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Census reports can be interpreted as providing nearly exact knowledge of moments of the
marginal distribution of economic variables. This information can be combined with cross-sectional
or panel samples to improve accuracy of estimation. In this paper we show how to do this efficiently.
We show that the gains from use of marginal information can be substantial. We also discuss how
to test the compatibility of sample and marginal information.

1. INTRODUCTION

In this paper we investigate how those macro data that can be viewed as aggregates of
micro data can be used in combination with micro or survey data to improve estimates
of microeconometric models. We are interested in the parameters characterizing the
relationship between the micro variables, and view the aggregate data as useful only as
far as they can tell us something about that relationship. We show that in general macro
data are indeed useful, even in complex micro models. In fact we will mainly work with
general nonlinear models, only occasionally using linear examples to make a particular
point more transparent. The key assumption linking the two types of data is that the
aggregate variables give information with little or no sampling error about the average of
the micro variables." Examples of such macro data are the national employment rate,
possibly for different age categories, data on the frequency of unemployment spells of
particular length, and aggregate consumer expenditure for various goods. Many of these
are published on a yearly basis by the U.S. Bureau of the Census in the Statistical Abstract
of the U.S. We will argue that such data are therefore widely available and that they can
be of considerable use to micro-econometricians.

About the simplest example of what we shall study is provided by the following.
Suppose that, given a regressor x (say income), a dependent variable y (say expenditure
on food), is normally distributed with mean E(y|x)=po+ ;- x and variance o”.
From a random sample of size N from the population of U.S. households f can be
estimated consistently .and efficiently by ordinary least squares. Suppose that from the

1. Stoker (1985) makes the same assumption in an analysis of the sources of movements in aggregate
dependent variables. See also Jorgenson, Lau and Stoker (1982).
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Statistical Abstract we can learn that the national average household expenditure on
food in the U.S. is, say, h*. We will interpret this as exact knowledge of E(y). This
is a reasonable interpretation if N is much smaller than the total number of households
in the U.S. Knowledge of A* gives us a restriction in the form of the following
orthogonality condition:

0=h*—E(y)=h*—E[E(y|x)]=E[h*—Bo—p: - x] 0]

The sample analogue of this relation can be combined with the scores from the sample data
in an efficient generalized method of moments procedure to provide improved estimates of
the parameters of interest, o and B,.

This particular example is a little misleading. In this case the gain here is confined
to estimation of the intercept, fo, presumably not a very interesting parameter. A
richer but still simple example would be where the census information provided the
mean food expenditures for households with incomes above and below income c. Let
these conditional means be denoted by Af and 45 . This leads to the pair of orthogonality
conditions

0=Pr(x>c) - (hf—E(y|x>c))=E[lc>c " (hf = Po—P1 - x)],
0=Pr(x=c) - (M —E(yIxsc))=E[lcsc* (hF—Po—P1- x)],

where 1, is the indicator function, equal to 1 if A is true, and equal to zero otherwise.
Again these can be replaced by their sample analogues and efficiently combined with the
scores from the sample data. This type of (conditional) marginal information yields much
more information about B than knowledge of the mean of y alone.

The present work is quite closely related to the literature on choice-based or, in
general, endogenously stratified random sampling which dates back at least to Manski
and Lerman (1977), and on which related recent papers are Imbens (1992) and Imbens
and Lancaster (1991) and Lancaster and Imbens (1991). In that literature it is often
assumed that the marginal stratum probabilities are known to the investigator. This knowl-
edge can provide non-parametric identification and, for given parametric assumptions, it
can improve efficiency of estimation. By contrast, in the present paper we focus mainly
on random sampling and consider rather general forms of marginal information.

A second strand of the literature that is relevant to the current problem is the recent
literature on combining datasets. Arellano and Meghir (1992), Angrist and Krueger (1992)
and Lusardi (1992) estimate models using information from two different micro data sets.
Our work differs in two respects. First, we assume that the model is identified using only
the micro dataset, whereas in the afore-mentioned studies identification is only obtained
by combining the datasets. Second, we do not require that the second dataset consists of
individual-level data. In our framework all that is observed from the second data source
is a vector of moments. This allows us to use census tabulations without having access to
the raw data on which these tabulations are based.

Our work is also related to, but essentially different from, the literature on the use
of prior information in econometrics which dates back to Theil and Goldberger (1961)
and which is, of course, a major theme of Bayesian econometrics. In this approach there
exists extra sample information, possibly stochastic, about known functions of the
unknown parameters. In our case we consider exact information about unknown functions
of the parameters. An example would be the right-hand side of equation (1). Our informa-
tion is relevant because the unknown function can be consistently estimated from the
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sample data but it is useless without sample data. In the Bayesian case the prior information
is useful even without sample data.

Finally, a strand of literature which is related to the problem analysed here is that of
missing regressors. A generic example is the following: a researcher has two data sets, one
containing observations on y, x; and x,, and the second containing observations on y and
x. An alternative interpretation of this is as single data set where observations on x; are
missing at random. This case has been analysed for the linear model by Griliches, Hall
and Hausman (1978) and Gourieroux and Monfort (1981), and for the general case by
Robins, Hsieh and Newey (1991). The case we investigate differs in two aspects. First, we
assume that the second data set is not completely observed. Only some moments from the
joint distribution of the variables in the second data set are observed. Second, we will
assume throughout most of the paper that the second data set that these moments come
from is so much larger than the first data set that sampling eror in the moments can be
ignored. This is not an essential difference, but one that explains why the gains that we
will report are much larger than those reported by Griliches, Hall and Hausman (1978)
who investigate missing data problems where the proportion of missing data is of the
same order of magnitude as that of complete data.

