (1982), and Abadie and

Imbens (2011). These authors propose a bias-corrected matching estimator that adjusts

each matched pair for its contribution to the conditional bias term:

τ̂bc =
1

N1

N∑
i=1

Wi

(
(Yi − µ̂0(Xi))−

1

M

∑
j∈JM (i)

(Yj − µ̂0(Xj(i)))
)
, (4)

where µ̂0(·) is an estimator of µ0(·). Under certain conditions, Abadie and Imbens (2011)

show that this bias-correction technique eliminates the asymptotic bias of a matching with

replacement estimator without affecting its asymptotic variance.

Straightforward calculations show that the variance estimator

σ̂2 =
1

N1 − 1

N∑
i=1

Wi

(
Yi −

1

M

∑
j∈JM (i)

Yj − τ̂
)2

(5)

is consistent for σ2. Despite the simplicity of this result, to our knowledge the validity of

σ̂2/N1 as an estimator of the variance of τ̂ when matching is done without replacement has

not been established previously. Conversely, it is known that σ̂2/N1 is not a valid estimator

of the variance of τ̂ when matching is done with replacement (Abadie and Imbens, 2006).
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V. Application: Hot Deck Imputation

In this section, we consider a “cell hot deck” imputation scheme where incomplete records

of Y are imputed using complete observations within the same “cell” of the covariates,

X. That is, the support of the covariates is partitioned into T cells, C1, . . . CT , and each

incomplete record of Y is filled using a complete record from the same cell. Other hot deck

imputation procedures are possible (see, for example, Little and Rubin, 2002). However,

the cell hot deck methods is probably the most widely used in practice, as it is the one

used by the US Census Bureau to impute missing data in the Current Population Survey

(CPS), the decennial census, the Survey of Income and Program Participation (SIPP), and

other large surveys. Derivations similar to the ones presented in this section can be applied

to alternative hot deck imputation schemes.

Let W be an indicator for complete record, that is W = 1 indicates that Y is observed.

Cell hot deck imputation methods like the one employed in the CPS can be justified by

the assumption that Y is independent of (X,W ) conditional on X ∈ Ct, for 1 ≤ t ≤ T .

This is sometimes referred to as the cell mean model assumption (Brick, Kalton and Kim,

2004). This may be a strong assumption in many contexts where data are imputed using

the cell hot deck. However, without this assumption or a similar one, in general the cell hot

deck will produce inconsistent estimators. Therefore, in our analysis we adopt the cell mean

model assumption. Also, we restrict our derivations to the case of simple random sampling.

In practice, Let µ = E[Y ], µ(x) = E[Y |X = x], µt = E[Y |X ∈ Ct] and σ2
t = var(Y |X ∈ Ct).

Let j(i) be the index of the observation used to impute Y for observation i (if Wi = 1, then

j(i) = i). Let

Ȳ =
1

N

N∑
i=1

Yj(i)

=
1

N

N∑
i=1

Wi(1 +KN,i)Yi, (6)

where now KN,i is the number of times that observation i is used to impute an incomplete

record. The variables KN,i depend on how imputations are chosen from the complete

records within a cell. One possibility is the random cell hot deck, which imputes missing
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records using a record chosen at random among the complete observation in the same cell.

The CPS and other large surveys use a more complicated procedure called the sequential

cell hot deck. The sequential cell hot deck imputes missing records using the last complete

record in the same cell. That is, unlike the random cell hot deck, the sequential cell hot

deck uses information about the order of the observations in the sample.

Notice that

Ȳ − µ =
1

N

N∑
i=1

(µ(Xi)− µ)

+
1

N

N∑
i=1

Wi(1 +KN,i)(Yi − µ(Xi))

+
1

N

N∑
i=1

(µ(Xj(i))− µ(Xi)).

Under the cell mean model assumption, µ(Xj(i)) − µ(Xi) = 0 for all i. Assume that the

second moment of KN,i exists, and that for each cell, t, we have:∣∣∣∣∣ 1

Nt

N∑
i=1

1{Xi∈Ct}Wi(1 +KN,i)
2 − E

[
1

Nt

N∑
i=1

1{Xi∈Ct}Wi(1 +KN,i)
2

]∣∣∣∣∣ p−→ 0, (7)

which can be usually established using negative association properties of {KN,i s.t. Wi =

1, Xi ∈ Ct} (Joag-Dev and Proschan, 1983, see Proposition 2 in the appendix). We can

write:
Ȳ − µ
σ/
√
N

=
2N∑
k=1

ξN,k,

where

σ2 = E

[
T∑
t=1

(
Nt

N

)
(µt − µ)2

]
+ E

[
T∑
t=1

(
Nt

N

)
σ2
t

1

Nt

N∑
i=1

1{Xi∈Ct}Wi(1 +KN,i)
2

]
,

and

ξN,k =


1

σ
√
N

(µ(Xk)− µ) if 1 ≤ k ≤ N,

1

σ
√
N
Wk−N(1 +KN,k−N)

(
Yk−N − µ(Xk−N)

)
if N + 1 ≤ k ≤ 2N.
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Let XN = {X1, . . . , XN}, WN = {W1, . . . ,WN}. Consider the σ-fields FN,k = σ{W1,

. . . ,Wk, X1, . . . , Xk} for 1 ≤ k ≤ N and FN,k = σ{WN ,XN , Y1, . . . , Yk−N} for N + 1 ≤

k ≤ 2N . Then, {
i∑

j=1

ξN,j,FN,i, 1 ≤ i ≤ 2N

}
is a martingale for each N ≥ 1. Equation (7) along with the Central Limit Theorem for

martingale arrays (e.g., Theorem 35.12 in Billingsley, 1995) imply:

Ȳ − µ
σ/
√
N

d−→ N(0, 1). (8)

We now present the result of this section in the form of a Theorem, along with precise

regularity condition.

