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bias-corrected GMM estimator, and that the higher-order efficiency of other GEL estimators depends on
conditional kurtosis of the moments.
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1. Introduction

It is important to choose carefully the instrumental variables
for estimating conditional moment restriction models. Adding
instruments increases asymptotic efficiency but also increases
small sample bias and/or variance. We account for this trade-off
by using a higher-order asymptotic mean-square error (MSE) of
the estimator to choose the instrument set. We derive the higher-
order MSE for GMM, a bias corrected version of GMM (BGMM),
and generalized empirical likelihood (GEL). For simplicity we
impose a conditional symmetry assumption, that third conditional
moments of disturbances are zero, and use a large number
of instrument approximations. We also consider the effect of
allowing identification to shrink with the sample size n at a
rate slower than 1/4/n. The resulting MSE expressions are quite
simple and straightforward to apply in practice to choose the
instrument set. The MSE criteria given here also provide higher
order efficiency comparisons. We find that continuously updated
GMM estimator (CUE) is higher-order efficient relative to BGMM.
We also find that the higher order efficiency of the GEL estimators
depends on conditional kurtosis, with all GEL estimators having the
same higher-order variance when disturbances are Gaussian. With
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Gaussian disturbances and homoskedasticity, Rothenberg (1996)
showed that empirical likelihood (EL) is higher order efficient
relative to BGMM. Our efficiency comparisons generalize those of
Rothenberg (1996) to other GEL estimators and heteroskedastic,
non Gaussian disturbances. These efficiency results are different
than the higher-order efficiency result for EL from Newey and
Smith (2004), where all estimators are biased corrected, the
number of moments is fixed, and symmetry is not imposed.

Donald and Newey (2001) gives analogous results for linear
instrumental variable estimators with homoskedasticity. This pa-
per focuses on GMM estimators with heteroskedasticity, lead-
ing to heteroskedasticity robust MSE that include terms from
estimation of the weight matrix. Our MSE criteria is like that of
Nagar (1959), being the MSE of leading terms in a stochastic ex-
pansion of the estimator. This approach is well-known to give the
same answer as the MSE of leading terms in an Edgeworth expan-
sion, under suitable regularity conditions (e.g. Rothenberg (1984)).
The many-instrument simplification seems appropriate for many
applications where there is a large number of potential instru-
mental variables. We also assume symmetry, in the sense that
conditional third moments of the disturbances are zero. This sym-
metry assumption greatly simplifies calculations. Also, relaxing it
may not change the results much, e.g. because the bias from asym-
metry tends to be smaller than other bias sources for large numbers
of moment conditions, see Newey and Smith (2004).

Choosing moments to minimize MSE may help reduce mislead-
ing inferences that can occur with many moments. For GMM, the
MSE explicitly accounts for an important bias term (e.g. see Hansen
et al. (1996), Newey and Smith (2004)), so choosing moments to
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minimize MSE avoids cases where asymptotic inferences are poor
due to the bias being large relative to the standard deviation. For
GEL, the MSE explicitly accounts for higher order variance terms,
so that choosing instruments to minimize MSE helps avoid under-
estimated variances. However, the criteria we consider do not gen-
erally provide the most accurate inference, as recently pointed out
by Sun et al. (2007) in another context.

The problem addressed in this paper is different than that
considered by Andrews (1999), where selection of the largest set
of valid moments was considered. Here the problem is how to
choose among moments known to be valid. Choosing among valid
moments is important when there are many thought to be equally
valid. Examples include various natural experiment studies, where
multiple instruments are often available, as well as intertemporal
optimization models, where all lags may serve as instruments.

In Section 2 we describe the estimators we consider and
present the criteria we develop for choosing the moments. We also
compare the criteria for different estimators, which corresponds
to the MSE comparison for the estimators, finding that the CUE
has smaller MSE than bias corrected GMM. In Section 3 we
give the regularity conditions used to develop the approximate
MSE, give the formal results, and consider higher order efficiency
comparisons. A small scale Monte Carlo experiment is conducted
in Section 4. Concluding remarks are offered in Section 5.

2. The model and estimators

We consider a model of conditional moment restrictions like
Chamberlain (1987). To describe the model let z denote a single
observation from an ii.d. sequence (z1,z3,...), B ap x 1
parameter vector, and p(z, ) a scalar that can often be thought
of as a residual.! The model specifies a subvector of x, acting as
conditioning variables, such that for a value 8, of the parameters

E[p(z, Bo)Ix] =0,

where E[-] the expectation taken with respect to the distribution
OfZ,‘.

To form GMM estimators we construct unconditional moment
restrictions using a vector of K functions of x given by q¥(x) =

(qik(X), ..., qx (). Let g(z,B) = p(z, B)q“(x). Then the
unconditional moment restrictions

Elg(z, fo)] =0

are satisfied. Let g;(8) = g(z;, B), 8.(B) = n 'Y, &(p), and
Y(B) =n'Y L g(B)g(B) . Atwo-step GMM estimator is one
that satisfies, for some preliminary consistent estimator f for o,

B =argming: (BT (B)"'&(8). (21)

where 8 denotes the parameter space. For our purposes 3 could be
some other GMM estimator, obtaiqed~as the solution to an analo-
gous minimization problem with 7' (8)~! replaced by a different
weighting matrix, such as Wy = [, ¢ (x)q¥ (x;)’/n]~ .

The MSE of the estimators will depend not only on the number
of instruments but also on their form. In particular, instrumental
variables that better predict the optimal instruments will help
to lower the asymptotic variance of the estimator for a given
K. Thus, for each K it is good to choose gX(x) that are the best
predictors. Often it will be evident in an application how to
choose the instruments in this way. For instance, lower order
approximating functions (e.g. linear and quadratic) often provide

1 The extension to the vector of residuals case is straightforward.

the most information, and so should be used first. Also, the main
terms may often be more important than interactions.

The instruments need not form a nested sequence. Letting
gk (x) depend on K allows different groups of instrumental
variables to be used for different values of K. Indeed, K fills a double
role here, as the index of the instrument set as well as the number
of instruments. We could separate these roles by having a separate
index for the instrument set. Instead here we allow for K to not
be selected from all the integers, and let K fulfill both roles. This
restricts the sets of instruments to each have a different number of
instruments, but is often true in practice. Also, this double role for
K restricts the number of instrument sets we can select among, as
seems important for the asymptotic theory.