A cautionary remark concerning the combination of micro and aggregate data should
be made. In most of the analysis we assume that the aggregate variables are known exactly.
We discuss how this can be extended to the case where the aggregate information has a
known measure of uncertainty associated with it. However, a more fundamental problem
is that some of the aggregate data may have been estimated using the same survey data
that the investigator is attempting to combine the aggregate data with. For example,
national unemployment statistics in the U.S. are based on the Current Population survey
(CPS). Combining CPS data with aggregate unemployment statistics would therefore be
futile, because essentially all the information in the latter comes from the former. However,
routine application of the techniques developed in this paper might lead the investigator
to conclude that there is a substantial gain from combining these data sources. In particular
the tests for compatibility of aggregate and micro data discussed in this paper would be
unlikely to reject the hypothesis that the data are compatible. One should therefore always
investigate which sources the aggregate statistics are based on, and in particular whether
the survey data to be combined with these aggregate statistics were used in constructing
them.

The paper is organized as follows. Section 2.1 contains the general estimation theory.
In Section 2.2 we show that the approach leads to efficient estimators in the class of regular
estimators. In addition we find that for a leading example efficiency can be achieved with
a smaller number of moments than is necessary in general. In Section 2.3 we show how
one can test whether the two sources of information, micro and macro, are compatible.
Section 2.4 extends the results of Section 2.1 to the case where the macro data do not
provide exact information on population moments but instead provided estimates with
some measure of uncertainty. In Section 2.5 we discuss the issues that arise when the
micro or survey data form a stratified sample. Section 3 contains an application of the
techniques developed in this paper. We use micro data from The Netherlands on employ-
ment status, age and education to estimate a probit model. We then combine this with
aggregate data published in statistical yearbooks to obtain estimates that, for some param-
eters, are 50 times as accurate as the original estimates that did not utilize the aggregate
information. Section 4 analyses the efficiency gains for probit models in a Monte Carlo
study to put the results in Section 3 in perspective. Section 5 contains the conclusion and
some suggestions for future research.
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2. ESTIMATION
2.1. Theory

Let y and x be random vectors with joint probability density function
S, X)=f(y1x;0%) - r(x) 6*€0, (x, y)eX x ¥,

where f(-|-;-) is known function, 8* is an unknown parameter and r(-) is the
unknown density function of x not involving 8*. Let {(y,, x,)}-, be a random sample
of independent observations on y and x. If this random sample is all the information one
has about 6*, one can, under standard regularity conditions, estimate 6* efficiently by
maximizing the conditional likelihood function:

Ore=argmax Y Inf(yulxn; 0).

We assume that (- | - ;) is twice differentiable in 6, that S(- |- ;-) and its derivatives
are measurable in y and x and that 6 * is the unique maximand of E[In f(y|x; )]. Under
these assumptions the maximum likelihood estimator 8y, satisfies

~ d
VN (O —0%)—> 4 (0, 57",
where .# is the Fisher information matrix:
Inf olnf olnf

(P1x; 0%)=E—=(y|x; 0*) - —Z(y|x; 0*).

Se—F In
0000’ 00 00’

Another way of interpreting this estimator is as a method of moments estimator? with the
score function as the moment:

- LY 0. @)
S(ylx; 0) o6
In this approach there is no need to parameterize the density of x, r( - ). Even if we knew
the distribution of x exactly, we would not be able to estimate 6 * more precisely. In this
view the problem is a semi-parametric one, even if only trivially so, where the reluctance
to specify r( - ) comes at no extra cost, either computationally or in terms of efficiency.
Now suppose that in addition to the random sample of y and x the researcher knows
the expectation 4* of a known function of y and x, h(y, x). We will assume that A( - ) is
a measurable function of y and x. We defer the discussion on the value and sources of
such information till later. First we show how we can utilize this type of information. If
we knew the marginal distribution of x, knowledge of h* would lead to the exact restriction

vi(y,x; 6)

h*=g(0)=f f h(y, x) - f(p]x; 0) - r(x)dydsx.

In that case we can maximize the likelihood function subject to the restriction A* =g ().
The asymptotic variance of the constrained maximum likelihood estimator is equal to

V=g T ([, ' T ' T,0, (3)
where .# is as before and T ¢=(9g/00")(6). However, in general we do not know the

2. i.e. as a solution to (1/N) Z:;, V(Pns X, 0)=0 rather than as argmax Z":':l In f(ynlx,; 0).
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marginal distribution of x, and we cannot impose the restriction directly.> We can, how-
ever, impose a stochastic version of the restriction, using the conditional expectation of

h(y, x):
h*=Eh(y, x)=E{E[h(y, x)|x]} =Eg(x; 0%),

where g(x; 6)=[.h(z, x) - f(z|x; 0)dz. We impose this stochastic restriction in a gen-
eralized method of moments (GMM) framework, with y,(y x; ) as the first moment,
and

va(y, x;0)=h*—g(x; 9), (C))

as a second moment. This is not the only possible choice for an additional moment. One
might think of using y3(y, x, 8) =h*—h(y, x) in addition to, or instead of, y,. In Section
2.2 it will be shown that the optimal GMM estimator based on y; and vy, is efficient and
that therefore adding a moment such as y; does not lower the asymptotic variance of the
GMM estimator for 6*. Using y, and y; rather than the efficient combination y, and
v, might still be useful in cases where the numerical evaluation of g (x; ) is difficult, and
especially in cases where the conditional density f(y|x) is not parametrically specified,
which would make it impossible to compute the integral [A(z, x) f (z| x)dz.
The generic form of the GMM estimator is (Hansen, 1982):

