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SUMMARY

Many randomized experiments suffer from noncompliance. Some of these experiments, so-called
encouragement designs, can be expected to have especially large amounts of noncompliance, because en-
couragement to take the treatment rather than the treatment itself is randomly assigned to individuals. We
present an extended framework for the analysis of data from such experiments with a binary treatment,
binary encouragement, and background covariates. There are two key features of this framework: we
use an instrumental variables approach to link intention-to-treat effects to treatment effects and we adopt
a Bayesian approach for inference and sensitivity analysis. This framework is illustrated in a medical
example concerning the effects of inoculation for influenza. In this example, the analyses suggest that
positive estimates of the intention-to-treat effect need not be due to the treatment itself, but rather to the
encouragement to take the treatment: the intention-to-treat effect for the subpopulation who would be
inoculated whether or not encouraged is estimated to be approximately as large as the intention-to-treat
effect for the subpopulation whose inoculation status would agree with their (randomized) encouragement
status whether or not encouraged. Thus, our methods suggest that global intention-to-treat estimates, al-
though often regarded as conservative, can be too coarse and even misleading when taken as summarizing
the evidence in the data for the effects of treatments.

Keywords: Bayesian analysis; Causal inference; Instrumental variables; Noncompliance; Rubin Causal Model; Po-
tential outcomes; Treatment effects; Sensitivity analysis.

1. INTRODUCTION

Many empirical studies in medicine and the social sciences seek to establish causal relations between
treatments and outcomes, rather than mere associations. The only generally accepted approach for infer-
ring causality requires that the receipt of the various treatments is randomized. In many cases, however,
it is not possible to randomize the receipt of treatment. For example, even if the assignment to treatment
is random, some units may opt not to comply with their assignment. The standard intention-to-treat (ITT)
analysis focuses on the causal effect ofassignment of treatment rather than the causal effect ofreceipt of
treatment. This approach is valid for measuring the effect of the encouragement, but interest often centers
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70 K. HIRANO ET AL.

on the effect of the treatment itself, and the interpretation of an ITT analysis is sometimes based on an
implicit assumption that the effect of assignment is indicative of the effect of the treatment.

In this paper we investigate the effect of the receipt of a treatment in a situation where incentives for the
treatment are randomly assigned, but incentives have only a limited correlation with the actual treatment
received. For such cases, Imbens and Angrist (1994) and Angrist et al. (1996), showed that econometric
instrumental variables (IV) methods can be interpreted as estimating a well-defined causal effect under the
potential outcomes approach to causal inference advocated by Rubin (1974, 1978, 1990b), often referred
to as the Rubin Causal Model (Holland, 1986). Imbens and Rubin (1997a) developed likelihood-based,
including fully Bayesian, methods that improve upon conventional econometric IV estimators. As in
Little and Yau (1997), we extend the analysis of Imbens and Rubin (1997a) to allow for the presence of
pretreatment variables (covariates). We consider the consequences of econometric ‘exclusion’ restrictions
that disallow, for various subpopulations, direct links between assignment and outcome other than through
the effect of assignment on the treatment received. Some combinations of such restrictions are similar to
the absence of arrows between assignment and outcomes in graphical causal models (Pearl, 1995), but our
approach has the benefit of allowing for the comparison of results based on different combinations of these
assumptions, thereby assessing sensitivity to violations of the exclusion restrictions. We emphasize the
use of ‘weakly identified’ models: ‘identified’ in the sense of having a proper posterior distribution, but
‘weak’ in the sense of not having unique maximum likelihood estimates. We use these sensitivity analyses
to investigate violations of various exclusion restrictions. Because these potential violations render the
model only weakly identified, the choice of the form of the likelihood function and its associated prior
distribution are more important than usual, and we discuss their specification in detail below.

We apply these methods to a reanalysis of a data set on influenza vaccinations previously studied by
McDonald et al. (1992). In this study, physicians were randomly selected to receive a letter encouraging
them to inoculate patients at risk for flu. The treatment of interest is the actual flu shot, and the outcome
is an indicator for flu-related hospital visits. A standard ITT analysis suggests a moderate effect of as-
signment. That is, the receipt of a letter to the physician encouraging the physician to consider influenza
inoculation for patients appears to reduce flu-related hospitalizations. Our data set involved randomiza-
tion of an encouragement by the doctor, and doctors had multiple patients. Although we do not have
information on the clustering of patients by doctor, we do have some covariate information on patients.
To avoid an overly cumbersome analysis involving unknown cluster indicators, we assume exchangeabil-
ity of patients conditional on covariates. To the extent that outcomes and compliance behavior are still
correlated with missing cluster indicators after conditioning on the covariates, our analysis may lead to
underestimation of standard errors and posterior standard deviations.

Although imperfect, our analysis suggests that there is little evidence that this ITT effect is actually
due to the taking of the vaccine. In fact, under a very plausible model, we find that the subpopulation of
the patients who would receive the vaccine regardless of whether their physician received a letter, appear
to benefit as much from the letter (i.e. from assignment) as the subpopulation of patients who would only
receive the vaccine if their physician received the encouragement letter. Because these subpopulations
are not directly observable (i.e. latent), the analysis is not immediate, and our approach involves both
instrumental variables techniques and Bayesian modeling.

We also find that a directly observable subclass of patients, those who have chronic obstructive pul-
monary disease (COPD), are more likely to receive the influenza vaccine than patients who do not have
COPD, regardless of whether their physicians received letters about the upcoming flu season. This result
suggests that the link between assignment and treatment is related to health status, thereby invalidating
two naive alternatives to an intention-to-treat analysis: both an ‘as treated’ analysis, which directly com-
pares recipients of the vaccine with nonrecipients, and a ‘per protocol’ analysis, which directly compares
recipients who were encouraged with nonrecipients who were not encouraged.
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Assessing the effect of an influenza vaccine in an encouragement design 71

