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1 Introduction

Consider a production function depending on a number of inputs. We are interested in the
effect of a particular input on output, and specifically in the average effects of policies that

change the allocation of this input across production units. For each production unit output
may be monotone in this input, but at different rates. If the input is indivisible, and its

aggregate stock fixed, it is impossible to simultaneously raise the input level for all production
units. In such cases it may be of interest to consider the output effects of reallocations of
the input across production units. Here we investigate econometric methods for assessing

the effect of such reallocations on average output. We will call the average causal effects of
such policies Aggregate Redistributional Effects (AREs). A key feature of the reallocations

we consider is that, although they potentially alter input levels for each firm, they keep the
marginal distribution of the input across the population of firms fixed.

The first contribution of our paper is to introduce a framework for considering such re-
allocations, and to define novel estimands that capture their key features. These estimands

include the effects of focal reallocations, and a semiparametric class of reallocations, as well as
the effect of a local reallocation. One focal reallocation redistributes the input across produc-

tion units such that it has perfect rank correlation with a second input. We refer to this as
the positive assortative matching allocation. We also consider a negative assortative matching
allocation where the primary input is redistributed to have perfect negative rank correlation

with the second input. A third allocation involves randomly assigning the input across firms.
This allocation, by construction, ensures independence of the two inputs. A fourth allocation

simply maintains the status quo assignment of the input. More generally, we consider a two
parameter family of feasible reallocations that include these four focal allocations as special

cases. Reallocations in this family may depend on the distribution of a second input or firm
characteristic. This characteristic may be correlated with the firm-specific return to the input

to be reallocated. Our family of reallocations, called correlated matching rules, includes each
of the four focal allocations as special cases. In particular the family traces a path from the

positive to negative assortative matching allocations. Each reallocation along this path keeps
the marginal distribution of the two inputs fixed, but it induces a different level of correlation
between the two inputs. Each of the reallocations we consider are members of a general class of

reallocation rules that keep the marginal distributions of both inputs fixed. We also provide a
local measure of complementarity that requires much weaker conditions on the support of the

input distribution. This estimand measures whether a small step away from the status quo,
towards perfect assortative matching allocation raises average output.

The second contribution of our paper is to derive statistical methods for estimation and
inference for the proposed estimands. We derive an estimator for average output under all

correlated matching allocations, and for the local complementarity measure. Our estimator
requires that the first input is exogenous conditional on the second input and additional firm

characteristics. Except for the case of perfect negative and positive rank correlation the esti-
mator has the usual parametric convergence rate. For the two extremes the rate of convergence
is slower, comparable to that of estimating a regression function with a scalar covariate at a

point. In all cases we drive the asymptotic distribution of the estimator. In the first step of
the estimation procedure we use a nonparametric estimator for the production function. We

modify existing kernel estimators to deal with boundary issues that arise in our setting.
Our focus on reallocation rules that keep the marginal distribution of the inputs fixed is
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appropriate in applications where the input is indivisible, such as in the allocation of teachers

to classes, or managers to production units. In other settings it may be more appropriate to
consider allocation rules that leave the total amount of the input constant by fixing its average

level. Such rules would require some modification of the methods considered in this paper.
Our methods may be useful in a variety of settings. One class of examples concerns com-

plementarity of inputs in production functions (e.g. Athey and Stern, 1998). If the first and
second inputs are everywhere complements, then the difference in average output between the
positive and negative assortative matching allocations provides a nonparametric measure of

the degree of complementarity. This measure is invariant to monotone transformations of the
inputs. If the production function is not supermodular, the interpretation of this difference is

not straightforward, although it still might be viewed as some sort of ‘global’ measure of input
complementarity.

A second example concerns educational production functions. Card and Krueger (1992)
study the relation between adult wages and teacher quality. Teacher quality may improve

outcomes for all students, but average outcomes may be higher or lower depending on whether,
given a fixed supply of teachers, the best teachers are assigned to the least prepared students

or vice versa. Parents concerned solely with outcomes for their own children may be most
interested in the effect of raising teacher quality on expected outcomes. A school board, however,
may be more interested in maximizing expected outcomes given a fixed set of classes and and

a fixed set of teachers, by optimally matching teachers to classes.
A third class of examples arises in settings with social interaction (c.f., Manski 1993; Brock

and Durlauf 2001). Sacerdote (2001) studies peer effects in college by looking at the rela-
tion between individual outcomes and roommate characteristics. From the perspective of the

individual student it may again be of interest whether having a roommate with different char-
acteristics would, in expectation, lead to a different outcome. This is what Manski (1993) calls

an exogenous or contextual effect. The college, however, may be interested in a different effect,
namely the effect on average outcomes of changing the procedures for assigning roommates.

While it may be very difficult for a college to quickly change the distribution of characteristics
in incoming classes, it may be under its control to change the way roommates are assigned.
In Graham, Imbens and Ridder (2006b) we study the peer effect setting further, developing

methods appropriate for social groups of arbitrary size when agents are binary-typed. Our
focus in that work is on the outcome and inequality effects of segregation.

If production functions are additive in inputs, the questions posed above have trivial an-
swers: average outcomes are invariant to input reallocations. Although reallocations may raise

outcomes for some units in that case, they will necessarily lower them by an offsetting amount
for others. Reallocations are zero-sum games in this additive setting. With additive and linear

functions, even more general assignment rules that allow the marginal input distribution to
change, while keeping its average level fixed, do not affect average outcomes. In order for these

questions to have non-trivial answers, one therefore needs to explicitly recognize, and allow
for, non-additivity and non-linearity of a production function in its inputs. For this reason our
approach is fully nonparametric.

The current paper builds on the larger treatment effect and program evaluation literature.1

More directly, it is complementary to the small literature on the effect of treatment assignment

rules (Manski, 2004; Dehejia, 2004; Hirano and Porter, 2005). Our focus is different from

1For recent surveys see Angrist and Krueger (2001), Heckman, Lalonde and Smith (2000), and Imbens and
Wooldridge (2009).
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that in the Manski, Dehejia, and Hirano-Porter studies. First, we allow for continuous rather

than discrete or binary treatments. Second, our assignment policies take into account resource
constraints (by leaving unchanged he marginal distribution of the treatment), whereas in the

previous papers treatment assignment for one unit is not restricted by the assignments for other
units. Our policies are redistributions. In the current paper we focus on estimation and inference

for specific assignment rules. It is also interesting to consider optimal rules as in the Manski,
Dehejia and Hirano-Porter studies. The class of feasible reallocations/redistributions includes
all joint distributions of the two inputs with fixed marginal distributions. When the inputs are

continuously-valued, as we assume in the current paper, this class of potential rules is very large.
Characterizing the optimal allocation within this class is therefore a non-trivial problem. When

both inputs are discretely-valued the problem with finding the optimal allocation is tractable
as the joint distribution of the inputs is characterized by a finite number of parameters. In

Graham, Imbens and Ridder (2006a) we consider optimal allocation rules when both inputs are
discrete, allowing for general complementarity or substitutability of the inputs.

Our paper is also related to recent work on identification and estimation of models of
social interactions (e.g., Manski, 1993; Brock and Durlauf, 2001; Graham, 2008; Moffitt, 2001).

We do not focus on directly characterizing the within-group structure of social interactions, an
important theme of this literature. Rather our goal is simply to estimate the average relationship
between group composition and outcomes. The average we estimate may reflect endogenous

behavioral responses by agents to changes in group composition, or even equal an average over
multiple equilibria. Viewed in this light our approach is reduced form in nature. However it is

sufficient for, say, an university administrator to characterize the outcome effects of alternative
roommate assignment procedures, as long as the average response to group composition remains

unchanged across such procedures.
The econometric approach taken here builds on the partial mean literature (e.g., Newey,

1994; Linton and Nielsen, 1995). In this literature one first estimates a regression function
nonparametrically. In the second stage the regression function is averaged, possibly after some

weighting with a known or estimable weight function, over some of the regressors. Similarly
here we first estimate a the production function nonparametrically as the conditional mean
of the outcome given the observed inputs. In the second stage the averaging is over the dis-

tribution of the regressors induced by the new assignment rule. This typically involves the
original marginal distribution fo some of the regressors, but a different conditional distribution

for others. Complications arise because this conditional covariate distribution may be degen-
erate, which will affect the rate of convergence for the estimator. In addition the conditional

covariate distribution itself may require nonparametric estimation through its dependence on
the assignment rule. For the policies we consider the assignment rule will involve distribution

functions and their inverses similar to the way these enter in the changes-in-changes model of
Athey and Imbens (2006).

The next section lays out our basic model and approach to identification. Section 3 then
defines and motivates the estimands we seek to estimate. Section 4 presents of our estimators,
and derives their large-sample properties, for the case where inputs are continuously-valued.

Section 5 presents the results from a small Monte Carlo exercise.
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2 Model

In this section we present the basic set up and identifying assumptions. For clarity of exposition
we use the production function terminology; although our methods are appropriate for a wide

range of applications, as emphasized in the introduction. For production unit or firm i, for
i = 1, . . . , N , the production function relates a triple of observed inputs, (Wi, Xi, Vi), and an

unobserved input εi, to an output Yi:

Yi = k(Wi, Xi, Vi, εi). (2.1)

The inputs Wi and Xi, and the output Yi are scalars. The third observed input Vi and the

unobserved input εi can both be vectors. We are interested in reallocating the input W across
production units. We focus upon reallocations which hold the marginal distribution of W fixed.

As such they are appropriate for settings where W is a plausibly indivisible input, such as a
manager or teacher, with a certain level of experience and expertise. The presumption is also

that the aggregate stock of W is difficult to augment. In addition to W there are two other
(observed) firm characteristics that may affect output: X and V , where X is a scalar and V
is a vector of dimension LV . The first characteristic X could be a measure of, say, the quality

of the long-run capital stock, with V being other characteristics of the firm such as location
and age. These characteristics may themselves be inputs that can be varied, but this is not

necessary for the arguments that follow. In particular the exogeneity assumption that we make
for the first input need not hold for these characteristics.

We observe for each production unit, indexed by i = 1, . . . , N , the level of the input, Wi,
the characteristics Xi and Vi, and the realized output level, Yi. In the educational example the

unit of observation would be a classroom. The variable input W would be teacher quality, and
X would be a measure of quality of the class, e.g., average test scores in prior years. The second

characteristic V could include other measures of the class, e.g., its age or gender composition,
as elements. In the roommate example the unit would be the individual, with W the quality
of the roommate (measured by, for example, a high school test score), and the characteristic

X would be own quality. The second set of characteristics V could be other characteristics of
the dorm or of either of the two roommates such as smoking habits (which may be used by

university administrators in the assignment of roommates).
Our key identifying assumption is that conditional on firm characteristics (X, V ) the as-

signment of W , the level of the input to be reallocated, is exogenous:

Assumption 2.1 (Exogeneity)

ε ⊥ W
∣∣∣ X, V.

Let

g(w, x, v) = E[Y |W = w,X = x, V = v], (2.2)

and

σ2(w, x, v) = V[Y |W = w,X = x, V = v], (2.3)

denote the expectation and the variance of the output conditional on input level w and char-

acteristics x and v. We often refer to the derivative of g(w, x, v) with respect to w, which will
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be denoted by

gW (w, x, v) =
∂

∂w
g(w, x, v), (2.4)

Under exogeneity we have – among firms with identical values ofX and V – an equality between
the counterfactual average output that we would observe if all firms in this subpopulation

were assigned W = w, and the average output we observe for the subset of firms within this
subpopulation that are in fact assigned W = w. Alternatively, the exogeneity assumption

implies that the difference in g(w, x, v) evaluated at two values of w, w0 and w1, has a causal
interpretation as the average effect of assigning W = w1 rather than W = w0:

g(w1, x, v)− g(w0, x, v) = E [k(w1, X, V, ε)− k(w0, X, V, ε)|X = x, V = v] .

Assumption 2.1 is often controversial. It holds under conditional random assignment ofW to

units; as would occur in a randomized experiment. However randomized allocation mechanisms
are also used by administrators in some institutional settings. For example some universities

match freshman roommates randomly conditional on responses to housing questionnaires (e.g.,
Sacerdote 2001). This assignment mechanism is consistent with Assumption 2.1. In other

settings, particularly where assignment is bureaucratic, as may be true in some educational
settings, a plausible set of conditioning variables may be available. In this paper we focus
upon identification and estimation under Assumption 2.1. In principle, however, the methods

could be extended to accommodate other approaches to identification based upon, for example,
nonparametric instrumental variables methods (e.g., Matzkin, 2008, Imbens and Newey, 2009).

Much of the treatment effect literature (e.g., Angrist and Krueger, 2000; Heckman, Lalonde
and Smith, 2000; Manski, 1990; Imbens and Wooldridge, 2009) has focused on the average

effect of an increase in the value of the treatment. In particular, in the binary treatment case
(w ∈ {0, 1}) interest has centered on the average treatment effect

E[g(1, X, V )− g(0, X, V )].

With continuous inputs one may be interested in the full average output function g(w, x, v)

(Imbens, 2000; Flores, 2005) or in its derivative with respect to the input,

gW (w, x, v),

at a point, or a weighted average,

E [ω(W,X, V ) · gW (W,X, V )] ,

See Powell, Stock and Stoker (1989) or Hardle and Stoker, (1989) for estimands of this type.

Here we are interested in a fundamentally different class of estimands, one which has received
little attention in the econometrics literature. We focus on policies that redistribute the input

W , according to a rule based on the X characteristic of the unit. For example upon assignment
mechanisms that match teachers of varying experience to classes of students based on average

ability in the classes. One might assign those teachers with the most experience (highest
values of W ) to those classrooms with the highest ability students (highest values of X) and

so on. In that case average outcomes would reflect perfect rank correlation between W and
X . Alternatively, we could be interested in the average outcome if we were to assign W to
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be negatively perfectly rank correlated with X . A third possibility is to assign W so that it

is independent of X . We are interested in the effect of such policies on the average value of
the output. We refer to such effects in general as Aggregate Redistributional Effects (AREs).

The three reallocations mentioned are a special case of a general set of reallocation rules that
fix the marginal distributions of W and X , but allow for correlation in their joint distribution.

For perfect assortative matching the correlation is 1, for negative perfect assortative matching
-1, and for random allocation 0. By using a bivariate normal cupola we can trace out the path
between these extremes.

We wish to emphasize that there are at least two limitations to our approach. First, we focus
on comparing specific assignment rules, rather than searching for the optimal assignment rule.

The latter problem is a particularly demanding problem in the current setting with continuously-
valued inputs as the optimal assignment for each unit depends both on the characteristics of

that unit as well as on the marginal distribution of characteristics in the population. When
the inputs are discretely-valued both the problems of inference for a specific rule as well as

the problem of finding the optimal rule become considerably more tractable. In that case any
rule, corresponding to a joint distribution of the inputs, is characterized by a finite number of

parameters. Maximizing estimated average output over all rules evaluated will then generally
lead to the optimal rule. Graham, Imbens and Ridder (2006a) and, motivated by an early
version of the current paper, Bhattacharya (2008), provide a discussion for the case with discrete

covariates.
A second limitation is that the class of assignment rules we consider leaves all aspects of the

marginal distribution of the inputs unchanged. This latter restriction is perfectly appropriate in
cases where the inputs are indivisible, as, for example, in the social interactions and educational

examples. In other cases one need not be restricted to such assignment rules. A richer class
of estimands would allow for assignment rules that maintain some aspects of the marginal

distribution of inputs but not others. An interesting class consists of assignment rules that
maintain the average (and thus total) level of the input, but allow for its arbitrary distribution

across units. This can be interpreted as assignment rules that “balance the budget”. In such
cases one might assign the maximum level of the input to some subpopulation and the minimum
level of the input to the remainder of the population. Finally, one may wish to consider arbitrary

decision rules where each unit can be assigned any level of the input within a set. In that
case interesting questions include both the optimal assignment rule as a function of unit-level

characteristics as well as average outcomes of specific assignment rules. In the binary treatment
case such problems have been studied by Dehejia (2005), Manski (2004), and Hirano and Porter

(2005).

3 Aggregate Redistributional Effects

Let fW |X,V (w|x, v) denote the conditional distribution of W given (X, V ) in the data, and let

f̃W |X,V (w|x, v) denote a potentially different conditional distribution. We will allow f̃W |X,V (w|x, v)
to correspond to any distribution such that the implied marginal distribution for Wi remains
unchanged, or

∫
f̃W |X,V (w|x, v)fX,V (x, v)dwdxdv =

∫
fW |X,V (w|x, v)fX,V (x, v)dwdxdv.
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This includes degenerate conditional distributions. In general we are interested in the average

outcome that would result from the current distribution of (X, V, ε), if the distribution of W
given (X, V ) were changed from its current distribution, fW |X,V (w|x, v) to f̃W |X,V (w|x, v). We

denote the expected output given such a reallocation by

βare
f̃

=

∫
g(w, x, v)f̃W |X,V (w|x, v)fX,V (x, v)dwdxdv. (3.5)

In the next two sections we discuss some specific choices for f̃(·).

3.1 Positive and Negative Assortive Matching Allocations

The first estimand we consider is expected average outcome given perfect assortative matching
of W on X conditional on V :

βpam = E

[
g
(
F−1

W |V
(FX |V (X |V )|V ), X, V

)]
, (3.6)

where FX |V (X |V ) denotes the conditional CDF of X given V , and F−1
W |V (q|V ) is the q-th quan-

tile (for q ∈ [0, 1]) associated with the conditional distribution of W given V (i.e., F−1
W |V

(q|V ) is

a conditional quantile function). Therefore F−1
W |V (FX |V (X |V )|V ) computes a unit’s location on

the conditional CDF of X given V and reassigns it the corresponding quantile of the conditional

distribution of W given V . Thus, among units with the same realization of V , those with the
highest value of X are reassigned the highest value of W , and so on.

In order for βpam to be well defined, we need some conditions on the joint distribution of
(Y,W,X, V ). We do not state these conditions here explicitly. When we discuss estimation,

in Section 4, we provide conditions for consistent estimation., including compact support and
smooth distributions for (W,X), and moment conditions for the conditional distribution of Y

given (W,X). These conditions imply that βpam is well defined.
The focus on reallocations within subpopulations defined by V , as opposed to population-

wide reallocations, is motivated by the fact that the average outcome effects of such reallocations

solely reflect complementarity or substitutability between W and X . To see why this is the
case consider the alternative estimand

βpam−pop = E
[
g
(
F−1

W (FX(X)) , X, V
)]
. (3.7)

This gives average output associated with population-wide perfect assortative matching of W

on X . If, for example, X and V are correlated, then this reallocation, in addition to altering
the joint distribution of W and X , will alter the joint distribution of W and V . Say V is also a
scalar and is positively correlated with X . Population-wide positive assortative matching will

induce perfect rank correlated between W and X , but it will also affect the degree of correlation
between W and V . This complicates the interpretation of the estimand when g (w, x, v) is non-

separable in w and v, as well as in w and x.
An example helps to clarify the issues involved. Let W denote an observable measure of

teacher quality, X mean (beginning-of-year) achievement in a classroom, and V the fraction
of the classroom that is female. If begining-of-year achievement varies with gender, (say, with

classes with a higher fraction of girls having higher average achievement) then X and V will be
correlated. A reallocation that assigns high quality teachers to high achievement classrooms,

will also tend to assign such teachers to classrooms will an above average fraction of females.
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Average achievement increases observed after implementing such a reallocation may reflect

complementarity between teacher quality and begining-of-year student achievement or it may
be that the effects of changes in teacher quality vary with gender and that, conditional on

gender, their is no complementarity between teacher quality and achievement. By focusing
on reallocations of teachers across classrooms with similar gender mixes, but varying baseline

achievement, (3.6) provides a more direct avenue to learning about complementarity between
W and X .2

Both (3.6) and (3.7) may be policy relevant, depending on the circumstances, and both

are identified under Assumption 2.1 and additional support conditions (which we make explicit
below). Under the additional assumption that

g(w, x, v) = g1(w, x) + g2(v),

the estimands, although associated with different reallocations, also have the same basic inter-

pretation. In the current paper we focus upon (3.6), although it is conceptually straightforward
to extend our results to (3.7).

Our second estimand is the expected average outcome given negative assortative matching:

βnam = E

[
g
(
F−1

W |V

(
1 − FX |V (X |V )|V

)
, X, V

)]
. (3.8)

If, within subpopulations homogenous in V , the two inputs W and X are everywhere comple-

ments, then the difference βpam−βnam provides a measure of the strength of input complemen-
tarity. When g (·) is not supermodular, the interpretation of this difference is not straightfor-

ward. In Section 3.1 below we present a measure of ‘local’ (relative to the status quo allocation)
complementarity between X and W .

3.2 Correlated Matching Allocations

The perfect positive and negative assortative allocations are focal allocations, being emphasized
in the economic theory literature (e.g., Becker and Murphy, 2000; Legros and Newman, 2004).
There are many more possible allocations. Two others that are of particular importance are the

status quo allocation, and the random matching allocation. Average output under the status
quo allocation is given by

βsq = E[Y ] = E[g(W,X, V )].

Average output under the random matching allocation is given by

βrm =

∫

v

[∫

x

∫

w
g(w, x, v)fW |V (w|v)fX |V (x|v)

]
fV (v)dwdxdv.

This last estimand gives average output when W and X are independently assigned within

subpopulations indexed by V .
These allocations are just four among the class of feasible allocations. This class is com-

prised of all joint distributions of inputs consistent with fixed marginal distributions (within

subpopulations homogenous in V ). As noted in the introduction, if the inputs are continuously
distributed this class of joint distributions is very large. For this reason we only consider a

2We make the connection to complementarity more explicit in Section 3.3.
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subset of these joint distributions. To be specific, we concentrate on a family of the feasible

allocations, indexed by two parameters, τ and ρ, that includes as special cases the negative and
positive assortative matching allocations, the independent allocation, and the status quo alloca-

tion. Let βcm(τ, ρ) denote average output under the allocation indexed by τ and ρ. By changing
the two parameters we trace out a “path” in two directions: further from or closer to the status

quo allocation, and further from, or closer to, the perfect sorting allocations. Borrowing a
term from the literature on cupolas, we call this class of feasible allocations “comprehensive,”
because it contains all four focal allocations as a special case. For ease of exposition we focus

in the remainder of the paper on the case with no covariates beyond W and X , and so drop
the argument V in the production function.

For the purposes of estimation, the correlated matching allocations are redefined using a
truncated bivariate normal cupola. The truncation ensures that the denominator in the weights

of the correlated matching ARE are bounded from 0, so that we do not require trimming. The
bivariate standard normal probability density function (pdf) is

φ(x1, x2; ρ) =
1

2π
√

1 − ρ2
e
− 1

2(1−ρ2)
(x2

1−2ρx1x2+x2
2)
, −∞ < x1, x2 <∞

with a corresponding joint cumulative distribution function (cdf) denoted by Φ(x1, x2; ρ). Ob-
serve that

Pr(−c < x1 ≤ c,−c < x2 ≤ c) = Φ(c, c; ρ)− Φ(c,−c; ρ)− [Φ(−c, c; ρ)− Φ(−c,−c; ρ)] ,

so that the truncated standard bivariate normal pdf is given by

φc(x1, x2; ρ) =
φ(x1, x2; ρ)

Φ(c, c; ρ)− Φ(c,−c; ρ)− [Φ(−c, c; ρ)− Φ(−c,−c; ρ)], −c < x1, x2 ≤ c.

Denote the truncated bivariate cdf by Φc.

The truncated normal bivariate CDF gives a comprehensive cupola, because the correspond-
ing joint cdf

HW,X(w, x) = Φc

(
Φ−1

c (FW (w)),Φ−1
c (FX(x)); ρ

)

has marginal cdf’s equal to HW,X |V (w,∞|v) = FW (w) and HW,X(∞, x) = FX(x), it reaches
the upper and lower Fréchet bounds on the joint cdf for ρ = 1 and ρ = −1, respectively, and it

has independent W,X as a special case for ρ = 0.
To define βcm(ρ, τ), we note that joint pdf associated with HW,X(w, x) equals

hW,X(w, x) = φc

(
Φ−1

c (FW (w)),Φ−1
c (FX(x)); ρ

) fW (w)fX(x)

φc

(
Φ−1

c (FW (w))
)
φc

(
Φ−1

c (FX(x))
) .

Then we define βcm(ρ, 0) in terms of the truncated normal, as

βcm(ρ, 0) =

∫

w,x

g(w, x)
φc

(
Φ−1

c (FW (w)),Φ−1
c (FX(x)); ρ

)

φc

(
Φ−1

c (FW (w))
)
φc

(
Φ−1

c (FX(x))
)fW (w)fX(x)dwdx. (3.9)

Average output under the correlated matching allocation is given by

βcm(ρ, τ) = τ · E[Y ] + (1− τ) · βcm(ρ, 0) (3.10)
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= τ · E[Yi] + (1− τ)

×
∫

x,w
g(w, x)

φc

(
Φ−1

c (FW (w)),Φ−1
c (FX(x)); ρ

)

φc

(
Φ−1

c (FW (w))
)
φc

(
Φ−1

c (FX(x))
)fW (w)fX(x)dwdx,

for τ ∈ [0, 1] and ρ ∈ (−1, 1).
The case with τ = 1 corresponds to the status quo:

βsq = βcm(ρ, 1).

The case with τ = ρ = 0 corresponds to random matching allocation of inputs:

βrm = βcm(0, 0) =

∫

x

∫

w

g(w, x)dFW (w)dFX(x).

The cases with (τ = 0, ρ → 1) and (τ = 0, ρ → −1) correspond respectively to the perfect

positive and negative assortative matching allocations:

βpam = lim
ρ→1

βcm(ρ, 0), and βnam = lim
ρ→−1

βcm(ρ, 0).

More generally, with τ = 0 we allocate the inputs using a normal copula in a way that allows for

arbitrary correlation between W and X indexed by the parameter ρ. It would be conceptually
straightforward to use other copulas.

3.3 Local Measures of Complementarity

A potential disadvantage of the correlated matching reallocation family of estimands βcm (ρ, τ),
including the focal allocations βpam and βnam is that the support requirements that allow for
precise estimation may be difficult to satisfy in practice. This is particularly relevant for allo-

cations ‘distant’ from the status quo. For example, if the status quo is characterized by a high
degree of correlation between the inputs, evaluating the effect of allocations with a small, or

even negative, correlation between inputs, such as random matching, or negative assortative
matching, can be difficult because such allocations rely on knowledge of the production funhc-

tion at pairs of input values (W,X) that are infrequently seen in the data. For this reason a
measure of local (close to the status quo) complementarity between W and X would be valu-

able. To this end we next characterize the expected effect on output associated with a ‘small’
increase toward either positive or negative assortative matching. Such estimands may also be

informative regarding the effects of “modest” policies that stay close to the status quo. The
resulting estimand forms the basis of a simple test for local efficiency of the status quo allo-
cation. We derive this local measure by considering matching on a family of transformations

of Xi and Wi, indexed by a scalar parameter λ, where for some values of λ the matching is
on Wi (corresponding to the status quo), and for other values of λ the matching is on Xi or

−Xi, corresponding to positive and negative assortative matching respectively. We then focus
on the derivative of the expected outcomes from matching on this family of transformations,

evaluated at the value of λ that corresponds to the status quo.
For technical reasons, and to be consistent with the subsequent formal statistical analysis

in Section 4 of the previously discussed estimands βpam and βnam, we assume that the support
of Xi is the interval [xl, xu], with midpoint xm = (xu + xl)/2, and similarly that the support of

Wi is the interval [wl, wu], with midpoint wm = (wu +wl)/2. Without loss of generality we will

[10]



assume that xl = 0, xm = 1/2, xu = 1, wl = 0, wm = 1/2, and wu = 1. To focus on the key

conceptual issues we continue to ignore the presence of additional covariates Vi. First define a
smooth function d(w) that goes to zero at the boundary of the support of Wi:

d(w) = 1w>wm · (wu − w) + 1w≤wm · (w− wl).

We implement our local reallocation as follows: for λ ∈ [−1, 1], define the random variable Uλ

as a transformation of (X,W ):

Uλ = λ ·X · d(W )1−|λ| + (
√

1 − λ2) ·W.

This gives us a parametric transformation of (W,X) that moves smoothly between W = U0

and X = U1. Now we consider reallocations based on positive assortative matching on Uλ, for

a range of values of λ, as a smooth way of moving from the status quo (matching on W ) to
positive assortative matching (matching on X). For general λ the average output associated

with positive assortative matching on Uλ is given by the local reallocation

βlr(λ) = E[g(F−1
W (FUλ

(Uλ)), X)]. (3.11)

For λ = 0 and λ = 1 we have Uλ = W and Uλ = X respectively, and hence βlr(0) = βsq and
βlr(1) = βpam. Perfect negative assortative matching is also nested in this framework since

Pr (−X ≤ −x) = Pr (X ≥ x) = 1 − FX (x) ,

and hence for λ = −1 we have βlr(−1) = βnam. Values of λ close to zero induce reallocations
of W that are ‘local’ to the status quo, with λ > 0 and λ < 0 generating shifts toward positive

and negative assortative matching respectively.
We focus on the effect of a small reallocation as our local measure of complementarity:

βlc =
∂βlr

∂λ
(0). (3.12)

This local complementarity measure has two interesting alternative representations which are

given in the following theorem. Before stating this result we introduce one assumption. This
assumption is stronger than needed for this theorem, but its full force will be used later. The

required values of the parameters in this assumption, p and q, will be specified in the theorems.

Assumption 3.1 (Distribution of Data)
(i) (Y1, W1, X1), (Y2, W2, X2), . . . , , (YN , WN , XN) are independent and identically distributed,

(ii) The support of W is W = [wl, wu], a compact subset of R,
(iii) the support of X is X = [xl, xu], a compact subset of R,
(iv) the joint probability density function of W and X is bounded and bounded away from zero,

and q times continuously differentiable on W × X,
(v) g(w, x) is q times continuously differentiable with respect to w and x on W × X,

(vi) E[|Yi|p|Xi = x] is bounded.

The first representation is as the expected value of the conditional (on W ) covariance of X and
the returns to W , gW (w, x) = ∂g

∂w (w, x), weighted by d(W ). The second representation is as a

weighted average of the cross-derivative ∂2g
∂w∂x(w, x). Formally:

[11]



Theorem 3.1 Suppose Assumption 3.1 holds with q ≥ 2. Then, βlc has two equivalent repre-

sentations:

βlc = E [d(W ) · Cov (gW (W,X) , X |W )] , (3.13)

and,

βlc = E

[
δ(W,X) · ∂2g

∂w∂x
(W,X)

]
, (3.14)

where the weight function δ(w, x) is non-negative and has the form

δ(w, x) = d(w)·FX |W (x|w) · (1 − FX |W (x|w))

fX |W (x|w)
·
(
E [X |X > x,W = w]−E [X |X ≤ x,W = w]

)
.

The proofs for the Theorems given in the body of the text are presented in Appendix C.