- [ ' 1
Ocmm =argmin [NZZL. ¥ (Vns Xn; 0)] % [NZL' Y(Vns Xn; 9)],

with C a non-negative definitz matrix with rank at least equal to the dimension of 6. The
optimal form of the GMM estimator uses a weight matrix C equal to
Ely(y,x;0%) - w(y,x;0*)']" (or a sequence of weight matrices Cy converging in
probability to this expectation). In that case the asymptotic distribution of the GMM
estimator is:

~ d
YN (Ooum—0%)— # (0, V),

where
a ' —1 a -1
V={[E—1”-,(y, x; e*)] [Ew(y, X3 0%) - w(y,x;0%) ] : [E—"i,(y, x; e*)]}
00 00
=[F+TLA ' T ' = — s ' TYT, ST+ A,) T8, (5)

with A= E[h* —g (x; 0™)] - [h*—g(x; 0*)]" and T, =(0g/90")(6*) = E(0g/90")(x; 0*).
We assume that A, is non-singular. If A, is singular, some of the restrictions implied by
knowledge of h* are perfectly correlated, at least asymptotically. For the first-order
efficiency calculations such restrictions can be ignored, and the corresponding elements of
the moment vector v, dropped. The gain in precision in the first representation of (5) is
the second term I';A; 'T,. It is large if the variance of g (x; 8*) is small and the derivative
with respect to 6 large in absolute value. This representation allows us to separate the
information from the conditional distribution of y given x, .#, and that from 4* and the
marginal distribution of x, I;A;'T,. In the last representation of ¥, A, represents the

3. If we specify a parametric family for the marginal distribution of x an argument similar to the one for
known r( - ) would go through. We would then have an exact restriction @ and the parameters of the marginal
distribution of x.



660 REVIEW OF ECONOMIC STUDIES

value of knowledge of the marginal distribution of x. If A, is small, V is close to the
asymptotic variance of the constrained maximum likelihood estimator given knowledge
of r(x), given in (3).

Let us look at an example of this type of marginal information:

Example 1. Let y conditional on x have an exponential distribution with density
function exp (—0o— 0, - x) exp [~y - exp (—0o— 0, - x)]. The information matrix is

{2
Hy pitod)
where p,=E(x) and 62=E(x—u,)> If we know that the expectation of y is equal to 4*,

we can construct a second moment /

va(y, x, 9)=h*—E(y|x)=h*—eXP (=00—0, - x).

The gain in precision from adding this moment is T'; A; ', with

Ag=E[h*—exp (—0,— 0, - x)%,

and

1“;,=E< exp (—60p— 0, - x) )
x-exp(—0o—0, - x)

To ease the interpretation of the results, we will simplify them by looking at the special
case where x has a standard normal distribution.* In that case

o 1)
S= ,
01

and the normalized variance of the GMM estimator:

e 1 (exp(of)+e%—1 0, )
exp (69)+ 63 0, exp (63)/

The asymptotic variance of /N (6,—0%¥) is 1/[1+ 6% exp (—63)], compared to 1 if one only
uses the conditional likelihood score y; and not the marginal mean information. If 8,=
0, there is no efficiency gain. The efficiency gain reaches a maximum at 6,=1. In that case
the variance of VN (6, — 0}) is 1/(1+e™")~0.7. Knowledge of E(y) reduced the variance
of the estimator of @, by up to 30%.

2.2. Efficiency

The estimators proposed in Section 2.1 use the knowledge of A*=E[h(y, x)] in a
generalized method of moments framework with one set of moments equal to the
conditional likelihood score and the second set of moments equal to
h*—{h(y, x)f (y|x; 0)dy. This does not exhaust the set of potential moments. One could
create a limitless number of moments of the form (0Inf/d0) (y|x;0) - s(x) for any
function s(x). Another option is to include a moment of the form A* —h(y, x). To show

4. Note that the researcher does not know that x has a standard normal distribution. He or she only
knows the conditional distribution of y given x (in this case exponential with mean exp (—6,— 6, - x)), and the
expectation h* of h(y, x)=y.
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that the estimators proposed in Section 2.1 are efficient we follow the approach to semi-
parametric efficiency bounds developed by Begun, Hall, Huang and Wellner (1983), and
Newey (1990), in the same way as it is used in Imbens (1992). We will first give the intuition,
using Chamberlain’s (1987) approach, and then present the formal result. Suppose that
x has a discrete distribution with known points of support x', ..., x* and 7,=Pr (X=
x'). In that case the maximum likelihood estimates for 6 and r are characterized by the
equations:

v oalnf o
Loy g (Pnlxn; 0)=0, (6)
Y A= 1=y =0 foralll=1,...,L. (7

In terms of # and 5, the maximum likelihood estimate for #* is
A . o 1 o
h=3,_, # J h(y, ¥) - (185 O)dy=—5, f h(y, %) f (3 |%a; O)dy. ®)

Because we can characterize 0 and h by (6) and the right-hand side of (8) without reference
to 7, we can use those equations to estimate * and 4* even if x is not a discrete random
variable. The estimators retain their efficiency properties under weak conditions, as shown
by Chamberlain (1987). To estimate 6* if A* is known we can use a GMM procedure
with moments

al
0.5 0="2L1x; 0),

vy, x,0)=h*— Jh(z, xX)f(zx; 0)dz.