Theorem 2: Suppose that (i) {X1, . . . , XN}Ni=1 are sampled at random from the population

of interest, (ii) Pr(W = 1|X ∈ Ct) > 0, for t = 1, . . . , T , (iii) Y is independent of (W,X)

given X ∈ Ct, for t = 1, . . . , T , (iv) var(Y ) > 0, and (v) for some δ > 0, E[|Y |2+δ] < ∞.

Then, equation (8) holds.

Consider now the usual variance estimator that ignores missing data imputation:

σ̂2 =
1

N − 1

N∑
i=1

(Yj(i) − Ȳ )2. (9)

Notice that ∣∣∣∣∣σ̂2 −
T∑
t=1

(
Nt

N

)
(µt − µ)2 −

T∑
t=1

(
Nt

N

)
σ2
t

∣∣∣∣∣ p−→ 0.

In addition, because
∑N

i=1 1{Xi∈Ct}Wi(1 +KN,i) = Nt, then

1

Nt

N∑
i=1

1{Xi∈Ct}Wi(1 +KN,i)
2 = 1 +

1

Nt

N∑
i=1

1{Xi∈Ct}Wi(K
2
N,i +KN,i).

This suggests using the following estimator of the variance of the re-scaled estimator:

σ̂2
adj = σ̂2 +

1

N

T∑
t=1

(
N∑
i=1

1{Xi∈Ct}Wi(K
2
N,i +KN,i)

)
σ̂2
t

= σ̂2 +
T∑
t=1

(
Nt

N

)(
1

Nt

N∑
i=1

1{Xi∈Ct}Wi(K
2
N,i +KN,i)

)
σ̂2
t . (10)
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where σ̂2
t is the sample variance of Y calculated from the complete observations in cell

Ct. Similar formulas of the estimator of the variance in contexts different than the one

considered in this section have been previously derived in Hansen, Hurwitz, and Madow

(1953, vol. II, pages 139-140), Kalton (1983), and Brick, Kalton, and Kim (2004). Notice

that this formula applies no matter how imputation is done within the cells (for example,

randomized or based on the order of the observations in the sample) as long as equation

(7) holds.

VI. Monte Carlo Analysis

This section reports the results of two Monte Carlo simulations based on actual data.

Section VI.A uses the Boston HMDA data set, a data set collected by the Federal Reserve

Bank of Boston to investigate racial discrimination in mortgage credit markets, to assess

the quality of the large sample approximation to the distribution of matching estimators

derived in section IV. Section VI.B uses CPS data to investigate the performance of the

standard error correction for missing data imputation derived in section V.

A. Matching without Replacement in the Boston HMDA Dataset

In order to detect potential discriminatory practices of mortgage credit lenders against

minority applicants, the U.S. Home Mortgage Disclosure Act (HMDA) of 1975 requires

lenders to routinely disclose information on mortgage applications, including the race and

ethnicity of the applicants. The information collected under the HMDA does not include,

however, data on the credit histories of the applicants, and other loan and applicant char-

acteristics that are considered to be important factors in determining the approval or denial

of mortgage loans. The absence of such information has generated some skepticism about

whether the HMDA data can effectively be used to detect discrimination in the mortgage

credit market. To overcome this criticism, the Federal Reserve Bank of Boston collected an

additional set of 38 variables included in mortgage applications for a sample of applications

in the Boston metropolitan area in 1990. The Boston HMDA data set includes all mortgage

applications by black and Hispanic applicants in the Boston metropolitan area in 1990, as
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well as a random sample of mortgage applications by white applicants in the same year and

geographical area. Regression analysis of the Boston HMDA data indicated that minority

applicants were more likely to be denied mortgage than white applicants with the same

characteristics (Munnell et al., 1996).

In this section, we use the Boston HMDA data set to evaluate the empirical performance

of the large sample approximation to the distribution of matching estimators derived in

section IV. The HMDA data provides a relevant context for this evaluation because the

Federal Reserve System employs matching in the HMDA data as an screening device for

fair lending regulation compliance (Avery, Beeson, and Calem, 1997, Avery, Canner, and

Cook, 2005). We restrict our sample to single-family residences and male applicants who

are white non-Hispanic or black non-Hispanic, not self-employed, who were approved for

private mortgage insurance, and who do not have a public record of default or bankruptcy

at the time of the application. This leaves us with a sample of 148 black applicants and

1336 white applicants, for a total of 1484 applicants.

In the context of this application, the outcome variable, Y , is an indicator variable that

takes value one if the mortgage application was denied, and zero if the mortgage application

was approved, W is a binary indicator that takes value one for black applicants, and X is

a vector of six applicant and loan characteristics used in Munnell et al. (1996): housing

expense to income ratio, total debt payments to income ratio, consumer credit history,

mortgage credit history, regional unemployment rate in the applicant’s industry, and loan

amount to appraised value ratio (see Munnell et al., 1996, for a precise definition of these

variables).

To run our simulations for samples sizes of N1 black observations and N0 white obser-

vations we proceed in five steps. First, for the entire sample, we estimate a logistic model

of the mortgage denial indicator on the black indicator and the covariates in X. Second,

we draw (with replacement) N1 observations from the empirical distribution of X for black

applicants and N0 observations from the empirical distribution of X for white applicants.