As demonstrated by Newey and Smith (2004), the correlation
of the residual with the derivative of the moment function leads to
an asymptotic bias that increases linearly with K. They suggested
an approach that removes this bias (as well as other sources of bias
that we will ignore for the moment). This estimator can be obtained
by subtracting an estimate of the bias from the GMM estimator and
gives rise to what we refer to as the bias adjusted GMM estimator
(BGMM). To describe it, let g; = ¢ (x;), pi(8) = p(z:, B),and

pi=pi(B™, 3 =[9p:(B") /381,
n
F=>"aqg/n.
i=1
E=T@EN T - TED AT E DT TEN
The BGMM estimator is

/

j\/:[j\’]a"'?j}ﬂ]v

n
PP ="+ (T BT Y b Sa

i=1

Also as shown in Newey and Smith (2004), GEL estimators have

less bias than GMM when K is large. We follow the description
of these estimators given in that paper. Let s(v) be a concave
function with domain that is an open interval V containing 0,
si(v) = ¥s(v)/0v/, and s; = s;(0). We impose the normalizations
s1 = s, = —1. Define the GEL estimator as

n
B = argmin max s(2'gi(B))
BEB jeAn(B) =5

where, A,(B) = {» : Ag(B) € V,i = 1,...,n}. This
estimator includes as a special cases: empirical likelihood (EL, Qin
and Lawless (1994), Owen (1988)), where s(v) = In(1 — v),
exponential tilting (ET, Imbens et al. (1998), Kitamura and Stutzer
(1997)), where s(v) = —exp(v), and the continuous updating
estimator (CUE Hansen et al., 1996), where s(v) = —(1 + v)?/2.
As we will see the MSE comparisons between these estimators
depend on ss3, the third derivative of the s function, where

CUE :s3 =0, ET:s3 = -1, EL:s3 = —2.

2.1. Instrument selection criteria

The instrument selection is based on minimizing the approxi-
mate mean squared error (MSE) of a linear combination 'S of a

GMM estimator or GEL estimator B where f is some vector of (es-
timated) linear combination coefficients. To describe the criteria,
some additional notation is required. Let S be some preliminary

estimator, ; = pi(B), Ji = 0p;(B)/3B, and
n n

T =Y ptaq/n. =) qFi/n
1 i=1

i=
Q=rr1r, =01

—

)
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-1
n

di=1I' (Z quj{/”) ai, ni=yi—d,
=

& =q T 'q/n,

n n
~ S [Ar~ 2 A 2~ Ar~
AR =Y Ei(Fhp)" . TTE) =) &ipiE'i),
i=1 i=1

151* =1"7"g,

2 nAAA~2~2AAA1AA
@ (K) =Zé‘ﬁ[r/(D;‘pf —,0/3,‘)} —¥r'r-rz.
i=1

The criteria for the GMM estimator, without a bias correction, is
Sewm(K) = IT(K)? /n + & (K).
Also, let

fIy(K) =Y By (@' (i€ = r@T'QT ),
ij=1

n
EK) = 2{5(f/d1)2 — BHE'DH* Ve,
i=1

n
Ben(K) =Y {3('d)* — p'(#'D}) Ve,
i=1

where Q = >, pi(2'7:)qiq;. The criteria for the BGMM and GEL
estimators are

Seavm(K) = [21(1() + (K + é(K)] /n+ &(K),

Seen () = [ A60) = 1) + EK) + 535000 /n + B (0.

For each of the estimators, our proposed instrument selection
procedure is to choose K to minimize S(K). As we will show this
will correspond to choosing K to minimize the higher-order MSE
of the estimator.

Each of the terms in the criteria has an interpretation. For GMM,
[1(K)? /n is an estimate of a squared bias term from Newey and
Smith (2004). Because é,-,- is of order K this squared bias term has
order K?/n. The q%(l( ) term in the GMM criteria is an asymptotic
variance term. Its size is related to the asymptotic efficiency of a
GMM estimator with instruments g€ (x). As K grows these terms
will tend to shrink, reflecting the reduction in asymptotic variance
that accompanies using more instruments. The form of d(K) is
analogous to a Mallows criterion, in that it is a variance estimator
plus a term that removes bias in the variance estimator.

The terms that appear in S(K) for BGMM and GEL are all
variance terms. No bias terms are present because, as discussed
in Newey and Smith (2004), under symmetry GEL removes the
GMM bias that grows with K. As with GMM, the q3(1< ) term
accounts for the reduction in asymptotic variance that occurs from
adding instruments. The other terms are higher-order variance
terms, that will be of order K /n, because é‘ﬁ is of order K. The sum
of these terms will generally increase with K, although this need
not happen if E(K) is too large relative to the other terms. Here
.’_EJ(K) is an estimator of

E(K) =Y & (7'd)* (5 — Ep ) /o),
i=1

where pi = p(z;, Bo) and o = E[p?|x]. As a result if the
kurtosis of p; is too high the higher-order variance of the BGMM
and GEL estimators would actually decrease as K increases. This
phenomenon is similar to that noted by Koenker et al. (1994) for
the exogenous linear case. In this case the criteria could fail to be
useful as a means of choosing the number of moment conditions,
because they would monotonically decrease with K.

The terms & (K) and L:“GEL(K) arise from heteroskedasticity
consistent estimation of the optimal weight matrix for GMM.
When they are positive, as they will be if the kurtosis is not too
large, they represent a penalty for using a weight matrix that is
optimal under heteroskedasticity. It has been noted in simulations
(including those below) that using a heteroskedasticity consistent
weight matrix when it is not needed tends to degrade the
performance of GMM estimators. The presence of these extra terms
provides a theoretical counterpart to this feature of GMM.

Itis also interesting to note that g (K) and ETGEL(K ) will be small
relative to the other terms when identification shrinks, meaning
that d; goes to zero as the sample size grows. Thus, under shrinking
identification the estimation of the weight matrix does not need
to be accounted for in the MSE. This fact simplifies considerably
the instrument choice criteria and was also noted in Newey and
Windmeijer (2009).

It is interesting to compare the size of the criteria for different
estimators, which comparison parallels that of the MSE. As
previously noted, the squared bias term for GMM, which is [1(K)?,
has the same order as K?/n. In contrast the higher-order variance
terms in the BGMM and GEL estimators generally have order K /n,
because that is the order of &;. Consequently, for large K the MSE
criteria for GMM will be larger than the MSE criteria for BGMM and
GEL, meaning the BGMM and GEL estimators are preferred over
GMM. This comparison parallels that in Newey and Smith (2004)
and in Imbens and Spady (2005).

One interesting result is that for the CUE, where s3 = 0,
the MSE criteria is smaller than it is for BGMM, because [T3(K)
is positive. Thus we find that the CUE dominates the BGMM
estimator, in terms of higher-order MSE, i.e. the CUE is higher-
order efficient relative to BGMM. This result is analogous to
the higher-order efficiency of the limited information maximum
likelihood estimator relative to the bias corrected two-stage least
squares estimator that was found by Rothenberg (1983).