Representation (3.13), as we demonstrate below, suggests a straightforward nonparametric
approach to estimating βlc. Representation (3.14) is valuable for interpretation. Equation

(3.14) demonstrates that a test of H0 : βlc = 0 is a test of the the null hypothesis of no
complementarity or substitutability between W and X. If βlc > 0, then in the ‘vicinity of the
status quo’ W and X are complements; if βlc < 0, they are substitutes. The precise meaning

of the “vicinity of the status quo” is implicit in the form of the weight function δ(w, x).
Deviations of βlc from zero imply that the status quo allocation does not maximize average

outcomes. For βlc > 0 a shift toward positive assortative matching will raise average outcomes,
while for βlc < 0 a shift toward negative assortative matching will do so. Theorem 3.1 therefore

provides the basis of a test of the null hypothesis that the status quo allocation is locally efficient.

4 Estimation and inference with continuously-valued inputs

In this section we discuss estimation and inference. For ease of exposition we focus on the case

without additional exogenous covariates. Allowing for these would complicate the notation,
without adding much insight. The estimators are all weighted averages of (derivatives of) non-

parametric estimators for the regression function. These are what Newey (1994) calls full and
partial means and derivatives. First, in Section 4.1 we describe the nonparametric estimators
for the regression functions. In order to deal with boundary issues we use develop a new non-

parametric kernel estimator. Note that in Newey (1994) fixed trimming methods are used to
deal with these boundary issues. These are less attractive here because they change the nature

of the estimands. Next, in Section 3.1 we present estimators for the first pair of estimands,
βpam and βnam. In Section 4.3 we discuss estimation and inference for βcm (including βrm),

and in Section 4.4 we discuss βlc. Estimation of and inference for the status quo allocation βsq

is straightforward, as this estimand is a simple expectation, estimated by a sample average.

4.1 Estimating the Production and Distribution Functions

For the two distributions functions we use the empirical distribution functions:

F̂W (w) =
1

N

N∑

i=1

1Wi≤w, and F̂X(x) =
1

N

N∑

i=1

1Xi≤x.
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For the inverse distribution functions we use the definition:

F̂−1
W (q) = inf

w∈W

1F̂W (w)≥q , and F̂−1
X (q) = inf

x∈X

1F̂X (x)≥q.

The estimands we consider in this paper depend on the regression function g(w, x) (in the

case of βpam, βnam, and βcm), or its derivative in the case of βlc. The latter also depends on
the regression function m(w), defined as

m(w) = E[X |W = w]. (4.15)

In order to estimate these objects, we need estimators for the regression functions m(w) and
g(w, x), and the derivative gW (w, x). Write the regression function as

g(w, x) = E [Y |W = w,X = x] =
h2(w, x)

h1(w, x)
,

where

h1(w, x) = fWX(w, x), and h2(w, x) = g(w, x) · fWX(w, x).

To simplify the following discussion, we rewrite h1(w, x) and h2(w, x) as

hm(w, x) = E

[
Ỹm|W = w,X = x

]
· fWX(w, x), (4.16)

for m = 1, 2, where Ỹ = (Ỹ1 Ỹ2)
′, with Ỹ1 = 1, Ỹ2 = Yi.

We focus on estimators for hm(w, x), and use those to estimate g(w, x) and its derivatives.

The standard Nadaraya-Watson (NW) estimator for hm(w, x) is, for some bivariate kernel
K(·, ·),

ĥnw,m(w, x) =
1

N · b2
N∑

i=1

Ỹim ·K
(
Wi −w

b
,
Xi − x

b

)
. (4.17)

We denote the resulting nonparametric estimator by ĝ(w, x). We estimate the derivative of

g(w, x) with respect to w by taking the derivative of the NW estimator of g(w, x).
Because the support of (Wi, Xi) is assumed to be bounded, we have to deal with boundary

bias of the kernel estimators. Because we also need bias reduction by using higher order
kernels we adopt the Nearest Interior Point (NIP) estimator of Imbens and Ridder (2009). This

estimator divides, for given bandwidth b, the support of (W,X) into an internal region and a
boundary region. On the internal region the uniform convergence of the standard NW kernel

estimators holds, but the estimators must be modified on the boundary region of the support.
The NIP estimator coincides with the usual NW kernel estimator on the internal set, but it is
equal to a polynomial on the boundary set. The coefficients of this polynomial are those of a

Taylor series expansion in a point of the internal set.
To obtain a compact expression for the NIP estimator we adopt the following notation. The

vector z = (w x)′ has L = 2 components. Some of the results below are stated for general L,
although we only use the case with L = 2. Let Z = W×X denote the (compact) support of Z.

Let λ denote an L vector of nonnegative integers, with |λ| =∑L
l=1 λl, and λ! =

∏L
l=1 λl!. For L
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vectors of nonnegative integers λ and µ let µ ≤ λ be equivalent to µl ≤ λl for all l = 1, . . . , L,

and define

(
λ

µ

)
=

λ!

µ!(λ− µ)!
=

L∏

l=1

λl!

µl!(λl − µl)!
=

L∏

l=1

(
λl

µl

)
.

For L vectors λ and z, let zλ =
∏L

l=1 z
λl
l . As shorthand for partial derivatives of some function

g we use g(λ)(z):

g(λ)(z) =
∂g|λ|

∂zλ
(z).

The definition of the internal region depends on the support of the kernel. Let K : RL 7→ R

denote the kernel function. We will assume that K(u) = 0 for u /∈ U with U compact, and
K(u) bounded. For the bandwidth b define the internal set of the support Z as the subset of Z

such that all z̃ with a distance of up to b times the support of the kernel from z are also in Z

Z
I
b =

{
z ∈ Z

∣∣∣∣

{
z̃ ∈ R

L

∣∣∣∣
z − z̃

b
∈ U

}
⊂ Z

}
. (4.18)

This is a compact subset of the interior of Z that contains all points that are sufficiently far
away from the boundary that the standard kernel density estimator at those points is not

affected by any potential discontinuity of the density at the boundary. If U = [−1, 1]L and
Z =

⊗L
l=1[zll, zul], we have ZI

b =
⊗L

l=1[zll + b, zul − b].3 The complement of the interior region
is the boundary region:

Z
B
b = Z/ZI

b =

{
z ∈ Z

∣∣∣∣∃z̃ /∈ Z s.t.
z − z̃

b
∈ U

}
. (4.19)

Next, we need to develop some notation for Taylor series approximations. Define for a given,
q times differentiable function g : Z 7→ R, a point r ∈ RL and an integer s ≤ q, the (s − 1)-th
order polynomial function t : Z 7→ R based on the Taylor series, expansion of order s − 1, of

g(z) around the point r ∈ Z:

t(z; g, r, s) =

s−1∑

j=0

∑

|λ|=j

1

λ!
· g(λ)(r) · (z − r)λ. (4.20)

Because the function g(z) is q ≥ s times continuously differentiable on Z, the remainder term

in the Taylor series expansion is

g(z)− t(z, g, r, s) =
∑

|λ|=s

1

λ!
g(λ)(r(s)) · (z − r)λ.

with r(z) intermediate between z and r. Because Z is compact, and the the s-th order contin-

uous, the sth order derivative must be bounded, and therefore this remainder term is bounded

3The set [−1, 1]L is the set of L vectors with components that are between -1 and 1. The set
NL

l=1[zll, zul] is
the set of L vectors with l-th component between zll and zul.
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by C|z−r|s. For the NIP estimator we use this Taylor series expansion around a point that de-

pends on z and the bandwidth. Specifically, we take the expansion around rb(z), the projection
on the internal region

rb(z) = argminr∈ZI
b
‖z − r‖ (4.21)

With this preliminary discussion, the NIP estimator of order s of hm(z) can be defined as:

ĥm,nip,s(z) =

p−1∑

j=0

∑

|λ|=j

1

λ!
· ĥ(µ)

m,nw(rb(z))(z − rb(z))
µ (4.22)

with ĥ
(λ)
m,nw the λ-th derivative of the kernel estimator ĥm,nw. For values of z in the internal

region ZI
b , the NIP estimator is identical to the NW kernel estimator, ĥm,nip,s(z) = ĥm,nw(z).

It is only in the boundary region that a s−1-th order Taylor series expansion is used to address
the poor properties of the NS estimator in that region.

Now the NIP estimator for g(w, x) is

ĝnip,s(w, x) =
ĥ2,nip,s(w, x)

ĥ1,nip,s(w, x)
, (4.23)

and the NIP estimator for the first derivative of g(w, x) with respect to w is

∂̂gnip,s

∂w
(w, x) =

∂
∂w ĥ2,nip,s(w, x)

ĥ1,nip,s(w, x)
− ĥ2,nip,s(w, x) · ∂

∂w ĥ1,nip,s(w, x)(
ĥ1,nip,s(w, x)

)2
. (4.24)

Unlike the NW kernel estimator, the NIP estimator is uniformly consistent. Its properties are
discussed in more detail in Imbens and Ridder (2009). A formal statement of the relevant

properties for our discussion is given in Lemmas A.9, A.10, and A.11, and Theorems A.1, A.2,
and A.3 in Appendix A.

In the remainder of the paper we drop the subscripts from the estimator of the regression

function. Unless specifically mentioned, ĝ(w, x) will be used to denote ĝnip,s(w, x), for s equal
to the order of the kernel, with its value stated in the Lemmas and Theorems.

Next we introduce two more assumptions. Assumption 4.1 describes the properties of the
kernel function, and Assumption 4.2 gives the rate on the bandwidth. Before stating the next

assumption we need to introduce a class of restrictions on kernel functions. The restrictions
govern the rate at which the kernel, which is assumed to have compact support), goes to zero

on the boundary of its support. This property allows us to deal with some of the boundary
issues. Such properties have previously been used in, for example, Powell, Stock and Stoker

(1989).

Definition 4.1 (Derivative Order of a Kernel) A kernel function K : U 7→ R is of

derivative order d, if, for all u in the boundary of the set U, and all |λ| ≤ d− 1,

lim
v→u

∂λ

∂uλ
K(v) = 0.
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Assumption 4.1 (Kernel)

(i) K : RL 7→ R, with K(u) =
∏L

l=1 K(ul),
(ii) K(u) = 0 for u /∈ U, with U = [−1, 1]L,

(iii) K(·) is r times continuously differentiable, with the r-th derivative bounded on the interior
of U,

(iv) K(·) is a kernel of order s, so that
∫

U
K(u)du = 1 and

∫
U
uλK(u)du = 0 for all λ such that

0 < |λ| < s, for some s ≥ 1,
(v) K is a kernel of derivative order d.

We refer a kernel satisfying Assumption 4.2 as a derivative kernel of order (s, d).

Assumption 4.2 (Bandwidth) The bandwidth bN = N−δ for some δ > 0.

4.2 Estimation and Inference for β̂pam and β̂nam

In this section we introduce the estimators for βpam and βnam and present results on the large
sample properties of the estimators. We estimate βpam and βnam by substituting nonparametric

estimators for the unknown functions g(w, x), FW (w), and FX(x):

β̂pam =
1

N

N∑

i=1

ĝ
(
F̂−1

W (F̂X(Xi)), Xi

)
, (4.25)

and

β̂nam =
1

N

N∑

i=1

ĝ
(
F̂−1

W (1− F̂X(Xi)), Xi

)
. (4.26)

It is straightforward to demonstrate consistency for these estimators. The nonparametric es-
timators ĝ, F̂W , and F̂X are uniformly consistent under our assumptions, and consistency of

β̂pam follows directly from that. It is more difficult to derive the large sample distributions
for these estimators. There are four components to their asymptotic approximations. Here we

discuss the decomposition for β̂pam. A similar argument holds for β̂nam. In both cases the first
component corresponds to the estimation error in g(w, x). This component converges at a rate

slower than the regular parametric (root-N ) rate. This is because we estimate in the first stage
a nonparametric regression function with more arguments than we average over in the second

stage. As a result β̂pam (and β̂nam) is a partial (as opposed to a full) mean in the terminology
of Newey (1994). The other three terms converge faster, at the regular root−N rate. There is
one term each corresponding to the estimation error in FW (w) and FX(x) respectively, and one

corresponding to the difference between the average of g(F−1
W (FX(Xi)), Xi) and its expectation.

In describing the large sample properties we include all four of these terms, which leaves a re-

mainder that is op(N
−1/2). In principle one could ignore the three terms of order Op(N

−1/2),
since they will get dominated by the term describing the uncertainty stemming from estima-

tion of g(w, x), but including the additional terms is likely to lead to more accurate confidence
intervals. We provide evidence for this in the simulations in Section 5.

In order to describe the formal properties of the estimator β̂pam it is useful to introduce
notation for an intermediate quantity, and some additional functions. Define the average with

the true regression function g(w, x) (but still the estimated distribution functions F̂W and F̂X),

β̃pam =
1

N

N∑

i=1

g
(
F̂−1

W

(
F̂X(Xi)

)
, Xi

)
, (4.27)
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so that we can write β̂pam − βpam = (β̂pam − β̃pam) + (β̃pam − βpam). Then the first term

β̃pam − βpam = Op(N
−1/2), and the second term β̂pam − β̃pam = Op(N

−1/2b
−1/2
N ). Recall the

notation for the derivative of g(w, x) with respect to w,

gW (w, x) =
∂g

∂w
(w, x),

and define

qpam(w, x) =
gW (F−1

W (FX(x)), x)

fW (F−1
W (FX(x)))

·
(
1FW (w)≤FX (x) − FX(x)

)
,

ψpam
W (w) = E [qpam(w,X)] ,

rpam(x, z) =
gW (F−1

W (FX(z)), z)

fW (F−1
W (FX(z)))

· (1x≤z − FX(z)) ,

and

ψpam
X (x) = E [rpam(x,X)] .

Theorem 4.1 (Large Sample Properties of β̂pam)
Suppose Assumptions 2.1, 3.1, 4.1, and 4.2 hold, with q ≥ 2s+ 1, r ≥ s+ 3, p ≥ 4, d ≥ s− 1,
and 1/(2s) < δ < 1/8. Then

√
N ·

(
b
1/2
N

(
β̂pam − β̃pam

)

β̃pam − βpam

)
d−→ N

((
0

0

)
,

(
Ωpam

11 0

0 Ω
pam
22

))
,

where

Ωpam
11 = E

[

σ2
(
F−1

W (FX(X)) , Xi

)
·
∫

u1

(∫

u2

K

(

u1 +
fX(X)

fW

(
F−1

W (FX(X))
) · u2, u2

)

du2

)2

du1

(4.28)

·fW |X

(
F−1

W (FX(X)) |X
)
]

,

and

Ωpam
22 = E

[(
ψpam

W (W ) + ψpam
X (X) + g(F−1

W (FX(X)), X)− βpam
)2]

.

In the expression for the large sample variance, ψpam
X captures the uncertainty resulting from

estimation of FX(x), and ψpam
W captures the uncertainty resulting from estimation of FW (w).

Note that the component of the variance that captures the uncertainty from estimation
of g(w, x), Ωpam

11 , depends on the kernel in a way that involves the distribution of the data.

Often when one estimates nonparametric functionals at parametric rates, the dependence on
the kernel vanishes asymptotically if one undersmoothes. Here the kernel shows up in the

leading term. This is also the case in the discussion of partial means in Newey (1994).
Suppose we wish to construct a 95% confidence interval for βpam. In that case we approxi-

mate the variance of β̂pam − βpam by V̂ = Ω̂
pam
11 ·N−1 · b−1

N + Ω̂
pam
22 ·N−1, using suitable plug-in

[17]



estimators Ω̂pam
11 and Ω̂pam

22 , and construct the confidence interval as (β̂pam − 1.96 ·
√

V̂, β̂pam +

1.96 ·
√

V̂). Although the first term in V̂ will dominate the second term in large samples, in

finite samples the second term may still be important. We shall see this in the simulations in
Section 5.

Similar results hold for βnam, with some appropriately redefined concepts. Define

β̃nam =
1

N

N∑

i=1

g
(
F̂−1

W

(
1 − F̂X(Xi)

)
, Xi

)
, (4.29)

qnam(w, x) =
gW (F−1

W (1 − FX(x)), x)

fW (F−1
W (1 − FX(x)))

·
(
1FW (w)≤FX(x) − FX(x)

)
,

ψnam
W (w) = E [qnam

WX(w,X)] ,

rnam(x, z) =
gW (F−1

W (1 − FX(z)), z)

fW (F−1
W (1 − FX(z)))

· (1x≤z − FX(z)) ,

and

ψnam
X (x) = E [rnam

XZ (x,X)] .

Theorem 4.2 (Large Sample Properties of β̂nam)
Suppose Assumptions 2.1, 3.1, 4.1, and 4.2 hold, with q ≥ 2s+ 1, r ≥ s+ 3, p ≥ 4, d ≥ s− 1,

and 1/(2s) < δ < 1/8. Then

√
N ·

(
b
1/2
N

(
β̂nam − β̃nam

)

β̃nam − βnam

)
d−→ N

((
0
0

)
,

(
Ωnam

11 0
0 Ωnam

22

))
,

where

Ωnam
11 = E

[

σ2
(
F−1

W (1 − FX(X)) , X
)
·
∫

u1

(∫

u2

K

(

u1 +
fX(X)

fW

(
F−1

W (1 − FX(X))
) · u2, u2

))2

du1

·fW |X

(
F−1

W (1 − FX(X)) |X
)
]
,

and

Ωnam
22 = E

[
(ψnam

W (W ) + ψnam
X (X) + g(W,X)− βnam)2

]
.

4.3 Estimation and Inference for βcm(ρ, τ )

The starting point for estimation of βcm is the representation of βcm(ρ, 0) in equation (3.9):

βcm(ρ, 0) =

∫

w,x
g(w, x)

φc

(
Φ−1

c (FW (w)),Φ−1
c (FX(x)); ρ

)

φc

(
Φ−1

c (FW (w))
)
φc

(
Φ−1

c (FX(x))
)fW (w)fX(x)dwdx.

[18]



Note that this expression is an integral over the product of the marginal pdf’s of W and X ,

not the joint. We estimate this by replacing the integrals with sums over the two empirical
distribution functions to get analog estimator

β̂cm(ρ, 0) =
1

N 2

N∑

i=1

N∑

j=1

ĝ(Wi, Xj)
φc

(
Φ−1

c (F̂W (Wi)),Φ
−1
c (F̂X(Xj)); ρ

)

φc

(
Φ−1

c (F̂W (Wi))
)
φc

(
Φ−1

c (F̂X(Xj))
) .

This estimator would be a standard second order V statistic if we had the true regression func-
tion and the true distribution functions. The dependence on the esimated regression function

complicates its analysis.
Observe that if ρ = 0 (random matching) the ratio of densities on the right hand side is

equal to 1, so that

β̂rm =
1

N 2

N∑

i=1

N∑

j=1

ĝ(Wi, Xj).

For τ > 0, the βcm(ρ, τ) estimand is a convex combination of average output under the
status quo and a correlated matching allocation. The corresponding sample analog is

β̂cm(ρ, τ) = τ · β̂sq + (1 − τ) · β̂cm(ρ, 0),

where β̂sq = Y =
∑N

i=1 Yi/N , the average outcome. This estimator is linear in the nonpara-

metric regression estimator ĝ and nonlinear in the empirical CDFs of X and W .
A useful and insightful representation of βcm(ρ, 0) is as an average of partial means (c.f.,

Newey 1994). This representation provides intuition both about the structure of the estimand
as well as its large sample properties. Fixing W at W = w, but averaging over the distribution

of X we get the partial mean:

η (w) = EX [g(w,X) · d(w,X)] , (4.30)

where

d(w, x) =
φc(Φ

−1
c (FW (w)),Φ−1

c (FX(x)); ρ)

φc(Φ
−1
c (FW (w)))φc(Φ

−1
c (FX(x)))

. (4.31)

Observe that (4.30) is a weighted averaged of the production function over the distribution of

X holding the value of the input to be reallocated W fixed at W = w. The weight function
d(w,X) depends upon the truncated normal cupola. In particular, the weights give greater

emphasis to realizations of g(w,X) that are associated with values of X that will be assigned
a value of W close to w as part of the correlated matching reallocation. Thus (4.30) equals

the average post-reallocation output for those firms being assigned W = w. To give a concrete
example (4.30) is the post-reallocation expected achievement of those classrooms that will be

assigned a teacher of quality W = w.
Equation (4.30) also highlights the value of using the truncated normal copula. Doing so

ensures that the denominators of the copula ‘weights’ in (4.30) are bounded from zero. The
copula weights thus play the role similar to fixed trimming weights used by Newey (1994).

If we average these partial means over the marginal distribution ofW we get βcm(ρ, 0), since

βcm(ρ, 0) = EW [η (W )] ,

[19]



yielding average output under the correlated matching reallocation.

¿From the above discussion it is clear that our correlated matching estimator can be viewed
as a semiparametric two-step method-of-moments estimator with a moment function of

m(Y,W, βcm(ρ, τ), η (W )) = τY + (1− τ) η (W ) − βcm(ρ, τ).

Our estimator, β̂cm(ρ, τ), is the feasible GMM estimator based upon the above moment function
after replacing the partial mean (η(w) defined in (4.30)) with a consistent estimate. While the

above representation is less useful for deriving the asymptotic properties of β̂cm(ρ, τ) it does
provide some insight as to why we are able to achievement parametric rates of convergence.

To state the large sample properties of the correlated matching estimator we need some
additional notation. Define:

eW (w, x) =
ρφc(Φ

−1
c (FW (w)),Φ−1

c (FX(x)); ρ)

(1 − ρ2)φc(Φ
−1
c (FW (w)))2φc(Φ

−1
c (F̂X(x)))

×

[
Φ−1

c (FX(x))− ρΦ−1
c (FW (w))

]
,

eX(w, x) =
ρφc(Φ

−1
c (FW (w)),Φ−1

c (FX(x)); ρ)

(1− ρ2)φc(Φ
−1
c (FW (w)))φc(Φ

−1
c (F̂X(x)))2

×
[
Φ−1

c (FW (w))− ρΦ−1
c (FX(Xk))

]
,

ωcm(w, x) =
φc

(
Φ−1

c (FW (w)),Φ−1
c (FX(x)); ρ

)

φc

(
Φ−1

c (FW (w))
)
φc

(
Φ−1

c (FX(x))
) , (4.32)

ψcm
0 (y, w, x) = (4.33)

(E [g(W, x) · ω(W, x)]− βcm(ρ, 0)) + (E [g(w,X) · ω(w,X)]− βcm(ρ, 0)) ,

ψcm
g (y, w, x) =

fW (w) · fX(x)

fWX(w, x)
(y − g(w, x))ω(w, x), (4.34)

ψcm
W (y, w, x) =

∫ ∫
g(s, t)eW (s, t) (1w≤s − FW (s)) fW (s) fX (t) dsdt, (4.35)

and

ψcm
X (y, w, x) =

∫ ∫
g(s, t)eX (s, t) (1x≤t − FX(t)) fW (s) fX (t) dsdt. (4.36)

Theorem 4.3 Suppose Assumptions 2.1, 3.1, 4.1, and 4.2 hold with q ≥ 2s − 1, r ≥ s + 1,

p ≥ 3, d ≥ s − 1, and (1/2s) < δ < 1/4, then

β̂cm(ρ, τ)
p→ βcm(ρ, τ)

and
√
N(β̂cm(ρ, τ)− βcm(ρ, τ))

d−→ N (0,Ωcm),

where

Ωcm = E

[
(τ(Y − βsq) + (1 − τ)ψcm(Y,W,X))2

]
,

and

ψcm(y, w, x) = ψcm
0 (y, w, x)+ ψcm

g (y, w, x) + ψcm
W (y, w, x)+ ψcm

X (y, w, x). (4.37)
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Note that this estimator is rootN consistent, unlike β̂pam and β̂nam.

If there was no estimation error in ĝ(w, x), F̂W (w), and F̂X(x), the estimator would be
root−N consistent with normalized asymptotic variance equal to [ψcm

0 (Yi, Wi, X)i)2]. The re-

maining terms in the influence function, ψcm
W (y, w, x), ψcm

X (y, w, x), and ψcm
g (y, w, x), capture

the uncertainty coming from estimation of FW (w), FX(x), and g(w, x) respectively.

4.4 Estimation and Inference for β lc

Estimation of βlc proceeds in two steps. First we estimate g (w, x) = E[Y |W = w,X = x] (and
its derivative with respect to w) and m (w) = E[X |W = w] using kernel methods as in Section

4.1. In the second step we estimate βlc by method-of-moments using the sample analog of the
moment condition

E

[
∂

∂w
g (W,X) · d(W ) · (X −m (W )) − βlc

]
= 0.

Thus,

β̂lc =
1

N

∑N

i=1

∂

∂w
ĝ (Wi, Xi) · d(Wi) · (Xi − m̂ (Wi)). (4.38)

Define

ψlc
g (y, w, x) = − 1

fW,X (w, x)

∂fW,X (w, x)

∂W
d(w) (y − g (w, x)) (x−m (w))

−∂m
∂w

(w)d(w) (y − g (w, x))

− ∂d

∂w
(w)(y − g(w, x))(x−m (w)).

and

ψlc
m (y, w, x) = E

[
∂

∂w
g (w,X)

∣∣∣∣W = w

]
· d(w) · (x−m(w)).

As in the previous results, the ψlc are the influence functions, with ψlc
g (y, w, x) capturing the un-

certainty from estimation of g(w, x), and ψlc
m(y, w, x) capturing the uncertainty from estimation

of m(w).
The asymptotic properties of β̂lc are summarized by Theorem 4.4.

Theorem 4.4 Suppose Assumptions 2.1, 3.1, 4.1, and 4.2 hold with q ≥ 2s + 1, r ≥ s + 1,

p ≥ 4, d ≥ s − 1, and 1/(2s) < δ < 1/12. Then

β̂lc p→ βlc,

and
√
N(β̂lc − βlc)

d→ N (0,Ωlc),

where

Ωlc = E

[((
∂

∂w
g (W,X) · d(W ) · (X −m (W )) − βlc

)
+ ψlc

g (Y,W,X)+ ψlc
m (Y,W,X)

)2
]

.
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5 A Monte Carlo Study

To assess whether the asymptotic properties derived in Section 4 provide useful approximations
to finite sample distributions, we carry out a small simulation study. In the interest of brevity we

focus on βpam and βlc. We consider the following data generating process. The pair (W ∗
i , X

∗
i )

are drawn from a bivariate normal distribution with both means equal to zero, both variances

equal to one, and correlation coefficient equal to ρ. The two covariates Wi and Xi are then
constructed as Wi = 2 · Φ(W ∗

i ) − 1 and Xi = 2 · Φ(X∗
i ) − 1, so that both Wi and Xi have a

uniform distribution on [−1, 1], with potentially some correlation between them. The outcome

is generated as

Yi = Wi +Xi +Wi ·Xi + εi, εi|Wi, Xi ∼ N (0, 0.25).

Under this data generating process βpam = 0.3333, irrespective of the value of the correlation
between the covariates, ρ. The expected outcome under the current allocation is E[Y ] = 0 if

ρ = 0, and E[Y ] = 0.1212 if ρ = 0.5. We fix the weight function d(w) in the definition of the
local complementarity measure at d(w) = 1−|w|. The value of the local reallocation parameter

is βlc = 0.1667 if ρ = 0 and βlc = 0.1355 if ρ = 0.5.
We estimate βpam using equation (4.26), and βlc using equation (4.38). We use a rectangular

kernel on [−1, 1], and local linear regression for estimating g(w, x). The bandwidth for the
regression estimation is choosen using cross-validation, after which we divide the bandwidth

by two to ensure some undersmoothing. For density estimation we use the Silverman rule of
thumb, modified for a uniform kernel. For univariate density estimation this leads to

bN = 1.84 · σ ·N−1/5.

For estimating the bivariate density we use a bivariate uniform kernel, with the bandwidths in

each direction equal to

b′N = 1.84 · σ ·N−1/6,

where the σ is estimated on the data, and so may differ in the two directions for the bivariate
kernel.

We consider four designs, based on two sample sizes, N = 200 and N = 1000, and two
dependence structures, ρ = 0 and ρ = 0.5. For both designs we calculate the two estimators

β̂pam and β̂lc, and their variances. In Table 1 we report some summary statistics from the
simulations. We report the average and median bias, the standard deviation, the average of

the standard errors, the root mean squared error, the median absolute error, and the coverage
rates for the nominal 90 and 95% confidence intervals. The estimators appear to work fairly
well. Note that the average standard error for β̂lc is large relative to its standard deviation (the

ratio is more than six). The reason is that occasionally the estimated standard error is very
large. This happens with low probability, so the median standard error is not affected, and the

coverage rate is also fine.
The estimators have a complicated structure, with the asymptotic distribution relying on a

number of approximations. We further investigate these approximations in Table 2. Define

β̂pam
g =

1

N

N∑

i=1

ĝ
(
F−1

W (FX(Xi)) , Xi

)
, (5.39)
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β̂pam
W =

1

N

N∑

i=1

g
(
F̂−1

W (FX(Xi)) , Xi

)
, (5.40)

β̂pam
X =

1

N

N∑

i=1

g
(
F−1

W

(
F̂X(Xi)

)
, Xi

)
, (5.41)

and

gpam =
1

N

N∑

i=1

g
(
F−1

W (FX(Xi)) , Xi

)
. (5.42)

Then, as stated formally in Appendix A, Lemma A.15,

β̂pam − βpam =

(
β̂pam

g − gpam
)
+
(
β̂pam

W − gpam
)
+
(
β̂pam

X − gpam
)
+(gpam − βpam)+op

(
N−1/2

)
. (5.43)

In Panel A of Table 2, we show the mean and standard deviation of β̂pam −βpam, β̂pam
g − gpam,

β̂pam
W − gpam, β̂pam

X − gpam, and the remainder term,

rem =
(
β̂pam − βpam

)

−
((
β̂pam

g − gpam
)

+
(
β̂pam

W − gpam
)

+
(
β̂pam

X − gpam
)

+ (gpam − βpam)
)
.

The results in Panel A of Table 2 suggest that the remainder term is indeed small compared

to the terms that are taken into account in the asymptotic distribution. Moreover, the relative
magnitude of the Op(N

−1/2) terms are supportive of the fact that we take into account these

terms, not just the leading term which is N−1/2b
−1/2
N .