Third, for each individual in the simulated sample, we generate the mortgage denial indica-
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tor, Y , using the logistic model estimated in the first step. Fourth, for the simulated sample,

we compute τ̂ , the matching estimator in equation (2), matching without replacement, the

bias-corrected version of this estimator, τ̂bc, in equation (4), and the variance estimator, σ̂2,

in equation (5). All covariates are normalized to have unit variance prior to matching, and

a logistic model is employed to calculate the bias correction. Finally, we repeat steps two

to four for a total number of 10000 simulations. That is, in this simulation we sample from

a population distribution of the covariates that is equal to the distribution of the covariates

in the HMDA sample of 1484 applicants. The distribution of Y conditional W and X in

our simulation is given by a logistic model with parameters equal to those estimated in the

HMDA sample of 1484 applicants. In this Monte Carlo design, the parameter τ in equation

(1) is equal to 0.099, which represents the difference in the probability of denial between

black applicants and white applicants of the same characteristics in our simulation.

Table I reports the results of the simulation, for different sample sizes, N1 and N0.

Column (1) reports the bias of τ̂ relative to τ . As suggested by the results in section

IV, our simulation results indicate that for a fixed N1 the bias of τ̂ decreases when N0

increases. For small samples, however, the bias of τ̂ may be substantial, reflecting the

high dimensionality of the vector of matching variables. The bias-corrected estimator in

column (2) generates much smaller biases. Columns (3) and (4) report the variance of τ̂

across simulations and the average, also across simulations, of the variance estimator of τ̂

in equation (5). Even in fairly small samples (N1 = 25 and N0 = 250), σ̂2/N1 provides

a very precise approximation to the variance of τ̂ . Finally, columns (5) and (6) report

coverage rates of nominal 95% confidence intervals constructed with (τ̂ , σ̂2) and (τ̂bc, σ̂
2),

respectively. The results indicate that, in this simulation, the Normal approximation to

the distribution of matching estimators derived in section IV is very accurate, especially

when the bias of the matching estimator is corrected using the bias correction techniques

in Rubin (1973b), Quade (1982), and Abadie and Imbens (2011).
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B. Hot Deck Imputation in the Current Population Survey

Hot deck methods have long been used to impute missing data in large surveys (see, for

example, Andridge and Little, 2010). However, the sampling properties of complex hot deck

imputation methods, like the sequential hot deck used by the Census Bureau in the CPS,

are largely unknown. This void in the literature has become an object of serious concern

in recent years, because the proportion of observations in the CPS with imputed values

of weekly earnings has increased steadily: from around 16 percent in 1979, when weekly

earnings were included in the monthly survey questionnaire, to more than 30 percent in

recent years (Hirsch and Schumacher, 2004; Bollinger and Hirsch, 2009).

In this section we investigate the performance of the approximation to the distribution

of a sample mean proposed in section V, when data are imputed using a sequential hot

deck like in the CPS. In order to make our exercise as realistic as possible we base our

Monte Carlo design on actual CPS data. However, like in section V and in contrast to the

CPS sampling scheme, we base our simulation on simple random sampling.

Hot deck imputation in the CPS Outgoing Rotation Groups is done through a series of

steps, each one imputing a specific survey item. Here, we focus on imputation of missing

earnings, because earnings are affected by imputation rates that are much higher than for

other survey items. As for other missing survey items, imputation of weekly earnings for

non-hourly workers is implemented through a cell hot deck procedure. Observations are

assigned to cells defined by age, race, gender, education, occupation, hours worked, and

receipt of overtime wages, tips, or commissions, for a total of 11,520 cells (see Bollinger and

Hirsch, 2006, for details). Then each missing record is imputed using the value of weekly

earnings of last complete record in the same cell.

The imputation of weekly earnings in the CPS Outgoing Rotation Groups cannot be

perfectly reproduced with the CPS public use data files. The main reason is that the

race variable used by the imputation algorithm is different from the one included in the

public use data release. Nevertheless, the Monte Carlo exercise carried out in this section is

designed to reproduce as closely as possible the imputation algorithm used by the Census
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Bureau for weekly earnings. In our simulation we use data from the CPS monthly file

of August 2009. In order to simplify the analysis, we first restrict our sample to male

individuals working for a pay, who are white, aged 25 to 64, have a high school diploma or

equivalent, hold one job only, have a tertiary occupation, do not receive overtime wages,

tips, or commissions, and work 40 hours/week. In addition, we discard four observations

with zero recorded weekly earnings. This leaves us with 856 observations in 30 of the 11,520

original hot deck cells. The 30 hot deck cells are defined by three categories of age, two

of education, and five of occupation. The average number of observations per cell is 28.53,

the minimum is 2, and the maximum is 149. In this sample the percentage of observations

with missing weekly earnings is 32.83, and each cell has at least two complete observations.