The comparison of the higher-order MSE for the CUE and the
other GEL estimators depends on the kurtosis of the residual. For
conditionally normal p; we have E[p{|x;] = 30, and consequently

Ecr (K) will converge to zero for each K, and all the GEL estimators
have the same higher-order MSE. When there is excess kurtosis,
with E[pf|x] > 3o/, ET will have larger MSE than the CUE,
and EL will have larger MSE than ET, with these rankings being
reversed when E [pi“|x,»] < 301-4. These comparisons parallel those
of Newey and Smith (2004) for a heteroskedastic linear model with
exogeneity.

The case with no endogeneity has some independent interest.
In this setting the GMM estimator can often be interpreted as using
“extra” moment conditions to improve efficiency in the presence
of heteroskedasticity of unknown functional form. Here the MSE
criteria will give a method for choosing the number of moments
used for this purpose. Dropping the bias terms, which are not
present in exogenous cases, leads to criteria of the form

Soum(K) = EK)/n + & (K)
Sert () = [ E) + 53 86a. () | /n+ B (K.

Here GMM and the CUE have the same higher-order variance, as
was found by Newey and Smith (2004). Also, as in the general case,
these criteria can fail to be useful if there is so much kurtosis that
the higher order variance terms shrink as K grows.

3. Assumptions and MSE results

As in Donald and Newey (2001), the MSE approximations are
based on a decomposition of the form,

nt'(B — Bo)(B — Bo)'t = Q(K) + R(K), (32)
EQ)IX) = /2" 't + S(K) + T(K),
[R(K) + T(K)1/S(K) = 0,(1), K — 00, n — o0
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where X = [x1,...,x,], t = plim(f), 2* = Y I, 0, °did}/n,
and di = E[dpi(Bo)/dB]x;]. Here S(K) is part of conditional
MSE of @ that depends on K and f((K) and T(K) are remainder
terms that goes to zero faster than S(K). Thus, S(K) is the MSE
of the dominant terms for the estimator. All calculations are done
assuming that K increases with n. The largest terms increasing and
decreasing with K are retained. Compared to Donald and Newey
(2001) we have the additional complication that none of our
estimators has a closed form solution. Thus, we use the first-order
condition that defines the estimator to develop approximations to
the difference ﬁt/(B — Bo) where remainders are controlled using
the smoothness of the relevant functions and the fact that under
our assumptions the estimators are all root-n consistent.
To describe the results, let

pi = p(zi, Bo), ppi = 3pi(Bo)/9B, ni = pgi — di,
i = q“(x), ki = E[p|xi]/of,
n
T = Zaizqiq;/n, r = Zqidg/n, T=02%t,
i=1 ;
g =q1T 'g/n,  E[t'mipilx] =o!",

n n
n=Y &, M=) oo/ g,
i=1 ij=1
n
A=) EHE( ) %,
i=1

g = Z&'i (T/di)z (5 — ki), EcpL = Zfi (f/di)z 3 —x),
i=1 i=1

where we suppress the K argument for notational convenience.
The terms involving fourth moments of the residuals are due to
estimation of the weight matrix " ~! for the optimal GMM estima-
tor. This feature did not arise in the homoskedastic case considered
in Donald and Newey (2001) where an optimal weight matrix de-
pends only on the instruments.

We impose the following fundamental condition on the data,
the approximating functions g (x) and the distribution of x:

Assumption 1 (Moments). Assume that z; are i.i.d., and

(i) Boisunique value of B in B (a compact subset of RP) satisfying
Elp(i, ,32|Xi] =0;

(ii) > i, 0, “did;/n is uniformly positive definite and finite
(w.p.1.).

(iii) o,.z is bounded and bounded away from zero.

(iv) E(nj pi*|xi) = 0 for any non-negative integers ¢; and ¢, such
that ¢y 4+ ¢ = 3.

(v) EC(lmill* + |pil*1x;) is bounded for ¢ = 6 for GMM and BGMM
and ¢ = 8 for GEL.

For identification, this condition only requires that E[ p (z;, B) |xi]
= 0 has a unique solution at 8 = fy. Estimators will be consis-
tent under this condition because K is allowed to grow with n, as
in Donald et al. (2003). Consistency could also be achieved by us-
ing the approach of Dominguez and Lobato (2004) or Lavergne and
Patilea (2008). Part of this assumption is a restriction that the third
moments are zero. This greatly simplifies the MSE calculations. The
last condition is a restriction on the moments that are used to con-
trol the remainder terms in the MSE expansion. The condition is
more restrictive for GEL which has a more complicated expansion
involving more terms and higher moments. The next assumption
concerns the properties of the derivatives of the moment functions.
Specifically, in order to control the remainder terms we will require
certain smoothness conditions so that Taylor series expansions can
be used and so that we can bound the remainder terms in such ex-
pansions.

Assumption 2 (Expansion). Assume that p(z, B) is at least five
times continuously differentiable in a neighborhood W of By, with
derivatives that are all dominated in absolute value by the random
variable b; with E(b?) < oo for GMM and BGMM and E(b}) < 0o
for GEL.

This assumption is used to control remainder terms and has as
an implication that for instance,

sup || (3/88") p(z, B)II < bi.
BeN

It should be noted that in the linear case only the first derivative
needs to be bounded since all other derivatives would be zero. It is
also interesting to note that although we allow for nonlinearities in
the MSE calculations, they do not have an impact on the dominant
terms in the MSE. The condition is stronger for GEL reflecting the
more complicated remainder term. Our next assumption concerns
the “instruments” represented by the vector g* (x;).

Assumption 3 (Approximation). (i) There is ¢ (K) such that for each
K there is a nonsingular constant matrix B such that §X(x) =
BpX (x) for all x in the support X of x;, sup,c 3% ()| < ¢(K), and
E[G* (x)g® (x)’] has smallest eigenvalue that is bounded away from
zero, and VK < ¢(K) < CK for some finite constant C. (ii) For
each K there exists a sequence of constant vectors g and 7 such
that E(||d; — q/mx||?) — 0 and ¢ (K)?E(||di/o? — qim)?) — 0as
K — oo.

The first part of the assumption gives a bound on the norm of the
basis functions, and is used extensively in the MSE derivations to
bound remainder terms. The second part of the assumption implies
that d; and di/ai2 can be approximated by linear combinations
of g;. Because aiz is bounded and bounded away from zero, it is
easily seen that for the same coefficients my, ||d;/o; — oiqimg I> <
o?||di/o? — gimk||? so that d;/o; can be approximated by a linear
combination of o;q;. Indeed the variance part of the MSE measures
the mean squared error in the fit of this regression. Since ¢ (K) —
oo the approximation condition for d; /ai2 is slightly stronger than
for d;. This is to control various remainder terms where d;/o; needs
to be approximated in uniform manner. Since in many cases one
can show that the expectations in (ii) are bounded by K—2* where
o depends on the smoothness of the function d;/c?, the condition
can be met by assuming that d; /o is a sufficiently smooth function
of x;. N

We will assume that the preliminary estimator 8 used to
construct the weight matrix is a GMM estimator is itself a GMM
estimator with weighting matrix that may not be optimal. We
do not require either optimal weighting or that the number of
moments increases, though to get consistency under Assumption 1
(i) K would need to grow. In other words we let 8 solve,

ming,(8) WoZa(F),  £n(B) = (1/m) D a0 i($)
i=1

for some K vector of functions q(x;) and some K x K matrix Wy
which potentially could be Iz or it could be random as would
be the case if more than one iteration were used to obtain the
GMM estimator. We make the following assumption regarding this
preliminary estimator.