2. INTENTION-TO-TREAT ANALYSES

Because of epidemiologic evidence of increased morbidity related to influenza (Housworth and Lang-
muir, 1974), experimental evidence of serologic efficacy of the influenza vaccine (Francis and Magill,
1937), and observational studies suggesting improved outcomes in vaccinated patients (Patriarca et al.,
1985), health officials in most countries recommend annual influenza vaccination for elderly persons and
other people at high risk of influenza. However, no controlled randomized trials of the effects of the in-
fluenza vaccination on pulmonary morbidity in high-risk adults have been published (McDonald et al.,
1992). One reason for this is that demonstrated efficacy for some subpopulations raises ethical barriers
against performing randomized controlled trials on other subpopulations, which would require withhold-
ing vaccination from some subjects. One way around this impasse is to perform a randomized trial of
an intervention that increases the use of influenza vaccine in one group of patients without affecting the
use of influenza vaccine in another group. McDonald et al. (1992) exploited this idea to study influenza
vaccine efficacy in reducing morbidity in high-risk adults, using a computer-generated reminder for flu
shots. The study was conducted over a 3-year period (1978–1980) in an academic primary-care practice
affiliated with a large urban public teaching hospital. Physicians in the practice were randomly assigned to
either an intervention or a control group at the beginning of the study. Since physicians at the clinic each
cared for a fixed group of patients, their patients were similarly classified. During the study period, physi-
cians in the intervention group received a computer-generated reminder when a patient with a scheduled
appointment was eligible for the influenza vaccine under U.S. Public Health Service Criteria.∗

We reanalyse this study using the 2893 individuals observed in 1980, a particularly severe flu epidemic
season. For each person i we observe: a binary variable Zobs

i , the ‘assignment’ or ‘encouragement’, equal
to one if patient i ’s physician received a reminder letter indicating that the patient was eligible to receive
the influenza vaccine under U.S. Public Health Service Criteria and zero otherwise; a binary variable
Dobs

i , the ‘treatment’, equal to 1 if person i received the vaccine and 0 otherwise; a binary outcome Y obs
i ,

equal to 1 if person i subsequently experienced a flu-related hospitalization during the winter, which we
define as being hospitalized for respiratory problems, and 0 otherwise; and two covariates, Xobs

i1 , age in
years, and Xobs

i2 , an indicator for chronic obstructive pulmonary disease. The vectors Zobs, Dobs, and Yobs

are N -dimensional vectors with i th elements equal to Zobs
i , Dobs

i and Y obs
i , respectively. The N × Z

matrix Xobs has i th row equal to (Xobs
i1 , Xobs

i2 ). As stated in the introduction, for simplicity, we assume
that each patient has a distinct doctor, so that i indexes distinct doctor–patient pairs. Table 2 presents some
summary statistics for the sample, classified by assignment, Zobs

i , and treatment status, Dobs
i .

As can be seen in Table 2, the randomization of the assignment leads to the pretreatment variables being
closely balanced in the two subsamples defined by assignment. The randomization does not, however,
imply that the pretreatment variables are balanced in the subsamples defined by the actual treatment
status. In fact, both age and chronic obstructive pulmonary disease (COPD) rates are significantly different
between patients with flu shots and patients without flu shots. This imbalance indicates that we cannot
simply compare outcomes by treatment status to obtain credible estimates of the effect of receipt of flu
shots.

The conventional ITT approach to estimation of treatment effects compares outcomes by assignment,
that is, by the receipt of the letter by the patient’s physician, ignoring the actual receipt of treatment, that
is, ignoring the receipt of the influenza vaccine. In our case the ‘assignment’ is merely an encouragement
to take the treatment, so that nonencouraged patients may end up receiving the treatment, but this does not
compromise the validity of standard methods for estimating ITT effects, which rest on the randomization
of encouragement. The third row of Table 2 in the second block of columns provides a simple ITT analysis

∗Patients over 65 years of age or with chronic lung disease, asthma, diabetes mellitus, congestive heart failure, or
severe renal or hepatic failure were eligible.
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Table 1. Summary statistics, flu data (sample size 2893)

Means Means

Grand No letter Letter No flu shot Flu shot

mean Zobs
i = 0 Zobs

i = 1 t-stat. Dobs
i = 0 Dobs

i = 1 t-stat.

Letter (Zobs
i ) 0.514 0 1 — 0.475 0.631 −7.5

Flu Shot (Dobs
i ) 0.250 0.190 0.307 −7.3 0 1 —

Hospitalization (Y obs
i ) 0.085 0.092 0.078 1.4 0.085 0.084 0.1

Age (Xobs
i1 ) 65.2 65.0 65.4 −0.8 64.7 66.8 −4.1

COPD (Xobs
i2 ) 0.283 0.290 0.277 0.8 0.264 0.343 −4.0

of the data, which indicates a 15% (= (0.092 − 0.078)/0.092 × 100%) reduction in hospitalization rates
due to encouragement to get flu shots.

More formal ITT analysis are summarized in Table 2. Since the relevant outcome is a binary hospital-
ization indicator, we estimate the logistic regression model:

Pr
[
Y obs

i = 1|Zobs
i , Xobs

i1 , Xobs
i2

]
= exp(β0 + β1 Zobs

i + β2 Xobs
i1 + β3 Xobs

i2 )

1 + exp(β0 + β1 Zobs
i + β2 Xobs

i1 + β3 Xobs
i2 )

.

The first column of Table 2 shows posterior means (based on uniform prior distributions) in a model with
no covariates (i.e. β2 = β3 = 0), whereas the second column reports estimates for the full model.† The
last row gives estimates of the ITT effect, defined as follows. Let Yi (1) denote the potential outcome for
unit i if Zi = 1, and let Yi (0) denote the potential outcome if Zi = 0. We assume that Y obs

i = Yi (Zobs
i ).

The ITT effect is defined as

I T T = 1

N

N∑
i=1

(Yi (1) − Yi (0)).

For any individual, only one of the two potential outcomes is observed, but knowledge of β0, β1, and β2
implies a distribution for the other potential outcome. We assume that the unobserved potential outcome
is independent of the observed potential outcome conditional on the covariates and parameters.‡ This in
turn defines a distribution for the ITT effect conditional on the data Zobs, Y obs, and Xobs. We simulate
the posterior distribution of I T T by taking draws for β0, β1, and β2 from their posterior distribution,
and imputing the missing potential outcomes for each set of parameter draws. This gives a set of draws
from the posterior distribution of I T T . The last row of Table 2 reports the posterior means and standard
deviations for I T T in the two models.