In the appendix we also show that

N 1/2b
1/2
N ·

(
β̂pam

g − gpam
)

d−→ N (0,Ωpam
11 ) , (5.44)

where Ω
pam
11 is defined in (4.28),

N 1/2 ·
(
β̂pam

W − gpam
)

d−→ N
(
0,E

[
ψpam

W (W )2
])
, (5.45)

N 1/2 ·
(
β̂

pam
X − gpam

)
d−→ N

(
0,E

[
ψ

pam
X (X)2

])
, (5.46)

and

N 1/2 · (gpam − βpam)
d−→ N

(
0,E

[(
g(F−1

W (FX(Xi), Xi))− βpam
)2])

. (5.47)

To assess the normal approximations we calculate the t-statistics based on these distributions

(the point estimates divided by estimates of the standard deviations), and report in Panel B of
Table 2 summary statistics for these random variables, which should have approximate normal

distributions. The summary statistics we report are averages, standard deviations, and tail
frequencies. We find that the actual means, standard deviations, and tail frequencies are close

to the nominal ones from the normal distribution.
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6 Conclusions

In this paper we introduce a new class of estimands involving reallocation of inputs, and develop
statistical methods for analyzing them. We consider a class of problems where a fixed set of

inputs is reallocated to a fixed set of units. Whereas a large part of the literature in econometrics
has focused on estimating the causal effects of changing inputs for all units, or for a subset of

units, here we focus on reallocation rules that take into account resource constraints, by keeping
the distribution of the inputs fixed. The effects we focus on depend critically on the degree
of complementarity between inputs. We therefore follow a flexible nonparametric approach

where the nature of the complementarity is not restricted to a parametric form. We propose
estimators for the effects of various reallocation rules, and derive the asymptotic properties of

these estimators.
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Table 1: Simulation Results for β̂pam and β̂lc, 10,000 simulations

N = 200 N = 1000
ρ = 0.0 ρ = 0.5 ρ = 0.0 ρ = 0.5

β̂pam β̂lc β̂pam β̂lc β̂pam β̂lc β̂pam β̂lc

mean bias -0.009 -0.018 -0.002 -0.016 -0.003 -0.011 -0.000 -0.010
median bias -0.010 -0.020 -0.003 -0.017 -0.003 -0.011 -0.001 -0.010

s.d 0.093 0.039 0.088 0.043 0.040 0.013 0.039 0.013
ave s.e. 0.085 0.256 0.088 0.578 0.041 0.418 0.044 0.306

median s.e. 0.085 0.051 0.087 0.064 0.040 0.020 0.044 0.039
r.m.s.e. 0.093 0.043 0.088 0.046 0.040 0.017 0.039 0.016
m.a.e. 0.061 0.027 0.060 0.028 0.028 0.013 0.027 0.012

cov rate 90% c.i. 0.871 0.938 0.897 0.959 0.905 0.931 0.935 0.991
cov rate 95% c.i. 0.929 0.968 0.947 0.980 0.953 0.965 0.971 0.997

[27]



Table 2: Simulation Results: Assessing the Adequacy of the Asymptotic Approx-
imations for β̂pam (N = 1000, ρ= 0.0)

β̂pam β̂pam
g β̂pam

W β̂pam
X gpam remainder

−βpam −gpam −gpam −gpam −βpam

Panel A
mean -0.003 -0.002 -0.000 0.001 0.000 -0.001

s.d. 0.040 0.031 0.019 0.019 0.038 0.004

t̂pam t̂g t̂W t̂X t̂g nominal

Panel B
mean -0.074 -0.078 -0.015 0.049 0.002 0.000
s.d. 0.989 1.018 1.005 1.018 1.008 1.000

pr(|T | ≥ 1.645) 0.095 0.105 0.102 0.111 0.107 0.100
pr(|T | ≥ 1.96) 0.047 0.055 0.053 0.058 0.052 0.050

pr(T ≥ 1.645) 0.039 0.043 0.052 0.062 0.053 0.050
pr(T ≤ −1.645) 0.056 0.062 0.050 0.049 0.054 0.050

pr(T ≥ 1.96) 0.018 0.021 0.026 0.033 0.027 0.025
pr(T ≤ −1.96) 0.029 0.034 0.027 0.025 0.025 0.025
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Appendix A: Additional Lemmas and Theorems

In this appendix we state a number of additional results that will be used in the proofs of the four Theorems
3.1-4.4. Specifically, Theorem 3.1 uses Lemmas A.1 and A.2. Theorems 4.1 and 4.2 use Lemmas A.3-A.8, A.14,
A.15, Theorem A.1, Lemmas A.16-A.18, A.9-A.11. Theorem 4.3 uses Lemmas A.14, Theorem A.1, Lemmas
A.9-A.11, Theorem A.3, and Lemmas A.24-A.28. Theorem 4.4 uses Lemma A.13, Theorem A.1, and Lemmas
A.19-A.11.

Definition 6.1 (Sobolev Norm) The norm that we use for functions g : Z ⊂ R
L → R that are at least j times

continuously differentiable is the Sobolev norm

|g|j = sup
z∈Z,|λ|≤j

˛̨
˛̨∂g

|λ|

∂zλ
(z)

˛̨
˛̨ .

Lemma A.1 Let f : X 7→ R, with X = [xl, xu] a compact subset of R, be a twice continuously differentiable
function, and let g : R 7→ R satisfy a Lipschitz condition, |g(x + y) − g(x)| ≤ c · |y|. Then

˛̨
˛̨f(g(λ)) −

„
f(g(0)) +

∂

∂x
f(g(0)) · (g(λ) − g(0))

«˛̨
˛̨ ≤ 1

2
· sup

x∈X

˛̨
˛̨ ∂

2

∂x2
f(x)

˛̨
˛̨ · c2 · λ2.

Lemma A.2 Let X be a real-valued random variable with support X = [xl, xu], with density fX(x) > 0 for all
x ∈ X, and let h : X 7→ R be a continous function. Suppose that E[|h(X) ·X ] is finite. Then

Cov(h(X),X) = E

»
∂

∂x
h(X) · γ(X)

–
,

where

γ(x) =
FX(x) · (1− FX(x)

fX(x)
· (E [X |X > x] − E [X |X ≤ x]) ,

and FX(x) is the cumulative distribution function of X.

For completeness we state a couple of results from Athey and Imbens (2006, AI from hereon).

Lemma A.3 (Lemma A.2 in AI) Suppose Y is a real-valued, continuously distributed random variable with
compact support Y = [yl, yu], with the probability density function fY (y) continuous, bounded, and bounded away
from zero, on Y. Then, for any δ < 1/2:

sup
y∈Y

N δ · |F̂Y (y) − FY (y)| p→ 0.

Lemma A.4 (Lemma A.3 in AI) Suppose Y is a real-valued, continuously distributed random variable with
compact support Y = [yl, yu], with the probability density function fY (y) continuous, bounded, and bounded away
from zero, on Y. Then, for any δ < 1/2:

sup
q∈[0,1]

N δ · |F̂−1
Y (q) − F−1

Y (q)| p→ 0.

Lemma A.5 (Lemma A.5 in AI) Suppose Y is a real-valued random variable with compact support Y = [yl, yu],
and suppose that the cumulative distribution function FY (y) is twice continuously differentiable on Y, with its
first derivative fY (y) = ∂FY

∂y
(y) bounded away from zero on Y. Then, for 0 < η < 3/4 and δ > max(2η− 1, η/2),

sup
y∈Y,x≤N−δ ,x+y∈Y

Nη ·
˛̨
˛F̂Y (y + x) − F̂Y (y) − (FY (y + x) − FY (y))

˛̨
˛ p−→ 0.
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Lemma A.6 (Lemma A.6 in AI) Suppose Y is a real-valued random variable with compact support Y = [yl, yu],
and suppose that the cumulative distribution function FY (y) is twice continuously differentiable on Y, with its
first derivative fY (y) = ∂FY

∂y (y) bounded away from zero on Y. Then, for all 0 < η < 5/7,

sup
q∈[0,1]

Nη ·
˛̨
˛̨F̂−1

Y (q) − F−1
Y (q) +

1

fY (F−1
Y (q))

“
F̂Y (F−1

Y (q)) − q
”˛̨
˛̨ p→ 0.

Lemma A.7 SupposeX and Y are real-valued, continuously distributed, random variables with compact support
Y = [yl, yu] and X = [xl, xu], with the probability density functions fY (y) and fX(x) continuous, bounded, and
bounded away from zero, on Y and X. Then, for any δ < 1/2:

sup
x∈X

N δ ·
˛̨
˛F̂−1

Y

“
F̂X(x)

”
− F−1

Y (FX(x))
˛̨
˛ p→ 0.

Lemma A.8 Suppose Y is a real-valued random variable with compact support Y = [yl, yu], and the cumulative
distribution function FY (y) is twice continuously differentiable on Y, with its first derivative fY (y) = ∂FY

∂y
(y)

bounded away from zero on Y. Then, for 0 < η < 3/4 and δ > max(2η − 1, η/2),

sup
y∈Y,x≤N−δ ,x+y∈Y

Nη ·
˛̨
˛F̂Y (y + x) − F̂Y (y) − fY (y) · x

˛̨
˛ p−→ 0.

The next three lemmas are given without proof. Proofs can be found in IR. The first gives a bound on the bias
of the NIP estimator.

Lemma A.9 (Bias)
If for m = 1, 2 Assumptions 3.1-4.1 hold, and q ≥ 2s − 1 and r ≥ s − 1, then

sup
z∈Z

˛̨
˛E
h
ĥm,nip,s(z)

i
− hm(z)

˛̨
˛ = O (bs) .

Note that by matching the order of the kernel and the degree of the polynomial in the NIP estimator we obtain
the same reduction in the bias on the full support as on the internal region, i.e. the NIP estimator has a bias
that is of the same order as that of the NW estimator on the internal region. The variance is bounded in the
following lemma. We only use the following two results for the case with L = 2, but for convenience we give the
general results.

Lemma A.10 (Variance)
If Assumptions 3.1-4.1 hold and q ≥ s − 1, r ≥ s− 1 + L, then

sup
z∈Z

˛̨
˛ĥm,nip,s(z) − E

h
ĥm,nip,s(z)

i˛̨
˛ = Op

 „
logN

NbLN

«1/2
!
.

This is the same bound as for the NW estimator on the internal set.
The two lemmas imply a uniform rate for the NIP estimator

Lemma A.11 (Uniform Convergence)
If Assumptions 3.1-4.1 hold and q ≥ 2s − 1, r ≥ s− 1 + L, then

sup
z∈Z

˛̨
˛ĥm,nip,s(z) − hm(z)

˛̨
˛ = Op

 „
logN

N · bLN

«1/2

+ bsN

!
.

Lemma A.12 If ĥ(z) is a nonparametric estimator of h(z) then

inf
z∈Z

|ĥ(z)| = inf
z∈Z

|h(z)| +Op

„
sup
z∈Z

|ĥ(z) − h(z)|
«
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Therefore if supz∈Z
|ĥ(z) − h(z)| = op(1) and infz∈Z |h(z)| > 0, then infz∈Z |ĥ(z)| converges in probability to a

positive number. This lemma is useful if ĥ(z) appears in the denominator. In this paper z = (w, x) or z = w.

Lemma A.13 Suppose Assumptions 3.1-4.2 hold. Moreover, suppose that in these assumptions q ≥ 2s − 1,
r ≥ s. Then,

sup
w∈W

|m̂(w) −m(w)| = Op

 „
ln(N)

N · bN

«1/2

+ bsN

!
.

Lemma A.14 Suppose Assumptions 3.1-4.2 hold. Moreover, suppose that q ≥ 2s + 1 and r ≥ s + 3, Then, (i)

sup
w∈W,x∈X

|ĝ(w, x) − g(w, x)| = Op

 „
ln(N)

N · b2N

«1/2

+ bsN

!
,

(ii)

sup
w∈W,x∈X

˛̨
˛̨ ∂ĝ
∂w

(w, x) − ∂g

∂w
(w,x)

˛̨
˛̨ = Op

 „
ln(N)

N · b4N

«1/2

+ bsN

!
,

and iii),

sup
w∈W,x∈X

˛̨
˛̨ ∂

2 ĝ

∂w2
(w,x) − ∂2g

∂w2
(w, x)

˛̨
˛̨ = Op

 „
ln(N)

N · b6N

«1/2

+ bsN

!
.

The next lemma shows that we can separate out the uncertainty in β̂pam into five components: the uncertainty
from estimating g(·), the uncertainty from estimating F̂−1

W (·), the uncertainty from estimating F̂X(·), and the

uncertainty from averaging g(F−1
W (FX(Xi)),Xi) over the sample, and a remainder term that is op

“
N−1/2

”
. As

defined in section 5

β̂pam
g =

1

N

NX

i=1

ĝ
`
F−1

W (FX(Xi)) ,Xi

´
,

β̂pam
W =

1

N

NX

i=1

g
“
F̂−1

W (FX(Xi)) ,Xi

”
,

β̂pam
X =

1

N

NX

i=1

g
“
F−1

W

“
F̂X(Xi)

”
,Xi

”
,

and

gpam =
1

N

NX

i=1

g
`
F−1

W (FX(Xi)) ,Xi

´
.

Lemma A.15 Suppose Assumptions 3.1, 4.1, and 4.2 hold with q ≥ 2s+ 1, r ≥ s+ 3, and 0 ≤ δ < 1/6. Then

β̂pam − βpam =
“
β̂pam

g − gpam
”

+
“
β̂pam

W − gpam
”

+
“
β̂pam

X − gpam
”

+ (gpam − βpam) + op

“
N−1/2

”
. (A.1)

The next two results are special cases of theorems in Imbens and Ridder (2009). The first one refers to the full
mean case, and focuses on the case where we take full means of regression functions and their first derivatives.
The second result focuses on partial means of regression functions. The results in Imbens and Ridder (2009)
allow for more general dependence on higher order derivatives, even in the partial mean case. Here we also
restrict the analysis to the case where the regressors are the pair (Wi,Xi). We also state the conditions that IR
invoke.
Let Zi = (Wi,Xi), with Xi ∈ X ⊂ R

LX , Wi ∈ W ⊂ R
LW , Zi ∈ W × X ⊂ R

LZ , with LZ = LX + LW . As before
h(z) = (h1(z), h2(z))

′, with h1(z) = fZ(z), and h2(z) = E[Y |Z = z] · fZ(z). Let n : R
K 7→ R, t : X 7→ W, and
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ω : X 7→ R, and define Ỹ = (Ỹi1 Ỹi2)
′, with Ỹi1 = 1 and Ỹi2 = Yi. We are interested in full means (possibly

depending on derivatives) of the regression function,

θfm = E

h
ω(Z)n

“
h[λ] (Z)

”i
, (A.2)

or partial means,

θpm = E [ω(X)n (h (X, t(X)))] . (A.3)

Note that in the full mean case ω : Z 7→ R, and in the partial mean case ω : X 7→ R: the weight function
depends only on the covariates that are being averaged over. In the full mean example h[λ] denotes the vector
with elements including all derivatives h(µ) for µ ≤ λ. The estimators we focus on are

θ̂fm =
1

N

NX

i=1

ω (Zi)n
“
ĥ

[λ]
nip,s (Zi)

”
, and θ̂pm =

1

N

NX

i=1

ω(Xi)n
“
ĥnip,s (t(Xi),Xi)

”
.

It will also be useful to define the averages over the true regression functions and their derivatives,

θ
fm

=
1

N

NX

i=1

ω(Zi)n
“
h[λ](Zi)

”
, and θ

pm
=

1

N

NX

i=1

ω(Xi)n (h(t(Xi),Xi)) .

Assumption A.1 (Distribution)
(i) (Y1, Z1), (Y2, Z2), . . . , are independent and identically distributed,
(ii) the support of Z is Z ⊂ R

L, Z =
NL

m=1[zml, zmu], zll < zul for all l = 1, . . . , L.
(iii) supz∈Z

E[|Y |p|Z = z] <∞.
(iv) g(z) = E[Y |Z = z] is q times continuously differentiable on the interior of Z with the q-th derivative bounded,
(v) fZ(z) is bounded and bounded away from zero on Z, is q times continuously differentiable on the interior of
Z with the q-th derivative bounded.

Assumption A.2 (Kernel)
(i) K : R

L → R, with K(u) =
QL

l=1 K(ul),
(ii) K(u) = 0 for u /∈ U, with U = [−1,1]L, and U1 = [−1, 1]LW , and U2 = [−1, 1]LX ,
(iii) K is r times continuously differentiable, with the r-th derivative bounded on the interior of U,
(iv) K is a kernel of order s, so that

R
U
K(u)du = 1 and

R
U
uλK(u)du = 0 for all λ such that 0 < |λ| < s, for

some s ≥ 1,
(v) K is a kernel of derivative order d.

Assumption A.3 The bandwidth bN = N−δ for some δ > 0.

Assumption A.4 (Smoothness of n and ω)
(i) The function n is t times continuously differentiable with its t-th derivative bounded, and
(ii) the function ω is t times differentiable on X with bounded t-th derivative, and ∂µω

∂zµ (z) is zero on the boundary
of Z.

Assumption A.5 (Smoothness of t)
The function t : X 7→ W is twice continuously differentiable on X with its first derivative positive, bounded, and
bounded away from zero.

Theorem A.1 (Generalized Full Mean and Average Derivative, [Theorem 4.2, Imbens and Ridder,
2009])
If Assumptions A.1, A.2, A.3, and A.4 hold with q ≥ |λ| + 2s − 1, r ≥ |λ| + s − 1 + L, t ≥ |λ| + s, p ≥ 3,
d ≥ max{λ1, . . . , λL} + s− 1, all µ ≤ λ, 0 ≤ |µ| ≤ |λ| − 1, and

1

2s
< δ < min

(
2 − 4

p

2L+ 4max{1, |λ|} ,
1

2L+ 4|λ|

)

then θ̂fm is asymptotically linear with

√
N(θ̂fm − θfm) =

1√
N

NX

i=1

“
ω(Zi)n(h[λ](Zi)) − E

h
ω(Zi)n

“
h[λ] (Zi)

”i”
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+
1√
N

NX

i=1

0
@X

κ≤λ

(−1)|κ|
2X

m=1

“
α(κ)

κm(Xi)Ỹim − E[α(κ)
κm(X)Ỹm]

”
1
A+ op(1).

with

α
(κ)
κ1 (z) = fX(z)ω(z)

∂n

∂h
(κ)
1 (z)

(h[λ](z)), and α
(κ)
κ2 (z) = fX(z)ω(z)

∂n

∂h
(κ)
2 (z)

(h[λ](z)),

and Ỹ = (Ỹi1 Ỹi2)
′, with Ỹi1 = 1 and Ỹi2 = Yi.

The second theorem from IR gives the asymptotic properties of the GPM estimators

Theorem A.2 (Generalized Partial Mean, [Theorem 4.3, Imbens and Ridder, 2009])
If Assumptions A.1, A.2, A.3, A.4, and A.5 hold with q ≥ 2s − 1, r ≥ s − 1 + L, t ≥ s, p ≥ 4, d ≥ s− 1, and

1

2s
< δ < min

(
2 − 4

p

2L+ 4
,

1

2L

)
,

then θ̂pm is asymptotically linear with

√
N(θ̂pm − θpm) =

√
N ·

“
θ
pm − θpm

”

+
1

bN
LW

√
N

·
NX

i=1

2X

m=1

„
αm(Xi)

′Ỹim

Z

U2

K

„
Wi − t(Xi)

bN
+

∂

∂x
t(Xi) · u2, u2

«
du2

−E

»
αm(X)′Ỹm

Z

U2

K

„
W − t(X)

bN
+

∂

∂x
t(X) · u2, u2

«
du2

–«
+ op (1) ,

with

α1(x) = fZ(t(x), x)ω(x)
∂n

∂h1
(h(t(x), x)), and α2(x) = fZ(t(x), x)ω(x)

∂n

∂h2
(h(t(x), x)).

Moreover,
 √

N ·
“
θ
pm − θpm

”

√
Nb

LW /2
N (θ̂pm − θ

pm
)

!
d−→ N

„„
0
0

«
,

„
V1 0
0 V2

««
,

with

V1 = E
ˆ
(ω(X)n(h(t(X),X)) − θpm)2

˜
,

and

V2 =

2X

m=1

2X

m′=1

Z

X

µmm′ (x, t(x))αm(x)αm′(x)

Z

U2

„Z

U1

K

„
u1,

∂t

∂x
(x)u1 + u2

«
du1

«2

du2fX(x, t(x))dx1,

with µmm′ (x) = E[ỸimỸim′ |X = x] for m,m′ = 1, 2.

Lemma A.16 Suppose Assumptions 3.1, 4.1, and 4.2 hold, with q ≥ 2s − 1, r ≥ s + 1, p ≥ 4, d ≥ s − 1, and
1/(2s) < δ < 1/8. Then

√
N
“
β̂pam

g − gpam
”

=
1√
NbN

NX

i=1

(Yi − g(Wi,Xi)) ·
Z

u2

K

 
Wi − F−1

W (FX(Xi))

bN
+

fX(Xi)

fW

`
F−1

W (FX(Xi))
´ · u2, u2

!
du2

+
1√
NbN

NX

i=1

(
`
g(Wi,Xi) − g(F−1

W (FX(Xi)),Xi)
´
·
Z

u2

K

 
Wi − F−1

W (FX(Xi))

bN
+

fX(Xi)

fW

`
F−1

W (FX(Xi))
´ · u2, u2

!
du2

− E

"
`
g(W,X) − g(F−1

W (FX(X)),X)
´
·
Z

u2

K

 
Wi − F−1

W (FX(X))

bN
+

fX(X)

fW

`
F−1

W (FX(X))
´ · u2, u2

!
du2

#)
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+op (1) .

and
√
Nb

1/2
N

“
β̂pam

g − gpam
”

d−→

N
 

0,E

"
σ2 `F−1

W (FX(X)) ,X
´
·
Z

u1

 Z

u2

K

 
u1 +

fX(X)

fW

`
F−1

W (FX(X))
´ · u2, u2

!
du2

!2

du1 · fW |X

`
F−1

W (FX(X)) |X
´
#!

.

Lemma A.17 Suppose Assumptions 3.1, 4.1, and 4.2 hold with q ≥ 2. Then

β̂pam
W − gpam =

1

N

NX

i=1

ψpam
W (Wi) + op

“
N−1/2

”
.

Lemma A.18 Suppose Assumptions 3.1, 4.1, and 4.2 hold, with q ≥ 2. Then

β̂pam
X − gpam =

1

N

NX

i=1

ψpam
X (Xi) + op

“
N−1/2

”
.

Define

β̂lc
g =

1

N

NX

i=1

∂ĝ

∂w
(Wi,Xi) · d(Wi) · (Xi −m(Wi)),

β̂lc
m =

1

N

NX

i=1

∂g

∂w
(Wi,Xi) · d(Wi) · (Xi − m̂(Wi)),

and

glc =
1

N

NX

i=1

∂g

∂w
(Wi,Xi) · d(Wi) · (Xi −m(Wi)).

Lemma A.19 Suppose Assumptions 3.1, 4.1, and 4.2 hold. Moreoever, suppose that the estimators for g(w, x)
and m(w), ĝ(w, x) and m̂(w) respectively, satisfy

sup
w∈W,x∈X

˛̨
˛̨ ∂ĝ
∂w

(w, x) − ∂g

∂w
(w,x)

˛̨
˛̨ = op(N

−η) and sup
w∈W

|m̂(w) −m(w)| = op(N
−η),

for some η > 1/4. Then

β̂lc − βlc =
“
β̂lc

g − glc
”

+
“
β̂lc

m − glc
”

+
“
glc − βlc

”
+ op

“
N−1/2

”
. (A.4)

Lemma A.20 Suppose Assumptions 3.1, 4.1, and 4.2 hold, with q ≥ 2s, r ≥ s, p ≥ 3, d ≥ s, and 1/(2s) < δ <
1/12. Then:

β̂lc
g − glc =

1

N

NX

i=1

ψlc
g (Yi,Wi,Xi) + op

“
N−1/2

”
, (A.5)

where

ψlc
g (Y,W,X) = − 1

fW,X (W,X)

∂fW,X (W,X)

∂W
(Y − g (W,X)) d(W ) (X −m (W ))

−∂m (W )

∂W
d(W ) (Y − g (W,X))

+
∂d

∂w
(W ) (X −m(W )) (Y − g(W,X)) .
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Lemma A.21 Suppose Assumptions 3.1-4.2 hold, with q ≥ 2s− 1, r ≥ s, p ≥ 3, d ≥ s− 1, and

1

2s
< δ <

1

3
− 2

3p
,

then

sup
w∈W

˛̨
˛̨
˛

1

bfW (w)

“
bfW (w) − fW (w)

”2

˛̨
˛̨
˛ = op

“
N−1/2

”
.

Lemma A.22 Let h (w) = (h1 (w) , h2 (w))′ = (E [X |W = w]fW (w) , fW (w))′, and suppose Assumptions 3.1-
4.2 hold, with q ≥ 2s − 1, r ≥ s, p ≥ 3, d ≥ s − 1, and

1

2s
< δ <

1

3
− 2

3p
,

then

sup
w∈W

˛̨
˛̨
˛

1

bh2 (w)

“
bh1 (w) − h1 (w)

”“
bh2 (w) − h2 (w)

”˛̨˛̨
˛ = op

“
N−1/2

”
.

Lemma A.23 Suppose Assumptions 3.1-4.2 hold, with q ≥ 2s− 1, r ≥ s, p ≥ 3, and

1

2s
< δ <

1

8
.

Then

β̂lc
m − glc =

1

N

NX

i=1

E [gW (Wi,Xi)|Wi] · d(Wi) · (Xi −m(Wi)) + op

“
N−1/2

”
, (A.6)

Before the next theorem we need some additional definitions. We split Zi into (Z ′
i1, Z

′
i2)

′, with the dimension
of Zi1 equal to LZ1, and the dimension of Zi2 equal to LZ2, so that L = LZ1 + LZ2. We are interested in the
distribution of

V =
√
N ·

 
1

N2

NX

j=1

NX

k=1

n(ĥnip,s(Z1j , Z2k)) − 1

N2

NX

j=1

NX

k=1

n(h(Z1j , Z2k))

!
. (A.7)

We show that this is, to first order, equivalent to a single normalized sum.

Theorem A.3 Suppose that Assumptions A.1-A.4, hold with q ≥ 2s − 1, r ≥ s− 1 + L, 1/(2s) < δ < 1/(2L),
and t ≥ 2. Then

V =
1√
N

NX

i=1


∂n

∂h
(h(Zi))

′ỸifZ1(Z1i)fZ2(Z2i) − EZ

»
∂n

∂h
(h(Z))′Ỹ fZ1(Z1i)fZ2(Z2i)

–ff
+ op(1). (A.8)

(To be clear here we index the expectation by the random variable the expectation is taken over, in this case Z.)

Before stating some additional lemmas that will be used for proving Theorem 4.3 we need some additional
definitions. Define

gcm =
1

N2

NX

i=1

NX

j=1

g(Wi,Xj)
φc

`
Φ−1

c (FW (Wi)),Φ
−1
c (FX(Xj)); ρ

´

φc

`
Φ−1

c (FW (Wi))
´
φc

`
Φ−1

c (FX(Xj))
´

β̂cm
g =

1

N2

NX

i=1

NX

j=1

ĝ(Wi,Xj)
φc

`
Φ−1

c (FW (Wi)),Φ
−1
c (FX(Xj)); ρ

´

φc

`
Φ−1

c (FW (Wi))
´
φc

`
Φ−1

c (FX(Xj))
´

β̂cm
W =

1

N2

NX

i=1

NX

j=1

g(Wi,Xj)
φc

“
Φ−1

c (F̂W (Wi)),Φ
−1
c (FX(Xj)); ρ

”

φc

“
Φ−1

c (F̂W (Wi))
”
φc

`
Φ−1

c (FX(Xj))
´

β̂cm
X =

1

N2

NX

i=1

NX

j=1

g(Wi,Xj)
φc

“
Φ−1

c (FW (Wi)),Φ
−1
c (F̂X(Xj)); ρ

”

φc

`
Φ−1

c (FW (Wi))
´
φc

“
Φ−1

c (F̂X(Xj))
”
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Lemma A.24 Suppose Assumptions 3.1-4.2 hold with q ≥ 2s + 2, r ≥ s + 3, and 1/(2s) < δ < 1/4, then

bβcm(ρ, 0) − βcm(ρ, 0)

=
“
β̂cm

g − gcm
”

+
“
β̂cm

W − gcm
”

+
“
β̂cm

X − gcm
”

+ (gcm − βcm(ρ, 0)) + op

“
N−1/2

”
.

Lemma A.25 Suppose Assumptions 3.1-4.2 hold, then

β̂cm
g − gcm =

1

N

NX

i=1

ψcm
g (Yi,Wi,Xi) + op

“
N−1/2

”
,

where

ψcm
g (y,w, x) =

fW (w) · fX(x)

fW X(w,x)
(y − g(w, x))ω(w,x).

Lemma A.26 Suppose Assumptions 3.1-4.2 hold, then

β̂cm
W − gcm =

1

N

NX

i=1

ψcm
W (Yi,Wi,Xi) + op

“
N−1/2

”
,

where

ψcm
W (y,w, x) =

Z Z
g(s, t)eW (s, t) (1 (w ≤ s) − FW (s))fW (s) fX (t) dsdt.

Lemma A.27 Suppose Assumptions 3.1-4.2 hold, then

β̂cm
X − gcm =

1

N

NX

i=1

ψcm
X (Yi,Wi,Xi) + op

“
N−1/2

”
.,

where

ψcm
X (y,w, x) =

Z Z
g(s, t)eX (s, t) (1 (x ≤ t) − FX(t))fW (s) fX (t) dsdt.

Lemma A.28 Suppose Assumptions 3.1-4.2 hold, then

gcm − βcm(ρ, 0) =
1

N

NX

i=1

ψcm
0 (Yi,Wi,Xi) + op

“
N−1/2

”
,

where

ψcm
0 (w, x) = (E [g(W, x) · ω(W,x)] − βcm(ρ,0)) + (E [g(w,X) · ω(w,X)] − βcm(ρ, 0)) . (A.9)

The following theorem is a simplifed version of the V-statistics results in Lehman (1998).

Theorem A.4 (V-statistics) Suppose Z1, . . . , ZN are independent and identically distributed random vectors
with dimension K, with support Z ⊂ R

K. Let ψ : Z
K × Z

K 7→ R be a real-valued function. Define

θ = E [ψ(Z1, Z2)] , ψ1(z) = E [ψ(z,Z)] , ψ2(z) = E [ψ(Z, z)] ,

σ2 = Cov(ψ(Z1, Z2), ψ(Z1, Z3)) + Cov(ψ(Z2, Z1), ψ(Z1, Z3))

+Cov(ψ(Z1, Z2), ψ(Z3, Z1)) + Cov(ψ(Z2, Z1), ψ(Z3, Z1)).

and

V =
1

N2

NX

i=1

NX

j=1

ψ(Zi, Zj).

Then, if 0 < σ2 < ∞,

V =
1

N

NX

i=1

{(ψ1(Zi) − θ) + (ψ2(Zi) − θ)} + op

“
N−1/2

”
,

and
√
N · (V − θ)

d−→ N
`
0, σ2´ .
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Appendix B: Proofs of Additional Lemmas and Theorems

In the following proofs c is a generic constant.
Proof of Lemma A.1: Because f(·) is twice continuously differentiable on X, a compact subset of R, it follows
that for all a, b ∈ X, by a Taylor series expansion,

f(b) = f(a) +
∂f

∂x
(a) · (b− a) +

1

2
· ∂

2f

∂x2
(c) · (b− a)2,

for some c ∈ X. Hence
˛̨
˛̨f(g(λ)) −

„
f(g(0)) +

∂f

∂x
(g(0)) · (g(λ) − g(0))

«˛̨
˛̨ ≤ 1

2
· sup

x∈X

˛̨
˛̨∂

2f

∂x2
(x)

˛̨
˛̨ · (g(λ) − g(0))2.