For a fixed number of observations, N , the simulation proceeds as follows. First, for

each cell t we simulate two observations of log weekly earnings, Y ∗t,1 and Y ∗t,2, from a normal

distribution with the same mean and variance as in the distribution of log weekly earnings

for complete the CPS observations in the same cell. In our simulation, Y ∗t,1 and Y ∗t,2 represent

the last two complete observations in cell t in previous CPS waves. Second, we sample N

observation from the multinomial distribution of cell frequencies in the CPS sample. For

each of these N observations, we simulate log weekly earnings using a normal distribution

with the same mean and variance as log weekly earnings for complete CPS observations

in the same cell. Then, for each observation we mark weekly earnings as unrecorded with

probability equal to the proportion of missing weekly earnings in the same cell of the CPS

sample. Third, in our simulated sample of N observations, we impute missing log weekly

earnings using the last complete observation in the cell (which may possibly be Y ∗t,2). This

creates a partially imputed sample with N values of log weekly earnings. Four, we calculate

the sample average, Ȳ in equation (6), as well as the usual and adjusted variance estimators:

σ̂2 and σ̂2
adj in equations (9) and (10), respectively. To compute the intra-cell variances, σ̂2

t

of equation (10), we use all the complete simulated observations in the cell plus Y ∗t,1 and

Y ∗t,2. Simulating two complete observations per cell, Y ∗t,1 and Y ∗t,2, that correspond to the

last two complete observations in the cell in previous CPS waves allows us to compute σ̂2
t
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even for cells with no other complete observations in the simulation. Finally, we repeat

steps one to four for a total number of 50000 simulations.

The results are reported on Table II for sample sizes 50, 100, 200, and 856, the actual

number of observations in the CPS sample. The average of our adjusted variance estimator

across simulations, in column (2), closely approximates the variance of Ȳ , in column (1),

even for fairly small sample sizes. In contrast, columns (3) and (4) show that the usual

variance estimator is severely downward biased, and that the bias of this estimator (as a

percentage of the true variance) increases with the sample size. For 856 observations, that

is the actual size of the CPS data sample used in the simulation, the usual variance esti-

mator is only 58 percent of the true variance of Ȳ . Large sample sizes make possible that

some observations are repeatedly used for imputation, increasing the difference between

the adjusted and unadjusted variances in equation (10). This happens when missing ob-

servations arrive consecutively to a cell, without the observation used for imputation being

“refreshed” by another complete observation. Columns (5) and (6) report coverage rates

of nominal 95% confidence intervals constructed with σ̂2
adj and σ̂2, respectively. The results

show coverage rates close to nominal coverage in column (5), when the adjusted variance

estimator is used to construct confidence interval. In contrast, confidence intervals calcu-

lated with the usual variance estimator suffer from severe under-coverage, as reported in

column (6).

VII. Conclusion

This article establishes a martingale array representation for matching estimators. This

representation allows the use of well-known martingale limit theorems to determine the

large sample distribution of matching estimators. Because the martingale representation

applies to a large class of matching estimators, the applicability of the methods presented

in this article is very broad. Specific applications include matching estimators of average

treatment effects as well as “hot deck” imputation methods for missing data. Two realistic

simulations demonstrate the empirical relevance of the results of this article.
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Appendix

Proposition 1: Let F0 and F1 be the distributions of X given W = 0 and X given W = 1,
respectively. Assume that F0 and F1 have a common support that is a Cartesian product of
intervals, and that the densities f0(x) and f1(x) are bounded and bounded away from zero: f ≤
f0 ≤ f̄ and f ≤ f1 ≤ f̄ . Assume that there exists c > 0 and r > k where k is the number of
(continuous) covariates, such that N r

1/N0 ≤ c. Then,

1√
N1

N∑
i=1

M∑
m=1

Wi‖U (M,m)
N0,N1,i

‖ p→ 0.

Proof of Proposition 1: By changing units of measurement, we can always make the support
of the covariates equal to the unit k-cube. (This only adds a multiplicative constant to our
bounds.) Notice that we can always divide a unit k-cube into Nk

1 identical cubes, for N1 =
1, 2, 3, . . ..

Divide the support of F0 and F1 into Nk
1 identical cubes. Let ZM,N0,N1 be the number of such

cells where the number of untreated observation is less than M times the number of observations
from the treated sample. Let MN1 be the maximum number of observations from the treated
sample in a single cell. Let mN0,N1 be the minimum number of untreated observations in a single
cell. Notice that for any series, f(N1), such that 1 ≤ f(N1) < N1, we have:

Pr(ZM,N0,N1 > 0) ≤
N1∑
n=1

Pr(mN0,N1 < Mn) Pr(MN1 = n)

≤
bf(N1)c∑
n=1

Pr(mN0,N1 < Mn) Pr(MN1 = n)

+

N1∑
n=bf(N1)c+1

Pr(mN0,N1 < Mn) Pr(MN1 = n)

≤ f(N1) Pr(mN0,N1 < Mf(N1))

+ (N1 − f(N1)) Pr(MN1 > f(N1)).

Let DN1,n be the number of cells where the number of treated observations is larger than n. Let
0 < α < min{r−k, 1}. Consider f(N1) = Nα

1 . For N1 large enough, f̄/Nk
1 < 1. Using Bonferroni

Inequality we obtain for N1 large enough:

Pr(MN1 > f(N1)) = Pr(DN1,Nα
1
≥ 1)

≤ Nk
1 Pr

(
B(N1, f̄/N

k
1 ) > Nα

1

)
,

where B(N, p) denotes a Binomial random variable with parameters (N, p). Using Bennett’s
bound for binomial tails (e.g., Shorack and Wellner, 1996, p. 440), we obtain:

Pr
(
B(N1, f̄/N

k
1 ) > Nα

1

)
= Pr

(
B(N1, f̄/N

k
1 )− f̄/Nk−1

1√
N1

>
Nα

1 − f̄/N
k−1
1√

N1

)
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≤ exp

{
− f̄/Nk−1

1

1− f̄/Nk
1

[
Nα+k−1

1

f̄

(
log

(
Nα+k−1

1

f̄

)
− 1

)
+ 1

]}

= exp

{
− 1

1− f̄/Nk
1

[
Nα

1

(
log

(
Nα+k−1

1

f̄

)
− 1

)
+

f̄

Nk−1
1

]}
.