In both cases, the estimate of the average ITT effect is approximately equal to 1.3%, with a standard
deviation of 0.7. The posterior probability that the ITT effect is negative, that is, that the receipt of the
letter decreases average morbidity, is approximately 97%. Thus, there appears to be some evidence that

†We use the uniform prior for convenience, but the results appear to be insensitive to the choice of the prior.
‡Because Yi (0) and Yi (1) are never jointly observed, we cannot expect to learn anything about the partial cor-

relation between the potential outcomes from the data given the covariates, although we can learn about the simple
correlation (Rubin and Thayer, 1978). If we regard the N subjects in the study as a random sample from a much larger
population, and the estimand is the corresponding average difference in this population, the independence assumption
has little inferential effect for average treatment effects (Rubin, 1978; Imbens and Rubin, 1997a).
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Assessing the effect of an influenza vaccine in an encouragement design 73

Table 2. Intention-to-treat analysis using logis-
tic models: summaries of posterior distributions

(sample size 2893)

No covariates Covariates

Mean S.D. Mean S.D.

Intercept −2.298 (0.094) −1.998 (0.348)

Letter −0.176 (0.133) −0.179 (0.125)

Age — — −0.007 (0.005)

COPD — — 0.373 (0.133)

ITT effect −0.013 (0.008) −0.014 (0.007)

the influenza vaccine reduces morbidity, although a standard two-sided t-test suggests this is not quite
significant at the 5% level.

It is tempting to conclude from this analysis that the influenza vaccine is likely to have a direct effect in
reducing morbidity. In their analysis, McDonald et al. (1992, p. 304), using the larger sample period, find
a larger and statistically significant effect, and conclude, in a way that is typical of the ITT interpretation of
randomized trials with noncompliance, that ‘the most likely explanation for the difference [by assignment]
is the greater use of influenza vaccine in the intervention group’.

Here we address the question of interpreting the results as estimating causal effects of the influenza
vaccine on morbidity, by making explicit the assumptions underlying McDonald et al.’s (1992) claims.
We then discuss some possible violations of the key exclusion restrictions necessary to identify causal
effects of the influenza vaccine, provide a ‘weakly identified’ approach to estimation of more general
models, and argue that in fact the evidence for the efficacy of the influenza vaccine from these data is
extremely weak.

3. MODELING COMPLIANCE BEHAVIOR

We have already introduced a potential outcome notation to define a causal effect of the randomized
encouragement. In this section we focus on defining the causal effect of interest, the effect of the influenza
vaccine on flu-related hospitalizations. To do so we will use the extension to the standard potential out-
comes model introduced by Angrist et al. (1996) and Imbens and Rubin (1997a), which we call the
Causal Instrumental Variables Model. Throughout this analysis we will make the stability assumption
(Rubin, 1978, 1980) that there is interference between neither units (Cox, 1958) nor different versions of
the treatment.§

Let Di (z) be an indicator for the receipt of flu shot given assignment z; Di (0) is equal to 1 if patient i
would receive a flu shot if i ’s physician did not receive a letter (Zi = 0) and 0 if patient i would not, and

§In the context of an infectious disease with individuals as the units, the stability assumption is undesirably strong,
although it could be more plausible if we could treat the family as the unit. Unfortunately, because so little is known
about identification of causal effects without the stability assumption, the assumption is implicit in most approaches
to causal inference. If stability does not hold, the precision of our estimates could be overstated, and in addition there
could be bias of unknown direction.
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Di (1) is equal to 1 if patient i would receive a flu shot if i ’s physician did receive a letter (Zi = 1) and 0
if patient i would not; D is the N × 2 matrix with i th row equal to (Di (0), Di (1)).

We partition the population of patients by ‘compliance’ behavior, where compliance is taken to mean
that the treatment is the same as the encouragement. The combination of responses to the two assignments
defines the compliance behavior of unit i , which we denote by Ci :

Ci =




c (i.e. unit i is a complier) if Di (z) = z, for z = 0, 1,

n (i.e. unit i is a never-taker) if Di (z) = 0, for z = 0, 1,

a (i.e. unit i is an always-taker) if Di (z) = 1, for z = 0, 1,

d (i.e. unit i is a defier) if Di (z) = 1 − z, for z = 0, 1.

We observe the compliance behavior only partially, through the response to the actual assignment, Dobs
i =

Di (Zobs
i ). We do not observe the response to the alternative assignment, Dmis

i = Di (1 − Zobs
i ). Because

the type of a unit is a function of both compliance under assignment to the treatment and compliance
under assignment to control, which we can never jointly observe, we generally cannot know a unit’s type,
merely that the unit belongs to the subset of types consistent with its observed compliance behavior. Let
C(t) = {i |Ci = t} for t ∈ {c, n, a, d}; C is the N component vector with i th element Ci , and Nt is the
number of units of type t .

In addition, we define, for z = 0, 1, the potential outcomes Yi (z, Di (z)): Yi (z, Di (z)) is equal to 1 if,
given assignment z and given receipt of treatment Di (z), unit i is hospitalized, and 0 otherwise; Y is the
N × 2 matrix with i th row equal to (Yi (0, Di (0)), Yi (1, Di (1))). Using this notation, the ITT effect of
assignment on the outcome can be defined as the weighted average

ITT =
∑

t∈{c,n,a,d}
Nt · ITTt/N ,

where, for t ∈ {c, n, a, d},
ITTt =

∑
i∈C(t)

[Yi (1, Di (1)) − Yi (0, Di (0))]/Nt ,

is the average ITT effect of Z on Y for each of the four subpopulations defined by compliance behavior,
and Nt/N is the weight assigned to ITTt .

We observe for each unit i the actual assignment Zobs
i , the actual treatment Dobs

i = Di (Zobs
i ), the

actual outcome Y obs
i = Yi (Zobs

i , Di (Zobs
i )), and the pretreatment variables Xobs

i1 and Xobs
i2 .

Random assignment of the letter to doctors implies

Pr
(
Zi

∣∣Di (0), Di (1), Yi (0, 0), Yi (0, 1), Yi (1, 0), Yi (1, 1), Xi1, Xi2
) = Pr(Zi ).

Although in our application the randomization was performed without taking into account the values of
the pretreatment variables, one can allow conditioning on pretreatment variables with no change in our
Bayesian analysis because assignment remains ignorable (Rubin, 1978). In general, we therefore only
require:

ASSUMPTION 1. (IGNORABILITY OF TREATMENT ASSIGNMENT)

Pr
(

Zi
∣∣Di (0), Di (1), Yi (0, 0), Yi (0, 1), Yi (1, 0), Yi (1, 1), Xobs

i1 , Xobs
i2

)
= Pr(Zi |Xobs

i1 , Xobs
i2 ).