By the Lipschitz condition on g(λ), this is bounded by

1

2
· sup

x∈X

˛̨
˛̨∂

2f

∂x2
(x)

˛̨
˛̨ · c2 · λ2.

�

Proof of Lemma A.2: Let µ = E[X ], and write h(x) = h(xl) +
R x

xl

∂
∂xh(z)dz. Then:

Cov(h(X),X) = E [h(X) · (X − µ)] = E

»„
h(xl) +

Z X

xl

∂

∂x
h(z)dz

«
· (X − µ)

–

= E

»Z X

xl

∂

∂x
h(z)dz · (X − µ)

–

= E

»Z xu

xl

1X>z · ∂
∂x
h(z)dz · (X − µ)

–

=

Z xu

xl

∂

∂x
h(z) · E [1X>z · (X − µ)] dz

=

Z xu

xl

∂

∂x
h(z) · E [X − µ|X > z] · Pr(X > z)dz

=

Z xu

xl

∂

∂x
h(z) · FX(z) · (1− FX(z)) · (E[X |X > z]− E[X |X ≤ z])dz

=

Z xu

xl

∂

∂x
h(z) · FX(z) · (1− FX(z))

fX(z)
· (E[X |X > z]− E[X |X ≤ z]) fX(z)dz

= E

»
∂

∂x
h(X) · γ(X)

–
.

�

Proof of Lemma A.7: By the triangle inequality

sup
x∈X

N δ ·
˛̨
˛F̂−1

Y

“
F̂X(x)

”
− F−1

Y (FX(x))
˛̨
˛

≤ sup
x∈X

N δ ·
˛̨
˛F̂−1

Y

“
F̂X(x)

”
− F−1

Y

“
F̂X(x)

”˛̨
˛

+ sup
x∈X

N δ ·
˛̨
˛F−1

Y

“
F̂X(x)

”
− F−1

Y

“
F̂X(x)

”˛̨
˛

≤ sup
q∈[0,1]

N δ ·
˛̨
˛F̂−1

Y (q) − F−1
Y (q)

˛̨
˛

+ sup
x∈X,y∈Y

N δ · 1

fY (y)

˛̨
˛F̂X(x) − FX(x)

˛̨
˛ .

The first term is op(1) by Lemma A.4, and the second by the fact that fY (y) is bounded away from zero, in
combination with Lemma A.3. �
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Proof of Lemma A.8: By the triangle inequality

sup
y∈Y,x≤N−δ ,x+y∈Y

Nη ·
˛̨
˛F̂Y (y + x) − F̂Y (y) − fY (y) · x

˛̨
˛

≤ sup
y∈Y,x≤N−δ ,x+y∈Y

Nη ·
˛̨
˛F̂Y (y + x) − (FY (y + x) − FY (y))

˛̨
˛

+ sup
y∈Y,x≤N−δ,x+y∈Y

Nη · |FY (y + x) − FY (y) − fY (y) · x| .

The first term on the right-hand side converges to zero in probability by Lemma A.5. To show that the second
term converges to zero note that

sup
y∈Y,x≤N−δ ,x+y∈Y

Nη · |FY (y + x) − FY (y) − fY (y) · x|

≤ sup
y∈Y,x≤N−δ ,x+y∈Y,λ∈[0,1]

Nη · |fY (y + λx) · x− fY (y) · x|

≤ sup
y∈Y,z∈Y,x≤N−δ ,x+y∈Y,λ∈[0,1]

Nη ·
˛̨
˛̨∂fY

∂y
(z)

˛̨
˛̨ · λx2

≤ sup
y∈Y,x≤N−δ

Nηx2 ∂fY

∂y
(y) → 0,

because ∂fY
∂y

(y) is bounded, x < N−δ, and δ > η/2. �

Proof of Lemma A.12: By the inequality |a| ≥ |b| − |a− b|

inf
z∈Z

|ĥ(z)| ≥ inf
z∈Z

|h(z)| − sup
z∈Z

|ĥ(z) − h(z)|

from which the result follows. �

Proof of Lemma A.13: This follows directly from Theorem 7.1 in IR �

Proof of Lemma A.14: This follows directly from Theorem 7.1 in IR. �

Proof of Lemma A.15: First note that by the assumptions in the Lemma the conditions for Lemma A.14
are satisfied. Moreoever, by the assumption that 0 < δ < 1/6, it follows that Op(b

N ) = op(N
−η) for η < δ · s,

and Op(ln(N)N−1b−2
N ) = Op(ln(N)N−1+2δ) = op(1), Op(ln(N)N−1b−4

N ) = Op(ln(N)N−1+4δ) = op(N
−η) for

η < 1 − 4δ, and Op(ln(N)N−1b−6
N ) = Op(ln(N)N−1+6δ) = op(1). Hence the results from Lemma A.14 imply

sup
w∈W,x∈X

|ĝ(w, x) − g(w, x)| = Op

 „
ln(N)

N · b2N

«1/2

+ bsN

!
= op(1), (B.1)

sup
w∈W,x∈X

˛̨
˛̨ ∂ĝ
∂w

(w, x) − ∂g

∂w
(w,x)

˛̨
˛̨ = Op

 „
ln(N)

N · b4N

«1/2

+ bsN

!
= op

`
N−η

´
, (B.2)

for η < min(1 − 4δ, δ · s), and

sup
w∈W,x∈X

˛̨
˛̨ ∂

2 ĝ

∂w2
(w,x) − ∂2g

∂w2
(w, x)

˛̨
˛̨ = Op

 „
ln(N)

N · b6N

«1/2

+ bsN

!
= op(1). (B.3)

Now,

β̂pam − βpam =
1

N

NX

i=1

ĝ
“
F̂−1

W

“
F̂X(Xi)

”
, Xi

”
− E

ˆ
g
`
F−1

W (FX(X)) ,X
´˜

=
1

N

NX

i=1

ĝ
“
F̂−1

W

“
F̂X(Xi)

”
,Xi

”
− 1

N

NX

i=1

g
“
F̂−1

W

“
F̂X(Xi)

”
, Xi

”
(B.4)

−
 

1

N

NX

i=1

ĝ
`
F−1

W (FX(Xi)) ,Xi

´
− 1

N

NX

i=1

g
`
F−1

W (FX(Xi)) ,Xi

´
!

(B.5)

+
1

N

NX

i=1

ĝ
`
F−1

W (FX(Xi)) ,Xi

´
− 1

N

NX

i=1

g
`
F−1

W (FX(Xi)) ,Xi

´
(B.6)
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+
1

N

NX

i=1

g
“
F̂−1

W

“
F̂X(Xi)

”
,Xi

”
− 1

N

NX

i=1

g
“
F−1

W

“
F̂X(Xi)

”
,Xi

”
(B.7)

−
 

1

N

NX

i=1

g
“
F̂−1

W (FX(Xi)) ,Xi

”
− 1

N

NX

i=1

g
`
F−1

W (FX(Xi)) ,Xi

´
!

(B.8)

+
1

N

NX

i=1

g
“
F̂−1

W (FX(Xi)) ,Xi

”
− 1

N

NX

i=1

g
`
F−1

W (FX(Xi)) ,Xi

´
(B.9)

+
1

N

NX

i=1

g
“
F−1

W

“
F̂X(Xi)

”
,Xi

”
− 1

N

NX

i=1

g
`
F−1

W (FX(Xi)) ,Xi

´
(B.10)

+
1

N

NX

i=1

g
`
F−1

W (FX(Xi)) ,Xi

´
− E

ˆ
g
`
F−1

W (FX(X)) ,X
´˜
. (B.11)

Since (B.6) is equal to β̂pam,g − gpam, (B.9) equals β̂pam,W − gpam, (B.10) equals β̂pam,X − gpam, and (B.11)

equals gpam − βpam, we only need to show that the sum of (B.4), (B.5), and that of (B.7), (B.8) are op(N
−1/2).

First consider the sum of (B.4) and (B.5) that is equal to

1

N

NX

i=1

ĝ
“
F̂−1

W

“
F̂X(Xi)

”
,Xi

”
− 1

N

NX

i=1

ĝ
`
F−1

W (FX(Xi)) ,Xi

´

−
 

1

N

NX

i=1

g
“
F̂−1

W

“
F̂X(Xi)

”
,Xi

”
− 1

N

NX

i=1

g
`
F−1

W (FX(Xi)) ,Xi

´
!
.

By a second order Taylor series expansion of ĝ and g in F−1
W (FX(Xi)) this is, for some W̃i and W̄i, equal to

1

N

NX

i=1

∂ĝ

∂w

`
F−1

W (FX(Xi)) ,Xi

´ “
F̂−1

W

“
F̂X(Xi)

”
− F−1

W (FX(Xi))
”

+
1

2N

NX

i=1

∂2 ĝ

∂w2

“
W̃i,Xi

” “
F̂−1

W

“
F̂X(Xi)

”
− F−1

W (FX(Xi))
”2

(B.12)

− 1

N

NX

i=1

∂g

∂w

`
F−1

W (FX(Xi)) ,Xi

´ “
F̂−1

W

“
F̂X(Xi)

”
− F−1

W (FX(Xi))
”

− 1

2N

NX

i=1

∂2g

∂w2

`
W̄i,Xi

´
·
“
F̂−1

W

“
F̂X(Xi)

”
− F−1

W (FX(Xi))
”2

. (B.13)

=
1

N

NX

i=1

„
∂ĝ

∂w

`
F−1

W (FX(Xi)) ,Xi

´
− ∂g

∂w

`
F−1

W (FX(Xi)) ,Xi

´«

×
“
F̂−1

W

“
F̂X(Xi)

”
− F−1

W (FX(Xi))
”

+ op

“
N−1/2

”
.

≤ sup
x∈X

˛̨
˛̨ ∂ĝ
∂w

`
F−1

W (FX(x)) , x
´
− ∂g

∂w

`
F−1

W (FX(x)) , x
´˛̨˛̨ (B.14)

× sup
x∈X

˛̨
˛
“
F̂−1

W

“
F̂X(x)

”
− F−1

W (FX(x))
”˛̨
˛ + op

“
N−1/2

”
. (B.15)

We used the fact that (B.13) is op(N
−1/2) because ∂2g(w, x)/∂w2 is bounded and because supx∈X

(F̂−1
W (F̂X(x))−

F−1
W (FX(x)))2 is op(N

−1/2) by Lemma A.7. Also (B.12) is op(N
−1/2) by the same argument because the

bandwidth choice implies supw∈W,x∈X
|∂2 ĝ(w, x)/∂w2 − ∂2g(w, x)/∂w2| = op(1) by (B.3), so that

sup
w∈W,x∈X

˛̨
˛̨∂

2 ĝ(w,x)

∂w2

˛̨
˛̨ ≤ sup

w∈W,x∈X

˛̨
˛̨∂

2g(w, x)

∂w2

˛̨
˛̨+ sup

w∈W,x∈X

˛̨
˛̨∂

2ĝ(w,x)

∂w2
− ∂2g(w, x)

∂w2

˛̨
˛̨ = sup

w∈W,x∈X

˛̨
˛̨∂

2g(w, x)

∂w2

˛̨
˛̨+op(1)

Finally by Lemma A.7

sup
x∈X

˛̨
˛F̂−1

W

“
F̂X(x)

”
− F−1

W (FX(x))
˛̨
˛ = op

“
N−1/2+η

”
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for all η > 0. By the assumption of the lemma

sup
x∈X

˛̨
˛̨ ∂ĝ
∂w

`
F−1

W (FX(x)) , x
´
− ∂g

∂w

`
F−1

W (FX(x)) , x
´˛̨˛̨ = op(N

−η)

for some η > 0. We conclude that the sum of (B.4) and (B.5) is op

“
N−1/2

”
.

Next, consider the sum of (B.7) and (B.8) that is bounded by

sup
x∈X

˛̨
˛
h
g
“
F̂−1

W

“
F̂X(x)

”
, x
”
− g

“
F−1

W

“
F̂X(x)

”
, x
”i

−
h
g
“
F̂−1

W (FX(x)) , x
”
− g

`
F−1

W (FX(x)) , x
´i˛̨
˛

By a second order Taylor series expansion with intermediate values W̃ (x) and W̄ (x) and the triangle inequality
this is bounded by

sup
x∈X

˛̨
˛̨ ∂g
∂w

“
F−1

W

“
F̂X(x)

”
, x
”h
F̂−1

W

“
F̂X(x)

”
− F−1

W

“
F̂X(x)

”i

− ∂g

∂w

`
F−1

W (FX(x)) , x
´ h
F̂−1

W (FX(x)) − F−1
W (FX(x))

i˛̨
˛̨+

sup
x∈X

1

2

˛̨
˛̨ ∂

2g

∂w2

“
W̃ (x), x

”h
F̂−1

W

“
F̂X(x)

”
− F−1

W

“
F̂X(x)

”i2˛̨˛̨+1

2
sup
x∈X

˛̨
˛̨ ∂

2g

∂w2

`
W̄ (x), x

´ h
F̂−1

W (FX(x)) − F−1
W (FX(x))

i2˛̨˛̨

where because the second derivative of g(w, x) is bounded on W × X, by Lemma A.4 the expression on the last
line is op(N

−1/2). The first term is bounded by

sup
x∈X

˛̨
˛̨
»
∂g

∂w

“
F−1

W

“
F̂X(x)

”
, x
”
− ∂g

∂w

`
F−1

W (FX(x)) , x
´– h

F̂−1
W

“
F̂X(x)

”
− F−1

W

“
F̂X(x)

”i˛̨
˛̨

+sup
x∈X

˛̨
˛̨ ∂g
∂w

`
F−1

W (FX(x)) , x
´ h
F̂−1

W

“
F̂X(x)

”
− F−1

W

“
F̂X(x)

”
− F̂−1

W (FX(x)) + F−1
W (FX(x))

i˛̨
˛̨

By a first order Taylor series expansion of ∂g
∂w

“
F−1

W

“
F̂X(x)

”
, x
”

in FX(x) we have, because the second derivative

of g(w, x) is bounded and the density of W is bounded from 0 on its support, that by Lemmas A.4 and A.3, the
expression on the first line is op(N

−1/2). The bound on the expression in the second line is proportional to

sup
x∈X

˛̨
˛F̂−1

W

“
F̂X(x)

”
− F−1

W

“
F̂X(x)

”
− F̂−1

W (FX(x)) + F−1
W (FX(x))

˛̨
˛

This expression is bounded by

sup
x∈X

˛̨
˛̨
˛̨

1

fW

“
F−1

W

“
F̂X(x)

””
h
F̂W

“
F−1

W

“
F̂X(x)

””
− F̂X(x)

i
− 1

fW

`
F−1

W (FX(x))
´
h
F̂W

`
F−1

W (FX(x))
´
− FX(x)

i
˛̨
˛̨
˛̨

+sup
x∈X

˛̨
˛̨
˛̨F̂

−1
W

“
F̂X(x)

”
− F−1

W

“
F̂X(x)

”
− 1

fW

“
F−1

W

“
F̂X(x)

””
h
F̂W

“
F−1

W

“
F̂X(x)

””
− F̂X(x)

i
˛̨
˛̨
˛̨

+sup
x∈X

˛̨
˛̨
˛F̂

−1
W (FX(x)) − F−1

W (FX(x)) − 1

fW

`
F−1

W (FX(x))
´
h
F̂W

`
F−1

W (FX(x))
´
− FX(x)

i˛̨˛̨
˛

By Lemma A.6 the expressions in the last two lines are op(N
−1/2). The expression in the first line is bounded

by

sup
x∈X

˛̨
˛̨
˛̨

2
4 1

fW

“
F−1

W

“
F̂X(x)

”” − 1

fW

`
F−1

W (FX(x))
´

3
5
h
F̂W

“
F−1

W

“
F̂X(x)

””
− F̂X(x)

i
˛̨
˛̨
˛̨

+sup
x∈X

˛̨
˛̨
˛

1

fW

`
F−1

W (FX(x))
´
h
F̂W

“
F−1

W

“
F̂X(x)

””
− F̂X(x) − F̂W

`
F−1

W (FX(x))
´

+ FX(x)
i˛̨˛̨
˛
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The expression in the first line is bounded by

sup
x∈X

˛̨
˛̨
˛̨

1

fW

“
F−1

W

“
F̂X(x)

”” − 1

fW

`
F−1

W (FX(x))
´

˛̨
˛̨
˛̨× sup

x∈X

˛̨
˛F̂W

“
F−1

W

“
F̂X(x)

””
− F̂X(x)

˛̨
˛

By a first order Taylor series expansion of 1

fW (F−1
W (F̂X (x)))

in FX(x), the fact that fW (w) is bounded from 0 and

its derivative bounded on W, and Lemma A.3 the first factor is op(N
−δ) for all δ < 1/2 and by Lemma A.3 the

same is true for the second factor, so that the product is op(N
−1/2). Because fW (w) is bounded from 0 on W,

the expression on the second line has a bound that is proportional to

sup
x∈X

˛̨
˛F̂W

“
F−1

W

“
F̂X(x)

””
− F̂X(x) − F̂W

`
F−1

W (FX(x))
´

+ FX(x)
˛̨
˛

We rewrite this as

sup
x∈X

˛̨
˛F̂W

“
F−1

W

“
F̂X(x)

””
− F̂W

`
F−1

W (FX(x))
´
−
“
FW

“
F−1

W

“
F̂X(x)

”
− FW

`
F−1

W (FX(x))
´””˛̨

˛ ≤

sup
x∈X

˛̨
˛F̂W

“
F−1

W

“
F̂X(x)

””
− F̂W

`
F−1

W (FX(x))
´
−
“
FW

“
F−1

W

“
F̂X(x)

”
− FW

`
F−1

W (FX(x))
´””˛̨

˛×

1
supx∈X|F−1

W (F̂X (x))−F−1
W (FX (x))|≤N−δ + 4 · 1

supx∈X|F−1
W (F̂X (x))−F−1

W (FX (x))|>N−δ

By Lemma A.7 and the mean value theorem, the final term is op(1) if 1/3 < δ < 1/2. By

F−1
W

“
F̂X(x)

”
= F−1

W (FX(x)) +
h
F−1

W

“
F̂X(x)

”
− F−1

W (FX(x))
i

and defining w = F−1
W (FX(x)) and w̃ = F−1

W

“
F̂X(x)

”
− F−1

W (FX(x)) we have that the first term on the right

hand side is bounded by

sup
w∈W,|w̃|≤N−δ ,w̃+w∈W

˛̨
˛F̂W (w + w̃) − F̂W (w) − (FW (w + w̃) − FW (w))

˛̨
˛ = op(N

−2/3)

by Lemma A.5 with 1/3 < δ < 1/2, η = 2/3, so that we finally conclude that the sum of (B.7) and (B.8) is
op(N

−1/2). �

Proof of Lemma A.16: The proof involves checking the conditions for Theorem A.2 from IR (given in Appendix
A in the current paper), and simplifying the conclusions from that Theorem to the case at hand.
Define

h1(w,x) = fW X(w, x), and h2(w, x) = fW X(w, x) · g(w, x),

n(h) =
h2

h1
,

so that

ω(x) = 1,

∂n

∂h1
(h) = − h2

(h1)2
= − g(

`
F−1

W (FX(x)) , x
´

fW X(
`
F−1

W (FX(x)) , x
´ ,

∂n

∂h2
(h) =

1

h1
=

1

fW X(
`
F−1

W (FX(x)) , x
´ ,

t(x) = F−1
W (FX(x)) ,

∂

∂x
t(x) =

fX(x)

fW (F−1
W (FX(x)))

,

α1(x) = −g(
`
F−1

W (FX(x)) , x
´
, α2(x) = 1.

With Ỹi = (Ỹi1 Ỹi2)
′ = (1 Yi)

′, we have

α(x)′ỹ = y − g(
`
F−1

W (FX(x)) , x
´
.

Applying the results in Theorem A.2, we have

Z

U2

K

„
Wi − t(Xi)

bN
+
∂t

∂x
(Xi) · u2, u2

«
du2 =

Z

u

K

„
u,
Wi − F−1

W (FX(Xi))

bN
+

fX(Xi)

fW (F−1
W (FX(Xi)))

· u
«
du,
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Substituting this into the result from Theorem A.2 we get

√
N
“
θ̂pam

g − gpam
”

=
1√
NbN

NX

i=1

 
`
Yi − g

`
F−1

W (FX(Xi)) , Xi

´´
·
Z

u

K

 
Wi − F−1

W (FX(Xi))

bN
+

fX(Xi)

fW

`
F−1

W (FX(Xi))
´ · u, u

!
du

−E

"
`
Y − g

`
F−1

W (FX(X)) ,X
´´

·
Z

u

K

 
W − F−1

W (FX(X))

bN
+

fX(X)

fW

`
F−1

W (FX(X))
´ · u, u

!
du

#!

+op (1) .

Adding and subtracting g(Wi,Xi) in both terms, this is equal to

1√
NbN

NX

i=1

(
(Yi − g(Wi,Xi)) ·

Z

u

K

 
Wi − F−1

W (FX(Xi))

bN
+

fX(Xi)

fW

`
F−1

W (FX(Xi))
´ · u, u

!
du

−E

"
(Y − g(W,X)) ·

Z

u

K

 
W − F−1

W (FX(X))

bN
+

fX(X)

fW

`
F−1

W (FX(X))
´ · u, u

!
du

#)

+
1√
NbN

NX

i=1

(
`
g(Wi,Xi) − g

`
F−1

W (FX(Xi)) ,Xi

´´
·
Z

u

K

 
Wi − F−1

W (FX(Xi))

bN
+

fX(Xi)

fW

`
F−1

W (FX(Xi))
´ · u, u

!
du

−E

"
`
g(W,X) − g

`
F−1

W (FX(X)) ,X
´´

·
Z

u

K

 
W − F−1

W (FX(X))

bN
+

fX(X)

fW

`
F−1

W (FX(X))
´ · u, u

!
du

#)

+op (1) .

=
1√
NbN

NX

i=1

(Yi − g(Wi,Xi)) ·
Z

u2

K

 
Wi − F−1

W (FX(Xi))

bN
+

fX(Xi)

fW

`
F−1

W (FX(Xi))
´ · u2, u2

!
du2

+
1√
NbN

NX

i=1

(
`
g(Wi,Xi) − g(F−1

W (FX(Xi)),Xi)
´
·
Z

u2

K

 
Wi − F−1

W (FX(Xi))

bN
+

fX(Xi)

fW

`
F−1

W (FX(Xi))
´ · u2, u2

!
du2

− E

"
`
g(W,X) − g(F−1

W (FX(X)),X)
´
·
Z

u2

K

 
Wi − F−1

W (FX(X))

bN
+

fX(X)

fW

`
F−1

W (FX(X))
´ · u2, u2

!
du2

#)

+op (1) .

Having checked the conditions for Theorem A.2, the second part of the result in the Lemma follows directly from
the second part of the Theorem. �

Proof of Lemma A.17: We prove the result in three parts. First, we show

1

N

NX

i=1

g
“
F̂−1

W (FX (Xi)) , Xi

”
− 1

N

NX

i=1

g
`
F−1

W (FX (Xi)) ,Xi

´

=
1

N

NX

i=1

gW

`
F−1

W (FX (Xi)) ,Xi

´
·
“
F̂−1

W (FX (Xi)) − F−1
W (FX (Xi))

”
+ op

“
N−1/2

”
(B.16)

Second, we will prove that

1

N

NX

i=1

gW

`
F−1

W (FX (Xi)) ,Xi

´
·
“
F̂−1

W (FX (Xi)) − F−1
W (FX (Xi))

”

=
1

N

NX

i=1

gW

`
F−1

W (FX (Xi)) ,Xi

´

fW

`
F−1

W (FX (Xi))
´ ·

“
F̂W

`
F−1

W (FX (Xi))
´
− FX (Xi)

”
+ op

“
N−1/2

”
. (B.17)

Third, we will show that

1

N

NX

i=1

gW

`
F−1

W (FX (Xi)) ,Xi

´

fW

`
F−1

W (FX (Xi))
´ ·

“
F̂W

`
F−1

W (FX (Xi))
´
− FX (Xi)

”
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=
1

N

NX

i=1

ψpam
W (Wi) + op

“
N−1/2

”
. (B.18)

Together these three claims, (B.16)-(B.18), imply the result in the Lemma.
First we prove (B.16).

˛̨
˛̨
˛

1

N

NX

i=1

g
“
F̂−1

W (FX (Xi)) ,Xi

”
− 1

N

NX

i=1

g
`
F−1

W (FX (Xi)) ,Xi

´

− 1

N

NX

i=1

gW

`
F−1

W (FX (Xi)) ,Xi

´
·
“
F̂−1

W (FX (Xi)) − F−1
W (FX (Xi))

”˛̨˛̨
˛

≤ sup
x∈X

˛̨
˛g
“
F̂−1

W (FX (x)) , x
”
− g

`
F−1

W (FX (x)) , x
´

−gW

`
F−1

W (FX (x)) , x
´
·
“
F̂−1

W (FX (x)) − F−1
W (FX (x))

”˛̨
˛

≤ 1

2
· sup

w∈W,x∈X

˛̨
˛̨ ∂

2

∂w2
g(w, x)

˛̨
˛̨ · sup

q∈[0,1]

˛̨
˛F̂−1

W (q)) − F−1
W (q)

˛̨
˛
2

.

By Lemma A.3 it follows that for all δ < 1/2, supq∈[0,1] N
δ ·
˛̨
˛F̂−1

W (q) − F−1
W (q)

˛̨
˛ = op(1). In combination with

the fact that ∂2g
∂w2 (w,x) is bounded this implies that

sup
w∈W,x∈X

˛̨
˛̨ ∂

2g

∂w2
(w,x)

˛̨
˛̨ · sup

q∈[0,1]

˛̨
˛F̂−1

W (q) − F−1
W (q)

˛̨
˛
2

= op

“
N−1/2

”
.

This finishes the proof of (B.16).
Next, we prove (B.17).

˛̨
˛̨
˛

1

N

NX

i=1

gW

`
F−1

W (FX (Xi)) ,Xi

´
·
“
F̂−1

W (FX (Xi)) − F−1
W (FX (Xi))

”

+
1

N

NX

i=1

gW

`
F−1

W (FX (Xi)) ,Xi

´

fW

`
F−1

W (FX (Xi))
´ ·

“
F̂W

`
F−1

W (FX (Xi))
´
− FX (Xi)

”˛̨˛̨
˛

≤ sup
w∈W,x∈X,q∈[0,1]

˛̨
˛̨
˛gW (w, x) ·

“
F̂−1

W (q) − F−1
W (q)

”
+

gW (w, x)

fW

`
F−1

W (q)
´ ·
“
F̂W

`
F−1

W (q)
´
− q
”˛̨˛̨
˛

≤ sup
w∈W,x∈X

|gW (w, x)| · sup
q∈[0,1]

˛̨
˛̨
˛
“
F̂−1

W (q) − F−1
W (q)

”
+

1

fW

`
F−1

W (q)
´ ·
“
F̂W

`
F−1

W (q)
´
− q
”˛̨˛̨
˛ ,

so that Lemma A.6 implies that (B.17) holds.
Finally, let us prove (B.18).

1

N

NX

i=1

gW

`
F−1

W (FX (Xi)) ,Xi

´

fW

`
F−1

W (FX (Xi))
´ ·

“
F̂W

`
F−1

W (FX (Xi))
´
− FX (Xi)

”

=
1

N

NX

i=1

gW

`
F−1

W (FX (Xi)) ,Xi

´

fW

`
F−1

W (FX (Xi))
´ ·

 
1

N

NX

j=1

1
Wj≤F−1

W (FX (Xi))
− FX (Xi)

!

=
1

N2

NX

i=1

NX

j=1

gW

`
F−1

W (FX (Xi)) ,Xi

´

fW

`
F−1

W (FX (Xi))
´ ·

“
1FW (Wj)≤FX (Xi)

− FX (Xi)
”
.

This is a two-sample V-statistic. The projection is the sample average of the sum of the expectation over Wj if
we fix Xi = x (this expectation is zero), and the expectation over Xi if we fix Wj = w, which gives ψpam

W (w).
Thus,

1

N

NX

i=1

gW

`
F−1

W (FX (Xi)) ,Xi

´

fW

`
F−1

W (FX (Xi))
´ ·

“
F̂W

`
F−1

W (FX (Xi))
´
− FX (Xi)

”
=

1

N

NX

i=1

ψpam
W (Wi) + op

“
N−1/2

”
,
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which is the claim in (B.18). �

Proof of Lemma A.18: We prove this result in two steps. First we prove
˛̨
˛̨
˛

1

N

NX

i=1

g
“
F−1

w

“
F̂X (Xi)

”
,Xi

”
− 1

N

NX

i=1

g
`
F−1

w (FX (Xi)) ,Xi

´

−gW

`
F−1

W (FX (Xi)) ,Xi

´

fw

`
F−1

W (FX (Xi))
´ ·

“
F̂X(Xi) − FX(Xi)

”˛̨˛̨
˛ = op

“
N−1/2

”
. (B.19)

Second, we prove

1

N

NX

i=1

gW

`
F−1

W (FX (Xi)) ,Xi

´

fW

`
F−1

W (FX (Xi))
´ ·

“
F̂X(Xi) − FX(Xi)

”
=

1

N

NX

i=1

ψpam
X (Xi) + op

“
N−1/2

”
. (B.20)

Together these two results imply the claim in Lemma A.18.
First we prove (B.19). By a second order Taylor series expansion, using the fact that g(w, x) is at least twice
continuously differentiable,

˛̨
˛̨
˛

1

N

NX

i=1

g
“
F−1

w

“
F̂X (Xi)

”
,Xi

”
− 1

N

NX

i=1

g
`
F−1

w (FX (Xi)) ,Xi

´

− gW

`
F−1

W (FX (Xi)) ,Xi

´

fW

`
F−1

W (FX (Xi))
´ ·

“
F̂X(Xi) − FX(Xi)

”˛̨˛̨
˛

≤ sup
x∈X

˛̨
˛̨
˛g
“
F−1

W

“
F̂X (x)

”
, x
”
− g

`
F−1

W (FX (x)) , x
´
− gW

`
F−1

W (FX (x)) , x
´

fW

`
F−1

W (FX (x))
´ ·

“
F̂X(x) − FX(x)

”˛̨˛̨
˛

≤ 1

2
sup

w∈W,x∈X

˛̨
˛̨
˛

∂2g
∂w2 (w,x)

fW (w)
− gW (w,x) · ∂f

∂w
(w)

(fW (w))2

˛̨
˛̨
˛ sup

x∈X

˛̨
˛F̂X(x) − FX(x)

˛̨
˛
2

= op

“
N−1/2

”
,

by Lemma A.3. This finishes the proof of (B.19).
Second we prove (B.20).