The argument that the GMM estimator for @ with A* known is efficient goes as follows.
If x is discrete, and & unknown, the GMM estimator is identical to the ML estimator.
The variance of the constrained GMM estimator (i.e. with A* known) is equal to the
variance of the constrained ML estimator (cf. Lemma 1 in the Appendix). Therefore the
constrained GMM estimator is fully efficient if x is discrete. Then we can use Chamberlain’s
argument to prove efficiency for continuous x.

We will assume that ® and X are compact sets, and that A( y, x) is a bounded function.

Theorem 1. The difference between the asymptotic covariance matrix V of
JN (q —0%), where @ is any regular estimator, and V, the asymptotic covariance matrix of
VN (Oamm— 0%), is a positive semi-definite matrix.

Proof. See Appendix. ||

In some cases it is possible to reduce the number of moments necessary to achieve
efficiency. An important example is the case where the aggregate information is in the
form of probabilities for a particular partition of the sample space. Suppose there are
partitions {X;}/-, of the set X, and {Y,}£-, of the set ¥, such that the extra information
consists of knowledge of the probabilities

hfi=Pr [xeX;, ye Yi]=E[l(xex,ye vyl
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for j=1,...,J, and k=1,..., K. This type of information might be obtained from
frequency tables in national statistics, as the example in Section 3 illustrates. From this
type of information one can construct Jx K— 1 moments of the form

'I/Z(y, X, 0)(j—l)xl(+k= ;;c_E[l{xeXi.erk}|x]=hj’;c— l(xer} J‘ f(zlx; 0)a'z
Yk

The (J x K)th moment is superfluous because the probabilities add up to one.

We can represent this information in these Jx K—1 moments in a different way. Let
hjo=Y1 i be the probability of the event xeX; and let A =h% /hjo be the conditional
probability of the event ye Y, given xeX;,. In this representation the probabilities ko
represent what we know about the marginal distribution of x, and h}k, for k=1, what we
know about the conditional distribution. One can construct moments that reflect this
division:

VoY, X, 0)i-nx -1+
=[Ek—j f(z|x;0)dz]~1{xex,.; forj=1,...,J, k=1,...,K—1,
Yx

VoY, X, 0)rxk—1y+;=Ho— l{xeX,) forj=1,...,J—1.

The first set of moments represents the information about the conditional distribution of
y given x, the second set represents the information about the marginal distribution of x.
The first component of the gain is:

Ag=(A‘“ ° )
0 Agzz

where A, is a J - (K—1) dimensional square matrix, and A,,, a J— 1 dimensional square
matrix. The second component of the gain can be partitioned accordingly:

r‘é=(r‘;l 0)9

with I';; a dim (0) % (J - (K— 1)) dimensional matrix, and the second matrix of dimension
dim (0) x (J—1). The gain is therefore

I";. * Ag_lll * rg|.

This is identical to the efficiency gain that we obtain if we only use the moments y,(y, x, 0)
and y»(y, x, 0); for i< J- (K—1). The moments that represent the marginal probabilities
for the partition of the X space are not informative if we also have conditional probabilities
for y given that x is in those sets. Other information about the marginal distribution of
x, such as the expectation of x, can still be useful, but this particular type of extra
information x is not. If J is large relative to K, this approach can significantly reduce the
number of moments necessary to achieve efficiency.

2.3. Testing

In this paper we investigate how a random sample can be used in combination with exact
information about some of the moments of the variables in order to estimate parameters
of the conditional distribution. As indicated in the introduction, one could view this as
an abstraction from the practical case where the information on the moments would come
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in the form of averages over a large but not infinite population. In that view it stands out
more clearly that one is combining information from different sources. One should there-
fore be concerned with the question whether these sources are compatible. Specifically, is
the population from which the random sample is drawn the same as the population from
which the sample is drawn that provided the averages? We will refer to this issue as the
question of compatibility of the two sources of information. This issue is distinct from
the question of specification of the conditional distribution. Both are forms of misspecifi-
cation (in one case of the sample design and in the other case of the conditional distribu-
tion) and can lead to incorrect inference. However, their implications are different. If the
two pieces of information are not compatible, there is no point in combining them and one
should use only one of them. In the second case combining the two pieces of information is
justified, but the specification of the conditional distribution should be improved. Because
of the different implications it is important to try to distinguish between them.

We can test compatibility directly by simply comparing #* to the average of A(y, x)
over the random sample. Consider

T.=N-(h—h*y - V' (h—h*),

where
— 1
h=ﬁ2:,=| h(yn’ xn)’

and V¥V, is the variance of h(y,x), consistently estimated by the average
STA(Yns Xn) —h] - [A(Pn, X») —h])'/N. The distribution of 7, is, as N goes to infinity,
x*(dim (h)). Its distribution does not depend on the correct specification of the conditional
density of y given x. If one wants to test compatibility given that the model is correctly
specified one can improve on this test. The optlmal test in that case would be to compare
h* to the average of conditional expectation of y given x, (1/N) Y2, g(x; 6). This com-
parison is done implicitly in the GMM estimation procedure. The value of the objective
function in that procedure can therefore be used for this test.