We make one additional assumption at this point:
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Assessing the effect of an influenza vaccine in an encouragement design 75

ASSUMPTION 2. (MONOTONICITY OF COMPLIANCE)
For all i ,

Di (1) ≥ Di (0).

This assumption rules out the existence of defiers, patients who would receive the vaccine if their physi-
cian did not receive the letter, but would not receive the vaccine if their physician did receive the letter.
Underlying this assumption is the notion that although physicians need not give every patient a flu shot
upon receipt of the letter, they are unlikely to decide after receiving the letter not to give flu shots to
patients to whom they would have given a flu shot in the absence of the letter—encouragement makes it
more likely for everybody that the treatment was in fact received. This assumption appears very plausible
in our application, and in many other applications of encouragement designs, and we therefore make it
throughout this discussion.

4. EXCLUSION RESTRICTIONS

In this section we consider, but do not necessarily impose, two additional assumptions which rule out
direct effects of the letter on hospitalizations. The concepts underlying these assumptions have a long
tradition in the econometric instrumental variables literature (Reiersol, 1941; Haavelmo, 1943) and are
widely used in economics (e.g. Heckman and Robb, 1985; Angrist, 1990; Manski, 1990; Angrist and
Krueger, 1991). Similar ideas have been considered in other fields by, among others, Zelen (1979, 1990),
Hearst et al. (1986), Holland (1988), Permutt and Hebel (1989), Robins (1989), Efron and Feldman
(1991), Sommer and Zeger (1991), Baker and Lindeman (1994), McClellan and Newhouse (1994), Pearl
(1995), and Little and Yau (1998). For a discussion of the specific form of the assumptions we employ
here and further references see Angrist et al. (1996). These assumptions formalize McDonald et al.’s
(1992) argument that the most likely explanation for the ITT effects is the effect of the influenza vaccine.

In contrast to the previous literature, we distinguish two components of this assumption, one for never-
takers and one for always-takers. In the first component we assume that within subpopulations of never-
takers with the same values of the covariates, the distributions of the two potential outcomes Yi (0, Di (0))

and Yi (1, Di (1)) are the same:

ASSUMPTION 3. (STOCHASTIC EXCLUSION RESTRICTION FOR NEVER-TAKERS)

Pr(Yi (1, Di (1)) = 1|Xi1, Xi2, Ci = n) = Pr(Yi (0, Di (0)) = 1|Xi1, Xi2, Ci = n).

In the second component of the exclusion restriction we assume that within subpopulations of always-
takers with the same values of the covariates, the distributions of the two potential outcomes Yi (0, Di (0))

and Yi (1, Di (1)) are the same:

ASSUMPTION 4. (STOCHASTIC EXCLUSION RESTRICTION FOR ALWAYS-TAKERS)

Pr(Yi (1, Di (1)) = 1|Xi1, Xi2, Ci = a) = Pr(Yi (0, Di (0)) = 1|Xi1, Xi2, Ci = a).

These two assumptions rule out, for the two types of units for whom there is no effect of assignment on
receipt of treatment, any systematic effect of assignment on the outcome, by asserting that the two distri-
butions of potential outcomes indexed by assignment do not vary with assignment within subpopulations
indexed by covariates and compliance type. It formalizes the notion that any ITT effect of assignment on
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the outcome should be mediated by an effect of assignment on the treatment received. We regard these two
assumptions as possibly controversial, and we will investigate their consequences in some detail. It should
be noted, however, that even under the exclusion restrictions for both never-takers and always-takers, the
attribution of the complier population ITT effect, ITTc, to the change in treatment for compliers is an as-
sumption. The desire to make this attribution more plausible underlies the widespread practice of blinding
and double blinding in medical evaluations of treatments, typically impossible in encouragement designs.
In the remainder of the paper, we do not require this assumption. We focus on inference for the complier
ITT effect and leave its interpretation open.

The two exclusion restrictions suffice to identify the ITT effect for compliers without any further para-
metric assumptions (Imbens and Angrist, 1994; Angrist et al., 1996). Some testable restrictions are
implied by the two restrictions (Balke and Pearl, 1993; Imbens and Rubin, 1997b), but in order to relax
fully one or both exclusion restrictions, it is useful to make auxiliary assumptions. In the next section,
we do this by imposing a parametric form on the likelihood function and using a relatively diffuse but
proper prior distribution. Because of the reliance of the weakly identified analyses on these auxiliary
assumptions, their interpretation will require care; nevertheless, we will argue below that they can play an
important role in assessing sensitivity of the inference to the exclusion restrictions. In particular, because
it is possible that doctors took actions other than administering the treatment of interest in response to
the letter, we believe that the weakly identified models can yield more relevant answers than models with
assumptions chosen primarily for purposes of identification rather than for scientific reasons.

5. PARAMETRIC MODELS

Following Imbens and Rubin (1997a), we model the conditional distribution of the compliance type
Ci given pretreatment variables, and the conditional distribution of potential outcomes given pretreatment
variables and compliance type, rather than the joint distribution of the observed variables Dobs

i , Y obs
i and

Zobs
i given the pretreatment variables. Both distributions are parametrized so that conditional on a gen-

eral parameter, denoted by π , the model has an independent and identical distribution (i.i.d.) structure.
Incorporating the compliance type into the parametric model has two key advantages. First, it simpli-
fies the process of imposing the substantive restrictions (the monotonicity condition and the exclusion
restrictions) discussed in the previous sections. Second, it allows us to examine directly average treatment
effects for subpopulations, such as the subpopulation of compliers. The unknown Ci values will be treated
as missing data in the analyses.