Assumption 4 (Preliminary Estimator). Assume (i) /S—p> Bo (ii)

there exist some non-stochastic matrix Wy such that H Wo — Wo H
20 and we can write B = By + IS dipi + 0p(n7V?),
o = —(I"WoI) 'T'Wog; with ' = Y1, §(x)di/n and
E (HP,Z bid;

Note that the assumption requires that we just use some root-n

consistent and asymptotically normally distributed estimator. The
asymptotic variance of the preliminary estimator will be,

) <ox.
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plim (FM'Wo ) ' T'WoTWo I (I"'WoI) ™),
n
T = qx)ax) ol /n,
i=1

and if the preliminary estimator uses optimal weighting we can

show that this coincides with plim £2* provided that K increase
with n in a way that the assumptions of Donald et al. (2003) are
satisfied. Also note that for the GMM estimator we can write,

o 1< _
B=pot = dip+on ), g = -2 /o7
i=1

The covariance between the (normalized) preliminary estimator
and the GMM estimator is then,

1 -
_ Z¢l 1'*0-1‘2 — 9*71
n i

a fact that will be used in the MSE derivations to show that the MSE
for BGMM does not depend on the preliminary estimator. Finally
we use Assumption 6 of Donald et al. (2003) for the GEL class of
estimators.

Assumption 5 (GEL). s(v) is at least five times continuously
differentiable and concave on its domain, which is an open interval
containing the origin, s;(0) = —1, s;(v) = —1 and s;(v) is
bounded in a neighborhood of v =0forj=1,...,5.

The following three propositions give the MSE results for the
three estimators considered in this paper. For brevity the proofs
of these results are not given here but are available upon request
from the authors.

Proposition 1. For GMM under Assumptions 1-4, if w.p.a.1 asn —
oo, |IT| > cK for somec > 0, K — oo, and ¢ (K)s/K/n — 0 then

the approximate MSE for tk/ﬁ(ﬁ” — Bo) is given by,
SHy = /m+d @ -r'r'nNr

Proposition 2. For BGMM under Assumptions 1-4, ifw.p.a.1asn —
o0,

A+HB+E]ZCK

for somec > 0, K — oo, and ¢ (K)?>s/K/n — O the approximate
MSE for t'/n(B% — By) is given by,
SBKy=[A+ M+ E)/n+7(Q — 'Y Nt

Proposition 3. For GEL, if Assumptions 1-3 and 5 are satisfied,
w.p.a.lasn — oo,

{A—Tlg+ & +s35ceL} > K,

K — oo, and ¢(K)?K?//n —> 0 the approximate MSE for
t'/n(BCEL — By) is given by,

SCELK) = [A— Mg+ E +s38ce ] /n+T(2F = T'r~ ' Nt

For comparison purposes, and to help interpret the formulas, it
is useful to consider the homoskedastic case. Let

02 = E[piz]’ Opp = E[T/nipi], Ongy = E[(T,ﬂi)z],
—1
n
k =Elpfl/o*, Q=g (Z qjq}> i
=1
AK) =

n n n -1,
o2 (@ = > d (Zq,-q;> Y tdig; / n.
i=1 i=1 i=1 i=1

Then we have the following expressions under homoskedasticity,
SHK) = (0,,/0%)°K*/n + AK),
S'(K) = (oyy/0® + 07, /0MK/n
+072(5 - k) Y (r'd)’Qi/n + AK),
i

SHEK) = (oyy/0® —a},/a)K/n
+0 725 — k) +533 — )] Y_(T'd)*Qi/n+ AK).

For GMM, the MSE is the same as that presented in Donald and
Newey (2001) for 2SLS, which is the same as Nagar (1959) for large
numbers of moments. The leading K /n term in the MSE of BGMM
is the same as the MSE of the bias-corrected 2SLS estimator, but
there is also an additional term, where (5 — «) appears, that is due
to the presence of the estimated weighting matrix. This term is also
present for GMM, but is dominated by the K?/n bias term, and so
does not appear in our large K approximate MSE. As long as k < 5,
this additional term adds to the MSE of the estimator, representing
a penalty for using a heteroskedasticity robust weighting matrix.
When k > 5, using the heteroskedasticity robust weighting matrix
lowers the MSE, a phenomenon that was considered in Koenker
et al. (1994).

For GEL the leading K /n term is the same as for LIML, and is
smaller than the corresponding term for BGMM. This comparison
is identical to that for 2SLS and LIML, and represents an efficiency
improvement from using GEL. For the CUE (or any other estimator
where s3 = 0) the additional term is the same for BGMM and
CUE, so that the CUE has smaller MSE. The comparison among GEL
estimators depends on the kurtosis «. For Gaussian p(z, Bo),x = 3,
and the MSE of all the GEL estimators is the same. For k > 3,
the MSE of EL is greater than ET which is greater than the CUE,
with the order reversed for x < 3. For Gaussian disturbances the
relationships between the asymptotic MSE of LIML, BGMM, and EL
were reported by Rothenberg (1996), though expressions were not
given.

When there is heteroskedasticity, the comparison between
estimators is exactly analogous to that for homoskedasticity,
except that the results for LIML and B2SLS no longer apply. In
particular, the CUE has smaller MSE than BGMM, and BGMM
and all GEL estimators have smaller MSE than GMM for large
enough K. Since the comparisons are so similar, and since many
of them were also discussed in the last section, we omit them for
brevity.