One can test the specification of the conditional distribution without using the extra
information in a variety of classical ways. One approach is to use the information matrix
equality to test parameter constancy (Chesher (1984)).

In addition to testing separately compatibility and specification, it is possible to test
the joint hypothesis that both the sample design and the conditional distribution are
correctly specified. Such tests, while they might be harder to interpret because they test
the overall specification, might have more power than the separate tests. One test statistic,
mentioned above, that is calculated as a by-product of the estimation procedure, is

T.,=N-y- V_I"I_’a

w1th W= Z,, LW (Y X, 0)/N and V,, the variance of y(y, x, 0*). Asymptotically T, has
a x? distribution with dim (4) =dim (u/) dim (0) degrees of freedom.

The score tests that can be used in a maximum likelihood framework can be adapted
to give tests in this GMM framework. For instance, one can add a moment of the type

*Inf dlnf Inf

;0 x;
20,00, 15 O ae 20, V1 ae

0)

vs(y, x, 0)=

to the moment vector and test the over identifying restrictions to get a test similar to the
information matrix test.
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A test that is more specific to these models that combine two sources of information
can be based on the fact that the optimal weight matrix in the GMM procedure,
E[w - v']7", is block diagonal. The expectation of w,(y, x, 8) - wa(, x, ) is zero because
the expectation of v, is zero conditional on x, and y, does not depend on y. One can
exploit this result by adding a moment of the form.

vi(y, x, 0)=vwi(y,x,0):- way, x, 0);.

Both the information matrix type tests and those based on zeros in the weight matrix
E[yy']"" can be implemented in a GMM framework with over identifying restrictions.
See Newey (1985) for a general discussion of such tests. These moments do not add any
efficiency because the estimators are already efficient in a semi-parametric sense, but they
test the specification in different ways.

Another test that can be employed to test simultaneously specification and compat-
ibility is a Hausman test (Hausman (1978)). Under the null hypothesis that the data
are compatible and conditional density is equal to f(y|x; 6), the conditional maximum
likelihood estlmator OML is consistent but not efficient. The eﬂic1ent estimator is under
these assumptions Ogmm. The normalized different /N (Ogmm — Om) has under the null
hypothesis asymptotically a normal distribution with mean zero and variance

VOML bamm = VOML Véovmn,f:'ﬂy_l - V=j_lré(rgj_]ré+Ag)_]rgj_l'
Assume that V3, —a.uv has full rank. Then the test statistic
Ti=N"- (Oomm—OmL)"* Vi -boum - (Ocmm—Omr)

has asymptotically a y* distribution with dim () degrees of freedom.

2.4. Stochastic information

In the preceding sub-sections we have assumed that the extra information is in the form
of a vector h*, which is exactly equal to the expectation of a known function A( - ) of the
variables y and x. In this section we will generalize the procedures suggested for that case
to the case where we do not know 4* with certainty. Suppose we have an estimate 4 of
h*, based on an average of h(y, x) over a second random sample of size M. Based on that
random sample the estimate for A* would satisfy

_ d
JM(h—h*) - 4 (0, A))
with

Av=Elh(y, x)=h*] - [h(p, x)—h*]".

We assume that the extra information is in the form of the estimate 4 and the size of the
second data set M. In addition we assume that #—h* is independent of the micro sample
{(¥n> Xn)}n=1. We implicitly assume that we do not observe the second random sample
of size M directly. If we did, we could combine the data sets and estimate the parameters on
the combined data set. The only difference with the model from the preceding subsections is
that in this case the extra information is uncertain.

First we will develop an estimation procedure that leads to an estimator for A* as
well as for 0*, and then we will show that if all we are interested in is an estimate for 6,
we can simplify the procedure. The asymptotics will be based on N, the number of observa-
tions in the main data set, going to infinity, while M/N converges to some constant k.
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Note that from the main sample {(y,, x,)}a~1 We can consistently estimate the variance
A/, as

~ 1y ~ ~,
AII=NZ"=| (h(yna xn)_h) : (h(yna xn)—h)

where ﬁ=2 h(Yn, x,)/N.
If we did not have the estimate 4 of h* we could estimate 8* and A* from the first
or main data set in a GMM framework using the moments

__ Lo
V/l(y: X, 6, h) f(ylx, 0) ae(y|x90)’

vy, x, 0, h) =h—j h(z, x)f (z|x; 0)dz.

z

The estimator for 6 is equal to the conditional maximum likelihood estimator and the
estimator for 4* is equal to the average of g (x; 8) = [ A(z, x) f (z|x; 6)dz over this dataset.
This estimator is efficient, which follows from the efficiency argument in Section 2.2. The
joint asymptotic distribution of the estimator and 4 — A* is:

0-6* 0 S -7, 0

3 PN d
IN| h=h* | > f[ 0], | -Tr™" +T,s7'T, 0
h—h* 0 0 0 An/k

We can combine this with the estimator for 4* from the second data set, &, in a minimum
distance framework (see Chamberlain (1984) for details). The quadratic form to minimize
is

0—0\'/F+T,A;'T, T.A;' 0 \ /0-0
h—h A;'T} A" 0 || h—h
h—h 0 0  Awk/ \h—h

If we minimize this over & and 6 we obtain estimators with the following asymptotic

distribution.
A_ * d -1 ’ -1 -1
W<0_0*>—>W<0,(J+Ff,Ag, r, _Il‘gAg_l> )
h—h A;'T,  A+AK

If k=plim (M/N) is large, the asymptotic variance of  is close to that obtained for the
case where we know h* exactly. If k is small, the knowledge of 4* from the second data
set is very inaccurate and we estimate 6 * with about the same accuracy as if we estimated
it based on the main data set alone.