1

N

NX

i=1

gW

`
F−1

W (FX (Xi)) ,Xi

´

fW

`
F−1

W (FX (Xi))
´ ·

“
F̂X(Xi) − FX(Xi)

”

=
1

N2

NX

i=1

NX

j=1

gW

`
F−1

W (FX (Xi)) ,Xi

´

fW

`
F−1

W (FX (Xi))
´ ·

`
1Xj≤Xi − FX(Xi)

´

This is a one-sample V-statistic. To obtain the projection we first fix Xi = x and take the expectation over Xj .
This gives 0 for all x. Second, we fix Xj = x and take the expectation over Xi. This gives ψpam

X (x) defined
above. This finishes the proof of (B.20), and thus completes the proof of Lemma A.18. �

Proof of Lemma A.19: Adding and subtracting terms we have

β̂lc − βlc

=
1

N

NX

i=1

∂ĝ

∂w
(Wi,Xi) · d(Wi) · (Xi − m̂(Wi)) − 1

N

NX

i=1

∂g

∂w
(Wi,Xi) · d(Wi) · (Xi − m̂(Wi)) (B.21)

−
 

1

N

NX

i=1

∂ĝ

∂w
(Wi,Xi) · d(Wi) · (Xi −m(Wi)) − 1

N

NX

i=1

∂g

∂w
(Wi,Xi) · d(Wi) · (Xi −m(Wi))

!
(B.22)

+
1

N

NX

i=1

∂ĝ

∂w
(Wi,Xi) · d(Wi) · (Xi −m(Wi)) − 1

N

NX

i=1

∂g

∂w
(Wi,Xi) · d(Wi) · (Xi −m(Wi)) (B.23)

+
1

N

NX

i=1

∂g

∂w
(Wi,Xi) · d(Wi) · (Xi − m̂(Wi)) − 1

N

NX

i=1

∂g

∂w
(Wi,Xi) · d(Wi) · (Xi −m(Wi)) (B.24)

+
1

N

NX

i=1

∂g

∂w
(Wi,Xi) · d(Wi) · (Xi −m(Wi)) − βlc. (B.25)
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Because (B.23) is equal to βlc
g − glc, (B.24) is equal to βlc

m − glc, and (B.25) is equal to glc − βlc, it follows that it

is sufficient for the proof of Lemma A.19 to show that the sum of (B.21) and (B.22) is op(N
−1/2). We can write

the sum of (B.21) and (B.22) as

1

N

NX

i=1

∂ĝ

∂w
(Wi,Xi) · d(Wi) · (Xi − m̂(Wi)) − 1

N

NX

i=1

∂g

∂w
(Wi,Xi) · d(Wi) · (Xi − m̂(Wi))

−
 

1

N

NX

i=1

∂ĝ

∂w
(Wi,Xi) · d(Wi) · (Xi −m(Wi)) − 1

N

NX

i=1

∂g

∂w
(Wi,Xi) · d(Wi) · (Xi −m(Wi))

!

=
1

N

NX

i=1

d(Wi) ·
„
∂ĝ

∂w
(Wi,Xi) − ∂g

∂w
(Wi,Xi)

«
· (m(Wi) − m̂(Wi))

≤ sup
w∈W

|d(w)| · sup
w∈W,x∈X

˛̨
˛̨ ∂ĝ
∂w

(w, x) − ∂g

∂w
(x, x)

˛̨
˛̨ · sup

w∈W

|m̂(w) −m(w)| = C · op

`
N−η´ · op

`
N−η´ ,

for some η > 1/4, and so this expression is op(N
−1/2). �

Proof of Lemma A.20: The proof consists of checking the conditions for Theorem A.1, and specializing the
result in Theorem A.1 to the case in the Lemma.
We apply Theorem A.1 with z = (z1 z2)

′ = (w x)′, Zi = (Wi Xi)
′, ω(z) = d(z1) · (z2−m(z1)) = d(w) · (x−m(w))

(so that ω(z) goes smoothly to zero on the boundary of Z), L = 2, and λ =

„
1
0

«
. Then {κ : κ ≤ λ} =

{κ0, κ1} =

„
0
0

«
,

„
1
0

«ff
, and

h[λ](w, x) =

0
BBB@

h
(κ0)
1 (w, x)

h
(κ0)
2 (w, x)

h
(κ1)
1 (w, x)

h
(κ1)
2 (w, x)

1
CCCA ,

with

h
(κ0)
1 (w,x) = fW X(w, x)

h
(κ0)
2 (w,x) = fW X(w, x) · g(w, x)

h
(κ1)
1 (w,x) =

∂

∂w
fW X(w, x)

h
(κ1)
2 (w,x) = g(w, x) · ∂

∂w
fW X(w,x) + fW X(w, , x) · ∂

∂w
g(w, x).

The functional of interest is

n
“
h[λ]
”

=
∂

∂w
g(·) =

h
(κ1)
2

h
(κ0)
1

− h
(κ0)
2 · h(κ1)

1“
h

(κ0)
1

”2

The derivatives of this functional are

∂

∂h
(κ0)
1

n
“
h[λ]

”
= − h

(κ1)
2“

h
(κ0)
1

”2
+ 2

h
(κ0)
2 · h(κ1)

1“
h

(κ0)
1

”3

= −fW X(w,x) · ∂
∂w
g(w, x) + g(w, x) · ∂

∂w
fW X(w, x)

(fW X(w,x))2
+ 2

g(w, x) · fW X(w,x) · ∂
∂w
fW X(w,x)

(fW X(w,x))3

= −
∂

∂w
g(w, x)

fW X(w,x)
+
g(w, x) · ∂

∂w
fW X(w,x)

(fW X(w, x))2

∂

∂h
(κ0)
2

n
“
h[λ]

”
= − h

(κ1)
1“

h
(κ0)
1

”2 = −
∂

∂w fW X(w, x)

(fW X(w, x))2
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∂

∂h
(κ1)
1

n
“
h[λ]

”
= − h

(κ0)
2“

h
(κ0)
1

”2 = −g(w, x) · fW X(w, x)

(fW X(w, x))2
= − g(w, x)

fW X(w,x)

∂

∂h
(κ1)
2

n
“
h[λ]

”
=

1

h
(κ0)
1

=
1

fW X(w,x)
.

ακ0,1(w,x) = d(w) · (x−m(w)) · fW (w, x) ·
 
−

∂
∂w
g(w, x)

fW X(w,x)
+
g(w, x) · ∂

∂w
fW X(w, x)

(fW X(w, x))2

!

= d(w) · (x−m(w)) ·
 
− ∂

∂w
g(w, x) +

g(w, x) · ∂
∂w fW X(w, x)

fW X(w, x)

!

ακ0,2(w,x) = d(w) · (x−m(w)) · fW X(w, x) ·
 
−

∂
∂w fW X(w, x)

(fW X(w, x))2

!
= −d(w) · (x−m(w)) ·

∂
∂wfW X(w,x)

fW X(w, x)

ακ1,1(w,x) = d(w) · (x−m(w)) · fW X(w, x) ·
„
− g(w, x)

fW X(w, x)

«
= −d(w) · (x−m(w)) · g(w, x)

ακ1,2(w,x) = d(w) · (x−m(w)) · fW X(w, x) · 1

fW X(w, x)
= d(w) · (x−m(w))

(−1)|κ0 |α
(κ0)
κ0,1(w,x) = ακ0,1(w, x) = d(w) · (x −m(w)) ·

 
− ∂

∂w
g(w, x) +

g(w, x) · ∂
∂w
fW X(w,x)

fW X(w,x)

!

(−1)|κ0 |α
(κ0)
κ0,2(w,x) = ακ0,2(w, x) = −d(w) · (x −m(w)) ·

∂
∂w
fW X(w,x)

fW X(w,x)

(−1)|κ1 |α
(κ1)
κ1,1(w,x) =

∂

∂w

„
d(w) · (x−m(w)) · g(w, x)

«

= d(w) · (x−m(w)) · ∂

∂w
g(w, x) + g(w, x) · (x−m(w)) · ∂

∂w
d(w) − g(w, x) · d(w) · ∂

∂w
m(w)

(−1)|κ1 |α
(κ1)
κ1,2(w,x) = − ∂

∂w
(d(w) · (x−m(w))) = −(x −m(w)) · ∂

∂w
d(w) + d(w) · ∂

∂w
m(w)

Then

X

κ≤λ

(−1)|κ|
2X

m=1

α(κ)
κm(w, x)ỹim

= (−1)|κ0|α
(κ0)
κ0,1(w,x) + Yi · (−1)|κ0 |α

(κ0)
κ0,2(w,x) + (−1)|κ1 |α

(κ1)
κ1,1(w,x) + Yi · (−1)|κ1 |α

(κ1)
κ1,2(w,x)

= d(w) · (x−m(w)) ·
 
− ∂

∂w
g(w, x) +

g(w, x) · ∂
∂w
fW X(w, x)

fW X(w, x)

!

−Yi · d(w) · (x −m(w)) ·
∂

∂w
fW X(w, x)

fW X(w,x)

+d(w) · (x−m(w)) · ∂

∂w
g(w, x) + g(w, x) · (x−m(w)) · ∂

∂w
d(w)− g(w, x) · d(w) · ∂

∂w
m(w)
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+Yi ·
„
−(x−m(w)) · ∂

∂w
d(w) + d(w) · ∂

∂w
m(w)

«

= − (Y − g(W,X))·
 

∂
∂w
fW X(W,X)

fW X(W,X)
· d(w) · (X −m(W )) + (X −m(W )) · ∂

∂w
d(W ) − d(W ) · ∂

∂w
m(W )

!
.

Since

E

"
− (y − g(w, x)) ·

 
∂

∂w fW X(w, x)

fW X(w,x)
· d(w) · (x−m(w)) + (x−m(w)) · ∂

∂w
d(w) − d(w) · ∂

∂w
m(w)

!#
= 0,

it follows that

1√
N

NX

i=1

0
@X

κ≤λ

(−1)|κ|
2X

m=1

E

h
α(κ)

κm(Wi,Xi)Ỹim

i
1
A = 0,

and therefore

√
N(β̂lc − βlc) =

1√
N

NX

i=1

0
@X

κ≤λ

(−1)|κ|
2X

m=1

α(κ)
κm(Wi,Xi)Ỹim

1
A =

1√
N

NX

i=1

ψlc(Yi,Wi,Xi).

where

ψlc(y,w, x) = − (y − g(w, x))·
 

∂
∂w fW X(w,x)

fW X(w, x)
· d(w) · (x−m(w)) + (x−m(w)) · ∂

∂w
d(w)− d(w) · ∂

∂w
m(w)

!
.

�.
Proof of Lemma A.21: We start with the inequality

sup
w∈W

˛̨
˛̨
˛

1

bfW (w)

“
bfW (w) − fW (w)

”2

˛̨
˛̨
˛ ≤

„
sup
w∈W

˛̨
˛ bfW (w) − fW (w)

˛̨
˛
«2

inf
w∈W

˛̨
˛ bfW (w)

˛̨
˛

.

Under the stated restriction on δ the bandwidth sequence satisfies

N1/4

p
ln(N)

b
1/2
N → ∞, N1/4bsN → 0,

which, by Lemma A.11, implies

„
sup
w∈W

˛̨
˛ bfW (w) − fW (w)

˛̨
˛
«2

= op

“
N−1/2

”
.

Now observe that the the denominator is bounded away from zero since, by the TI, we have
˛̨
˛ bfW (w)

˛̨
˛+|fW (w)| ≥

˛̨
˛ bfW (w) − fW (w)

˛̨
˛ and therefore inf

w∈W

˛̨
˛ bfW (w)

˛̨
˛ ≥ sup

w∈W

˛̨
˛ bfW (w) − fW (w)

˛̨
˛ − inf

w∈W
|fW (w)| ≥ inf

w∈W
|fW (w)| −

sup
w∈W

˛̨
˛ bfW (w) − fW (w)

˛̨
˛ . By Assumption 3.1 inf

w∈W
|fW (w)| is bounded away from zero, with the result then

following. �

Proof of Lemma A.22:We start with the inequality

sup
w∈W

˛̨
˛̨
˛

1

bh2 (w)

“
bh1 (w) − h1 (w)

”“
bh2 (w) − h2 (w)

”˛̨˛̨
˛ ≤

sup
w∈W

˛̨
˛bh1 (w) − h1 (w)

˛̨
˛ × sup

w∈W

˛̨
˛bh2 (w) − h2 (w)

˛̨
˛

inf
w∈W

˛̨
˛bh2 (Wi)

˛̨
˛

.

The remainder of the proof is along the lines of that to Lemma A.21. �
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Proof of Lemma A.23: Let h (w) = (h1 (w) , h2 (w))′ = (m(w) · fW (w) , fW (w))′, then

β̂lc,m =
1

N

NX

i=1

gW (Wi,Xi) · d(Wi) ·
 
Xi −

bh1,nip(Wi)

bh2,nip (Wi)

!

=
1

N

NX

i=1

gW (Wi,Xi) · d(Wi) · (Xi −m(Wi)) (B.26)

− 1

N

NX

i=1

gW (Wi,Xi) · d(Wi) ·
 
bh1,nip(Wi)

bh2,nip (Wi)
− h1(Wi)

h2 (Wi)

!
. (B.27)

Expanding the ratio4 in (B.27) yields

1

N

NX

i=1

gW (Wi,Xi) · d(Wi) ·
 
h1(Wi)

h2 (Wi)
−
bh1,nip(Wi)

bh2,nip (Wi)

!

= − 1

N

NX

i=1

gW (Wi,Xi) · d(Wi) · 1

fW (Wi)

“
bh1,nip(Wi) −m(Wi)bh2,nip (Wi)

”
(B.28)

− 1

N

NX

i=1

gW (Wi,Xi) · d(Wi) · h1 (Wi)

h2 (Wi)
2 bh2,nip (Wi)

“
bh2,nip (Wi) − h2 (Wi)

”2

(B.29)

− 1

N

NX

i=1

gW (Wi,Xi) · d(Wi) · h1 (Wi)

h2 (Wi)bh2,nip (Wi)

“
bh1,nip (Wi) − h1 (Wi)

”“
bh2,nip (Wi) − h2 (Wi)

”
.

(B.30)

First consider (B.29). By Lemma A.12,
˛̨
˛̨
˛
1

N

NX

i=1

gW (Wi,Xi) · d(Wi) · h1 (Wi)

h2 (Wi)
2 bh2,nip (Wi)

“
bh2,nip (Wi) − h2 (Wi)

”2

˛̨
˛̨
˛

≤ sup
w∈W,x∈X

˛̨
˛̨ 1

fW (w)
gW (w, x) · d(w) ·m(w)

˛̨
˛̨ sup

w∈W

˛̨
˛̨
˛

1

bfW (w)

“
bfW (w) − fW (w)

”2

˛̨
˛̨
˛

= op

“
N−1/2

”

if the NIP estimator is uniformly op(N
−1/4) which holds if 1

4s < δ < 1
8 . An analogous application of Lemma

A.12 can be used to show that (B.30) is op

“
N−1/2

”
under the same condition.

Now consider (B.28) that we express as the sum of a variance and a bias term

− 1

N

NX

i=1

gW (Wi,Xi)·d(Wi)· 1

fW (Wi)

“
bh1,nip(Wi) − E

h
bh1,nip(Wi)

i
−m(Wi)

“
bh2,nip (Wi) − E

h
bh2,nip (Wi)

i””
+

1

N

NX

i=1

gW (Wi,Xi) · d(Wi) · 1

fW (Wi)

“
h1(Wi) − E

h
bh1,nip(Wi)

i
−m(Wi)

“
h2 (Wi) − E

h
bh2,nip (Wi)

i””

The bias term is Op(N
−1/2) if δ > 1

2s . After substitution of the NIP estimator the variance term is

− 1

N

NX

i=1

gW (Wi,Xi) · d(Wi) · 1

fW (Wi)

s−1X

j=0

X

|µ|=j

1

µ!

“
ĥ

(µ)
1,NW − E

h
ĥ

(µ)
1,NW (rb(Wi))

i
−m(Wi)

“
ĥ

(µ)
2,NW (rb(Wi)) − E

h
ĥ

(µ)
2,NW (rb(Wi))

i”
(rb(Wi))(Wi − rb(Wi))

µ
”

4The ratio expansion is of the form

ba
bb
− a

b
=

1

b

“
ba− a

b
bb
”

+
a

b2bb
(bb− b)2 − a

bbb
(ba− a)(bb − b).
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We consider separately

− 1

N

NX

i=1

gW (Wi, Xi)·d(Wi)· 1

fW (Wi)

s−1X

j=0

X

|µ|=j

1

µ!

“
ĥ

(µ)
1,NW (rb(Wi)) − E

h
ĥ

(µ)
1,NW (rb(Wi))

i”
(Wi−rb(Wi))

µ (B.31)

and

1

N

NX

i=1

gW (Wi,Xi)·d(Wi)· m(Wi)

fW (Wi)

s−1X

j=0

X

|µ|=j

1

µ!

“
ĥ

(µ)
2,NW (rb(Wi)) − E

h
ĥ

(µ)
2,NW (rb(Wi))

i”
(Wi−rb(Wi))

µ (B.32)

We show that (B.31) is asymptotically equivalent to an average. The same method shows that (B.32) is also
asymptotically equivalent to an average, but we omit the details. The expression (B.31) is a linear combination
of terms

Dµ = − 1

N

NX

i=1

gW (Wi,Xi) · d(Wi) · 1

fW (Wi)

“
ĥ

(µ)
1,NW (rb(Wi)) − E

h
ĥ

(µ)
1,NW (rb(Wi))

i”
(Wi − rb(Wi))

µ =

− 1

N

NX

i=1

NX

j=1

aN,µ(Wi,Xi,Xj ,Wj)

with

aN,µ(Wi,Xi,Xj ,Wj) =
gW (Wi,Xi) d(Wi)

fW (Wi)

 
1

b
1+|µ|
N

XjK
(µ)

„
Wj − rbN (Wi)

bN

«
−

E

"
1

b
1+|µ|
N

XK(µ)

„
W − rbN (Wi)

bN

«#!
(Wi − rbN (Wi))

µ

Therefore Dµ is a V-statistic with a kernel that depends on N so that the usual projection theorem does not apply
directly. Instead we derive the projection directly. First we bound the second moments of aN,µ(Wi,Xi,Xj ,Wj).
For j 6= i we have

E
ˆ
aN,µ(Wi,Xi, Xj ,Wj)

2˜ ≤ C
supw∈W

|w − rb(w)|2|µ|

b
2|µ|+2
N

E

"
X2

jK
(µ)

„
Wj − rbN (Wi)

bN

«2
#
≤

C

b2N
E

"
K(µ)

„
Wj − rbN (Wi)

bN

«2
#

because the conditional variance of X given W is bounded. Because given Wi = w̃

E

"
K(µ)

„
Wj − rbN (Wi)

bN

«2

|Wi = w̃

#
=

Z

W

K(µ)

„
w − rbN (w̃)

bN

«2

fW (w)dw

we have by a change of variables to t = (w− rbN (w̃))/bN with Jacobian bN and the boundedness of K(µ)(t) and
fW (w) that this integral is bounded by CbN and we conclude

E
ˆ
aN,µ(Wi,Xi, Xj ,Wj)

2˜ = O(b−1
N )

For j = i we have

E
ˆ
aN,µ(Wi,Xi,Xi, Wi)

2˜ =
1

b
2+2|µ|
N

E

"
gW (Wi,Xi)

2 d(Wi)
2

fW (Wi)
2

X2
i K

(µ)

„
Wi − rbN (Wi)

bN

«2

(Wi − rbN (Wi))
2µ

#
+

1

b
2+2|µ|
N

E

"
gW (Wi, Xi)

2 d(Wi)
2

fW (Wi)
2 E

»
XK(µ)

„
W − rbN (Wi)

bN

«–2
(Wi − rbN (Wi))

2µ

#
−

2

b
2+2|µ|
N

E

»
gW (Wi,Xi)

2 d(Wi)
2

fW (Wi)
2 XiK

(µ)

„
Wi − rbN (Wi)

bN

«
E

»
XK(µ)

„
W − rbN (Wi)

bN

«–
(Wi − rbN (Wi))

2µ

–
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The first term on the right hand side is bounded by

C

b2N
E

"
K(µ)

„
Wi − rbN (Wi)

bN

«2
#

=
C

b2N

Z

W
I
bN

K(µ)

„
w − rbN (w)

bN

«2

fW (w)dw+

C

b2N

Z

W\W
I
bN

K(µ)

„
w − rbN (w)

bN

«2

fW (w)dw

with W
I
bN

the internal set of the support. Because the argument of K(µ) is 0 on the interior set, the first integral

is obviously O(b−2
N ). The second integral is

C

b2N

Z wl+bN

wl

K(µ)

„
w − wl

bN
− 1

«2

fW (w)dw+
C

b2N

Z wu

wu−bN

K(µ)

„
w −wu

bN
+ 1

«2

fW (w)dw

Because the kernel has support [−1, 1] and its derivatives op to order µ are bounded so that

K(µ)

„
w −wl

bN
− 1

«2

≤ C1wl≤w≤wl+2bN
K(µ)

„
w −wu

bN
+ 1

«2

≤ C1wu−2bN≤w≤wu

so that the second integral by the boundedness of fW is O(b−1
N ). The second term on the right hand side is

bounded by

C

b2N

Z

W

„Z

W

K(µ)

„
w − rbN (w̃)

bN

«
fW (w)dw

«2

fW (w̃)dw̃ ≤ C

b2N

Z

W

Z

W

K(µ)

„
w − rbN (w̃)

bN

«2

fW (w)fW(w̃)dwdw̃

This integral is O(b−1
N ) by a change of variables with Jacobian bN in the inner integral. The third term on the

right hand side is bounded by

C

b2N

˛̨
˛̨
Z

W

K(µ)

„
w̃ − rbN (w̃)

bN

«Z

W

K(µ)

„
w − rbN (w̃)

bN

«
fW (w)dwfW (w̃)dw̃

˛̨
˛̨ = O(b−1

N )

by a change of variables in the inner integral. We conclude

E
ˆ
aN,µ(Wi,Xi, Xi,Wi)

2˜ = O(b−2
N )

The next step is to express Dµ as an average. Define

cN,µ(Xj ,Wj) =
1

b
1+|µ|
N

·

Z

X

Z

W

gW (w, x) d(x)

fW (w)

„
XjK

(µ)

„
Wj − rbN (w)

bN

«
− E

»
XK(µ)

„
W − rbN (w)

bN

«–«
(w−rbNw))µfW X(w, x)dwdx

and

Eµ = − 1

N

NX

j=1

cN,µ(Xj ,Wj)

Then

Dµ −Eµ =
N(N − 1)

N2
(Dµ,1 −Eµ) +

„
N(N − 1)

N2
− 1

«
Eµ +Dµ,2

with

Dµ,1 = − 1

N(N − 1)

NX

i6=j=1

aN,µ(Wi,Xi,Xj ,Wj) Dµ,2 = − 1

N2

NX

i=1

aN,µ(Wi,Xi,Xi,Wi)

Now

Dµ,1 −Eµ = − 1

N(N − 1)

NX

i6=j=1

(aN,µ(Wi,Xi,Xj ,Wj) − cN,µ(Xj ,Wj))
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with

E[(aN,µ(Wi,Xi,Xj ,Wj) − cN,µ(Xj ,Wj))(aN,µ(Wi′ ,Xi′ ,Xj′ ,Wj′ ) − cN,µ(Xj′ ,Wj′ ))] = 0

if (i) i 6= i′, j 6= j′, (ii) i = i′, j 6= j′ (iii) i 6= i′, j = j′, because

E[aN,µ(Wi,Xi,Xj ,Wj)|Wi,Xi] = 0

E[aN,µ(Wi,Xi,Xj ,Wj)] = 0

E[aN,µ(Wi,Xi,Xj ,Wj)|Xj ,Wj ] = cN,µ(Wj ,Xj)

E[cN,µ(Wj ,Xj)] = 0

Therefore

E[(Dµ −Eµ)2] =

1

N2(N − 1)2

X

i6=j

X

i′ 6=j′

E[(aN,µ(Wi,Xi, Xj ,Wj)− cN,µ(Xj ,Wj))(aN,µ(Wi′ , Xi′ ,Xj′ ,Wj′ )− cN,µ(Xj′ ,Wj′))] =

1

N2(N − 1)2

X

i6=j

E[(aN,µ(Wi,Xi,Xj ,Wj) − cN,µ(Xj ,Wj))
2] =

Because

E[(aN,µ(Wi,Xi,Xj ,Wj) − cN,µ(Xj ,Wj))
2] = E[(aN,µ(Wi,Xi,Xj ,Wj)

2] − E[cN,µ(Xj ,Wj))
2] ≤

E[(aN,µ(Wi,Xi,Xj ,Wj)
2] = O(b−1

N )

we have

E[(Dµ −Eµ)2] = O(N−2b−1
N )

so that

N(N − 1)

N2
(Dµ,1 − Eµ) = Op(N

−1b
−1/2
N )

Also

E[cN,µ(Xj ,Wj)
2] ≤

1

b
2+2|µ|
N

E

"„Z

X

Z

W

gW (w,x) d(x)

fW (w)
XjK

(µ)

„
Wj − rbN (w)

bN

«
(w − rbNw))µfW X(w, x)dwdx

«2
#
≤

1

b
2+2|µ|
N

E

"Z

X

Z

W

gW (w,x)2 d(x)2

fW (w)2
X2

jK
(µ)

„
Wj − rbN (w)

bN

«2

(w − rbNw))2µfW X(w, x)dwdx

#
≤

C

b2N

Z

W

Z

X

Z

W

K(µ)

„
w̃ − rbN (w)

bN

«2

fW X(w, x)dwdxfW (w̃)dw̃ = O(b−1
N )

by a change of variables in the outer integral, so that
„
N(N − 1)

N2
− 1

«
Eµ = Op(N

−1b
−1/2
N )

Finally

E[|Dµ,2|] ≤ 1

N
E[|aN,µ(Wi,Xi,Xi,Wi)|] ≤ 1

N

p
E[aN,µ(Wi,Xi,Xi,Wi)2] = O(N−1b−1

N )

so that

Dµ,2 = Op(N−1b−1
N )

Therefore if δ < 1/2 then

Dµ = Eµ + op(N
−1/2)

[51]



Under the same condition (B.32) is a linear combination of terms

Fµ =
1

N

NX

i=1

gW (Wi,Xi) d(Wi)m(Wi)

fW (Wi)

“
ĥ

(µ)
2,NW (rb(Wi)) − E

h
ĥ

(µ)
2,NW (rb(Wi))

i”
(Wi − rb(Wi))

µ =

1

N

NX

i=1

NX

j=1

eN,µ(Wi,Xi, Wj)

with

eN,µ(Wi,Xi,Wj) =
gW (Wi,Xi) d(Wi)m(Wi)

fW (Wi)

 
1

b
1+|µ|
N

K(µ)

„
Wj − rbN (Wi)

bN

«
−

E

"
1

b
1+|µ|
N

K(µ)

„
W − rbN (Wi)

bN

«#!
(Wi − rbN (Wi))

µ

such that

Fµ = Gµ + op(N
−1/2)

with

Gµ =
1

N

NX

i=1

fN,µ(Wj)

and

fN,µ(Wj) =
1

b
1+|µ|
N

·

Z

X

Z

W

gW (w, x) d(x)m(w)

fW (w)

„
K(µ)

„
Wj − rbN (w)

bN

«
− E

»
K(µ)

„
W − rbN (w)

bN

«–«
(w−rbNw))µfW X(w, x)dwdx

The final step is to show that

E0 = − 1

N

NX

j=1

cN,µ(Xj ,Wj) = − 1

N

NX

j=1

(ζj − E[ζj]) + op(N
−1/2)

with

ζj = XjE[gW (Wj ,X)d(X)|Wj]

where the expectation is over the conditional distribution of X given W , and

G0 =
1

N

NX

j=1

cN,µ(Xj ,Wj) =
1

N

NX

j=1

(ξj − E[ξj]) + op(N
−1/2)

with

ξj = m(Wj)E[gW (Wj ,X)d(X)|Wj]

and

Eµ = op(N
−1/2) Gµ = op(N

−1/2)

for |µ| ≥ 1. We only consider E0 and Eµ. The proof for G0 and Gµ is analogous. Define

ψN,µ,j =
1

b
1+|µ|
N

Z

X

Z

W

gW (w, x) d(x)

fW (w)
XjK

(µ)

„
Wj − rbN (w)

bN

«
(w − rbNw))µfW X(w,x)dwdx

so that cN,µ(Xj ,Wj) = ψN,µ,j − E[ψN,µ,j ]. Now

ψN,0,j = ψN,0,j,0 + ψN,0,j,1
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with

ψN,0,i,0 =
1

bN

Z

X

Z wu−bN

wl+bN

gW (w, x) d(x)

fW (w)
XjK

„
Wj − w

bN

«
fW X(w, x)dwdx

and

ψN,0,j,1 =
1

bN

Z

X

Z wl+bN

wl

gW (w,x) d(x)

fW (w)
XjK

„
Wj −wl

bN

«
fW X(w,x)dwdx+

1

bN

Z

X

Z wu

wu−bn

gW (w,x) d(x)

fW (w)
XjK

(µ)

„
Wj − wu

bN

«
fW X(w,x)dwdx

so that

E0 = − 1

N

NX

j=1

(ψN,0,j,0 − E[ψN,0,j,0]) − 1

N

NX

j=1

(ψN,0,j,1 − E[ψN,0,j,1])

Obviously

E

2
4
 
− 1

N

NX

i=1

(ψN,0,j,0 − E[ψN,0,j,0 ]) +
1

N

NX

j=1

(ζj − E[ζj])

!2
3
5 ≤ 1

N
E[(ψN,0,j,0 − ζj)

2]

By a change of variables to t = (Wj −w)/bN with Jacobian bN

ψN,0,j,0 =

Z

X

Z 1

−1

1
1+

Wj−wu
bN

≤t≤−1+
Wj−wl

bN

gW (Wj − bN t, x) d(x)

fW (Wj − bN t)
XjK (t) fW X(Wj − bN t, x)dtdx

so that

|ψN,0,j,0 − ζi| ≤
Z

X

Z 1

−1

1
1+

Wj−wu
bN

≤t≤−1+
Wj−wl

bN

˛̨
˛̨gW (Wj − bN t, x) d(x)

fW (Wj − bN t)
fW X(Wj − bN t, x) − gW (Wj , x) d(x)

fW (Wj)
fW X(Wj , x)

˛̨
˛̨ |Xj ||K (t) |dtdx+

Z

X

˛̨
˛̨gW (Wj , x) d(x)

fW (Wj)
fW X(Wj , x)