4. Monte Carlo experiments

In this section we examine the performance of the different
estimators and moment selection criteria in the context of a small
scale Monte Carlo experiment based on the setup in Hahn and
Hausman (2002) that was also used in Donald and Newey (2001).
The basic model used is of the form,

Yi=vyYi+ pi (4.3)

Y,‘ = X{T[ + Ni
fori = 1,...,n and the moment functions take the form (for K
instruments),

Xai

X

gy) = Vi—yY)

Xii
where we are interested in methods for determining how many of

the Xj; should be used to construct the moment functions. Because
of the invariance of the estimators to the value of y wesety = 0
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and for different specifications of 7 we generate artificial random
samples under the assumptions that

(@)n w)rC )

and X; ~ N(O,Iz) where K is the maximal number of

instruments considered. As shown in Hahn and Hausman (2002)

this specification implies a theoretical first stage R-squared that is

of the form,

R= 7 (4.4)

P a1 ’

We consider one of the models that was considered in Donald

and Newey (2001) where,

K 4
, _ _

a;=cK)(1— =—— fork=1,...,K,
k ()( 1<+1>

where the constant c(K) is chosen so that n'm = Rf/(l —

R]?). In this model all the instruments are relevant but they have
coefficients that are declining. This represents a situation where
one has prior information that suggests that certain instruments
are more important than others and the instruments have been
ranked accordingly. In this model all of the potential K moment
conditions should be used for the estimators to be asymptotically
efficient. Note also, that in our setup LIML and 2SLS are also
asymptotically efficient estimators provided that we eventually
use all of the instruments Xj. Indeed in the experiments we
compute not only GMM, BGMM, ET, EL and the CUE (the last
three being members of the GEL class) but we also examine the
performance of 2SLS and LIML along with the instrument selection
methods proposed in Donald and Newey (2001). This allows us to
gauge the small sample cost of not imposing heteroskedasticity.
As in Donald and Newey (2001) we report for each of the seven
different estimators, summary statistics for the version that uses
all available instruments or moment conditions plus the summary
statistics for the estimators based on a set of moment conditions
or instruments that were chosen using the respective moment or
instrument selection criterion.

For each model experiments were conducted with the specifi-
cations for sample sizes of n = 200 and n = 800. When the sample
size is 200 we set sz = 0.1, K = 10 and performed 500 replica-

tions, while in the larger sample size we set sz =0.1,K = 20 and
we performed 200 replications (due to time constraints). Both of
these choices reflect the fairly common situation where there may
be a relatively small amount of correlation between the instru-
ments and the endogenous variable (see Staiger and Stock (1997)
and Stock and Wright (2000)) as well as the fact that with larger
data sets empirical researchers are more willing to use more mo-
ment conditions to improve efficiency. For each of these cases we
considerc € {.1, .5, .9}. In addition we consider the impact of hav-
ing excess kurtosis, which as noted above has differential effect on
the higher order MSE across the different estimators. The distribu-
tion we consider is that of

P = el (P L) ~ N(O. ). e ~ logistic(0,1
(Ui) |e'|<’7f*>’ (771*> (0, X), e; ~ logistic(0,1)

where e; is independent of p/ and 5] and is distributed as a
logistic random variable with mean zero and variance equal to one.
Given this particular setup we will have that (p;, n;) are jointly
distributed with mean zero and a covariance matrix equal to X,
and a coefficient of kurtosis of approximately x = 12.6. With
two different models, two different distributions for the errors, and
three different choices for residual correlations there are a total of
12 specifications for each sample size.

The estimator that uses all moments or instruments is indicated
by the suffix “-all” while the estimator that uses a number
of moment conditions as chosen by the respective moment or
instrument selection criterion is indicated by “-op”. We consider
a moment selection criteria where ﬁ,*[)f — ppi is replaced by

Ppi— d; in & (K), constituting a weak identification approximation.
For instance, GMM-all and GMM-op are the two-step estimators
that use all of the moment conditions and the moment conditions
the minimize the estimated MSE criterion respectively. The
preliminary estimates of the objects that appear in the criteria
were in each case based on a number of moment conditions that
was optimal with respect to cross validation in the first stage.

As in Donald and Newey (2001) we present robust measures
of central tendency and dispersion. We computed the median
bias (Med. Bias) for each estimator, the median of the absolute
deviations (MAD) of the estimator from the true value of y = 0
and examined dispersion through the difference between the 0.1
and 0.9 quantile (Dec. Rge) in the distribution of each estimator.
We also examined statistical inference by computing the coverage
rate for 95% confidence intervals as well as the rejection rate for an
overidentification test (in cases where overidentifying restrictions
are present) using the test statistic corresponding to the estimator
and a significance level of 5%. In addition we report some summary
statistics concerning the choices of K in the experiments, including
the modal choice of K if one used the actual MSE to choose K. There
was very little dispersion in this variable across replications and
generally the optimal K with the true criterion was equal to the
same value in most if not all replications. In cases where there was
some dispersion it was usually either being some cases on either
side of the mode. To indicate such cases we use + and —, so that
for instance 34 means that the mode was 3 but that there were
some cases where 4 was optimal. The notation 3++ means that
the mode was 3 but that a good proportion of the replications had
4 as being optimal.

Tables 1-6 and 10-15 contain the summary statistics for the
estimators for n = 200 and n = 800 respectively, while
Tables 7-9 and 16-18 contain the summary statistics for the
chosen number of moments across the replications. In general
the results are encouraging for all the estimators. As expected
the GEL and LIML estimators are less dispersed when the optimal
number of moments is used, while for GMM and 2SLS the use of
the criterion reduces the bias that occurs when there is a high
degree of covariance between the residuals. The improvements
for the GEL estimators are more marked when the there is a low
to moderate degree of covariance. It is noteworthy that in such
situations there is also a dramatic improvement in the quality of
inference as indicated by the coverage rates for the confidence
interval. As far as testing the overidentifying restrictions only when
there is a high degree of covariance is there any problem with
testing these restrictions. This occurs with most of the estimators
in the small sample with a high covariance and with GMM and TSLS
in the large sample with a high covariance. It also seems that using
the criteria does not really help in fixing any of the problems with
the overidentifying test statistic.

There is a number of things to note about the results for K.
First, the estimated criteria give values for K that are often near
the values that minimize the true criterion, suggesting that the
estimated criterion is a good approximation to the true criterion.
It also noteworthy that, as one would expect, the criteria suggest
use of a small number of moments for GMM and 2SLS when there
is a high error covariance and for the GEL estimators when there is
a low covariance. For BGMM the optimal number is quite stable as
the covariance increases. In the larger sample the optimal number
decreases as the covariance increases, but is slightly larger when
the residuals have fat tails compared to the situation where they
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Table 1

n = 200, Cov = 0.1, normal.

Est. Med. Bias Med. AD Dec. Rge Cov. Over.
GMM-all 0.028 0.129 0.489 0.934 0.018
GMM-op 0.019 0.143 0.537 0.942 0.022
BGMM-all 0.013 0.163 0.616 0.864 0.012
BGMM-op 0.011 0.152 0.586 0.936 0.036
EL-all —0.011 0.190 0.712 0.806 0.054
EL-op 0.011 0.158 0.597 0.934 0.048
ET-all —0.004 0.195 0.716 0.790 0.048
ET-op 0.010 0.155 0.593 0.936 0.042
CUE-all 0.006 0.192 0.733 0.770 0.010
CUE-op 0.013 0.151 0.596 0.924 0.032
2SLS-all 0.027 0.126 0.447 0.958 0.026
2SLS-op 0.018 0.137 0.509 0.974 0.034
LIML-all —0.009 0.183 0.649 0.974 0.030
LIML-op 0.009 0.141 0.564 0.980 0.026
Table 2

n = 200, Cov = 0.1, logistic.