Similarly, let CN0,N1,m be the number of cells with less than m untreated observations. Then,
using Bonferroni Inequality:

Pr(mN0,N1 < m) = Pr(CN0,N1,m ≥ 1)

≤
Nk

1∑
n=1

Pr
(
B(N0, pn) < m

)
,

where pn is the probability that an untreated observation falls in cell n. Then, because for all n,
pn ≥ f/Nk

1 , we obtain:

Pr(mN0,N1 < m) ≤ Nk
1 Pr

(
B(N0, f/N

k
1 ) < m

)
.

Also, for large enough N1, there exists δ such that (Mc/f)/N r−α−k
1 < δ < 1. Using Chernoff’s

bound for the lower tail of a sum of independent Poisson trials (e.g., Motwani and Raghavan,
1995, p. 70), we obtain that for large enough N1:

Pr
(
B(N0, f/N

k
1 ) < MNα

1

)
= Pr

(
B(N0, f/N

k
1 ) < f

N0

Nk
1

MNα+k
1

fN0

)

≤ Pr

(
B(N0, f/N

k
1 ) < f

N0

Nk
1

Mc/f

N r−α−k
1

)
≤ exp

(
−(fN0/N

k
1 )
(
1− (Mc/f)/N r−α−k

1

)2
/2
)

≤ exp
(
−fN r−k

1 (1− δ)2/2c
)
.

This proves an exponential bound for Pr(ZM,N0,N1 > 0).
Rearrange the observations so the first N1 observations in the sample are the treated obser-

vations. For 1 ≤ i ≤ N1, let ‖U (M,m)
N0,N1,i

‖ be the m-th matching discrepancy for treated unit i when
untreated units are matched without replacement to treated units in such a way that the sum of

the matching discrepancies is minimized. For 1 ≤ i ≤ N1, let ‖V (M,m)
N0,N1,i

‖ be the m-th matching
discrepancy for treated unit i when untreated units are matched without replacement to treated
units in such a way that the matches are first done within cells and, after all possible within-cell
matches are exhausted, untreated units that were not previously used as a match are matched
without replacement to previously unmatched treated units in other cells. Notice that:

N1∑
i=1

M∑
m=1

‖U (M,m)
N0,N1,i

‖ ≤
N1∑
i=1

M∑
m=1

‖V (M,m)
N0,N1,i

‖.

Let dN1,k be the diameter of the cells. Let Ck be the diameter of the unit k-cube. Notice that if
the unit k-cube is divided in Nk

1 identical cells, then Ck = N1dN1,k. For 1 ≤ n ≤ Nk
1 , let AN1,n
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be the n-th cell. Then,

E
[
‖V (M,m)

N0,N1,i
‖
∣∣ZM,N0,N1 = 0

]
≤

Nk
1∑

n=1

dN1,k Pr(X1,i ∈ AN1,n|ZN0,N1 = 0)

≤ dN1,k

=
Ck
N1

.

Now,

E

[
1√
N1

N1∑
i=1

M∑
m=1

‖U (M,m)
N0,N1,i

‖

]
≤ E

[
1√
N1

N1∑
i=1

M∑
m=1

‖V (M,m)
N0,N1,i

‖

]

= E

[
1√
N1

N1∑
i=1

M∑
m=1

‖V (M,m)
N0,N1,i

‖
∣∣∣ZM,N0,N1 = 0

]
Pr(ZM,N0,N1 = 0)

+ E

[
1√
N1

N1∑
i=1

M∑
m=1

‖V (M,m)
N0,N1,i

‖
∣∣∣ZM,N0,N1 > 0

]
Pr(ZM,N0,N1 > 0)

≤ M
Ck√
N1

+
√
N1MCk Pr(ZM,N0,N1 > 0) −→ 0.

Markov’s Inequality produces the desired result. �

Proof of Theorem 1: Notice that condition (iii) in Theorem 1 implies that for w = 0, 1, µw(x)
and σ2w(x) are bounded on the support of X given W = w. Then, the result of the theorem
follows easily from the derivations in section IV. �

Before proving Theorem 2 it is useful to prove the following proposition.

Proposition 2: Let

AN,t =
1

N

N∑
i=1

1{Xi∈Ct}Wi(1 +KN,i)
2 − E

[
1

N

N∑
i=1

1{Xi∈Ct}Wi(1 +KN,i)
2

]
.

Under the conditions of Theorem 2, we have AN,t
p→ 0, for all t = 1, 2, . . . , T .

Proof of Proposition 2: Given the nature of the sequential hot-deck, it is easy to check
that for any N and i the positive moments of KN,i conditional on Xi ∈ Ct are bounded by
the corresponding moments of a Geometric distribution with parameter Pr(W = 1|X ∈ Ct).
Therefore, we obtain that for any r > 0 there exists a constant cr such that E[Kr

N,i] ≤ cr for all
N and i.