˛̨
˛̨dx|Xj |

Z 1

−1

˛̨
˛̨1

1+
Wj−wu

bN
≤t≤−1+

Wj−wl
bN

− 1

˛̨
˛̨ |K (t) |dt+

By the mean value theorem the first term on the right hand side is bN |Xj|p(Wj) with p(Wj) a (generic) bounded
function of Wj . The second term on the right hand side is |Xj |p(Wj)(1 − Pr(wl + 2bN ≤ Wj ≤ wu − 2bN )).
Therefore

|ψN,0,j,0 − ζi| ≤ |Xj |p(Wj)(bN + (1 − Pr(wl + 2bN ≤ Wj ≤ wu − 2bN )))

so that

E[(ψN,0,j,0 − ζj)
2] = O(bN )

and
˛̨
˛̨
˛−

1

N

NX

i=1

(ψN,0,j,0 − E[ψN,0,j,0]) +
1

N

NX

j=1

(ζj − E[ζj ])

˛̨
˛̨
˛ = op(N

−1/2)

if δ < 1
2
. For ψN,0,j,1 we consider the first term on the right hand side

˛̨
˛̨K
„
Wj −wl

bN

«
Xj

1

bN

Z wl+bN

wl

Z

X

gW (w, x) d(x)

fW (w)
fW X(w,x)dxdw

˛̨
˛̨ ≤ C|Xj|1wl≤Wj≤wl+bN

For the other term on the right hand side we get a similar bound and we conclude

E[ψ2
N,0,j,1] = O(bN )
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so that if δ < 1
2

˛̨
˛̨
˛

1

N

NX

j=1

(ψN,0,j,1 − E[ψN,0,j,1])

˛̨
˛̨
˛ = op(N

−1/2)

Finally if µ ≥ 1

ψN,µ,j =
1

b
1+|µ|
N

Z

X

Z wl+bN

wl

gW (w, x) d(x)

fW (w)
XjK

(µ)

„
Wj − wl

bN

«
(w −wl)

µfW X(w,x)dwdx+

1

b
1+|µ|
N

Z

X

Z wu

wu−bN

gW (w, x) d(x)

fW (w)
XjK

(µ)

„
Wj −wu

bN

«
(w −wu)µfW X(w, x)dwdx

The first term on the right hand side is bounded by

˛̨
˛̨K(µ)

„
Wj −wl

bN

«˛̨
˛̨ |Xj | 1

bN

Z

X

Z wl+bN

wl

˛̨
˛̨gW (w,x) d(x)

fW (w)
fW X(w, x)

˛̨
˛̨dwdx ≤ C|Xj|1wl≤Wj≤wl+bN

so that

E[ψ2
N,µ,j ] = O(bN )

and therefore

Eµ = −
NX

j=1

(ψN,µ,j − E[ψN,µ,j ]) = op(N
−1/2)

if δ < 1
2
. �

Proof of Theorem A.3: Because the class of ‘doubly averaged’ estimators has not been considered previously,
we provide a somewhat detailed proof. The proof consists of four steps. In the first we approximate the estimator
by a linear function of the kernel estimator ĥnip,s (linearization). Formally, we show that

V =
1

N
√
N

NX

j=1

NX

k=1

∂n

∂h′
(h(Z1j , Z2k))

“
ĥnip,s(Z1j , Z2k) − h(Z1j , Z2k)

”
+Op

„√
N
˛̨
˛ĥnip,s − h

˛̨
˛
2
«
. (B.33)

By the assumptions, and Lemma A.11, the remainder term is op(1).
In the second step we express the difference between the linearized estimator and the estimand as the sum of a
bias term (that is asymptotically negligible) and a variance term (bias-variance decomposition). The bias term
will be shown to satisfy

˛̨
˛̨
˛

1

N
√
N

NX

j=1

NX

k=1

∂n

∂h′
(h(Z1j , Z2k))(E[ĥnip,s(Z1j , Z2k)] − h(Z1j , Z2k))

˛̨
˛̨
˛ = O

“√
NbpN

”
. (B.34)

By the assumption on the bandwidth rate, the remainder term is o(1). Note that by E[ĥ(Zi1, Zi2] we mean the
expectation of ĥ(z1, z2), evaluated at z1 = Z1i and z2 = Z2j : the expectation is taken over the estimator of the
function h(·).
The second step leaves us with

V = W + Op

„√
N
˛̨
˛ĥnip,s − h

˛̨
˛
2
«

+ O(
√
NbpN ),

where

W =
1

N
√
N

NX

j=1

NX

k=1

∂n

∂h′
(h(Z1j , Z2k))

“
ĥ(Z1j , Z2k) − E

h
ĥnip,s(Z1j , Z2k)

i”
. (B.35)

Define

ν(z1, z2) =
∂n

∂h′
(h(z1, z2)),
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and

aN,µ(Ỹi, Zi, Z1j , Z2k)

= ν(Z1j , Z2k)′ ·
 

1

b
L+|µ|
N

ỸiK
(µ)

„
Zi − rbN (Z1j , Z2k)

bN

«

−EỸ Z

"
1

b
L+|µ|
N

Ỹ K(µ)

„
Z − rbN (Z1j , Z2k)

bN

«#!
·
„„

Z1j

Z2k

«
− rbN (Z1j , Z2k)

«µ

so that

W =
X

µ:|µ|≤s−1

1

µ!
Wµ, (B.36)

where

Wµ =
1

N2
√
N

NX

i=1

NX

j=1

NX

k=1

aN,µ(Ỹi, Zi, Z1j , Z2k)

Define

cN,µ(Ỹi, Zi) =
1

b
L+|µ|
N

Z

Z2

Z

Z1

ν(z1, z2)
′

„
ỸiK

(µ)

„
Zi − rbN (z1, z2)

bN

«
− EỸ Z

»
Ỹ K(µ)

„
Z − rbN (z1, z2)

bN

«–«

× ((z′1 z
′
2)

′ − rbN (z1, z2))
µfZ1(z1)fZ2(z2)dz1dz2

and

Uµ =
1√
N

NX

i=1

cN,µ(Ỹi, Zi),

or, equivalently

Uµ =

√
N

Z

Z2

Z

Z1

ν(z1, z2)
′(ĥ

(µ)
NW (rbN (z1, z2))−E[ĥ

(µ)
NW(rbN (z1, z2))])((z

′
1 z

′
2)

′−rbN (z1, z2))
µfZ1(z1)fZ2(z2)dz1dz2.

In the third step we show that

Wµ = Uµ +Op

“
N−1/2b−L

N

”
(B.37)

In the fourth step we show that

U0 =
1√
N

NX

i=1


∂n

∂h
(h(Zi))

′ỸifZ1(Z1i)fZ2(Z2i) − EZ

»
∂n

∂h
(h(Z))′Ỹ fZ1(Z1i)fZ2(Z2i)

–ff
+ op(1). (B.38)

which gives us the representation in the Theorem.
In the fifth and final step we show that we can ignore Uµ for µ such that |µ| ≥ 1, because for such µ,

Uµ = Op (bN ) . (B.39)

Proving these statements implies the result in the Theorem.
Now we turn to proving each of the statements (B.33), (B.34), (B.37), (B.38), and (B.39).

Step 1: Linearization In the first step of the proof we prove equality (B.33). First define

d(z1, z2) ≡ n(ĥnip,s(z1, z2)) − n(h(z1, z2)) − ∂n

∂h′
(h(z1, z2))(ĥnip,s(z1, z2) − h(z1, z2)).

By a second order Taylor series expansion of n(ĥnip,s(Z1i, Z2j)) around h(Z1i, Z2j) we have,

|d(z1, z2)| =
1

2

˛̨
˛̨(ĥnip,s(z1, z2) − h(z1, z2))

′ ∂2n

∂h∂h′
(h(z1, z2))(ĥnip,s(z1, z2) − h(z1, z2))

˛̨
˛̨
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≤ sup
z

˛̨
˛̨ ∂

2n

∂h∂h′
(h(z))

˛̨
˛̨ ·
˛̨
˛ĥnip,s(z1, z2) − h(z1, z2)

˛̨
˛
2

≤ C ·
˛̨
˛ĥnip,s − h

˛̨
˛
2

,

with h(z1, z2) intermediate between ĥnip,s(z1, z2), and h(z1, z2) so that

˛̨
˛̨
˛

1

N2

NX

j=1

NX

k=1

d(Z1j , Z2k)

˛̨
˛̨
˛ ≤ C

˛̨
˛ĥnip,s − h

˛̨
˛
2

= Op

„˛̨
˛ĥnip,s − h

˛̨
˛
2
«
.

Hence

1

N
√
N

NX

j=1

NX

k=1

h
n
“
ĥnip,s(Z1j , Z2k)

”
− n (h(Z1j , Z2k))

i

=
1

N
√
N

NX

j=1

NX

k=1

∂n

∂h′
(h(Z1j , Z2k))

“
ĥnip,s(Z1j , Z2k) − h(Z1j , Z2k)

”

+
1

N
√
N

NX

j=1

NX

k=1

d(Z1j , Z2k)

=
1

N
√
N

NX

j=1

NX

k=1

∂n

∂h′
(h(Z1j , Z2k))

“
ĥnip,s(Z1j , Z2k) − h(Z1j , Z2k)

”
+ Op

„√
N
˛̨
˛ĥnip,s − h

˛̨
˛
2
«

so that the linearization remainder has the same stochastic order as
√
N
˛̨
˛ĥnip,s − h0

˛̨
˛
2

.

Step 2: Bias-variance decomposition In the second step of the proof we proof equation (B.34).
Define

E =
1

N
√
N

NX

j=1

NX

k=1

∂n

∂h′
(h(Z1j , Z2k))

“
ĥnip,s(Z1j , Z2k) − h(Z1j , Z2k)

”
.

so that

V = E + Op

„√
N
˛̨
˛ĥnip,s − h

˛̨
˛
2
«
.

We decompose E into a bias and variance part, E = EUbias +W , where

Ebias =
1

N
√
N

NX

j=1

NX

k=1

∂n

∂h′
(h(Z1j , Z2k))

“
E

h
ĥnip,s(Z1j , Z2k)

i
− h(Z1j , Z2k)

”
,

and W is defined in (B.35). The bias part is bounded by

˛̨
˛̨
˛

1

N
√
N

NX

j=1

NX

k=1

∂n

∂h′
(h(Z1j , Z2k))

“
E

h
ĥnip,s(Z1j , Z2k)

i
− h(Z1j , Z2k)

”˛̨˛̨
˛

≤ sup
z∈Z

˛̨
˛̨∂n
∂h

(h(z))

˛̨
˛̨√N

˛̨
˛E[ĥnip,s] − h

˛̨
˛ = O(

√
NbpN ),

due to smoothness of the function and Lemma A.9.

Step 3: Projection In the third step of the proof we prove equation (B.37), Wµ = Uµ + Op(N
−1/2b−L

N ).
This is the most complicated step. First, note that

Wµ =
1

N2
√
N

NX

i=1

NX

j=1

NX

k=1

aN,µ(Ỹi, Zi, Z1j , Z2k),
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is a third order V-statistic with kernel (that depends on N) aN,µ. We show that this V-statistic is asymptotically
equivalent to a projection that is a single sum. Because the kernel depends on N we cannot use a standard
result.
The projection of Wµ is

Uµ =
1√
N

NX

i=1

cN,µ(Ỹi, Zi),

with

cN,µ(Ỹi, Zi)

=
1

b
L+|µ|
N

Z

Z2

Z

Z1

ν(z1, z2)
′

„
ỸiK

(µ)

„
Zi − rbN (z1, z2)

bN

«
− EỸ Z

»
Ỹ K(µ)

„
Z − rbN (z1, z2)

bN

«–«

×((z′1 z
′
2)

′ − rbN (z1, z2))
µfZ1(z1)fZ2(z2)dz1dz2.

The projection remainder is

Wµ−Uµ =
N(N − 1)(N − 2)

N3
(Wµ,1−Uµ)+

„
N(N − 1)(N − 2)

N3
− 1

«
Uµ +Wµ,2 +Wµ,3 +Wµ,4 +Wµ,5 (B.40)

with

Wµ,1 ≡
√
N

N(N − 1)(N − 2)

X

i6=j 6=k

aN,µ(Ỹi, Zi, Z1j , Z2k)

Wµ,2 ≡
√
N

N3

X

i=j 6=k

aN,µ(Ỹi, Zi, Z1i, Z2k)

Wµ,3 ≡
√
N

N3

X

i=k 6=j

aN,µ(Ỹi, Zi, Z1j , Z2i)

Wµ,4 ≡
√
N

N3

X

i6=j=k

aN,µ(Ỹi, Zi, Z1j , Z2j)

Wµ,5 ≡
√
N

N3

X

i=j=k

aN,µ(Ỹi, Zi, Z1i, Z2k)

We prove that the projection remainder Wµ − Uµ = Op(N
−1/2b−L

N ) by proving the following six equalities:

Wµ,1 − Uµ = Op

“
N−1b

−L/2
N

”
, (B.41)

„
N(N − 1)(N − 2)

N3
− 1

«
Uµ = Op

“
N−1b

−L/2
N

”
, (B.42)

Wµ,2 = Op

“
N−1/2b

−L+L2/2
N

”
, (B.43)

Wµ,3 = Op

“
N−1/2b

−L+L1/2
N

”
, (B.44)

Wµ,4 = Op

“
N−3b

−L/2
N

”
, (B.45)

Wµ,5 = Op

“
N−1/2b−L

N

”
. (B.46)

In order to prove these results, we establish bounds on the second moment of aN,µ(Ỹi, Zi, Z1j , Z2k). This will
be relatively straightforward if i 6= j and i 6= k. The derivation of the bound is more involved if i = j and/or
i = k. We could simplify the proof by omitting these observations and redefining the estimator by restricting
the averaging to observations with i 6= j and i 6= k. This would amount to redefining the kernel estimator in
(A.7) by omitting observations i = j and i = k in ĥnip,s. We will keep these observations and derive bounds on
all second moments. We derive the following bounds, considering four separate cases (note that the bounds do
not depend on µ)

E[aN,µ(Ỹi, Zi, Z1j , Z2k)2] = O(b−L
N ) j 6= i, and k 6= i, (B.47)

E[aN,µ(Ỹi, Zi, Z1i, Z2i)
2] = O(b−2L

N ) i = j = k, (B.48)

E[aN,µ(Ỹi, Zi, Z1i, Z2k)2] = O(b−2L+L2
N ) k 6= i = j, (B.49)

E[aN,µ(Ỹi, Zi, Z1j , Z2k)2] = O(b−2L+L1
N ) j 6= i = k. (B.50)
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Step 3A: Equation (B.47) First if j 6= i and k 6= i

E[aN,µ(Ỹi, Zi, Z1j , Z2k)2]

≤ 1

b
2L+2|µ|
N

E

"
K(µ)

„
Zi − rbN (Z1j , Z2k)

bN

«2

ν(Z1j , Z2k)′ỸiỸ
′

i ν(Z1j , Z2k)((Z ′
1j Z

′
2k)′ − rbN (Z1j , Z2k))2µ

#

≤ supz∈Z
|z − rbN (z)|2µ

b
2L+2|µ|
N

E

"
K(µ)

„
Zi − rbN (Z1j , Z2k)

bN

«2

ν(Z1j , Z2k)′ỸiỸ
′
i ν(Z1j , Z2k)

#

≤ 1

b2L
N

E

"
K(µ)

„
Zi − rbN (Z1j , Z2k)

bN

«2

ν(Z1j , Z2k)′ỸiỸ
′

i ν(Z1j , Z2k)

#

Now by the Cauchy-Schwartz inequality

E

"
K(µ)

„
Zi − rbN (Z1j , Z2k)

bN

«2

ν(Z1j , Z2k)′ỸiỸ
′

i ν(Z1j , Z2k)

#

= E

"
K(µ)

„
Zi − rbN (Z1j , Z2k)

bN

«2

(ν(Z1j , Z2k)′ Ỹi)
2

#

≤ E

"
K(µ)

„
Zi − rbN (Z1j , Z2k)

bN

«2

|ν(Z1j , Z2k|2|Ỹi|2
#

= E

"
K(µ)

„
Zi − rbN (Z1j , Z2k)

bN

«2

|ν(Z1j , Z2k|2E

h
|Ỹi|2|Zi

i#

By Assumption 3.1 E

h
|Ỹ |2|Z = z

i
an ν are bounded on Z so that this is bounded by (condition on Z1j and Z2k)

CE

"
K(µ)

„
Zi − rbN (Z1, Z2)

bN

«2
#

= C

Z

Z

K(µ)

„
z − rbN (Z1, Z2)

bN

«2

fZ(z)dz

and by a change of variables to t = (z − rbN (Z1, Z2))/bN with Jacobian bLN we obtain

CbLN

Z

{t|t=(z−rbN
(Z1,Z2))/bN ,z∈Z}

K(µ) (t)2 fZ(bN t+ rbN (Z1, Z2))dt ≤ C1b
L
N

Z

U

K(µ) (t)2 dt ≤ C2b
L
N

by Assumptions 3.1 and 4.1. We conclude

E[aN,µ(Ỹi, Zi, Z1j , Z2k)2] = O(b−L
N ) (B.51)

The same proof and the same bound holds if j 6= k 6= i or j = k 6= i .

Step 3B: Equation (B.48) Next, we consider E[aN,µ(Ỹi, Zi, Z1i, Z2i)
2] where we note that E[aN,µ(Ỹi, Zi, Z1i, Z2i)] 6=

0. Because

aN,µ(Ỹi, Zi, Z1i, Z2i)

=
1

b
L+|µ|
N

»
ν(Zi)

′ỸiK
(µ)

„
Zi − rbN (Zi)

bN

«
(Zi − rbN (Zi))

µ − EZ

„
ν(Zi)

′(µ)

„
Z − rbN (Zi)

bN

«
(Zi − rbN (Zi))

µ

«–

we have

E[aN,µ(Ỹi, Zi, Z1i, Z2i)
2] (B.52)

=
1

b
2L+2|µ|
N

E

"
K(µ)

„
Zi − rbN (Zi)

bN

«2

(ν(Zi)
′Ỹi)

2(Zi − rbN (Zi))
2µ

#
(B.53)

− 2

b
2L+2|µ|
N

EZi

»
ν(Zi)

′g(Zi)K
(µ)

„
Zi − rbN (Zi)

bN

«
(B.54)

− EZ

»
ν(Z)g(Z)K(µ)

„
Z − rbN (Zi)

bN

«–
(Zi − rbN (Zi))

2µ

ff–
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+
1

b
2L+2|µ|
N

EZi

"„
ν(Zi)

′
EZ

„
g(Z)K(µ)

„
Z − rbN (Zi)

bN

«««2

(Zi − rbN (Zi))
2µ

#
(B.55)

By Assumption 3.1 and smoothness (B.53) is bounded by

C

b2L
N

Z

Z

K(µ)

„
z − rbN (z)

bN

«2

fZ(z)dz =
C

b2L
N

Z

Z
I
bN

K(µ)

„
z − rbN (z)

bN

«2

fZ(z)dz

+
C

b2L
N

Z

Z\ZI
bN

K(µ)

„
z − rbN (z)

bN

«2

fZ(z)dz

If rb(z) is the projection on the internal set, then z − rb(z) = 0 if z is in the internal set. Therefore

C

b2L
N

Z

Z
I
bN

K(µ)

„
z − rbN (z)

bN

«2

fZ(z)dz ≤ CK(µ)(0)2

b2L
N

Next we consider the second integral. If s ∈ Z
B
bN

≡ Z \Z
I
bN

, then at least one component of z is in the boundary

region. We can subdivide Z
B
bN

into disjoint subsets Z
B
bN ,p, p = 1, . . . , 2L − 1 and in each such subset Lp ≥ 1

components of z are within bN from the boundary. We further partition Z
B
bN ,p into disjoint sets Z

B
bN ,p,r , r =

1, . . . 2Lp with 0 ≤ Kr ≤ Lp components with zll ≤ Zl ≤ zll + bN and the remaining Lp −Kr components with
zul − bN ≤ Zl ≤ zul. Without loss of generality we assume that the first Kr components of z are near the lower
bound, the next Lp −Kr are near the upper bound and the rest is in the internal region, so that

C

b2L
N

Z

ZB
bN ,p,r

K(µ)

„
z − rbN (z)

bN

«2

fZ(z)dz

=

Z zl1+bN

zl1

· · ·
Z zl,Kr+bN

zl,Kr

Z zu,Kr+1

zu,Kr+1−bN

· · ·
Z zu,Lp

zu,Lp−bN

Z zu,Lp+1−bN

zl,Lp+1+bN

· · ·
Z zuL−bN

zlL+bN

KrY

l=1

K(µl)
l

„
Zl − zll

bN
− 1

«2

×
LpY

l=Kr+1

K(µl)
l

„
Zl − zul

bN
+ 1

«2 LY

l=Lp+1

K(µl)
l (0)2 fZ(z)dz

Because the support of the kernel is [−1, 1] and by Assumption 4.1 K(µl)
l is bounded on this support we have

K(µl)
l

„
Zl − zll

bN
− 1

«
≤ C · 1 (zll ≤ zl ≤ zll + 2bN ) K(µl)

l

„
zl − zul

bN
+ 1

«
≤ C · 1 (zul − 2bN ≤ zl ≤ zul)

and substitution gives the upper bound

C1

b2L
N

Z zl1+bN

zl1

· · ·
Z zlKr +bN

zlKr

Z zu,Kr+1

zu,Kr+1−bN

· · ·
Z zu,Lp

zu,Lp−bN

KrY

l=1

1 (zll ≤ zl ≤ zll + 2bN )

×
LpY

l=Kr+1

1 (zul − 2bN ≤ zl ≤ zul) fZ(z1, . . . zLp)dz1 . . .dzLp ≤ C2

b
2L−Lp

N

Because Lp ≥ 1 the integral over the boundary region is O(b−2L+1
N ). Combining the results we have that

E[aN,µ(Ỹi, Zi, Z1i, Z2i)
2] = O(b−2L

N ) (B.56)

which is larger than the bound in (B.51) and could be a reason to omit the terms i = j = k (and redefine the
kernel estimator).

Step 3C: Equation (B.49) Third, we consider E[aN,µ(Ỹi, Zi, Z1i, Z2k)2]. Again we have E[aN,µ(Ỹi, Zi, Z1i, Z2k)] 6=
0. We have

E[aN,µ(Ỹi, Zi, Z1i, Z2k)2]

=
1

b
2L+2|µ|
N

E

"
K(µ)

„
Zi − rbN (Z1i, Z2k)

bN

«2

ν(Z1i, Z2k)′ỸiỸ
′

i ν(Z1i, Z2k)((Z ′
1i Z

′
2k)′ − rbN (Z1i, Z2k))2µ

#
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(B.57)

− 2

b
2L+2|µ|
N

EZiZ2k

»
ν(Z1i, Z2k)′g(Z1i, Z2k)K(µ)

„
Zi − rbN (Z1i, Z2k)

bN

«
(B.58)

×EZ

„
g(Z)′(µ)

„
Z − rbN (Z1i, Z2k)

bN

««
((Z ′

1i Z
′
2k)′ − rbN (Z1i, Z2k))2µ

–

+
1

b
2L+2|µ|
N

EZiZ2k

"„
ν(Z1i, Z2k)′EZ

„
g(Z)K(µ)

„
Z − rbN (Z1i, Z2k)

bN

«««2

× ((Z ′
1i Z

′
2k)′ − rbN (Z1i, Z2k))2µ

#

(B.59)

By Assumptions 3.1 and smoothness (B.57) is bounded by

C

b2L
N

Z

Z2

Z

Z

K(µ)

„
z − rbN (z1, z̃2)

bN

«2

fZ(z)fZ2(z̃2)dzdz̃2

=
C

b2L
N

Z

Z2

Z

ZI
bN ,1

Z

Z2

K(µ)

„
z − rbN (z1, z̃2)

bN

«2

fZ(z1, z2)fZ2(z̃2)dz2dz1dz̃2

+
C

b2L
N

Z

Z2

Z

Z1\Z
I
bN ,1

Z

Z2

K(µ)

„
z − rbN (z1, z̃2)

bN

«2

fZ(z1, z2)fZ2(z̃2)dz2dz1dz̃2

Because z1 − rb(z1, z̃2) = 0 if z1 ∈ Z
I
bN ,1, the first term on the right hand side is equal to

CK
(µ1)
1 (0)

b2L
N

Z

Z2

Z

ZI
bN ,1

Z

Z2

K(µ2)

„
z2 − rbN (z1, z̃2)

bN

«2

fZ(z1, z2)fZ2(z̃2)dz2dz1dz̃2 = O(b−2L+L2
N ),

(where K(u) is the univariate kernel), by a change of variables to t2 = (z2 − rbN (z1, z̃2)/bN with Jacobian bL2
N .

For the second integral we partition Z
B
1,bN

≡ Z1 \Z
I
bN ,1 into sets Z

B
1,bN ,p, p = 1, . . . , 2L1 −1 in which 1 ≤ L1p ≤ L1

components of z1 are in the boundary region. Each Z
B
1,bN ,p is partitioned further into sets Z

B
1,bN ,p,r , r = 1, . . . , 2L1p

in which 0 ≤ K1r ≤ L1r components of z1 are near the lower, L1r −K1r are near the upper boundary, and the
remaining L1 − L1p components are in the internal set. Hence, if we without loss of generality assume that the
first Kr components of z1 are near the lower boundary, the next L1p − K1r are near the upper boundary, and
the remaining components are in the internal set,

C

b2L
N

Z

Z2

Z

Z1\ZI
bN ,1

Z

Z2

K(µ)

„
z − rbN (z1, z̃2)

bN

«2

fZ(z1, z2)fZ2(z̃2)dz2dz1dz̃2

=
C

b2L
N

Z

Z2

Z zl,l1+bN

zl,11

· · ·
Z zl1,K1r

+bN

zl1,K1r

Z zu1,K1r+1

zu1,K1r+1−bN

· · ·
Z zu1,L1p

zu1,L1p
−bN

Z zu1,L1p+1−bN

zl1,L1p+1+bN

· · ·
Z zu1,L1

−bN

zl1,L1
+bN

Z

Z2

K1rY

l=1

K(µl)
l

„
z1l − zl1l

bN
− 1

«2

×
L1pY

l=K1r+1

K(µl)
l

„
z1l − zu1l

bN
+ 1

«2 L1Y

l=L1p+1

K(µl)
l (0)2K

(µ2)
2

„
z2 − rbN (z1, z̃2)

bN

«2

fZ(z1, z2)fZ2(z̃2)dz2dz1dz̃2

After a change of variables to t2 = (z2 − rbN (z1, z̃2)/bN with Jacobian bL2
N we have by analogous argument as

above that this term is O(b
−2L+L2+L1p

N ). Because L1p ≥ 1 we have by combining the results

E[aN,µ(Ỹi, Zi, Z1i, Z2k)2] = O(b−2L+L2
N ) (B.60)

Step 3D: Equation (B.50) An analogous argument gives

E[aN,µ(Ỹi, Zi, Z1j , Z2i)
2] = O(b−2L+L1

N ) (B.61)

This finishes the derivation of the bounds on the second moments of the kernel of the V-statistic.
Now we turn to the proofs of equalities (B.41)-(B.46).
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Step 3E: Equation (B.41) For the first term

Wµ,1 − Uµ =

√
N

N(N − 1)(N − 2)

X

i6=j 6=k

(aN,µ(Ỹi, Zi, Z1j , Z2k) − cN,µ(Ỹi, Zi)) (B.62)

so that

E[(Wµ,1 − Uµ)2]

=
N

N2(N − 1)2(N − 2)2

X

i6=j 6=k

X

i′ 6=j′ 6=k′

E[(aN,µ(Ỹi, Zi, Z1j , Z2k) − cN,µ(Ỹi, Zi))

× (aN,µ(Ỹi′ , Zi′ , Z1j′ , Z2k′ ) − cN,µ(Ỹi′ , Zi′ ))]

This expression can be simplified using

E[aN,µ(Ỹi, Zi, Z1j , Z2k)] = 0 (B.63)

E[cN,µ(Ỹi, Zi)] = 0 (B.64)

E[aN,µ(Ỹi, Zi, Z1j , Z2k)|Ỹi, Zi] = cN,µ(Ỹi, Zi) (B.65)

E[aN,µ(Ỹi, Zi, Z1j , Z2k)aN,µ(Vi′ , Zi′ , Z1j′ , Z2k)|Z2k] = 0 (B.66)

E[aN,µ(Ỹi, Zi, Z1j , Z2k)aN,µ(Vi′ , Zi′ , Z1j , Z2k′ )|Z1j ] = 0 (B.67)

E[aN,µ(Ỹi, Zi, Z1j , Z2k)aN,µ(Vi′ , Zi′ , Z1j , Z2k′ )|Z1j , Z2k] = 0 (B.68)

Therefore

E[(aN,µ(Ỹi, Zi, Z1j , Z2k) − cN,µ(Ỹi, Zi))(aN,µ(Vi′ , Zi′ , Z1j′ , Z2k′) − cN,µ(Vi′ , Zi′))] = 0

if i 6= i′, j 6= j′, k 6= k′ by (B.63) and (B.64), if i = i′, j 6= j′, k 6= k′ by (B.65), if i 6= i′, j 6= j′, k = k′ by (B.66),
and if i 6= i′, j = j′, k 6= k′ by (B.67), and if i 6= i′, j = j′, k = k′ by (B.68). Using this we obtain

E[(Wµ,1 − Uµ)2] (B.69)

=
N

N2(N − 1)2(N − 2)2

X

i6=j 6=k

E[(aN,µ(Ỹi, Zi, Z1j , Z2k) − cN,µ(Ỹi, Zi))
2]

+
N

N2(N − 1)2(N − 2)2

X

i6=j 6=k 6=k′

E[(aN,µ(Ỹi, Zi, Z1j , Z2k) − cN,µ(Ỹi, Zi))(aN,µ(Ỹi, Zi, Z1j , Z2k′ ) − cN,µ(Ỹi, Zi))]

+
N

N2(N − 1)2(N − 2)2

X

i6=k 6=j 6=j′

E[(aN,µ(Ỹi, Zi, Z1j , Z2k) − cN,µ(Ỹi, Zi))(aN,µ(Ỹi, Zi, Z1j′ , Z2k) − cN,µ(Ỹi, Zi))]

Because E[aN,µ(Ỹi, Zi, Z1j , Z2k)|Ỹi, Zi] = cN,µ(Ỹi, Zi) we have E[aN,µ(Ỹi, Zi, Z1j , Z2k)cN,µ(Ỹi, Zi)] = E[cN,µ(Ỹi, Zi)
2]

so that by the bounds on the second moment of aN,µ(Ỹi, Zi, Z1j , Z2k), given in (B.47)-(B.50),

E[(aN,µ(Ỹi, Zi, Z1j , Z2k) − cN,µ(Ỹi, Zi))
2] = E[(aN,µ(Ỹi, Zi, Z1j , Z2k)2] − E[cN,µ(Ỹi, Zi)

2]

≤ E[(aN,µ(Ỹi, Zi, Z1j , Z2k)2] = O(b−L
N ).