In the general model, which does not impose the monotonicity assumption or either of the two ex-
clusion restrictions, there are eight outcome distributions: one given receipt of letter and one given no
receipt of letter, for each of the four types of units, never-takers, always-takers, compliers and defiers. The
monotonicity assumption eliminates the two outcome distributions for defiers. Because our outcome is
dichotomous, we assume that the remaining six outcome distributions take the form of logistic regressions:

Pr(Yi (Zi , Di (Zi )) = 1|Ci = t, Zi = z, Xi1 = x1, Xi2 = x2, π) = 	(x1, x2, βt z),

where βt z = (βt z0, βt z1, βt z2)
′, and

	(x1, x2, βt z) = exp(βt z0 + βt z1 · x1 + βt z2 · x2)

1 + exp(βt z0 + βt z1 · x1 + βt z2 · x2)
,

for all t ∈ {c, n, a} and z = 0, 1. We assume that conditional on Xi and π , the two outcomes Yi (0, Di (0))

and Yi (1, Di (1)) are independent. This assumption can easily be relaxed, but since the data are not
informative about this partial association structure, there is typically little gain in doing so. (See footnote
‡.)
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For the distribution of types we use a multinomial logit model:

Pr(Ci = c|Xi1 = x1, Xi2 = x2, π) = 
(c, x1, x2, ψc, ψn, ψa),

Pr(Ci = n|Xi1 = x1, Xi2 = x2, π) = 
(n, x1, x2, ψc, ψn, ψa),

and
Pr(Ci = a|Xi1 = x1, Xi2 = x2, π) = 
(a, x1, x2, ψc, ψn, ψa),

where, for t ∈ {c, n, a}, we have:


(t, x1, x2, ψc, ψn, ψa) = exp(ψt0 + ψt1x1 + ψt2x2)∑
v∈{c,n,a} exp(ψv0 + ψv1x1 + ψv2x2)

.

We normalize these probabilities by setting ψn equal to the three-dimensional vector of zeros. The full pa-
rameter vector is π = (βc, βn, βa, ψc, ψa), where βc = (βc0, βc1), βn = (βn0, βn1), and βa = (βa0, βa1),
for a total of 26 parameters.

Consider the complete-data likelihood function, based on observing Zobs, Dobs, Yobs, Xobs, as well as
the vector of compliance type indicators C:

Lcomp(π |Zobs, Dobs, Yobs, Xobs, C) =
∏

i∈C(c)


(c, Xi1, Xi2, ψc, ψn, ψa) · 	(Xi1, Xi2, βcZi )
Yi

(
1 − 	(Xi1, Xi2, βcZi )

)1−Yi

∏
i∈C(n)


(n, Xi1, Xi2, ψc, ψn, ψa) · 	(Xi1, Xi2, βnZi )
Yi

(
1 − 	(Xi1, Xi2, βnZi )

)1−Yi

∏
i∈C(a)


(a, Xi1, Xi2, ψc, ψn, ψa) · 	(Xi1, Xi2, βaZi )
Yi

(
1 − 	(Xi1, Xi2, βaZi )

)1−Yi
.

The complete-data likelihood function has a simple form with nine factors, one for each of the six out-
come distributions and three involving the parameters of the type distribution. For inference based on the
observed data, we cannot work directly with this complete-data likelihood function, because we do not
observe the type Ci of each unit. However, we can exploit the complete-data likelihood function by using
missing data methods such as the EM algorithm (Dempster et al., 1977), and the Data Augmentation
(DA) algorithm (Tanner and Wong, 1987). In the Appendix, we describe the numerical methods used to
generate the inferences reported below.

There are four possible patterns of missing and observed data in (Di , Yi ) corresponding to the four
possible values for (Zobs,i , Dobs,i ): (0,0), (0,1), (1,0), (1,1). Indicate the subsets of units exhibiting each
pattern by S(0, 0), S(0, 1), S(1, 0), and S(1, 1). We can then write the actual (i.e. observed) likelihood
function in terms of the observed data as

Lobs(π |Zobs, Dobs, Yobs, Xobs)

=
∏

i∈S(0,0)

[

(c, Xi1, Xi2, ψc, ψn, ψa) · 	(Xi1, Xi2, βc0)

Yi
(

1 − 	(Xi1, Xi2, βc0)
)1−Yi

+
(n, Xi1, Xi2, ψc, ψn, ψa) · 	(Xi1, Xi2, βn0)
Yi

(
1 − 	(Xi1, Xi2, βn0)

)1−Yi
]
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×
∏

i∈S(1,0)


(n, Xi1, Xi2, ψc, ψn, ψa) · 	(Xi1, Xi2, βn1)
Yi

(
1 − 	(Xi1, Xi2, βn1)

)1−Yi

×
∏

i∈S(1,0)


(a, Xi1, Xi2, ψc, ψn, ψa) · 	(Xi1, Xi2, βa0)
Yi

(
1 − 	(Xi1, Xi2, βa0)

)1−Yi

×
∏

i∈S(1,1)

[

(c, Xi1, Xi2, ψc, ψn, ψa) · 	(Xi1, Xi2, βc1)

Yi
(

1 − 	(Xi1, Xi2, βc1)
)1−Yi

+
(a, Xi1, Xi2, ψc, ψn, ψa) · 	(Xi1, Xi2, βa1)
Yi

(
1 − 	(Xi1, Xi2, βa1)

)1−Yi
]

.

The posterior distribution can be sensitive to the choice of prior distribution, because the observed-data
likelihood has a mixture structure over a large amount of missing data. For example, standard diffuse,
improper prior distributions can lead to improper posterior distributions. We therefore use a proper prior
distribution with a simple conjugate form. Our prior distribution corresponds to adding to the likelihood
function 30 extra observations: there are 10 additional observations for each type (complier, never-taker,
and always-taker); for each type the 10 additional observations are split into 2.5 for each of the four
combinations of the binary variables (Zi , Yi ), further split equally into 2.5/N artificial observations for
each of the N observed pairs of values of the pretreatment variables, Xi1 and Xi2. More formally, the
prior distribution is proportional to

p(π) ∝
N∏

i=1

×
∏

t∈{c,n,a}
×

∏
z=0,1

∏
y=0,1[


(t, Xi1, Xi2, ψc, ψn, ψa) · 	(Xi1, Xi2, βt z)
y(1 − 	(Xi1, Xi2, βt z))

(1−y)

]2.5/N

.

In the application in this paper, we impose prior equality of the slope coefficients in the outcome re-
gressions: βc01 = βc11 = βn01 = βn11 = βa01 = βa11 ≡ β0.1 and βc02 = βc12 = βn02 = βn12 =
βa02 = βa12 ≡ β0.2, reducing the number of parameters to 14. Relaxing these restrictions would not
complicate the computational methodology greatly, but given the relatively small sample size, would lead
to imprecise estimates.