An alternative procedure if we are only interested in estimating 6* and not in 4*, is
to use the same moments y, and y, that we used with exact knowledge of h*, and adjust
the variance of the second moment. We replace A, in the weight by A+ Ay /k, and the
true value #* by the estimate 7. We then estimate 8* by minimizing

s 0

0 (A +A’/k)—l)'zp).v=| V(Yns Xn, 0,}7),
g h

T Y (D X, 0,5)’-<
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with

1 of
oo 2g1%: 0
v(y, x, 0, )=|/(»|x; 0) ae(ylx )

h—{.f(zlx; 0)dz

Asymptotically the variance of /N (8 — 0*) is [.# + Ty (Ag+ Ay /k)"'T,]17". This is the same
as the asymptotic variance for the estimator proposed above. Uncertainty in the extra
information has therefore the same effect as decreasing the weight given to it in the optimal
method of moments procedure. The implication is that even if we are not completely sure
about the uncertainty in the aggregate data, we can reduce the effect of the aggregate
statistics on the estimates by lowering the weight given to y,. Such an approach can be
interpreted as implicitly associating a variance with the aggregate statistics. This might be
useful in cases where the aggregate data are based on a variety of sources, combined in
complex ways. In such circumstances one would expect the aggregate data to be infor-
mative, but not represent exact population values.

2.5. Stratified sampling

In many cases survey data are not drawn randomly from the overall population, but are
drawn randomly within pre-determined strata, with the sample proportions in the strata
different from the corresponding population proportions. In this section we investigate
the implications of such sampling schemes for the methods we propose for incorporating
aggregate information. We focus on two special cases that illustrate the issues that arise
in this situation. In both cases we assume that the stratification itself is known, but we
allow the population probabilities for each of the strata to be unknown. First we analyse
an exogenous sampling scheme where the stratification is purely on the covariates x. Second
we analyse an endogenous sampling scheme where the stratification is on the dependent
variable, y. For a general discussion of stratified sampling see Imbens and Lancaster
(1991).

2.5.1. Stratification on exogenous variables

To simplify notation we focus on the case with two strata. With probability p* an observa-
tion is randomly drawn from that part of the population that is characterized by x> 0.
With probability 1 —p* an observation is drawn from the part of the population with
x<0. In the population the proportion of units with x>0 is equal to ¢*. The joint of y
and x is

o 5(x) 1—p* 1-8(x)
f(y,x)=f(y|x;0*)'r(X)'(—*) ( *) ,
q 1—¢

where 6(x) is an indicator for the event x>0. The estimator 011, obtained by maximizing
the conditional likelihood, Y In f'(y.|x.; @) is still consistent and efficient in the absence
of aggregate information.

Now assume that there is aggregate information in the form of the (population)
expectation of A(y, x),.h*. This information can be expressed as

q* 8(x) 1___q* 1-5(x)
h*=E,h(y, x)=Eh(y, x)(—*) ( *)
p 1-p
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where E, denotes the expectation over population distribution, and E; the expectation
over the sampling distribution. If ¢*, the population proportion of units with x>0 is
known, we can add to y,(y, x; 0) given in equation (2) the moments

p—6(x) )
h*_g(x; 0)(q*/p)5(x)((l _q*)/(l _p))|_5(x)

If ¢* is not known a priori, knowledge of h* allows one to estimate g, but there is no gain
in precision with which one estimates 6. Another interpretation is that because in this case
one cannot estimate A* from the micro data alone, knowledge of A* does not help in
estimating the parameters of interest, 6. There is potentially a gain if the dimension of 4*
is higher than the dimension of the unknown stratum probabilities.

v(y, x; 0,p)=(

2.5.2. Stratification on endogenous variables

With probability p* an observation is randomly drawn from the sub-population charac-
terized by y>0. With probability 1 —p* an observation is drawn from the sub-population
with y<0. Let g* be the population proportion of units with y>0, and 8(») an indicator
for the event y>0. The joint density of y and x is:

fx)=f(ylx; 0%) - r(x)

(P*/q*° - (A-p*)/(1—g*)' °?
(P*/q*) §o £ (@lx; 0%)dz+((1=p*)/(1=¢*) [, £ (2l x; 0*)dz.

In the absence of aggregate information one can estimate 6, p and ¢ efficiently in a GMM

q 1 —

( f f(lx; 0)d2+ j flx; B)dz)

1
V() %5 0, p, g) = 9 (y1x; 0)-

S (ylx;0) 06

0 0 1
vi(y, x;0,p,q)=q— f f(zlx;(?)dz/(i—;f f(z|x;0)dz+l—:':—zf f(zlx;@)dz),
0 0 —o0

Wl3(y9x; aap9 ‘I)=P"'5(y)

These moments are a special case of the general formula in Imbens and Lancaster
(1991).