Further (note that E[aN,µ(Ỹi, Zi, Z1j , Z2k)aN,µ(Ỹi, Zi, Z1j , Z2k′)] = E[(EZ2 [aN,µ(Ỹi, Zi, Z1j , Z2)])
2] ≥ 0)

E[(aN,µ(Ỹi, Zi, Z1j , Z2k) − cN,µ(Ỹi, Zi))(aN,µ(Ỹi, Zi, Z1j , Z2k′) − cN,µ(Ỹi, Zi))]

= E[aN,µ(Ỹi, Zi, Z1j , Z2k)aN,µ(Ỹi, Zi, Z1j , Z2k′)] − E[cN,µ(Ỹi, Zi)
2]

≤ E[aN,µ(Ỹi, Zi, Z1j , Z2k)aN,µ(Ỹi, Zi, Z1j , Z2k′)]
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and

E[aN,µ(Ỹi, Zi, Z1j , Z2k)aN,µ(Ỹi, Zi, Z1j , Z2k′ )]

=
1

b
2|µ|+2L
N

E

»
ν(Z1j , Z2k)′ỸiỸ

′
i ν(Z1j , Z2k′)K(µ)

„
Zi − rbN (Z1j , Z2k)

bN

«
K(µ)

„
Zi − rbN (Z1j , Z2k′ )

bN

«

×((Z ′
1j Z

′
2k)′ − rbN (Z1j , Z2k))µ((Z ′

1j Z
′
2k′)′ − rbN (Z1j , Z2k′))µ

˜

− 1

b
2|µ|+2L
N

E

»
ν(Z1j , Z2k)′EỸ Z

»
Ỹ K(µ)

„
S − rbN (Z1j , Z2k)

bN

«–
EỸ Z

»
Ỹ V ′(µ)

„
Z − rbN (Z1j , Z2k′ )

bN

«–
ν(Z1j , Z2k′)

×((Z ′
1j Z

′
2k)′ − rbN (Z1j , Z2k))µ((Z ′

1j Z
′
2k′)′ − rbN (Z1j , Z2k′))µ˜

≤ 1

b
2|µ|+2L
N

E

»
ν(Z1j , Z2k)′ỸiỸ

′
i ν(Z1j , Z2k′)K(µ)

„
Zi − rbN (Z1j , Z2k)

bN

«
K(µ)

„
Zi − rbN (Z1j , Z2k′ )

bN

«

×((Z ′
1j Z

′
2k)′ − rbN (Z1j , Z2k))µ((Z ′

1j Z
′
2k′)′ − rbN (Z1j , Z2k′))µ

˜

because both expectations are nonnegative. By Assumptions 3.1 and smoothness this is bounded by

C1

b2L
N

E

»
K(µ)

„
Zi − rbN (Z1j , Z2k)

bN

«
K(µ)

„
Zi − rbN (Z1j , Z2k′)

bN

«–
≤ C2b

−L
N

by a change of variables to t = (Zi −rbN (Z1j , Z2k))/bN with Jacobian bLN and Assumption 4.1. By interchanging
the roles of j and k we obtain a bound of the same order for the third term on the right hand side of (B.69).
Combining these results we find

E[(Wµ,1 − Uµ)2] = O(N−2b−L
N ) +O(N−1b−L

N ) = O(N−1b−L
N ) (B.70)

so that by the Markov inequality the first term in the projection remainder (B.40) is Op(N
−1/2b

−L/2
N ).

Step 3F: Equation (B.42) For the second term of the projection remainder (B.40) we have by the
Cauchy-Schwartz inequality

E[cN,µ(Ỹi, Zi)
2]

≤ 1

b
2L+2|µ|
N

E

"„Z

Z2

Z

Z1

ν(z1, z2)
′ỸiK

(µ)

„
Zi − rbN (z1, z2)

bN

«
((z′1 z

′
2)

′ − rbN (z1, z2))
µfZ1(z1)fZ2(z2)dz1dz2

«2
#

≤ 1

b
2L+2|µ|
N

E

"
|Ỹi|2

„Z

Z2

Z

Z1

|ν(z1, z2)|
˛̨
˛̨K(µ)

„
Zi − rbN (z1, z2)

bN

«˛̨
˛̨ ˛̨((z′1 z′2)′ − rbN (z1, z2)

µ
˛̨
fZ1(z1)fZ2(z2)dz1dz2

«2
#

≤ C1

b2L
N

EZi

"„Z

Z2

Z

Z1

˛̨
˛̨K(µ)

„
Zi − rbN (z1, z2)

bN

«˛̨
˛̨ fZ1(z1)fZ2(z2)dz1dz2

«2

E(|Ỹi|2|Zi)

#

≤ C2

b2L
N

Z

Z

„Z

Z2

Z

Z1

˛̨
˛̨K(µ)

„
z̃ − rbN (z1, z2)

bN

«˛̨
˛̨ fZ1(z1)fZ2(z2)dz1dz2

«2

fZ(z̃)dz̃

by Assumptions 3.1 and smoothness. By a change of variables t = (z̃ − rbN (z1, z2))/bN with Jacobian bLN we
conclude that

E[cN,µ(Ỹi, Zi)
2] = O(b−L

N ) (B.71)

Therefore

E[U2
µ] = E[cN,µ(Ỹi, Zi)

2] = O(b−L
N )

so that the second term of the projection remainder is Op(N−1b
−L/2
N ).
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Step 3F: Equations (B.43)-(B.46) The other terms of the projection remainder can be bounded

using (B.47)-(B.50). For the third term (note E[aN,µ(Ỹi, Zi, Z1i, Z2k)] 6= 0) by (B.47)-(B.50)

E[|Wµ,2|] ≤
√
N(N − 1)

N2
E[|aN,µ(Ỹi, Zi, Z1i, Z2k)|]

≤
√
N(N − 1)

N2

q
E[|aN,µ(Ỹi, Zi, Z1i, Z2k)|2]

= O

„
N−1

2 b
−L+

L2
2

N

«

so that that term is Op

„
N−1

2 b
−L+

L2
2

N

«
. In the same way by (B.47)-(B.50) the fourth term of the remainder is

Op

„
N− 1

2 b
−L+

L1
2

N

«
. For the fifth term (note aN,µ(Ỹi, Zi, Z1j , Z2j) = 0)

E[W 2
µ,4] =

N2(N − 1)

N6
E[aN,µ(Ỹi, Zi, Z1j , Z2j)

2] = O
“
N−3b−L

N

”

so that that term is Op

“
N−3/2b

−L/2
N

”
. Finally, the sixth term (note E[aN,µ(Ỹi, Zi, Z1i, Z2i)] 6= 0) is by a similar

argument as for the third term and by (B.47)-(B.50), Op

“
N−1/2b−L

N

”
. This is the largest term in the projection

remainder.
This finishes the proof of

Wµ = Uµ +Op

“
N−1

2 b−L
N

”
(B.72)

Note again that the remainder is smaller if we redefine the kernel estimators. In that case the sixth term of the
projection remainder is 0.

Step 4: Asymptotic distribution The fourth step in the proof is the derivation of the asymptotically
normal distribution of the projection Uµ. In particular, we show that U0 is asymptotically normal and we obtain
the variance of that distribution. We show that Uµ/bN also converges to a normal distribution for |µ| ≥ 1 so
that Uµ = Op(bN ) if |µ| ≥ 1. Because W in (B.36) is a linear combination of the Wµ that are asymptotically
equivalent to the Uµ if a rate condition is met, W is asymptotically equivalent to U0 under that rate condition.
Define

ψN,µ,i ≡ 1

b
L+|µ|
N

Z

Z2

Z

Z1

ν(z1, z2)
′ỸiK

(µ)

„
Zi − rbN (z1, z2)

bN

«
((z′1 z

′
2)

′ − rbN (z1, z2))
µfZ1(z1)fZ2(z2)dz1dz2

so that

cN,µ(Ỹi, Zi) = ψN,µ,i − E[ψN,µ,i].

We have

ψN,0,i ≡ 1

bLN

Z

Z2

Z

Z1

ν(z1, z2)
′ỸiK

„
Zi − rbN (z1, z2)

bN

«
fZ1(z1)fZ2(z2)dz1dz2

The integration region Z1×Z2 can be partitioned into a set where all components of z1 and z2 are in the internal
region, Z

I
1,bN

× Z
I
2,bN

, and its complement, Z1 × Z2 \ Z
I
1,bN

× Z
I
2,bN

. We define

ψN,0,i,0 ≡ 1

bLN

Z

ZI
2,bN

Z

ZI
1,bN

ν(z1, z2)
′ỸiK1

„
Z1i − z1
bN

«
K2

„
Z2i − z2
bN

«
fZ1(z1)fZ2(z2)dz1dz2

and

U0,0 ≡ 1√
N

NX

I=1

(ψN,0,i,0 − E[ψN,0,i,0 ])
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We apply the Liapounov central limit theorem for triangular arrays that requires

N2
`
E
ˆ
|ψN,0,i,0 − E[ψN,0,i,0 ]|3

˜´2

N3Var(ψN,0,i,0)
→ 0

and a sufficient condition is that E [|ψN,0,i,0 |m] < ∞ for m = 1, 2, 3. By a change of variables to t1 = (Z1i−z1)/bN
and t2 = (Z2i − z2)/bN with Jacobians bL1

N and bL2
N , respectively

|ψN,0,i,0 |m

=

˛̨
˛̨
˛

Z

U1

Z

U2

L1Y

l=1

1

„
1 +

Z1li − zu1l

bN
≤ t1l ≤ −1 +

Z1li − zl1l

bN

« L2Y

l=1

1

„
1 +

Z2li − zu2l

bN
≤ t2l ≤ −1 +

Z2li − zl2l

bN

«

×ν (Z1i − bN t1, Z2i − bN t2)
′ ỸiK1(t1)K2(t2)fZ1(Z1i − bN t1)fZ2(Z2i − bN t2)dt1dt2

˛̨
˛
m

≤
 Z

U1

Z

U2

L1Y

l=1

1

„
1 +

Z1li − zu1l

bN
≤ t1l ≤ −1 +

Z1li − zl1l

bN

« L2Y

l=1

1

„
1 +

Z2li − zu2l

bN
≤ t2l ≤ −1 +

Z2li − zl2l

bN

«

×|ν (Z1i − bN t1, Z2i − bN t2) | · |Ỹi| · |K1(t1)| · |K2(t2)|fZ1(Z1i − bN t1)fZ2(Z2i − bN t2)dt1dt2
”m

by the Cauchy-Schwartz inequality . Because max
n
−1, 1 +

Zjli−zujl

bN

o
≤ tjl ≤ min

n
1,−1 +

Zjli−zljl

bN

o
, j = 1, 2

if and only if zljl + bN ≤ Zjli − bN tjl ≤ zujl − bN , we obtain by Assumptions 3.1, 4.1 and smoothness

|ψN,0,i,0 |m ≤ C|Ỹi|m (B.73)

and E[|Ỹ |3] is finite by Assumption 3.1. Therefore the condition of the Liapounov theorem holds.
The above expressions also show that for almost all Z1i, Z2i

ψN,0,i,0 → ν (Z1i, Z2i)
′ ỸifZ1(Z1i)fZ2(Z2i)

and by (B.73) E[ψm
N,0,i,0 ] converges to the corresponding expectation by dominated convergence. The conclusion

is that U0,0 has the same asymptotic distribution as

1√
N

NX

i=1

n
ν (Z1i, Z2i)

′ ỸifZ1(Z1i)fZ2(Z2i) − E[ν (Z1, Z2)
′ Ỹ fZ1(Z1)fZ2(Z2)]

o
(B.74)

We still have to derive the stochastic order of

U0,1 ≡ 1√
N

NX

I=1

(ψN,0,i,1 − E[ψN,0,i,1 ])

with the integration region in ψN,0,i,1 , i.e. Z1×Z2 \Z
I
1,bN

×Z
I
2,bN

, such that at least one component of z1 or z2 is

in the boundary region. We partition Z1×Z2 \Z
I
1,bN

×Z
I
2,bN

into subsets Z
B
1,bN ,p1

×Z
B
1,bN ,p2

, p1 = 1, . . . , 2L1 , p2 =

1, . . . , 2L2 ,min{p1, p2} ≥ 1 and in each such set 0 ≤ L1p1 ≤ L1, 0 ≤ L2p2 ≤ L2,min{L1p1L1p1} ≥ 1 components
of z1 and z2 are near the boundary. We take without loss of generality Z

B
1,bN ,1 = Z

I
1,bN

and Z
B
2,bN ,1 = Z

I
2,bN

so that we exclude the set with p1 = p2 = 1 because in that set all components are in the internal region. For
j = 1, 2 each Z

B
j,bN ,pj

is partitioned further into sets Z
B
j,bN ,pj ,rj

, rj = 1, . . . , 2
L1pj in which 0 ≤ Kjrj ≤ Ljrj

components of zj are near the lower, Ljrj − K1rj are near the upper boundary, and the remaining Lj − Ljpj

components are in the internal set. Without loss of generality we assume that the first Kjrj components of zj

are near the lower boundary, the next Ljpj −Kjrj are near the upper boundary, and the remaining components
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are in the internal set, j = 1, 2. Therefore

|ψN,0,i,1 |m =

˛̨
˛̨
˛

1

bLN

Z

Z2×Z1\Z
I
1,bN

×Z
I
2,bN

ν(z1, z2)
′ỸiK

„
Zi − rbN (z1, z2)

bN

«
fZ1(z1)fZ2(z2)dz1dz2

˛̨
˛̨
˛

m

(B.75)

≤
 

1

bLN

Z

Z2×Z1\ZI
1,bN

×ZI
2,bN

|ν(z1, z2)||Ỹi|
˛̨
˛̨K
„
Zi − rbN (z1, z2)

bN

«˛̨
˛̨ fZ1(z1)fZ2(z2)dz1dz2

!m

≤
X

p1

X

p2

X

r1

X

r2

 
1

bLN

Z zl21+bN

zl21

· · ·
Z zl2K2r2

+bN

zl2K2r2

Z zu2,K2r2
+1

zu2,K2r2
+1−bN

· · ·
Z zu2,L2p2

zu2,L2p2
−bN

Z zu2,L2p2
+1−bN

zl2,L2p2
+1+bN

· · ·
Z zu2,L2

−bN

zl2,L2
+bN

Z zl,l1+bN

zl,l1

· · ·
Z zl,1K1r1

+bN

zl,1K1r1

Z zu1,K1r1
+1

zu1,K1r1
+1−bN

· · ·
Z zu1,L1p1

zu1,L1p1
−bN

Z zu1,L1p1
+1−bN

zu1,L1p1
+1+bN

· · ·
Z zu1,L1

−bN

zl1,L1
+bN

|ν(z1, z2)||Ỹi|

K1r1Y

l=1

˛̨
˛̨K1l

„
Z1li − zl1l

bN
− 1

«˛̨
˛̨

L1p1Y

l=K1r1
+1

˛̨
˛̨K1l

„
Z1li − zl1l

bN
+ 1

«˛̨
˛̨

L1Y

l=L1p1
+1

˛̨
˛̨K1l

„
Z1li − z1l

bN

«˛̨
˛̨

K2r1Y

l=1

˛̨
˛̨K2l

„
Z2li − zl2l

bN
− 1

«˛̨
˛̨

L2p2Y

l=K2r2
+1

˛̨
˛̨K2l

„
Z2li − zu2l

bN
+ 1

«˛̨
˛̨

L2Y

l=L2p2
+1

˛̨
˛̨K2l

„
Z2li − z2l

bN

«˛̨
˛̨ fZ1(z1)fZ2(z2)dz1dz2

1
A

m

By a change of variables to t1l = (Z1li − z1l)/bN , l = L1p1 + 1, L1 and t2l = (Z2li − z2l)/bN , l = L2p2 + 1, L2 with

Jacobian b
L−L1p1

−L2p2
N we have

|ψN,0,i,1 |m ≤
X

p1

X

p2

X

r1

X

r2

 
1

b
m(L1p1

+L2p2
)

N

Z zl,21+bN

zl,21

· · ·
Z zl,2K2r2

+bN

zl,2K2r2

Z zu2,K2r2
+1

zu2,K2r2
+1−bN

· · ·
Z zu2,L2p2

zu2,L2p2
−bN

Z 1

−1

· · ·
Z 1

−1

Z zl,l1+bN

zl,l1

· · ·
Z zl,1K1r1

+bN

zl,1K1r1

Z zu1,K1r1
+1

zu1,K1r1
+1−bN

· · ·
Z zu1,L1p1

zu1,L1p1
−bN

Z 1

−1

· · ·
Z 1

−1

2Y

j=1

LjY

l=Ljpj
+1

1

„
Zjli − zujl

bN
+ 1 ≤ tjl ≤ Zjli − zljl

bN
− 1

«

|ν(z11, . . . , z1L1p1
, Z1,L1p1

+1,i − bN t1L1p1
+1, . . . , Z1,L1 ,i

− bN t1L1 , z21, . . . , z2L2p2
, Z2,L2p2

+1,i − bN t2L2p2
+1, . . . , Z2,L2 ,i − bN t2L2 )||Ỹi|

K1r1Y

l=1

˛̨
˛̨K1l

„
Z1li − zl1l

bN
− 1

«˛̨
˛̨

L1p1Y

l=K1r1
+1

˛̨
˛̨K1l

„
Z1li − zl1l

bN
+ 1

«˛̨
˛̨

K2r1Y

l=1

˛̨
˛̨K2l

„
Z2li − zl2l

bN
− 1

«˛̨
˛̨

L2p2Y

l=K2r2
+1

˛̨
˛̨K2l

„
Z2li − zu2l

bN
+ 1

«˛̨
˛̨

L1Y

l=L1p1
+1

|K1l (t1l)|
L2Y

l=L2p2
+1

|K2l (t2l)| fZ1(z11, . . . , z1L1p1
, Z1,L1p1

+1,i − bN t1L1p1
+1, . . . , Z1,L1 ,i − bN t1L1 )

fZ2(z21, . . . , z2L2p2
, Z2,L2p2

+1,i − bN t2L2p2
+1, . . . , Z2,L2 ,i − bN t2L2 )dz11 · · ·dz1L1p1

dt1,L1p1
+1 · · ·dt1L1

dz21 · · ·dz2L2p2
dt2,L2p2

+1 · · ·dt2L2

´m

In this integral the function ν takes only values in the support Z and this function and the kernel functions are
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bounded by smoothness and Assumption 4.1 so that

|ψN,0,i,1 |m

≤ C|Ỹi|m
X

p1

X

p2

X

r1

X

r2

1

b
m(L1p1

+L2p2
)

N

×

0
@

K1r1Y

l=1

˛̨
˛̨K1l

„
Z1li − zl,11

bN
− 1

«˛̨
˛̨

L1p1Y

l=K1r1
+1

˛̨
˛̨K1l

„
Z1li − zl1l

bN
+ 1

«˛̨
˛̨

K2r1Y

l=1

˛̨
˛̨K2l

„
Z2li − zl2l

bN
− 1

«˛̨
˛̨

L2p2Y

l=K2r2
+1

˛̨
˛̨K2l

„
Z2li − zu2l

bN
+ 1

«˛̨
˛̨

Z zl,21+bN

zl,21

· · ·
Z zl,2K2r2

+bN

zl,2K2r2

Z zu2,K2r2
+1

zu2,K2r2
+1−bN

· · ·
Z zu2,L2p2

zu2,L2p2
−bN

Z 1

−1

· · ·
Z 1

−1

Z zl,l1+bN

zl,l1

· · ·
Z zl,1K1r1

+bN

zl,1K1r1

Z zu1,K1r1
+1

zu1,K1r1
+1−bN

· · ·
Z zu1,L1p1

zu1,L1p1
−bN

Z 1

−1

· · ·
Z 1

−1

fZ1(z11, . . . , z1L1p1
, Z1,L1p1

+1,i − bN t1L1p1
+1, . . . , Z1,L1 ,i − bN t1L1 )

× fZ2(z21, . . . , z2L2p2
, Z2,L2p2

+1,i − bN t2L2p2
+1, . . . , Z2,L2 ,i − bN t2L2 )

dz11 · · ·dz1L1p1
dt1,L1p1

+1 · · ·dt1L1dz21 · · ·dz2L2p2
dt2,L2p2

+1 · · ·dt2L2

´m

Because the density is bounded, the integral is bounded by Cb
L1p1

+L2p2
N . Moreover because the kernel has

support [−1,1]L and is bounded on that support we have that

K1r1Y

l=1

˛̨
˛̨K1l

„
Z1li − zl1l

bN
− 1

«˛̨
˛̨

L1p1Y

l=K1r1
+1

˛̨
˛̨K1l

„
Z1li − zl1l

bN
+ 1

«˛̨
˛̨

×
K2r1Y

l=1

˛̨
˛̨K2l

„
Z2li − zl2l

bN
− 1

«˛̨
˛̨

L2p2Y

l=K2r2
+1

˛̨
˛̨K2l

„
Z2li − zu2l

bN
+ 1

«˛̨
˛̨

≤ C

K1r1Y

l=1

1 (zl1l ≤ Z1li ≤ zl1l + 2bN )

L1p1Y

l=K1r1
+1

1 (zl1l − 2bN ≤ Z1li ≤ zl1l)

×
K2r1Y

l=1

1 (zl2l ≤ Z2li ≤ zl2l + 2bN )

L2p2Y

l=K2r2
+1

1 (zu2l − 2bN ≤ Z2li ≤ zu2l)

Therefore

|ψN,0,i,1 |m ≤ C|Ỹi|m
X

p1

X

p2

X

r1

X

r2

K1r1Y

l=1

1 (zl1l ≤ Z1li ≤ zl1l + 2bN )

L1p1Y

l=K1r1
+1

1 (zl1l − 2bN ≤ Z1li ≤ zu1l)

×
K2r1Y

l=1

1 (zl2l ≤ Z2li ≤ zl2l + 2bN )

L2p2Y

l=K2r2
+1

1 (zu2l − 2bN ≤ Z2li ≤ zu2l)

and because E[|Ỹ |3|Z = z] is bounded on Z and the density of Z is bounded, we have because L1p1 + L2p2 ≥ 1
for m = 1, 2, 3

E [|ψN,0,i,1 |m] = O(bN )

By the Liapounov central limit theorem U01/bN converges in distribution and hence

U01 = Op(bN ) (B.76)
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Step 5: Ignoring Higher Order Terms The final step is to show that Uµ is asymptotically negligible
if |µ| ≥ 1. Note that if |µ| ≥ 1, then the integrand in ψN,µ,i is 0 if z1 and z2 are both in the internal region.
Hence we can take the integration region such that at least one component of either z1 or z2 is in the boundary
region

|ψN,µ,i|m

=

˛̨
˛̨
˛

1

b
L+|µ|
N

Z

Z2×Z1\ZI
1,bN

×ZI
2,bN

ν(z1, z2)
′ỸiK

(µ)

„
Zi − rbN (z1, z2)

bN

«
((z′1 z

′
2)

′ − rbN (z1, z2))
µfZ1(z1)fZ2(z2)dz1dz2

˛̨
˛̨
˛

m

≤
 

1

b
L+|µ|
N

Z

Z2×Z1\ZI
1,bN

×ZI
2,bN

|ν(z1, z2)||Ỹi|
˛̨
˛̨K(µ)

„
Zi − rbN (z1, z2)

bN

«˛̨
˛̨

|(z′1 z′2)′ − rbN (z1, z2)||µ|fZ1(z1)fZ2(z2)dz1dz2
”m

≤
 

1

bLN

Z

Z2×Z1\Z
I
1,bN

×Z
I
2,bN

|ν(z1, z2)||Ỹi|
˛̨
˛̨K(µ)

„
Zi − rbN (z1, z2)

bN

«˛̨
˛̨ fZ1(z1)fZ2(z2)dz1dz2

!m

We obtained a bound on the right hand side in (B.75). Therefore by the Liapounov central limit theorem
Uµ

bN

converges in distribution so that if |µ| ≥ 1

Uµ = Op(bN ) (B.77)

By (B.33) (linearization), (B.34) (bias), (B.72) (projection), (B.76) (boundary remainder), and (B.77) (NIP
remainder) we have that

√
N(θ̂ − θ) =

1

N
√
N

NX

j=1

NX

k=1

(n(h0(Z1j , Z2k)) − θ) (B.78)

+
1√
N

NX

i=1


∂n

∂h
(h0(Zi))

′ỸifZ1(Z1i)fZ2(Z2i) − EỸ Z

»
∂n

∂h
(h0(S))′Ỹ fZ1(Z1)fZ2(Z2)

–ff

+ Op

„√
N
˛̨
˛ĥnip,s − h0

˛̨
˛
2
«

+ O(
√
NbpN ) +Op(N

−1b−L
N ) + Op(bN )

The first term on the right hand side is a V statistic that is asymptotically equivalent to

1√
N

NX

i=1

{(E[n(h0(Z1i, Z2)) − θ) + E[n(h0(Z1, Z2i)) − θ)} .

�

Proof of Lemma A.24: Using Lemma A.14, the assumptions imply that

sup
w∈W,x∈X

|ĝ(w, x) − g(w, x)| = Op

 „
ln(N)

N · b2N

«1/2

+ bsN

!
= op

`
N−η´ , (B.79)

For 1/4 < δ < 1/4s we can find an η > 1/4 such that this holds. Using the definitions preceding the statement
of the Lemma, we have, by adding and subtracting terms,

bβcm(ρ, 0) − βcm(ρ, 0) = (bβcm(ρ,0) − β̂cm
g ) (B.80)

− (β̂cm
W − gcm) (B.81)

− (β̂cm
X − gcm) (B.82)

+
“
β̂cm

g − gcm
”

+
“
β̂cm

W − gcm
”

+
“
β̂cm

X − gcm
”

+ (gcm − βcm(ρ, 0)) .

The result then follows if we can show that the sum of (B.80), (B.81) and (B.82) is op

“
N−1/2

”
. Define

ω̂cm(w,x) =
φc

“
Φ−1

c (F̂W (w)),Φ−1
c (F̂X(x)); ρ

”

φc

“
Φ−1

c (F̂W (w))
”
φc

“
Φ−1

c (F̂X(x))
” ,
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ω̂cm
W (w,x) =

φc

“
Φ−1

c (F̂W (w)),Φ−1
c (FX(x)); ρ

”

φc

“
Φ−1

c (F̂W (w))
”
φc

`
Φ−1

c (FX(x))
´ ,

and

ω̂cm
X (w,x) =

φc

“
Φ−1

c (FW (w)),Φ−1
c (F̂X(x)); ρ

”

φc

`
Φ−1

c (FW (w))
´
φc

“
Φ−1

c (F̂X(x))
” ,

Then, using the definition of ωcm(w, x) given in (4.32), we can write the sum of these three components as

(bβcm(ρ, 0) − β̂cm
g ) − (β̂cm

W − gcm) − (β̂cm
X − gcm)

=
1

N2

NX

i=1

NX

j=1

ĝ(Wi,Xj) [bωcm(Wi,Xj) − ωcm(Wi,Xj)]

− 1

N2

NX

i=1

NX

j=1

g(Wi,Xj) [bωW (Wi,Xj) − ωcm(Wi,Xj)]

− 1

N2

NX

i=1

NX

j=1

g(Wi,Xj) [bωX(Wi,Xj) − ωcm(Wi,Xj)]

=
1

N2

NX

i=1

NX

j=1

ĝ(Wi,Xj) [bωcm(Wi,Xj) − ωcm(Wi,Xj)]

− 1

N2

NX

i=1

NX

j=1

g(Wi,Xj) [bωcm(Wi,Xj) − ωcm(Wi,Xj)]+
1

N2

NX

i=1

NX

j=1

g(Wi,Xj) [bωcm(Wi,Xj) − bωW (Wi,Xj)]

− 1

N2

NX

i=1

NX

j=1

g(Wi,Xj) [bωX(Wi,Xj) − ωcm(Wi,Xj)]

=
1

N2

NX

i=1

NX

j=1

[ĝ(Wi,Xj) − g(Wi, Xj)] [bωcm(Wi,Xj) − ωcm(Wi, Xj)] (B.83)

+
1

N2

NX

i=1

NX

j=1

g(Wi,Xj) [bωcm(Wi,Xj) − bωW (Wi,Xj) − bωX(Wi,Xj) + ωcm(Wi,Xj)] (B.84)

It remains to be shown that both (B.83) and (B.84) are op

“
N−1/2

”
.

Now define

k(z1, z2) =
φc

`
Φ−1

c (z1),Φ
−1
c (z2); ρ

´

φc

`
Φ−1

c (z1)
´
· φc

`
Φ−1

c (z2)
´ so that bωcm(w, x) = k(F̂W (w), F̂X(x)). (B.85)

By a second order Taylor expansion we have

bωcm(w,x) − ωcm(w,x) =
∂k

∂z1
(FW (w), FX(x))(F̂W (w) − FW (w)) +

∂k

∂z2
(FW (w), FX(x))(F̂X(x) − FX(x))

+
1

2

∂2k

∂z2
1

(FW (w), FX(x))(F̂W (w) − FW (w))2 +
1

2

∂2k

∂z2
2

(FW (w), FX(x))(F̂X(x) − FX(x))2

+
1

2

∂2k

∂z1∂z2
(FW (w), FX(x))(F̂W (w) − FW (w))(F̂X(x) − FX(x))

with FW (w) and FX(x) intermediate values. By Lemma A.3 it follows that for any 0 < δ < 1/2, supx |F̂X(x) −
FX(x)| = op(N

−δ), and supw |F̂W (w) − FW (w)| = op(N
−δ). In combination with the fact that |∂2k/∂z2

1 |,
|∂2k/∂z2

2 |, and |∂2k/∂z1∂z2| are bounded, this implies that

bωcm(w,x) − ωcm(w,x) (B.86)

=
∂k

∂z1
(FW (w), FX(x))(F̂W (w) − FW (w)) +

∂k

∂z2
(FW (w), FX(x))(F̂X(x) − FX(x)) + op

“
N−1/2

”
.
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The same argument implies that

bωW (w,x) − ωcm(w,x) =
∂k

∂z1
(FW (w), FX(x))(F̂W (w) − FW (w)) + op

“
N−1/2

”
,

and

bωX(w,x) − ωcm(w,x) =
∂k

∂z2
(FW (w), FX(x))(F̂X(x) − FX(x)) + op

“
N−1/2

”
.

Substituting in these results, it follows that (B.84) is op

“
N−1/2

”
.

Equation (B.86) also implies, by Lemma A.3, that

bωcm(w,x) − ωcm(w,x) = op

“
N−1/4

”
.

In combination with (B.79), this implies that (B.83) is also op

“
N−1/2

”
. �

Proof of Lemma A.25: The proof of this Lemma make use of an application of Theorem A.3. Using the
notation of that Theorem we have Z1 = W,Z2 = X , Ỹ = (Y, 1)′,

h (w,x) =

„
g(w, x) · fW X(w,x)

fW X(w,x)

«

and

n(h(w, x)) =
h1 (w, x)

h2 (w, x)
ωcm (w,x) = g(w, x) · ωcm(w,x).

In terms of this notation we can write this in the form of Theorem A.3:

β̂cm
g − gcm =

1

N2

NX

i=1

NX

j=1

n
“
ĥ(Wi,Xj)

”
− 1

N2

NX

i=1

NX

j=1

n (h(Wi,Xj)) .