To demonstrate that this proper prior distribution does not lead to a highly informative prior distribution
for the estimands of interest, Table 3 presents summary statistics, obtained by the methods described in
the Appendix, of the marginal prior distributions of the ITT effects for the three subpopulations and of the
overall ITT effect, given each of the four combinations of exclusion restrictions. The joint distributions of
the ITT effects were obtained using the same computational techniques used to obtain the actual posterior
distribution with the data. The comparison of the standard deviations in Table 3 for the ITT effects with
the corresponding values in Table 4 below, indicates that the prior distribution is relatively uninformative
about quantities of interest.

6. CAUSAL INFERENCE UNDER EXCLUSION RESTRICTIONS

In Table 4, summary statistics of the posterior distributions of the estimands of interest are presented
under the four combinations of the exclusion restrictions. Figures 1–4 show simulation scatterplots for
two-way joint distributions of subpopulation ITT effects. Figure 1 shows the joint distribution of ITTa and
ITTc in the model that relaxes the exclusion restriction for always-takers only; Figure 2 shows the joint
distribution of ITTn and ITTc in the model that relaxes the exclusion restriction for never-takers only; and
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Table 3. Summary statistics: prior distributions

Excl. Res. Never-takers −→ Yes Yes No No

Excl. Res. Always-takers −→ Yes No Yes No

Estimand Mean S.D. Mean S.D. Mean S.D. Mean S.D.

ITTc 0.005 (0.278) −0.002 (0.282) 0.003 (0.285) −0.013 (0.280)

ITTn 0 0 0 0 0.009 (0.282) 0.001 (0.287)

ITTa 0 0 −0.005 (0.279) 0 0 −0.001 (0.283)

ITT 0.002 (0.095) −0.002 (0.135) 0.004 (0.139) −0.004 (0.169)

Table 4. Summary statistics: posterior distributions

Excl. Res. Never-takers −→ Yes Yes No No

Excl. Res. Always-takers −→ Yes No Yes No

Estimand Mean S.D. Mean S.D. Mean S.D. Mean S.D.

ITTc −0.082 (0.068) −0.037 (0.078) −0.196 (0.147) −0.168 (0.161)

ITTn 0 0 0 0 0.022 (0.026) 0.025 (0.027)

ITTa 0 0 −0.053 (0.032) 0 0 −0.058 (0.033)

ITT −0.010 (0.008) −0.014 (0.008) −0.009 (0.007) −0.013 (0.008)

E[Yi (0, Di (0))|Ci = c] 0.121 (0.063) 0.124 (0.063) 0.236 (0.145) 0.263 (0.160)

E[Yi (1, Di (1))|Ci = c] 0.039 (0.026) 0.087 (0.047) 0.040 (0.026) 0.095 (0.049)

E[Yi (0, Di (0))|Ci = n] 0.082 (0.005) 0.082 (0.005) 0.062 (0.025) 0.058 (0.026)

E[Yi (1, Di (1))|Ci = n] 0.082 (0.005) 0.082 (0.005) 0.083 (0.006) 0.083 (0.006)

E[Yi (0, Di (0))|Ci = a] 0.100 (0.008) 0.114 (0.014) 0.100 (0.008) 0.114 (0.014)

E[Yi (1, Di (1))|Ci = a] 0.100 (0.008) 0.061 (0.029) 0.100 (0.008) 0.056 (0.029)

Pr(Ci = c) 0.119 (0.014) 0.117 (0.014) 0.121 (0.014) 0.117 (0.014)

Pr(Ci = n) 0.692 (0.008) 0.693 (0.008) 0.692 (0.008) 0.693 (0.008)

Pr(Ci = a) 0.189 (0.007) 0.190 (0.007) 0.188 (0.007) 0.190 (0.007)

Figures 3 and 4 show joint distributions for the model with no exclusion restrictions. In addition, Table 5
summarizes posterior distributions of the parameter vector π in the different models.

First, consider the last block of columns in Table 4, presenting results for the case with no exclusion
restrictions. The standard ITT estimand is still precisely estimated, with essentially the same posterior
mean and standard deviation as in the original logistic ITT analysis. The subpopulation ITT effects,
however, are estimated very imprecisely.

In the first block of columns we impose both exclusion restrictions. Now we estimate the complier
ITT effect, the only subpopulation ITT effect, which is not assumed to equal zero, fairly precisely. These

 by guest on M
ay 16, 2011

biostatistics.oxfordjournals.org
D

ow
nloaded from

 

http://biostatistics.oxfordjournals.org/


80 K. HIRANO ET AL.

−0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

ITT
a

IT
T

c

Fig. 1. Simulation scatterplot of the joint posterior distribution of ITTa and ITTc, in the model with exclusion
restriction only for never-takers.
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Fig. 2. Simulation scatterplot of the joint posterior distribution of ITTn and ITTc, in the model with exclusion
restriction only for always-takers.
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Fig. 3. Simulation scatterplot of the joint posterior distribution of ITTa and ITTc, in the model with no exclusion
restrictions.
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Fig. 4. Simulation scatterplot of the joint posterior distribution of ITTn and ITTc, in the model with no exclusion
restrictions.
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restrictions correspond to the standard IV analysis, as well as to the notion articulated by McDonald et al.
(1992) that the ITT effect can be largely attributed to the effect of the vaccine on hospitalization, rather
than the effect of the letter on hospitalization. The estimated ITT effect for compliers is a reduction of
flu-related hospitalizations of 8.2%, from 12.1% without a flu shot to 3.9% with the flu shot. Note that
this estimated effect is much larger than the ITT effect, 1.0%, because only 12.1% of the population is
estimated to be compliers when both exclusion restrictions are in force (1.0% / 12.1% ≈ 8.2%).

The middle two blocks of columns in Table 4 represent a key benefit of our framework. Rather than
having to impose the exclusion restriction for all types of noncompliers, as with conventional econometric
IV methods, we can impose it for any combination of the subpopulations of always-takers and never-
takers. In this application, as in many others (e.g. the military service example discussed in Hearst et
al. 1986; Angrist, 1990; and Angrist et al. 1996), the two exclusion restrictions have very different
interpretations, and their plausibility rests on very different arguments.