Unlike exogenous stratification one can, under endogenous stratification, typically
estimate ¢, the size of the stratum with y>0. Therefore one can estimate the expectation
of h(y, x) in a GMM framework using the moment.

0 _ 0
vy, x;0,p,q,l)=h—g(x; 0)/(‘% f(zx; 0)dz+:—_sj flx; 0)d2)-
0 —o0

If h* is known, the second moment vy, is used with the known value 4*, and optimally
weighted with the other moments.

The key difference between the two cases, stratification on x or stratification on y, is
that in the first case one cannot estimate A* from the survey data alone, while in the



668 REVIEW OF ECONOMIC STUDIES

TABLE I
Summary statistics

L E A
Mean 0-908 2:82 357
st. dev. 0-289 1-13 6-82
Corr. with L 1-:000 0-003 —0-031
Corr. with E 0-003 1-000 -0-174
Corr. with 4 —0-031 -0-174 1-000

second case it is possible to estimate A* from the micro sample alone. This is a direct
consequence from the fact that we assume that the conditional density of y given x is
specified, and not the conditional density of x given y. If one can estimate A* from the
micro data alone then knowledge of A* is typically informative, but if one cannot do so,
knowledge of A* cannot be informative about other parameters.

3. AN APPLICATION

In this section we will apply the econometric procedures proposed in the previous sections,
combining a micro dataset on Dutch labour market histories with aggregate information
from national statistics. The ORIN dataset, collected by NIDI° (Nederlands Interuniver-
sitair Demografisch Institut) in cooperation with the Tilburg University, Groningen
University and the University of Wageningen, contains among other things labour market
histories for a random sample of Dutch men from 1977 to 1983. We will only use the
labour market status at one point in time, January 1977. For this date we constructed a
dataset containing information on labour market status (employed or not employed),
education (in five categories, indicating increasing levels of education) and age (in years).
We will denote labour market status by L, equal to 1 if someone is employed in January
1977 and 0 if not. Education will be denoted by E, and age by 4. Only men at least 25
years old and not yet 50 years old were retained. This left us with 347 observations. Table
I gives summary statistics for this dataset.
We estimated the following probit model for employment using this dataset:

Pr[L=1|4, E]=®D(x'0)
=®[0y+0, - E+0,- (A—35)+0;- (4—35)7], )

with

1

E

A-35
(4-135)?

and ®( - ) is the standard normal distribution function. The log-likelihood function is:

In(0)=Y,_, L,- In®(x;0)+(1—-L,) - In (1-d(x,0)),

5. We wish to thank NIDI for making these data available to us.
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TABLE 11

Maximum likelihood estimates

Regressor Estimate S.E. T-value
Intercept 1-4372 0-3167 4-54
Education —0-0090 0-0930 -0-10
Age-35 —0-0021 0-0148 -0-14
(Age-35) -0-0017 0-0023 -0-74
TABLE 111
Size of male population in thousands by age category
in 1977

Age category Working Total

25-29 555 609-0

30-34 499 534-8

35-39 407 4367

40-44 370 396-8

45-49 337 3780

Total 2168 2355-3

with the first-order condition
o=s L= ®(0)
"1 ®(x1,6)(1—D(x1,0))

Table II gives the maximum likelihood estimates for this model. Note that none of the
coefficients (apart from the one corresponding to the intercept) was estimated to be signifi-
cantly different from zero. In fact a formal test indicates that the hypothesis that all three
coefficients 6,, 0, and 0, are all zero cannot be rejected with this dataset. The test statistic
is equal to 0.83, with a limiting y*(3) distribution. The micro dataset was clearly not large
enough to detect much of a relation between education and age on the one hand and
labour market status on the other hand. We therefore investigate whether we can combine
this dataset with aggregate data to obtain more accurate estimates of such effects.

The first step in this procedure was to extract information from the statistical year-
books for The Netherlands.® In the B (population) section of the 1978 yearbook we find
information giving the size of the male population in various age categories in 1977. Page
120 of the 1980 yearbook gives the corresponding numbers for working males for the
same age categories for 1977. Table III gives the relevant numbers from both tables. We
use this information to estimate both the probability of being employed given the age
category (denoted by p; where the index for the age category i runs from 1 to 5) and the
probability of being in a particular age category (denoted by g,;). Table IV gives the
estimated probabilities. We will interpret the 2.355 million observations (all men between
25 and 50 years old in The Netherlands in 1977) that led to Table III as a random sample
from an infinitely large population. The p; and ¢; in Table IV are, in this interpretation,
estimates of the true population parameters. However, given the size of the sample that
was used in constructing Table ITI, compared with the micro sample of 347 for which we

¢ (x10) - x.