Because E[AN,t] = 0, Markov’s inequality implies that if var(AN,t)→ 0, then AN,t
p→ 0.

var(AN,t) = var

(
1

N

N∑
i=1

1{Xi∈Ct}Wi(1 +KN,i)
2

)

=
1

N2

N∑
i=1

var
(
1{Xi∈Ct}Wi(1 +KN,i)

2
)
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+
2

N2

N∑
i=1

∑
j>i

cov
(

1{Xi∈Ct}Wi(1 +KN,i)
2, 1{Xj∈Ct}Wj(1 +KN,j)

2
)
.

To show that var(AN,t) converges to zero, we will first prove the following intermediate result: for
all i = 1, . . . , N−1, all j = i+1, . . . , N , and all p ≥ 0, Pr(1{Xj∈Ct}Wj = 1 | 1{Xi∈Ct}Wi(1+KN,i) ≤
p) ≥ Pr(1{Xj∈Ct}Wj = 1). To prove this result notice that

Pr((1 +KN,i) > p|Wi = 1, Xi ∈ Ct) = Pr(W = 0|X ∈ Ct)p Pr

(
N∑

k=i+1

1{Xk∈Ct} ≥ p

)
.

Therefore,

Pr(1{Xi∈Ct}Wi(1 +KN,i) > p) = Pr(W = 0|X ∈ Ct)p Pr

(
N∑

k=i+1

1{Xk∈Ct} ≥ p

)
× Pr(Wi = 1|Xi ∈ Ct) Pr(Xi ∈ Ct).

Similarly,

Pr(1{Xi∈Ct}Wi(1 +KN,i) > p | 1{Xj∈Ct}Wj = 1) = Pr(W = 0|X ∈ Ct)p Pr

(
j−1∑
k=i+1

1{Xk∈Ct} ≥ p

)
× Pr(Wi = 1|Xi ∈ Ct) Pr(Xi ∈ Ct).

Now, because

Pr

(
j−1∑
k=i+1

1{Xk∈Ct} ≥ p

)
≤ Pr

(
N∑

k=i+1

1{Xk∈Ct} ≥ p

)
,

we obtain that

Pr(1{Xi∈Ct}Wi(1 +KN,i) > p | 1{Xj∈Ct}Wj = 1) ≤ Pr(1{Xi∈Ct}Wi(1 +KN,i) > p),

or equivalently,

Pr(1{Xi∈Ct}Wi(1 +KN,i) ≤ p | 1{Xj∈Ct}Wj = 1) ≥ Pr(1{Xi∈Ct}Wi(1 +KN,i) ≤ p).

By Bayes’ theorem,

Pr(1{Xj∈Ct}Wj = 1 | 1{Xi∈Ct}Wi(1 +KN,i) ≤ p)
Pr(1{Xj∈Ct}Wj = 1)

=
Pr(1{Xi∈Ct}Wi(1 +KN,i) ≤ p | 1{Xj∈Ct}Wj = 1)

Pr(1{Xi∈Ct}Wi(1 +KN,i) ≤ p)

and we therefore obtain the desired result,

Pr(1{Xj∈Ct}Wj = 1 | 1{Xi∈Ct}Wi(1 +KN,i) ≤ p) ≥ Pr(1{Xj∈Ct}Wj = 1). (11)

We will now show that, for all i = 1, . . . , N − 1 and all j = i + 1, . . . , N , cov(1{Xi∈Ct}Wi(1 +
KN,i)

2, 1{Xj∈Ct}Wj(1 +KN,j)
2) ≤ 0. Consider two units i and j, with j > i. Notice that because
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of the sequential nature of hot-deck imputation, KN,j is independent of (Wi,KN,i) conditional on
Wj . Therefore:

Pr(1{Xj∈Ct}Wj(1 +KN,j) ≤ q | 1{Xi∈Ct}Wi(1 +KN,i) ≤ p)
= Pr(1{Xj∈Ct}Wj(1 +KN,j) ≤ q | 1{Xj∈Ct}Wj = 1, 1{Xi∈Ct}Wi(1 +KN,i) ≤ p)
× Pr(1{Xj∈Ct}Wj = 1 | 1{Xi∈Ct}Wi(1 +KN,i) ≤ p)

+ Pr(1{Xj∈Ct}Wj(1 +KN,j) ≤ q | 1{Xj∈Ct}Wj = 0, 1{Xi∈Ct}Wi(1 +KN,i) ≤ p)
× Pr(1{Xj∈Ct}Wj = 0 | 1{Xi∈Ct}Wi(1 +KN,i) ≤ p)

= Pr(1{Xj∈Ct}Wj(1 +KN,j) ≤ q | 1{Xj∈Ct}Wj = 1)

× Pr(1{Xj∈Ct}Wj = 1 | 1{Xi∈Ct}Wi(1 +KN,i) ≤ p)
+ Pr(1{Xj∈Ct}Wj = 0 | 1{Xi∈Ct}Wi(1 +KN,i) ≤ p)

= 1−
(

1− Pr(1{Xj∈Ct}Wj(1 +KN,j) ≤ q | 1{Xj∈Ct}Wj = 1)
)

× Pr(1{Xj∈Ct}Wj = 1 | 1{Xi∈Ct}Wi(1 +KN,i) ≤ p).

Now, because Pr(1{Xj∈Ct}Wj = 1 | 1{Xi∈Ct}Wi(1 + KN,i) ≤ p) ≥ Pr(1{Xj∈Ct}Wj = 1) (equation
(11)), we obtain:

Pr(1{Xj∈Ct}Wj(1 +KN,j) ≤ q | 1{Xi∈Ct}Wi(1 +KN,i) ≤ p)
≤ 1− (1− Pr(1{Xj∈Ct}Wj(1 +KN,j) ≤ q | 1{Xj∈Ct}Wj = 1) Pr(1{Xj∈Ct}Wj = 1)

= Pr(1{Xj∈Ct}Wj(1 +KN,j) ≤ q).