Consider first the exclusion restriction for always-takers. The always-takers are patients who would
receive the influenza vaccine irrespective of the receipt of the encouragement letter by their physician.
Such patients are predominantly at higher risk for the flu; in our analysis this is revealed by the positive
multinomial logit coefficients on age and COPD (see Table 5), which imply that always-takers tend to be
older and more likely to have COPD. How could the exclusion restriction be violated for such patients?
That is, why would such patients be affected by a letter warning their physicians about the upcoming flu
season when they will be inoculated irrespective of this warning? One reason might be that the letter
prompts the physician to take other measures beyond the influenza vaccine, such as advising the patient
about ways to avoid exposure or providing other medical treatment, or perhaps giving earlier administra-
tion of the vaccine. If these other measures or early administration affect health outcomes, the exclusion
restriction would be violated.

Reasons for believing the exclusion restriction for never-takers are quite different, and appear less
tenuous, than for always-takers. These patients would not receive the vaccine in any case. If these patients
and their physicians did not regard the risk of flu as high enough to warrant inoculation, they might not be
subject to other medical actions either, and so it might be reasonable to assume that these patients were
completely unaffected by their physicians’ receipt of the letter, implying that the exclusion restriction
would be satisfied for the never-takers.

Given the possibility that physicians took actions other than administering the vaccine in response to
the encouragement, we find it more plausible to impose the exclusion restriction for never-takers than for
always-takers. Therefore, we focus on the second block of columns in Table 4. The marginal distributions
of the subpopulation ITT effects suggest that the effects for compliers and always-takers are of roughly the
same size. Examining their joint distribution in Figure 1, we see that the effects are somewhat negatively
correlated; nevertheless, the ITT effect for always-takers appears likely to be sizable at any plausible
value of the complier ITT effect. Although this result necessarily relies more heavily on the specific
form of the likelihood function and prior distribution, it casts considerable doubt on scientific validity
of the practical inference that would be drawn from the ‘strongly identified’ analysis, which imposes
both exclusion restrictions, namely, that the receipt of the influenza vaccine is quite effective at reducing
flu-related hospitalizations.

A similar, but weaker, conclusion can be drawn from the model with no exclusion restrictions at all.
Figure 3 gives the joint distribution of the ITT effects for always-takers and compliers with no exclusion
restrictions. This joint distribution is less correlated than Figure 1, and there is still considerable posterior
weight given to negative values of the ITT effect for always-takers, regardless of the complier ITT effect,
which is, however, likely to be more negative than the always-taker ITT effect. This result occurs to some
extent because of an estimated positive ITT effect for never-takers, as shown in Figure 4, which must
be regarded as implausible if the ITT effect is negative for always-takers. Certainly, our data provide
little evidence that the overall ITT effect arises entirely or even largely from the effect of the vaccine on
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Table 5. Posterior distributions for parameters

Excl. Res. Never-takers −→ Yes Yes No No

Excl. Res. Always-takers −→ Yes No Yes No

Estimand Mean S.D. Mean S.D. Mean S.D. Mean S.D.

βn00 −2.42 (0.14) −2.44 (0.14) −2.85 (0.60) −2.98 (0.74)

βn10 −2.42 (0.14) −2.44 (0.14) −2.42 (0.15) −2.43 (0.15)

βa00 −2.22 (0.21) −2.11 (0.22) −2.20 (0.22) −2.11 (0.23)

βa10 −2.22 (0.21) −2.94 (0.75) −2.20 (0.22) −3.08 (0.92)

βc00 −2.14 (0.78) −2.10 (0.74) −1.43 (1.15) −1.25 (1.08)

βc10 −3.45 (1.01) −2.55 (0.87) −3.36 (0.88) −2.42 (0.78)

β0.1 −0.31 (0.26) −0.29 (0.26) −0.35 (0.28) −0.33 (0.28)

β0.2 0.34 (0.15) 0.37 (0.15) 0.36 (0.15) 0.39 (0.16)

ψc0 −1.86 (0.23) −1.83 (0.22) −1.83 (0.20) −1.84 (0.21)

ψc1 0.41 (0.51) 0.32 (0.50) 0.34 (0.46) 0.29 (0.43)

ψc2 −0.17 (0.41) −0.29 (0.64) −0.12 (0.36) −0.16 (0.39)

ψa0 −1.85 (0.12) −1.86 (0.12) −1.86 (0.12) −1.85 (0.12)

ψa1 1.09 (0.25) 1.13 (0.24) 1.12 (0.25) 1.11 (0.24)

ψa2 0.65 (0.13) 0.66 (0.12) 0.65 (0.12) 0.64 (0.12)

hospitalizations. A conventional ITT analysis could therefore overstate the efficacy of the receipt of the
flu shot, and clearly does not provide a fair summary of the evidence in the data for the efficacy of the flu
shot itself.

In our application, the substantive interpretations of the potential effect of the letter on never-takers and
always-takers are very different, and as argued above, it may be more reasonable to exclude an ITT effect
for never-takers than to exclude an ITT effect for always-takers. In other applications, it may be desirable
to consider the assumption that the ITT effects are the same for all types of noncompliers. Such an
assumption would lead to the restriction βn = βa , which is easy to impose and implement computationally
in our framework. It would also be possible to modify our simulation methods to incorporate other prior
restrictions, for example, parameter constraints requiring that the ITT effect for all subpopulations to be
of the same sign, or requiring the ITT effects for never-takers and always-takers to be of the same sign.

7. CONCLUSION

We have set out a framework for the analysis of a randomized experiment in which, instead of random-
izing the treatment of interest (in our case an influenza vaccine), the researchers randomly assigned an
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encouragement to give the treatment. A standard intention-to-treat analysis demonstrates that the encour-
agement decreases hospitalization rates. It is tempting, and rather standard applied practice, to interpret
such a result as indicating a beneficial effect of the receipt of treatment, rather than just the effect of the
encouragement to receive treatment; moreover, such interpretations of ITT analyses are often regarded as
conservative, in the sense that the data would only support that conclusion when there really is a positive
effect of the treatment. Our framework allows researchers to go beyond such an analysis to allow for
different assumptions concerning the effect of the assignment for various subpopulations defined by com-
pliance behavior. In particular, our approach of relaxing exclusion restrictions selectively by compliance
type generalizes previous work on causal instrumental variables methods and facilitates a comparison of
the effect of receipt of treatment under these alternative assumptions. The plausibility of these assump-
tions should be assessed, as in our discussion, by the underlying science of the application.