We also have

∂n

∂h
(h(w,x)) =

 
1

h2(w,x)

− h1(w,x)

h2(w,x)2

!
ωcm (w, x) =

 
1

fWX(w,x)

− g(w,x)
fW X(w,x)

!
ωcm (w,x) ,

and hence

∂n

∂h
(h(w,x))′ỹfW (w)fX(x)) =

fW (w)fX(x)

fW X(w,x)
· (y − g(w, x)) · ωcm (w, x) ,

which is mean zero. Therefore, by the result of Theorem A.3, we have

β̂cm
g −βcm(ρ,0) =

1

N

NX

i=1

∂n

∂h
(h(Wi,Xi))

′ỸifW (Wi)fX(Xi))−E

»
∂n

∂h
(h(W,X))′ỹY fW (W )fX(X))

–
+op

“
N−1/2

”

=
1

N

NX

i=1

fW (Wi)fX(Xi)

fW X(Wi, Xi)
·(Yi − g(Wi,Xi))·ωcm (Wi,Xi)−E

»
fW (W )fX(X)

fW X(W,X)
· (Y − g(W,X)) · ωcm (W,X)

–
+op

“
N−1/2

”

=
1

N

NX

i=1

fW (Wi)fX(Xi)

fW X(Wi,Xi)
· (Yi − g(Wi,Xi)) · ωcm (Wi,Xi) + op

“
N−1/2

”

=
1

N

NX

i=1

ψcm
g (Yi,Wi,Xi) + op(N

−1/2) + op

“
N−1/2

”
.

�

Proof of Lemma A.26: Using the definition of k(z1, z2) in (B.85) and the Taylor expansion in the proof of
Lemma A.24 we have

β̂cm
W − gcm =

1

N2

NX

i=1

NX

j=1

g(Wi,Xj)
∂k

∂z1
(FW (Wi), FX(Xj))(F̂W (Wi) − FW (Wi))
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+
1

2

1

N2

NX

i=1

NX

j=1

g(Wi ,Xj)
∂2k

∂z2
1

(FW (Wi), FX(Xj))(F̂W (Wi) − FW (Wi))
2.

By Lemma A.3 supw |F̂W (w)−FW(w)| = op(N
−δ) for all δ < 1/2, and using the fact that the second derivatives

of k(z1, z2) are bounded, this implies

β̂cm
W − gcm =

1

N2

NX

i=1

NX

j=1

g(Wi,Xj)
∂k

∂z1
(FW (Wi), FX(Xi))(F̂W (Wi) − FW (Wi)) + op

“
N−1/2

”
.

Inspection of the definition of eW (w,x) shows that eW (w, x) = ∂k
∂s1

(FW (w), FX(x)) and therefore

β̂cm
W − gcm =

1

N2

NX

i=1

NX

j=1

g(Wi,Xj)eW (Wi,Xj) (F̂W (Wi) − FW (Wi)) + op

“
N−1/2

”

=
1

N3

NX

i=1

NX

j=1

NX

k=1

g(Wi,Xj)eW (Wi,Xj) (1 (Wk ≤ Wi) − FW (Wi)) + op

“
N−1/2

”
.

This is, up to the op(N
−1/2) term, a third order V -statistic,

β̂cm
W − gcm = V + op

“
N−1/2

”

where

V =
1

N3

NX

i=1

NX

j=1

NX

k=1

ψ(Wi,Xi,Wj ,Xj ,Wk,Xk),

with

ψ(w1, x1, w2, x2, w3, x3) = g(w1, x2)eW (w1, x2) (1 (w3 ≤ w1) − FW (w1).

Define

ψ1(w, x) = E [ψ(w, x,W2,X2,W3,X3)] , ψ2(w, x) = E [ψ(W1,X1, w,x,W3,X3)] ,

ψ3(w, x) = E [ψ(W1,X1,W2, X2, w,x)] , and θ = E[ψ(W1,X1,W2,X2,W3,X3)].

Using V-statistic theory, this V-statistic can be approximated as

V =
1

N

NX

i=1

{(ψ1(Wi,Xi) − θ) + (ψ2(Wi,Xi) − θ) + (ψ3(Wi,Xi) − θ)}+ op

“
N−1/2

”
.

Note that E[ψ(w1, x1, w2, x2,W, X)] = 0. Hence θ = 0, ψ1(w, x) = 0, and ψ2(w,x) = 0. Thus,

V =
1

N

NX

i=1

ψ3(Wi,Xi) + op

“
N−1/2

”
.

=
1

N

NX

k=1

Z Z
g(s, t)eW (s, t) (1 (Wi ≤ s) − FW (s))fW (s) fX (t) dsdt + op

“
N−1/2

”
,

=
1

N

NX

i=1

ψcm
W (Yi,Wi,Xi) + op

“
N−1/2

”
,

as required. �

Proof of Lemma A.27: The proof is entirely analogous to that of Lemma A.26 and therefore omitted. �

Proof of Lemma A.28: Define

ψ(w, x) = g(w, x) · ωcm(w, x),

ψ1(w) = E [ψ(w,X)] = E [g(w,X) · ωcm(w,X)] ,
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and

ψ2(x) = E [ψ(W, x)] = E [g(W, x) · ωcm(W, x)] .

Then, by the V-Statistic Projection Theorem, given as Theorem A.4 in Appendix A, it follows that

gcm − βcm(ρ, 0) =
1

N

NX

i=1

{(ψ1(Wi) − βcm(ρ, 0)) + (ψ2(Xi) − βcm(ρ, 0))} + op

“
N−1/2

”

=
1

N

NX

i=1

ψcm
0 (Yi,Wi,Xi) + op

“
N−1/2

”
.

�

Proof of Theorem A.4: Define φ(z1, z2) = (ψ(z1, z2) + ψ(z2, z1))/2. Then V =
PN

i=1

PN
j=1 φ(Zi, Zj)/N

2 is a
V-statistic with a symmetric kernel. In the notation of Lehman (1998),

σ2
1 = Cov (φ(Zi, Zj), φ(Zi, Zk)) ,

for i, j, k distinct, which simplifies to σ2
1 = σ2/4. Therefore, by Theorems 6.1.2 (with a = 2) and 6.2.1 in Lehman

(1998), the result follows. �.
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Appendix C: Proofs of Theorems in Text

Proof of Theorem 3.1 Define

Vλ,i = λ ·Xi · d(Wi) +Wi,

h(λ, a) = pr(Vλ ≤ a) = FVλ(a), and k(w,x, λ) = h(λ, λ · x · d(w,x) +w).

First we focus on

βlr,v(λ) = E
ˆ
g(F−1

W (FVλ(Vλ,i)),X)
˜

= E
ˆ
g(F−1

W (k(Wi,Xi, λ)),Xi)
˜
.

We then prove four results. First, we show that for small λ, βlr,v(λ) and βlr(λ) are close, or

βlr,v(λ) = βlr(λ) + o(λ). (C.1)

Second, we show that

βlr,v(λ) = E[g(W,X)]

+E

»
∂g

∂w
(Wi, Xi)

1

fW (Wi)
(k(Wi,Xi, λ) − k(Wi,Xi, 0))

–
+ o(λ). (C.2)

Next we show that βlr,v(λ) has the two representations in Theorem 3.1. In particular, the third part of the proof

shows that βlc,v = ∂βlr,v

∂λ
(0) satisfies

βlc,v = E

»
∂g

∂w
(Wi,Xi) · (Xi · d(Wi,Xi) − E [Xi · d(Wi,Xi)|Wi])

–
. (C.3)

Fourth, we show that βlc,v satisfies

βlc,v = E

»
δ(Wi,Xi) · ∂2g

∂w∂x
(Wi,Xi)

–
. (C.4)

We start with the proof of (C.1). Define

u(w, x, λ) = λ · x · d(w,x)1−|λ| +
p

1− λ2 · w, and u(w, x, λ) = λ · x · d(w,x) + w.

Then

sup
w∈W,x∈X

|u(w, x, λ) − v(w, x,λ)| = O
`
λ2
´
.

Define also

hU (λ, a) = pr(Uλ ≤ a), and kU (w, x,λ) = hU (λ, u(w, x, λ)).

Then

sup
a

|hU (λ, a) − h(λ, a)| = O
`
λ2´ ,

and

sup
w∈W,x∈X

|kU (w, x,λ) − k(w,x, λ)| = O
`
λ2´ .

Combined with the smoothness assumptions, this implies that

βlr,v(λ) − βlr(λ) = E
ˆ
g(F−1

W (k(Wi,Xi, λ)),Xi)
˜
− E

ˆ
g(F−1

W (kU (Wi,Xi, λ)),Xi)
˜

= O(λ2).

This finishes the proof of (C.1).
Next, we prove (C.2). Let c1 and c2 satisfy

sup
x,w,γ,λ

|k(w, x,λ+ γ) − k(w,x, λ)| ≤ c1 · γ,
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and

sup
w∈W,x∈X

˛̨
˛̨ ∂

2

∂w2
g(w, x)

˛̨
˛̨ ≤ c2,

respectively. Then, applying Lemma A.1 with f(a) = g(F−1
W (a), x) and h(λ) = k(w, x, λ), we obtain

˛̨
˛̨
˛g(F

−1
W (k(w,x, λ), x) −

 
g(F−1

W (k(w, x, 0), x) +
∂

∂w g(F
−1
W (k(w,x, 0), x)

fW (F−1
W (k(w, x, 0)))

(k(w,x, λ) − k(w, x, 0))

!˛̨
˛̨
˛

≤ c2c
2
1λ

2 = o(λ).

Since the bound does not depend on x and w, we can average over W and X and it follows that
˛̨
˛̨
˛E
ˆ
g(F−1

W (k(W,X, λ),X)
˜
− E [g(W,X)] − E

"
∂

∂w
g(W,X)

fW (W )
(k(W,X, λ) −W )

#˛̨
˛̨
˛ ,

where we also use the fact that k(w,x, 0) = FW (w). This finishes the proof of (C.2).
Now we prove (C.3). By definition,

h(λ, a) = Pr (Vλ,i < a) = Pr (Vλ,i < a,Wi < wm) + Pr (Vλ,i < a,Wi ≥ wm)

= Pr (λ ·Xi · d(Wi,Xi) +Wi ≤ a,Wi < wm)

+Pr (λ ·Xi · d(Wi,Xi) +Wi ≤ a,Wi ≥ wm) .

= Pr (λ ·Xi · (Wi −wl) +Wi ≤ a,Wi < wm)

+Pr (λ ·Xi · (wu −Wi) +Wi ≤ a,Wi ≥ wm)

= Pr

„
Wi ≤ min

„
wm,

a+ λ ·Xi · wl

1 + λ ·Xi

««

+Pr

„
wm ≤Wi ≤ a− λ ·Xi · wu

1 − λ ·Xi

«
.

For λ sufficiently close to zero, we can write this as

h(λ, a) = 1a>wm · Pr(Wi ≤ wm) + 1a≤wm · Pr

„
Wi ≤ a+ λ ·Xi · wl

1 + λ ·Xi

«

+1a>wm · Pr

„
wm < Wi ≤ a− λ ·Xi · wu

1− λ ·Xi

«

= 1a≤wm · Pr

„
Wi ≤ a+ λ ·Xi · wl

1 + λ ·Xi

«

+1a>wm · Pr

„
Wi ≤ a− λ ·Xi · wu

1− λ ·Xi

«

= 1a≤wm · E

»
Pr

„
Wi ≤ a+ λ ·Xi · wl

1 + λ ·Xi

˛̨
˛̨Xi

«–

+1a>wm · E

»
Pr

„
Wi ≤ a− λ ·Xi · wu

1 − λ ·Xi

˛̨
˛̨Xi

«–

= 1a≤wm ·
Z
FW |X

„
a+ λ · z · wl

1 + λ · z

˛̨
˛̨ z
«
fX(z)dz

+1a>wm ·
Z
FW |X

„
a− λ · z · wu

1 − λ · z

˛̨
˛̨ z
«
fX(z)dz

Substituting a = λ · x · d(w,x) + w, we get

k(w, x, λ) = 1λ·x·d(w,x)+w≤wm ·
Z
FW |X

„
λ · x · d(w, x) +w + λ · z · wl

1 + λ · z

˛̨
˛̨ z
«
fX(z)dz

+1λ·x·d(w,x)+w>wm ·
Z
FW |X

„
λ · x · d(w, x) +w − λ · z · wu

1 − λ · z

˛̨
˛̨ z
«
fX(z)dz
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= 1λ·x·(w−wl )+w≤wm1w≤wm ·
Z
FW |X

„
λ · x · (w − wm) +w + λ · z · wl

1 + λ · z

˛̨
˛̨ z
«
fX(z)dz

+1λ·x·(wu−w)+w≤wm1w>wm ·
Z
FW |X

„
λ · x · (wu −w) +w + λ · z · wl

1 + λ · z

˛̨
˛̨ z
«
fX(z)dz

+1λ·x·(w−wl )+w>wm · 1w≤wm

Z
FW |X

„
λ · x · (w −wm) +w − λ · z · wu

1 − λ · z

˛̨
˛̨ z
«
fX(z)dz

+1λ·x·(wu−w)+w>wm · 1w>wm

Z
FW |X

„
λ · x · (wu −w) + w − λ · z · wu

1 − λ · z

˛̨
˛̨ z
«
fX(z)dz

= 1w≤wm(1+λxwl/wm)/(1+λx) ·
Z
FW |X

„
λ · x · (w −wm) + w + λ · z · wl

1 + λ · z

˛̨
˛̨ z
«
fX(z)dz

+0 ·
Z
FW |X

„
λ · x · (wu − w) +w + λ · z · wl

1 + λ · z

˛̨
˛̨ z
«
fX(z)dz

+1wm(1+λxwl /wm)/(1+λx)≤w≤wm ·
Z
FW |X

„
λ · x · (w −wm) + w − λ · z · wu

1 − λ · z

˛̨
˛̨ z
«
fX(z)dz

+1w≥wm ·
Z
FW |X

„
λ · x · (wu −w) + w − λ · z · wu

1 − λ · z

˛̨
˛̨ z
«
fX(z)dz.

The last equality uses the following four facts: (i), λ ·x · (w−wl)+w ≤ wm implies w ≤ wm(1+λxwl/wm)/(1+
λx) ≤ wm, (ii) λ·x·(wu−w)+w ≤ wm implies w ≤ wm(1−λxwu/wm)/(1−λx) < wm, (iii), λ·x·(w−wl)+w > wm

implies w ≥ wm(1+λxwl/wm)/(1+λx), and (iv) λ·x·(wu−w)+w > wm implies w ≥ wm(1−λxwu/wm)/(1−λx).
Now we will look at

E

»
∂g

∂w
(Wi,Xi)

1

fW (Wi)
k(Wi,Xi, λ)

–

=

Z xu

xl

Z wu

wl

∂g

∂w
(w,x)

1

fW (w)
k(w, x, λ)fW,X(w,x)dwdx.

Substituting the three terms of k(w,x, λ) in here we get

E

»
∂g

∂w
(Wi,Xi)

1

fW (Wi)
k(Wi,Xi, λ)

–

=

Z xu

xl

Z wm
1+λxwl/wm

1+λx

wl

∂g
∂w

(w,x)

fW (w)

Z
FW |X

„
λ · x · (w − wl) +w + λ · z · wl

1 + λ · z

˛̨
˛̨ z
«
fX(z)dzfW,X(w, x)dwdx

(C.5)

+

Z xu

xl

Z wm

wm
(1+λxwl /wm

1+λx

∂g
∂w (w, x)

fW (w)

Z
FW |X

„
λ · x · (w −wl) + w − λ · z · wu

1 − λ · z

˛̨
˛̨ z
«
fX(z)dzfW,X(w, x)dwdx

(C.6)

+

Z xu

xl

Z wu

wm

∂g
∂w (w,x)

fW (w)

Z
FW |X

„
λ · x · (wu −w) +w − λ · z · wu

1 − λ · z

˛̨
˛̨ z
«
fX(z)dzfW,X(w, x)dwdx (C.7)

Next, we take the derivative with respect to λ for each of these three terms, and evaluate that derivative at
λ = 0. For the first term, (C.5) this derivative consists of two terms, one corresponding to the derivative with
respect to the λ in the bounds of the integral, and one corresponding to the derivative with respect to λ in the
integrand. For the second term we only have the term corresponding to the derivative with respect to the λ in
the bounds of the integral since the other term vanishes when we evaluate it at λ = 0. The third term, (C.6)
only has λ in the integrand. So,

∂

∂λ
E

»
∂g

∂w
(Wi,Xi)

1

fW (Wi)
k(Wi,Xi, λ)

–˛̨
˛̨
λ=0

= (wl −wm) · E

»
∂

∂w
g(wm,Xi)

˛̨
˛̨Wi = wm

–
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+

Z xu

xl

Z wm

wl

∂

∂w
g(w, x)

1

fW (w)

Z xu

xl

fW |X(w|z) (x · (w −wl) + z · wl − z · w) fX(z)dzfW,X(w,x)dwdx

−(wl − wm) · E

»
∂

∂w
g(wm,Xi)

˛̨
˛̨Wi = wm

–

+

Z xu

xl

Z wm

wl

∂

∂w
g(w, x)

1

fW (w)

Z xu

xl

fW |X(w|z) (x · (wu −w) + z · w − z · wu) fX(z)dzfW,X(w,x)dwdx

=

Z xu

xl

Z wm

wl

∂

∂w
g(w, x)

Z xu

xl

fX|W (z|w) (x · d(w,x) − z · d(w,z)) dzfW,X(w,x)dwdx

+

Z xu

xl

Z wm

wl

∂

∂w
g(w, x)

Z xu

xl

fX|W (z|w) (x · d(w,x)) − z · d(w,z)) dzfW,X(w,x)dwdx

=

Z xu

xl

Z wu

wl

∂

∂w
g(w, x)

Z xu

xl

fX|W (z|w) (x · d(w,x) − z · d(w,z)) dzfW,X(w,x)dwdx

=

Z xu

xl

Z wu

wl

∂

∂w
g(w, x) ((Xi · d(w,Xi) − E [Xi · d(w,Xi))|Wi = w]) fW,X(w, x)dwdx

= E

»
∂g

∂w
(Wi,Xi) · (Xi · d(Wi, Xi) − E [Xi · d(Wi,Xi)|Wi])

–
= βlc,v.

This finishes the proof of (C.3).
Finally, we show (C.4), by showing the equality of

βlc,v = E

»
∂g

∂w
(Wi,Xi) · (Xi · d(Wi) − E [Xi · d(Wi)|Wi])

–
, (C.8)

and

E

»
δ (Wi,Xi) · ∂2g

∂w∂x
(Wi, Xi)

–
. (C.9)

Define

b(w) = E

»
∂g

∂w
(w,Xi) · (Xi · d(w) − E [Xi · d(w)|Wi = w])

˛̨
˛̨Wi = w

–

= E

»
∂g

∂w
(w,Xi) · d(w) · (Xi − E [Xi|Wi = w])

˛̨
˛̨Wi = w

–
,

so that βlc,v = E[b(W )]. Apply Lemma A.2, with h(x) = ∂g
∂w (w,x) · d(w), to get

b(w) = E

»
∂2

∂w∂x
g(w,X) · δ(w,X)

–

with

δ(w, x) = d(w) · FX|W (x|w) · (1 − FX|W (x|w))

fX|W (x|w)
· (E [X |X > x,W = w] − E [X |X ≤ x,W = w]) .

Thus

βlc,v = E[b(W )] = E

»
∂2

∂w∂x
g(W,X) · δ(W,X)

–
.

�

Proof of Theorem 4.1: We apply Lemmas A.15-A.18. The assumptions in the theorem imply that the
conditions for those lemmas are satisfied. �

Proof of Theorem 4.2: The proof is essentially the same as that for Theorem 4.1 and is omitted. �

Proof of Theorem 4.3: We apply Lemma’s A.24-A.28 to get an asymptotic linear representation for β̂cm(ρ, τ).
The assumptions in the Theorem imply that the conditions for the applications of these lemmas are satisfied.
Therefore, by Lemma A.24, we have

β̂cm(ρ, 0) = βcm(ρ,0) +
“
β̂cm

g − gcm
”

+
“
β̂cm

W − gcm
”

+
“
β̂cm

X − gcm
”

+ (gcm − βcm(ρ, 0)) + op

“
N−1/2

”
.
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By Lemmas A.25-A.28, this is equal to

βcm(ρ, 0)+
1

N

NX

i=1

˘
ψcm

g (Yi,Wi,Xi) + ψcm
W (Yi, Wi,Xi) + ψcm

X (Yi,Wi,Xi) + ψcm
0 (Yi,Wi,Xi)

¯
+op

“
N−1/2

”

= βcm(ρ, 0) +
1

N

NX

i=1

ψ(Yi,Wi,Xi) + op

“
N−1/2

”
,

with ψcm
g (y,w, x) given in (4.34), ψcm

W (y, w,x) given in (4.35), ψcm
X (y,w, x) given in (4.36), ψcm

0 (y,w, x) given in

(4.33), and ψ(y,w, x) given in (4.37). Then we have an asymptotic linear representation for β̂cm(ρ, τ):

β̂cm(ρ, τ) = τ · Y + (1 − τ) · β̂cm(ρ, 0)

= βcm(ρ, τ) + τ · (Y − βcm(ρ, 1)) + (1 − τ) ·
“
β̂cm(ρ, 0) − βcm(ρ, 0)

”

= βcm(ρ, τ) + τ · (Y − βcm(ρ, 1)) + (1 − τ) · 1

N

NX

i=1

ψ(Yi,Wi,Xi).

Since by a law of large numbers Y → βcm(ρ,1), and
P

i ψ(Yi,Wi,Xi)/N → E[ψ(Yi,Wi,Xi)] = 0, it follows that

β̂cm(ρ, τ) → βcm(ρ, τ). By a central limit theorem the second part of the Theorem follows. �

Proof of Theorem 4.4: The proof uses Lemmas A.13, A.14, A.19, A.20, and A.23.
By the conditions on q, r, s, and δ, Lemma A.13 implies that for some η > 1/4

sup
w∈W

|m̂(w) −m(w)| = op

`
N−η´ .

Moreover, by the same conditions, Lemma A.14 implies that for some η > 1/4,

sup
w∈W,x∈X

˛̨
˛̨ ∂ĝ
∂w

(w, x) − ∂g

∂w
(w,x)

˛̨
˛̨ = op

`
N−η´ .

Then, the conditions for Lemma A.19 are satisfied, so we can write

√
N
“
β̂lc − βlc

”

=
1√
N

NX

i=1

∂g

∂w
(Wi,Xi) · d(Wi) · (X −m(Wi)) −

√
N · βlc

+
1√
N

NX

i=1

∂ĝ

∂w
(Wi,Xi) · d(Wi) · (X −m(Wi)) − 1√

N

NX

i=1

∂g

∂w
(Wi,Xi) · d(Wi) · (X −m(Wi))

+
1√
N

NX

i=1

∂g

∂w
(Wi,Xi) · d(Wi) · (X − m̂(Wi)) − 1√

N

NX

i=1

∂g

∂w
(Wi,Xi) · d(Wi) · (X −m(Wi)) + op(1).

By Lemma A.20,

1√
N

NX

i=1

∂

∂w
bg (Wi, Xi) · d(Wi) · (Xi −m (Wi)) − 1√

N

NX

i=1

∂

∂w
g (Wi,Xi) · d(Wi) · (Xi −m (Wi))

=
1√
N

NX

i=1

ψlc
g (Yi,Wi, Xi) + op(1),

where

ψlc
g (y, w,x) = − 1

fW,X (w, x)

∂fW,X (w, x)

∂W
(y − g (w,x)) d(w) (x−m (w))

−∂m (w)

∂W
d(w) (y − g (w, x))

+
∂

∂w
d(w) (x−m(w)) (y − g(w, x)) .
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By Lemma A.23,

1√
N

NX

i=1

∂

∂w
g (Wi, Xi) · d(Wi) · bm (Wi) − 1√

N

NX

i=1

∂

∂w
g (Wi,Xi) · d(Wi) ·m (Wi)

=
1√
N

NX

i=1

ψlc
m(Yi,Wi,Xi) + op(1),

where

ψlc
m(y,w,x) = E

»
∂g(w,Xi)

∂W

˛̨
˛̨Wi = w

–
· d(w) · (x−m(w)).

Combining these results implies that

√
N
“
β̂lc − βlc

”
=

1√
N

NX

i=1

ψlc(Yi,Wi,Xi) + op(1),

with

ψlc(y,w, x) =

„
∂g(w, x)

∂w
· d(w) · (x−m(w))− βlc

«
+ ψlc

g (y,w, x) + ψlc
m(y,w,x).

Using a law of large numbers then implies the first result in the theorem, and using a central limit theorem
implies the second result in the Theorem. �
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Notation: (page number indicates where it was first introduced)

(Yi, Wi, Xi, Vi) observed variables for unit i, i = 1, . . . , N . Yi, Wi, Xi are scalars, Vi is vector.
(page 3)

k(w, x, v, ε) is production function (page 3)

g(w, x, v) is average production function (conditional expectation of Y given (W,X, V )). (page
4, equation 2.2)

σ2(w, x, v) is conditional variance of Y given (W,X, V )). (page 4, equation 2.3)

gW (w, x, v) is derivative of average production function. (page 4, equation 2.4)

hW |X,V (w|x, v) is potential conditional distribution of W given X and V (page 6)

fW |X,V (w|x, v) is conditional distribution of W given X and V (page 6)

βare
h is output given new allocation indexed by h. (page 6)

FW |V (w|v) denotes conditional distribution function of W given V . (page 6)

βpam is positive assortive matching output (page 6, equation (3.6))

βpam−pop is alternative positive assortive matching output (page 7, equation (3.7))

βnam is negative assortive matching output (page 7, equation (3.8))

βsq is status quo output (page 8)

βrm is random matching output (page 8)

φ(x1, x2, ρ) bivariate normal density with correlation ρ, (page 8)

Φ(x1, x2, ρ) bivariate normal distribution with correlation ρ, (page 8)

φc(x1, x2, ρ) truncated bivariate normal density with correlation ρ, (page 8)

Φc(x1, x2, ρ) truncated bivariate normal distribution with correlation ρ, (page 9)

HW,X(w,mx) joint distribution function from truncated bivariate normal cupola (page 9).

hW,X(w,mx) joint density function from truncated bivariate normal cupola (page 9).

βcm(ρ, τ) correlated matching estimand (page 8, and page 9, equation (3.10))

d(w) weight function in local complementarity measure (page 10)

Uλ combination of W and X for local allocation (page 10)

βlr(λ) path of local reallocations page 10, equation (3.11))

βlc local reallocation measure (page 11, equation (3.12)

W support of W (page 11, assumption 3.1)
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X support of X (page 11, assumption 3.1)

δ(w, x) weight function in local complementarity measure in representation as weighted average

of cross derivative (page 11)

q is the number of derivatives of g and fWX (page 11).

F̂W (w) estimate of cumulative distribution function for W (page 12)

m(w) (page 12, equation 4.15)

h1(w, x) = fW,X(w, x) notation for density and product of density and regression function
(page 12)

h2(w, x) = g(w, x) · FW,X(w, x) notation for density and product of density and regression

function (page 12, equation (4.16))

Ỹ = (Ỹi1, Ỹi2) with Ỹi1 = 1, Ỹi2 = Yi (page 12)

ĥnw,m(w, x) nadaraya-watson kernel estimator for hm(w, x) (page 12, equation (4.17))

z = (w, x)′ and Z = (W,X)′ compact notation for pair of covariates (page 13)

L dimension of Z (is equal to 2 (page 13)

λ vector of nonnegative integers of dimension L = 2 (page 13)

zλ =
∏L

l=1 z
λl
l (page 13)

g(λ)(z) = ∂g|λ|

∂zλ (z) (page 13)

ZI
b internal region (page 13, equation (4.18)

ZB
b boundary region (page 13, equation (4.19)

t(z; g, r, p) taylor series expansion evaluated at z, equation (4.20)

rb(z) projection on internal region (page 14, equation 4.21)

ĥm,nip,s(z) NIP estimator for hm(z) (page 14, equation 4.22)

ĝnip,s(w, x) NIP estimator for g(w, x) (page 14, equation 4.23)

∂̂gnip,s

∂w (w, x) NIP estimator for derivative of g(w, x) 4.24

ĝ(w, x) = ĝnip,s(w, x) NIP estimator for g(w, x) short hand for NIP estimator (page 14)

derivative order of kernel is defined in definition 4.1 on page 14

K(·) bivariate kernel (page 15)

K(·) univariate kernel (page 15)

U support of bivariate kernel (page 15).
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r is number of derivatives of kernel K(u) (page 15)

s is order of kernel K(u), and order of NIP kernel estimator (page 14, 15)

d is derivative order of kernel K(u) (page 15)

bN = N−δ is bandwidth (page 15)

β̂pam estimator for βpam (page 15, equation 4.25)

β̂nam estimator for βnam (page 15, equation 4.26)

β̃pam estimator for βpam given known g(·) (page 15, equation 4.27)

qpam(w, x) (page 16)

ψpam
W (w) (page 16)

rpam(x, z) (page 16)

ψpam
X (x) (page 16)

Ωpam
11 (page 16)

Ωpam
22 (page 16)

β̃nam (page 16, equation 4.29)

qnam(w, x) (page 17)

ψnam
W (w) (page 17)

rnam
XZ (x, z) (page 17)

ψnam
X (x) (page 17)

Ωnam
11 (page 17)

Ωnam
22 (page 17)

β̂cm(ρ, τ) (page 17)

β̂sq (page 17)

η(w) (page 18, equation 4.30)

d(w, x) (page 18, equation 4.31)

m(Y,W, βcm(ρ, τ), η (W )) moment function (page 18)

eW (w, x) (page 18)

eX(w, x) (page 18)

ωcm(w, x) (page 18)
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ψcm
0 (y, w, x) (page 19)

ψcm
g (y, w, x) (page 19)

ψcm
W (y, w, x) (page 19)

ψcm
X (y, w, x) (page 19)

Ωcm (page 19)

ψcm(y, w, x) (page 19)

Ωlc (page 20)

ψlc
g (y, w, x) (page 20)

ψlc
m(y, w, x) (page 20)

β̂
pam
g (page 21, equation 5.39)

β̂pam
W (page 21, equation 5.40)

β̂pam
X (page 21, equation 5.41)

gpam (page 21, equation 5.42)

Z = (W,X)′ (page 29)

ω(Z) and ω(X) (page 29)

n(h[λ]) and n(h) (page 29)

t(x) (page 29)

θfm (page 29, A.2)

θ± (page 29, A.3)

θ̂fm (page 29)

θ̂pm (page 29)

θ
fm

(page 29)

θ
pm

(page 29)

α
(κ)
κ1 (z) (page 30)

αm(z) (page 30)

V1, V2 (page 30)

β̂lc
g (page 31)

β̂lc
m (page 31)
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glc (page 31)

gcm (page 33)

β̂cm
g (page 33)

β̂cm
W (page 33)

β̂cm
W (page 33)

β̂cm
X (page 33)
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