Est. Med. Bias Med. AD Dec. Rge Cov. Over.
GMM-all 0.018 0.113 0.422 0.932 0.034
GMM-op 0.013 0.125 0.478 0.926 0.044
BGMM-all 0.001 0.135 0513 0.864 0.032
BGMM-op 0.021 0.137 0.529 0.916 0.040
EL-all —0.018 0.173 0.646 0.782 0.174
EL-op 0.007 0.149 0.586 0.882 0.104
ET-all —0.008 0.158 0.601 0.798 0.110
ET-op 0.014 0.148 0.564 0.878 0.088
CUE-all —0.006 0.160 0.590 0.787 0.024
CUE-op 0.008 0.144 0.562 0.880 0.042
2SLS-all 0.034 0.118 0.443 0.948 0.040
2SLS-op 0.031 0.143 0516 0.952 0.050
LIML-all 0.001 0.182 0.710 0.972 0.044
LIML-op 0.017 0.152 0.567 0.962 0.052
Table 3

n = 200, Cov = 0.5, normal.

Est. Med. Bias Med. AD Dec. Rge Cov. Over.
GMM-all 0.149 0.165 0.436 0.782 0.038
GMM-op 0.065 0.153 0.530 0.858 0.036
BGMM-all 0.064 0.169 0.598 0.842 0.032
BGMM-op 0.047 0.154 0.532 091 0.036
EL-all —0.002 0.182 0.761 0.854 0.072
EL-op 0.036 0.162 0.552 0.896 0.052
ET-all 0.003 0.180 0.711 0.860 0.066
ET-op 0.035 0.155 0.533 0.898 0.048
CUE-all 0.002 0.177 0.734 0.840 0.022
CUE-op 0.039 0.153 0.528 0.886 0.038
2SLS-all 0.143 0.161 0.426 0.836 0.066
2SLS-op 0.066 0.152 0.517 0.900 0.046
LIML-all 0.006 0.170 0.680 0.964 0.044
LIML-op 0.041 0.154 0.527 0.946 0.048
Table 4

n = 200, Cov = 0.5, logistic.

Est. Med. Bias Med. AD Dec. Rge Cov. Over.
GMM-all 0.131 0.161 0.438 0.768 0.038
GMM-op 0.079 0.154 0516 0.854 0.044
BGMM-all 0.062 0.160 0.540 0.816 0.032
BGMM-op 0.048 0.148 0.527 0.880 0.038
EL-all 0.016 0.187 0.701 0.796 0.160
EL-op 0.041 0.156 0.578 0.860 0.090
ET-all 0.012 0.178 0.635 0.796 0.108
ET-op 0.039 0.153 0.555 0.868 0.078
CUE-all —0.004 0.170 0.638 0.776 0.014
CUE-op 0.041 0.154 0.530 0.866 0.036
2SLS-all 0.147 0.172 0.461 0.800 0.076
2SLS-op 0.081 0.160 0.550 0.874 0.058
LIML-all —0.007 0.175 0.707 0.936 0.06

LIML-op 0.045 0.149 0.581 0.920 0.054

Table 5
n = 200, Cov = 0.9, normal.
Est. Med. Bias Med. AD Dec. Rge Cov. Over.
GMM-all 0.274 0.275 0.368 0.460 0.180
GMM-op 0.124 0.189 0.565 0.798 0.078
BGMM-all 0.128 0.183 0.583 0.738 0.092
BGMM-op 0.091 0.171 0.600 0.814 0.072
EL-all 0.016 0.165 0.688 0.876 0.096
EL-op 0.056 0.168 0.599 0.846 0.126
ET-all 0.020 0.165 0.690 0.874 0.084
ET-op 0.059 0.166 0.603 0.842 0.126
CUE-all 0.024 0.165 0.681 0.880 0.034
CUE-op 0.063 0.169 0.589 0.838 0.078
2SLS-all 0.274 0.275 0.334 0.484 0.198
2SLS-op 0.115 0.186 0.559 0.820 0.062
LIML-all 0.006 0.161 0.648 0.944 0.056
LIML-op 0.041 0.156 0.623 0.900 0.108
Table 6
n = 200, Cov = 0.9, logistic.
Est. Med. Bias Med. AD Dec. Rge Cov. Over.
GMM-all 0.213 0.213 0.349 0.568 0.134
GMM-op 0.092 0.136 0.505 0.874 0.076
BGMM-all 0.065 0.146 0.484 0.802 0.078
BGMM-op 0.073 0.134 0.472 0.854 0.084
EL-all —0.006 0.146 0.620 0.886 0.158
EL-op 0.044 0.133 0.504 0.870 0.160
ET-all —0.010 0.134 0.551 0.898 0.118
ET-op 0.039 0.126 0.470 0.892 0.144
CUE-all —0.016 0.129 0.530 0.879 0.034
CUE-op 0.030 0.122 0.472 0.886 0.066
2SLS-all 0.242 0.244 0.347 0.580 0.190
2SLS-op 0.081 0.134 0.485 0.882 0.076
LIML-all —0.008 0.131 0.595 0.952 0.056
LIML-op 0.032 0.127 0.557 0.934 0.108
Table 7
Statistics for K, n = 200, cov = 0.1.
GMM BGMM EL ET CUE TSLS LIML

Normal K 5 3 3 3 3 5 3+

Mode 2 2 2 2 2 3 2

1Q 3 2 2 2 2 3 2

Med. 5 3 3 3 3 4 3

3Q 8 4 5 5 4 6 4
Logistic K 5 44 2+ 3 5+ 5 3+

Mode 10 3 2 2 3 3 3

1Q 4 3 2 3 3 3 2

Med. 6 4 4 4 4 4 3

3Q 9 6 6 7 7 6 4
Table 8
Statistics for K, n = 200, cov = 0.5.

GMM BGMM EL ET CUE TSLS LIML

Normal K 3 3— 4— 4— 4— 3 4

Mode 2 2 2 2 2 2 3

1Q 2 2 2 2 2 2 2

Med. 3 3 3 3 3 3 3

3Q 4 4 5 5 5 4 5
Logistic K 3 4— 3— 4— 10— 3 4—

Mode 3 3 3 3 3 2 2

1Q 2 2 2 3 3 2 2

Med. 4 4 4 4 5 3 3

3Q 6 6 7 7 7 4 5

do not. Among the GEL estimators increasing the covariance and
having fat tailed errors has the most dramatic impact on the CUE

as one would expect given the criteria.