As a result, the varibles 1{Xj∈Ct}Wj(1 + KN,j) and 1{Xj∈Ct}Wj(1 + KN,j) are negative quadrant
dependent and, therefore, negatively associated (Joag-Dev and Proschan, 1983). Furthermore,
because increasing transformations of negatively associated random variables are also negatively
associated (Joag-Dev and Proschan, 1983), we obtain:

cov(1{Xi∈Ct}Wi(1 +KN,i)
2, 1{Xj∈Ct}Wj(1 +KN,j)

2) ≤ 0,

for all i = 1, . . . , N and all j = i+ 1, . . . , N . This result implies

var(AN,t) ≤
1

N2

N∑
i=1

var
(
1{Xi∈Ct}Wi(1 +KN,i)

2
)
. (12)

To finish the proof, we will show that var(1{Xi∈Ct}Wi(1 +KN,i)
2) is uniformly bounded in (i,N).

Because

var
(
1{Xi∈Ct}Wi(1 +KN,i)

2
)
≤ E

[
1{Xi∈Ct}Wi(1 +KN,i)

4
]

= E
[
(1 +KN,i)

4 | 1{Xi∈Ct}Wi = 1
]

Pr(1{Xi∈Ct}Wi = 1),

and because E[K4
N,i|1{Xi∈Ct}Wi = 1] is uniformly bounded in (i,N), we obtain var(AN,t)→ 0. �

Proof of Theorem 2: First, notice that, because (1+KN,i)
2 ≥ (1+KN,i) and

∑N
i=1 1{Xi∈Ct}Wi(1+

KN,i) = Nt, we obtain:

σ2 ≥ E

[
T∑
t=1

(
Nt

N

)
(µt − µ)2

]
+ E

[
T∑
t=1

σ2t
1

N

N∑
i=1

1{Xi∈Ct}Wi(1 +KN,i)

]
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= E

[
T∑
t=1

(
Nt

N

)
(µt − µ)2

]
+ E

[
T∑
t=1

(
Nt

N

)
σ2t

]
= var(Y ) > 0,

and the sequence {ξN,k}2Nk=1 is well-defined. Now, applying Proposition 2 we obtain:

2N∑
k=1

E[ξ2N,k|FN,k−1] =
1

σ2N

N∑
k=1

E[(µ(Xk)− µ)2]

+
1

σ2N

2N∑
k=N+1

T∑
t=1

1{Xk−N∈Ct}Wk−N (1 +KN,k−N )2σ2t

=
1

σ2
E

[
1

N

N∑
k=1

T∑
t=1

1{Xk∈Ct}(µt − µ)2

]

+
1

σ2

T∑
t=1

σ2t
1

N

N∑
k=1

1{Xk∈Ct}Wk(1 +KN,k)
2 p→ 1.

Jensen’s inequality implies: E[|µ(Xi)|2+δ] ≤ E[|Yi|2+δ] < ∞. Because E[|Yi − µ(Xi)|2+δ] < ∞
and because all positive moments of KN,i are bounded (uniformly in N and i), Holder’s Inequality
implies that E[Wi(1+KN,i)

2+δ/2|Yi−µ(Xi)|2+δ/2] is bounded (uniformly in N and i). As a result,
we obtain the Lyapunov condition:

2N∑
k=1

E[ξ
2+δ/2
N,k ]→ 0.

The result of Theorem 2 follows now from Theorem 35.12 in Billingsley (1995). �

25



References

Abadie, A. and Imbens, G.W. (2006), “Large Sample Properties of Matching Estimators for
Average Treatment Effects,” Econometrica, 74, 235-267.

Abadie, A. and Imbens, G.W. (2008), “On the Failure of the Bootstrap for Matching Estima-
tors,” Econometrica, 76, 1537-1558.

Abadie, A. and Imbens, G.W. (2011), “Bias Corrected Matching Estimators for Average
Treatment Effects,” Journal of Business and Economic Statistics, 29, 1-11.

Abadie, A. and Imbens, G.W. (2010), “Matching on the Estimated Propensity Score,” mimeo.

Andridge, R.R. and Little, R.J.A. (2010), “A Review of Hot Deck Imputation for Survey
Non-response,” International Statistical Review, 78, 40-64.

Avery, R.B., Beeson, P.E., and Calem, P.S. (1997), “Using HMDA Data as a Regulatory
Screen for Fair Lending Compliance,” Journal of Financial Services Research, 11, 9-42.

Avery, R.B, Canner, G.B., and Cook, R.E. (2005), “New Information Reported Under
HMDA and Its Application in Fair Lending Enforcement,” Federal Reserve Bulletin, v91,
344-394.

Billingsley, P. (1995), Probability and Measure, third edition. Wiley, New York.

Bollinger, C.R. and Hirsch, B.T. (2009), “Wage Gap Estimation with Proxies and Nonre-
sponse,” mimeo.

Brick, J.M., Kalton, G., and Kim, J.K. (2004), “Variance estimation with hot deck impu-
tation using a model,” Survey Methodology, 30, 57-66.

Dehejia, R. and Wahba, S. (1999), “Causal Effects in Nonexperimental Studies: Reevaluating
the Evaluation of Training Programs,” Journal of the American Statistical Association, 94,
1053-1062.