In our application we find little evidence that the flu shot had any beneficial effects. The strongest
evidence is that the encouragement appears to have a similar beneficial effect on people who would have
received a flu shot regardless of the encouragement, the always-takers, and on those who would only re-
ceive the flu shot when encouraged, the compliers. We interpret this result as evidence that physicians
may have been inclined to provide always-takers and compliers with more or earlier preventative mea-
sures after receiving the encouragement, and that these other measures or their timing might have had a
beneficial effect on reducing flu-related hospitalization. Thus our analysis illustrates the difficulty with
automatically interpreting intention-to-treat effects as indicative of the effect of receipt of treatment, and
provides a framework for discussing the assumptions under which such an interpretation may or may not
be plausible.

APPENDIX

Details of calculations

Our approach to inference treats the latent compliance types C = (C1, . . . , Cn) as missing data and
applies modern missing data technology for Bayesian models.

MARKOV CHAIN MONTE CARLO

We construct a general state space Markov chain that has the joint distribution of the model parameters
π and the missing type vector C as its unique invariant equilibrium distribution. The Markov chain
algorithm is a variant of the Metropolis–Hastings algorithm (Metropolis et al., 1953; Hastings, 1970; see
also Tierney, 1994), which uses the Data Augmentation (DA) method of Tanner and Wong (1987). The
algorithm can be described as follows. Let (C( j), π( j)) denote the state of the chain at time j . The state
of the chain at time j + 1 follows from applying the following steps.

First, we draw C( j+1) according to P(C |π( j), W ), where we use W = (Zobs, Dobs, Yobs, Xobs) to
simplify the notation. This conditional distribution has a simple form. Conditional on π and W , the Ci

are independent of C j , Zobs
j , Dobs

j , Y obs
j , Xobs

j for all j �= i . Then, by the monotonicity assumption,

Pr(Ci = n|Zobs
i = 1, Dobs

i = 0, Y obs
i , Xobs

i ) = 1;

Pr(Ci = a|Zobs
i = 0, Dobs

i = 1, Y obs
i , Xobs

i ) = 1.

It remains to consider the cases (Zobs
i = 1, Dobs

i = 1) and (Zobs
i = 0, Dobs

i = 0). For observations with
Zobs

i = 1, Dobs
i = 1,

Pr(Ci = c|Zobs
i = 1, Dobs

i = 1, Y obs
i , Xobs

i ) ∝
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(c, Xi1, Xi2, ψc, ψn, ψa)	(Xi1, Xi2, βcZi )
Yi

(
1 − 	(Xi1, Xi2, βcZi )

)1−Yi ;

Pr(Ci = n|Zobs
i = 1, Dobs

i = 1, Y obs
i , Xobs

i ) = 0;

Pr(Ci = a|Zobs
i = 1, Dobs

i = 1, Y obs
i , Xobs

i ) ∝


(a, Xi1, Xi2, ψc, ψn, ψa)	(Xi1, Xi2, βaZi )
Yi

(
1 − 	(Xi1, Xi2, βaZi )

)1−Yi .

Analogous results hold for observations with Zobs
i = 0, Dobs

i = 0:

Pr(Ci = c|Zobs
i = 0, Dobs

i = 0, Y obs
i , Xobs

i ) ∝


(c, Xi1, Xi2, ψc, ψn, ψa)	(Xi1, Xi2, βcZi )
Yi

(
1 − 	(Xi1, Xi2, βcZi )

)1−Yi ;

Pr(Ci = n|Zobs
i = 0, Dobs

i = 0, Y obs
i , Xobs

i ) ∝


(n, Xi1, Xi2, ψc, ψn, ψa)	(Xi1, Xi2, βnZi )
Yi

(
1 − 	(Xi1, Xi2, βnZi )

)1−Yi ;

Pr(Ci = a|Zobs
i = 0, Dobs

i = 0, Y obs
i , Xobs

i ) = 0.

This exhausts the possible cases for (Zobs
i , Dobs

i ).
We then draw for the following subvectors of π in sequence, conditional on all others: {ψc, ψn, ψa};

{βc00}; {βc10}; {βn00}; {βn10}; {βa00}; {βa10}; {β0.1, β0.2},
where we assume equality of the slope coefficients βt z1 and βt z2 and some other components of β as
implied by the exclusion restrictions.

If we could draw directly from the appropriate conditional distributions, this would define a Gibbs
sampler (see Geman and Geman, 1984; and Gelfand and Smith, 1990), which in our specification is
rather difficult to do; however, it is straightforward to calculate the (complete-data) posterior density up
to a normalizing constant at any parameter value, so we can use Metropolis–Hastings steps. To draw
ψ = (ψc, ψn, ψa), we draw candidate values ψcand from a density g(ψ |π( j)). The candidate draw is
accepted with probability

α = min

{
p(β( j), ψcand|W, C)

p(β( j), ψ( j)|W, C)
· g(ψ( j)|β( j), ψcand)

g(ψcand|β( j), ψ( j))
, 1

}
,

where p is the posterior density, up to a normalizing constant, of the parameter vector. For the candidate
density g, we use a vector of scaled t random variables with five degrees of freedom, centered at ψ( j).
This has the convenient property that

g(ψcand|β, ψ( j)) = g(ψ( j)|β, ψcand),

simplifying the expression for α slightly.
The scaling factors were chosen based on preliminary runs of the chain. It is desirable to strike a

balance between rejecting too often and rejecting too infrequently, so that the resulting chain will cover
the support of the target distribution relatively efficiently—not staying at the same point too much but also
not taking steps that are too small.
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To assess convergence of interative simulation methods, we use, following Gelman and Rubin (1992),
multiple chains from some overdispersed initial distribution and compare their realizations. As the initial
distribution, we take a multivariate normal approximation derived from a simulation based on a single
chain, and inflate the variance matrix. The chains for the various models appear to converge in only a
few hundred to one or two thousand iterations, even when the Metropolis candidate distributions are not
tuned too carefully. Thus we discarded the first 2000 iterations of every chain used in the analysis. For
the posterior distributions, the chains were run for 98 000 iterations after the burn-in stage, saving every
25th iteration. For the prior distributions, the chains were run for 48 000 iterations after burn-in, saving
every 10th iteration.
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