Concerning the effect of excess kurtosis, it does appear that
the improvement from using the criteria is more noticeable for EL,
which is most sensitive to having fat-tailed errors. There also was
some evidence that going from normal to fat-tailed errors helped
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Table 9
Statistics for k, n = 200, cov=0.9.
GMM BGMM EL ET CUE TSLS LIML

Normal K 2 24 4+ 4+ 4+ 2 5

Mode 2 2 3 3 3 2 3

1Q 2 2 3 3 3 2 3

Med. 2 3 4 4 4 2 4

3Q 3 3 7 7 6 3 7
Logistic K 2 3+ 3— 4 10 2 5

Mode 2 2 10 10 10 2 3

1Q 2 2 3 4 4 2 3

Med. 2 3 6 6 6 2 4

3Q 3 5 9 9 9 3 7
Table 10
n = 800, cov = 0.1, normal.
Est. Med. Bias Med. AD Dec. Rge Cov. Over.
GMM-all 0.019 0.07 0.262 0.925 0.035
GMM-op 0.01 0.078 0.265 0.92 0.055
BGMM-all 0.006 0.081 0.302 0.92 0.025
BGMM-op 0.001 0.084 0.298 0.92 0.06
EL-all 0.000 0.085 0.305 0.895 0.065
EL-op —0.001 0.080 0.296 0.900 0.060
ET-all 0.005 0.084 0.314 0.895 0.070
ET-op 0.001 0.080 0.290 0.905 0.065
CUE-all 0.006 0.082 0.307 0.895 0.025
CUE-op 0.004 0.082 0.298 0.915 0.055
2SLS-all 0.022 0.066 0.24 0.925 0.050
2SLS-op 0.005 0.074 0.275 0.920 0.060
LIML-all —0.001 0.079 0.305 0.945 0.060
LIML-op —0.006 0.083 0.296 0.930 0.055
Table 11
n = 800, cov = 0.1, logistic.
Est. Med. Bias Med. AD Dec. Rge Cov. Over.
GMM-all 0.007 0.068 0.234 0.93 0.025
GMM-op 0.007 0.073 0.253 0.925 0.025
BGMM-all —0.007 0.076 0.271 0.89 0.025
BGMM-op —0.002 0.07 0.269 0.905 0.025
EL-all —0.012 0.082 0.300 0.850 0.135
EL-op —0.002 0.082 0.288 0.910 0.085
ET-all —0.015 0.083 0.286 0.845 0.105
ET-op —0.003 0.073 0.290 0.900 0.080
CUE-all —0.005 0.08 0.281 0.856 0.025
CUE-op —0.001 0.073 0.276 0.887 0.035
2SLS-all 0.005 0.067 0.243 0.965 0.060
2SLS-op 0.007 0.072 0.260 0.975 0.025
LIML-all —0.012 0.078 0.314 0.975 0.060
LIML-op —0.010 0.069 0.297 0.98 0.045
Table 12
n = 800, cov = 0.5, normal.
Est. Med. Bias Med. AD Dec. Rge Cov. Over.
GMM-all 0.087 0.094 0.237 0.770 0.070
GMM-op 0.034 0.081 0.269 0.910 0.035
BGMM-all 0.022 0.085 0.297 0.860 0.065
BGMM-op 0.016 0.077 0.278 0.940 0.020
EL-all 0.004 0.089 0.322 0.890 0.075
EL-op 0.015 0.084 0.282 0.930 0.065
ET-all 0.005 0.089 0314 0.880 0.075
ET-op 0.015 0.085 0.282 0.935 0.065
CUE-all 0.009 0.090 0.322 0.870 0.050
CUE-op 0.015 0.082 0.276 0.935 0.040
2SLS-all 0.089 0.090 0.231 0.805 0.065
2SLS-op 0.035 0.077 0.255 0.915 0.035
LIML-all 0.004 0.085 0.319 0.960 0.055
LIML-op 0.018 0.083 0.281 0.955 0.040

the CUE more than the other estimators, as suggested in the theory,
although this led to a lower improvement from using the moment
selection criterion.

35
Table 13
n = 800, cov = 0.5, logistic.
Est. Med. Bias Med. AD Dec. Rge Cov. Over.
GMM-all 0.082 0.091 0.241 0.790 0.05
GMM-op 0.042 0.078 0.274 0.870 0.045
BGMM-all 0.022 0.079 0.291 0.870 0.025
BGMM-op 0.025 0.081 0.285 0.895 0.055
EL-all —0.003 0.089 0.312 0.875 0.155
EL-op 0.016 0.083 0.287 0.885 0.100
ET-all 0.000 0.082 0.303 0.870 0.115
ET-op 0.018 0.080 0.275 0.885 0.080
CUE-all 0.001 0.086 0.302 0.838 0.025
CUE-op 0.017 0.077 0.273 0.880 0.045
2SLS-all 0.093 0.093 0.224 0.800 0.055
2SLS-op 0.041 0.076 0.278 0.890 0.060
LIML-all —0.009 0.076 0.286 0.955 0.055
LIML-op 0.021 0.078 0.274 0.925 0.06
Table 14
n = 800, cov = 0.9, normal.
Est. Med. Bias Med. AD Dec. Rge Cov. Over.
GMM-all 0.176 0.176 0.212 0.415 0.145
GMM-op 0.064 0.093 0.273 0.880 0.055
BGMM-all 0.060 0.100 0.297 0.815 0.070
BGMM-op 0.044 0.083 0.294 0.875 0.060
EL-all 0.010 0.078 0.287 0.915 0.085
EL-op 0.032 0.082 0.272 0.895 0.105
ET-all 0.016 0.078 0.279 0.920 0.115
ET-op 0.025 0.079 0.273 0.920 0.135
CUE-all 0.012 0.080 0.280 0.925 0.075
CUE-op 0.025 0.079 0.276 0.920 0.115
2SLS-all 0.166 0.166 0.217 0.455 0.140
2SLS-op 0.061 0.089 0.268 0.88 0.050
LIML-all 0.020 0.079 0.285 0.95 0.060
LIML-op 0.035 0.080 0.276 0.93 0.100
Table 15
n = 800, cov = 0.9, logistic.
Est. Med. Bias Med. AD Dec. Rge Cov. Over.
GMM-all 0.143 0.145 0.179 0.530 0.130
GMM-op 0.046 0.089 0.274 0.885 0.045
BGMM-all 0.033 0.070 0.230 0.885 0.075
BGMM-op 0.039 0.074 0.263 0.875 0.075
EL-all 0.003 0.066 0.289 0.910 0.180
EL-op 0.024 0.072 0.256 0.920 0.165
ET-all —0.002 0.086 0.281 0.910 0.115
ET-op 0.015 0.079 0.281 0.910 0.125
CUE-all —0.001 0.083 0.264 0.919 0.035
CUE-op 0.013 0.079 0.277 0.911 0.040
2SLS-all 0.161 0.161 0.199 0.510 0.135
2SLS-op 0.058 0.089 0.304 0.870 0.085
LIML-all 0.004 0.077 0.304 0.975 0.075
LIML-op 0.016 0.076 0.263 0.955 0.115
Table 16
Statistics for K, n = 800, cov = 0.1.
GMM BGMM EL ET CUE TSLS LIML
Normal K 10 7 7+ 7+ 7+ 10 8—
Mode 8 6 6 6 6 8 6
1Q 8 6 6 6 6 7 6
Med. 12 7 7 7 7 9 7
3Q 17 9 9 9 9 13 9
Logistic K 10 s 6 7 11— 10 8
Mode 20 10 7 8 8 8 7
1Q 10 8 6 7 8 7 6
Med. 15 11 8 10 12 9 7
3Q 19 16 12 15 17 12 8