Diamond, A. and Sekhon, J.S. (2008), “Genetic Matching for Estimating Causal Effects: A
New Method of Achieving Balance in Observational Studies,” UC Berkeley.

Gu, X.S. and Rosenbaum, P.R. (1993), “Comparison of Multivariate Matching Methods:
Structures, Distances and Algorithms,” Journal of Computational and Graphical Statistics,
2, 405-420.

Hall, P. and Heyde C.C. (1980), Martingale Limit Theory and its Applications. Academic
Press, New York.

Hansen, B.B. (2004), “Full Matching in an Observational Study of Coaching for the SAT,”
Journal of the American Statistical Association, 99, 609-618.

Hansen, M.H., Hurwitz, W.N., and Madow, W.G. (1953) Sample Survey Methods and
Theory. Wiley, New York.

26



Heckman, J., Ichimura, H., and Todd, P. (1998), “Matching as an Econometric Evaluation
Estimator,” Review of Economic Studies, 65, 261-294.

Hirsch, B.T. and Schumacher, E.J. (2004), “Match Bias in Wage Gap Estimates Due to
Earnings Imputation,” Journal of Labor Economics, 22, 689-722.

Iacus, S.M., King, G., and Porro, G. (2009),“Causal Inference Without Balance Checking:
Coarsened Exact Matching,” mimeo.

Imbens, G.W. (2004), “Nonparametric Estimation of Average Treatment Effects under Exo-
geneity: A Review,” Review of Economics and Statistics, 86, 4-29.

Joag-Dev, K. and Proschan, F. (1983), “Negative Association of Random Variables with
Applications,” Annals of Statistics, 11, 286-295.

Kalton, G. (1983), Compensating for Missing Survey Data. Research report series. Institute
for Social Research, The University of Michigan, Ann Arbor, Michigan.

Little, R.J.A. and Rubin, D.B. (2002), Statistical Analysis with Missing Data, second edition.
Wiley-Interscience, New York.

Motwani, R. and Raghavan, P. (1995), Randomized Algorithms. Cambridge University Press,
New York.

Munnell, A.H., Tootell, G.M.B., Browne, L.E. and McEneaney, J. (1996), “Mortgage
Lending in Boston: Interpreting HMDA Data,” American Economic Review, 86, 25-53.

Quade, D. (1982), “Nonparametric Analysis of Covariance by Matching”, Biometrics, 38, 597-
611.

Rosenbaum, P.R. (2002), Observational Studies, second edition. Springer, New York.

Rosenbaum, P.R. and Rubin, D.B. (1983), “The Central Role of the Propensity Score in
Observational Studies for Causal Effects,” Biometrika, 70, 41-55.

Rubin, D.B. (1973a), “Matching to Reduce Bias in Observational Studies,” Biometrics, 29,
159-183.

Rubin, D.B. (1973b), “The Use of Matched Sampling and Regression Adjustments to Remove
Bias in Observational Studies,” Biometrics, 29, 185-203.

Rubin, D.B. (1974), “Estimating Causal Effects of Treatments in Randomized and Nonran-
domized Studies,” Journal of Educational Psychology, 66, 688-701.

Rubin, D.B. (1977), “Assignment to Treatment Group on the Basis of a Covariate”, Journal of
Educational Statistics, 2, 1-26.

Rubin, D.B. (2006), Matched Sampling for Causal Effects. Cambridge University Press, New
York.

Shorack, G.R. (2000), Probability for Statisticians. Springer, New York.

27



Shorack, G.R. and Wellner, J.A. (1986), Empirical Processes with Applications to Statistics.
Wiley, New York.

28



Table I – Boston HMDA Data, Simulation Results
Black-White Difference in Mortgage Denial Probability for Matched Pairs

(Number of simulations = 10000)

Sample sizes Bias Variance Coverage of 95% C.I.
(1) (2) (3) (4) (5) (6)

|E[τ̂ ]− τ | |E[τ̂bc]− τ | var(τ̂) E[σ̂2/N1] τ̂±1.96 σ̂/
√
N1 τ̂bc±1.96 σ̂/

√
N1

N1 = 25 N0 = 250 0.0143 0.0012 0.0091 0.0091 0.9225 0.9348
N0 = 500 0.0106 0.0001 0.0092 0.0091 0.9244 0.9394
N0 = 1000 0.0077 0.0002 0.0090 0.0091 0.9263 0.9430

N1 = 50 N0 = 500 0.0106 0.0011 0.0045 0.0045 0.9427 0.9458
N0 = 1000 0.0073 0.0009 0.0044 0.0046 0.9427 0.9456

N1 = 100 N0 = 1000 0.0090 0.0001 0.0023 0.0023 0.9436 0.9468
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Table II – Current Population Survey Data, Simulation Results
Average Log Weekly Earnings

(Number of simulations = 50000)

Sample size Variance Ratio Coverage of 95% C.I.
(1) (2) (3) (4) (5) (6)

N var(Ȳ ) E[σ̂2adj/N ] E[σ̂2/N ] (3)/(1) Ȳ ±1.96 σ̂adj/
√
N Ȳ ±1.96 σ̂/

√
N

50 0.0072 0.0071 0.0052 0.7262 0.9436 0.8973
100 0.0039 0.0039 0.0026 0.6701 0.9476 0.8888
200 0.0021 0.0021 0.0013 0.6342 0.9492 0.8799
856 0.0005 0.0005 0.0003 0.5834 0.9482 0.8661
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