5. Conclusion

In this paper we have developed approximate MSE criteria
for moment selection for a variety of estimators in conditional
moment contexts. We found that the CUE has smaller MSE than
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Table 17
Statistics for K, n = 800, cov = 0.5.
GMM BGMM EL ET CUE TSLS LIML

Normal K 6— 7— 8 8 8 6— 9—
Mode 5 6 7 7 7 5 7
1Q 5 6 6 6 6 5 6
Med. 6 7 8 8 8 6 8
3Q 7 8 10 10 9 7 10

Logistic K 6— 8 7— 8 20 6— 9—
Mode 6 6 6 6 20 6 6
1Q 5 7 6 7 9 5 6
Med. 6 10 9 11 13 6 8
3Q 8 15 14 15 18 7 10

Table 18

Statistics for K, n = 800, cov = 0.9.

GMM BGMM EL ET CUE TSLS LIML

Normal K 4 6+ 9 9 9 4 11
Mode 4 5 8 9 9 4 8
1Q 4 5 8 8 7 4 8
Med. 4 6 10 10 10 4 10
3Q 5 7 15 15 14 5 14

Logistic K 4 7 7 9 20 4 11
Mode 4 7 20 20 20 4 8
1Q 4 6 8 10 13 3 7
Med. 4 8 12 15 17 4 9
3Q 5 12 18 19 19 4 14

the bias-corrected GMM estimator. In addition we proposed data
based methods for estimating the approximate MSE, so that in
practice the number of moments can be selected by minimizing
these criteria. The criteria seemed to perform adequately in a small
scale simulation exercise.

The present paper has considered a restrictive environment in
which the data are considered a random sample. It would be useful
to extend the results in two directions. The first would be to the
dynamic panel data case. In that situation there will typically be
different sets of instruments available for each residual coming
from sequential moment restrictions. It would also be useful to
extend the results to a purely time series context where one would
need to deal with serial correlation. Kuersteiner (2002) has derived
interesting results in this direction.

Acknowledgements

This work reported in this paper was supported in part by
the National Science Foundation. Miguel Delgado and a referee
provided useful comments.

References

Andrews, D.W.K,, 1999. Consistent moment selection procedures for generalized
method of moments estimation. Econometrica 67, 543-564.

Chamberlain, G., 1987. Asymptotic efficiency in estimation with conditional
moment restrictions. Journal of Econometrics 34, 305-334.

Dominguez, M.A.,, Lobato, L.N., 2004. Consistent estimation of models defined by
conditional moment restrictions. Econometrica 72, 1601-1615.

Donald, S.G., Newey, W.K.,, 2001. Choosing the number of instruments. Economet-
rica69, 1161-1191.

Donald, S.G., Imbens, G., Newey, W.K,, 2003. Empirical likelihood estimation and
consistent tests with conditional moment restrictions. Journal of Econometrics
117,55-93.

Hahn, ]., Hausman, J.A., 2002. A new specification test for the validity of instrumental
variables. Econometrica 70, 163-189.

Hansen, L.P., Heaton, J., Yaron, A., 1996. Finite-sample properties of some alternative
GMM estimators. Journal of Business and Economic Statistics 14, 262-280.
Imbens, G.W., Spady, R.H., Johnson, P., 1998. Information theoretic approaches to

inference in moment condition models. Econometrica 66, 333-357.

Imbens, G.W., Spady, R.H., 2005. The performance of empirical likelihood and its
generalizations. In: Andrews, D., Stock, J. (Eds.), Identification and Inference
for Econometric Models, Essays in Honor of Thomas Rothenberg. Cambridge
University Press, Cambridge.

Kitamura, Y., Stutzer, M., 1997. An information-theoretic alternative to generalized
method of moments estimation. Econometrica 65, 861-874.

Koenker, R., Machado, J.A.F., Skeels, C., Welsh, AH., 1994. Momentary lapses:
Moment expansions and the robustness of minimum distance estimation.
Econometric Theory 10, 172-190.

Kuersteiner, G.M., 2002. Selecting the number of instruments for GMM estimators
of linear time series models. Mimeo UC Davis.

Lavergne, P., Patilea, V., 2008. Bandwidth-robust inference with conditional
moment restrictions. Preprint.

Nagar, A.L.,, 1959. The bias and moment matrix of the general k-class estimators of
the parameters in simultaneous equations. Econometrica 27, 575-595.

Newey, W.K,, Smith, RJ., 2004. Higher-order properties of GMM and generalized
empirical likelihood estimators. Econometrica 72, 219-255.

Newey, W.K., Windmeijer, F., 2009. GMM estimation with many weak moment
conditions. Econometrica 77, 687-719.

Owen, A., 1988. Empirical likelihood ratio confidence regions for a single functional.
Biometrika 75, 237-249.

Qin, J., Lawless, J., 1994. Empirical likelihood and general estimating equations.
Annals of Statistics 22, 300-325.

Rothenberg, T.J., 1983. Asymptotic properties of some estimators in structural mod-
els. In: Karlin, S., Amemiya, T., Goodman, L.A. (Eds.), Studies in Econometrics,
Time Series and Multivariate Statistics. Academic Press, New York.

Rothenberg, T.J., 1984. Approximating the distributions of econometric estimators
and test statistics. In: Griliches, Z., Intriligator, M.D. (Eds.), Handbook of
Econometrics, vol. 2. North-Holland, New York.

Rothenberg, T.J., 1996. Empirical likelihood parameter estimation under moment
restrictions. In: Seminar Notes. Harvard/M.L.T., Bristol.

Staiger, D., Stock, J.H., 1997. Instrumental variables regression with weak
instruments. Econometrica 65, 557-586.

Stock, J.H., Wright, ]J.H., 2000. GMM with weak identification. Econometrica 68,
1055-1096.

Sun, Y. Phillips, P.CB., Jin, S, 2007. Optimal bandwidth selection in
heteroscedasicity-autocorrelation robust testing. Econometrica 76, 175-194.



	Choosing instrumental variables in conditional moment restriction models
	Introduction
	The model and estimators
	Instrument selection criteria

	Assumptions and MSE results
	Monte Carlo experiments
	Conclusion
	Acknowledgements
	References