6. Handboek voor de Statistiek, published by the Centraal Bureau voor de Statistiek. Similar aggregate
information for the United States is published in the Statistical Abstract of the U.S., published by the U.S.
Bureau of the Census. For instance, in the 1990 volume, Table 625 on page 378 gives the size of the population
and labour force by a number of age intervals, and Table 638 on page 386 gives the employment status by age.
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TABLE IV
Estimate of age category and conditional employment
probabilities
Age category Di qi
25-29 0-911 0-258
30-34 0-933 0-227
35-39 0-932 0-185
40-44 0-932 0-168
45-49 0-891 0-160
Total 0-921 1-000

have exact measurements, we will treat the p; and ¢; in Table IV as true probabilities.
Formally this is not correct. One could take account of the fact that it is an estimate of
the true probability by estimating its variance using the raw numbers in Table III, as
outlined in Section 2.4. This is unlikely to be a fruitful strategy in this case. Because the
population is about 7000 times as large as the sample, the variance of these estimates is
so small relative to the variation in estimates based on the sample, that it will not have
much effect on the final results. A second argument is that the raw numbers in Table III are
also estimates, based on various surveys, using complicated weighting schemes. Variance
estimates taking them as true counts are therefore likely to be biased downward. For these
reasons we take as a first approximation the frequencies in Table IV as true probabilities.
The question is now, what do these probabilities tell us?

From Table IV we can see that the conditional probability is not constant over the
age categories. We cannot tell from this table whether this is due to age effects or education
effects, but we can tell that at least some combination of them must be affecting the
employment probabilities. In terms of equation (9), Table IV implies that it cannot be
true that 6,=60,=05;=0. It may however be true that §,=0;=0 and that the relation
between age and employment that is seen in Table IV is spurious, due to neglect of
dependence of labour market status on education. In other words, Table IV contains
information about the model, but not by means of parameter estimates. It does not in
itself identify any parameters. What we will do now is combine this information with that
in the micro dataset to get estimates for  that are more accurate than those in Table II.

We incorporate knowledge of the conditional employment probabilities by using a
GMM estimator with the moments

. L-0(x0)
vl 0 -0 0))

W2(L, x, 0) =1 4epo+sias+spy - [pi—®(x'0)] fori=1,2,...,5. (1

w1 is the score for the conditional likelihood that was maximized to get the estimates in
Table II. The additional information is contained in the moment y,. Since there are 4+ 5
moments and only 4 parameters, we estimate the parameters in two rounds, using a
consistent estimate of the optimal weight matrix in the second round. The results are in
Table V. All standard deviations decrease considerably. The standard deviations on the
coefficients 6, and 03, which capture the age-dependency of the employment probability
decrease by a factor 7. It would require a dataset about 50 times as large (i.e. about
15,000 observations rather than 347) as large to get similar precision from the conditional
maximum likelihood estimator for these coefficients.

If we estimate 6 using the micro sample it is not informative to know the marginal
distribution of age, because age is ancillary. However, if we impose the restrictions implied

¢(x'0) x; forj=1,...,4, (10)
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TABLE V
Estimates using marginal employment probabilities
Regressor Estimate S.E. T-value
Intercept 1-8574 0-2678 6-93
Education —0-1085 0-0837 -1.30
Age-35 0-0030 0-0020 1-50
(Age-35)° -0-0028 0-0003 -9-33

by knowledge of the conditional employment probabilities for the various age categories,
this is no longer the case. Age is not ancillary any more and knowledge about its marginal
distribution is informative about §. However, in Section 2.2 it was shown that knowledge
of marginal probabilities like the ¢, in Table IV is not informative if we know p; already.
Other information about the marginal distribution of x, like the mean E(x), or correlation
of elements of x, would have added information but knowledge of ¢; does not.

From the preceding estimation we can conclude that it is potentially very useful to
incorporate aggregate information of the type incorporated in y,. There are two caveats.
The first is that the marginal information might not be correct for the population from
which the sample is drawn. This might be the result of inadvertent selection of the sample
or of incorrectly measured aggregate statistics. A second caveat is that the model in
equation (9) need not be correct. The way in which not only the standard deviations, but
also the estimates change, suggests that this might be a problem. These two problems have
very different implications. The consequence of the first is that combining the micro and
aggregate data is not meaningful. They essentially refer to different populations. This
might be a result of the process that determines the aggregate statistics from an underlying
population, such as de-seasonalizing, imputing missing values and other procedures. The
second problem inplies that the model is mis-specified. One would have to go back to the
theoretical model underlying the specification and come up with a better version. In this
case however the combination of micro data and aggregate information is productive,
even if the final result is negative.

To examine these two problems we employ the specification tests discussed in Section
2.5. First we investigate whether the probabilities in Table IV correspond to the same
population as the sample. Table VI gives the sample equivalents of the numbers that are
given in Tables III and IV for the entire population. The question is whether the sample
can be regarded as drawn randomly from the population that is represented in Tables III
and IV. We will test this in two ways. First we look at the conditional employment
probabilities p;. If the sample is drawn randomly from the population then ¥; should,
conditional on N;, have a binomial distribution with parameters N; and p;. The test statistic
is

N i i Ai 2

Td:z,l. (pi—P1) .

(1=pi) - pi
Asymptotically 7, should have a y2(5) distribution. The value obtained was 0-94. We
therefore do not reject the null hypothesis that the sample is drawn randomly from the

population. The second test compares the §; to the population probabilities ¢;. The stan-
dard x? test has the form

(N- qi_Ni)z
Tc2=z,~s=, Tq,——
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TABLE VI
Sample counts and frequencies
Age category Working (¥;)  Total (N) bi=Y:/N, 4,=N,/N

25-29 84 93 0-903 0-268
30-34 78 85 0-918 0-245
35-39 55 59 0-932 0-170
40-44 56 61 0-918 0-176
45-49 42 49 0-857 0-141
Total 315 347 0-908 1-000

Asymptotically the test statistics should have a y(4) distribution. The value obtained was
1-92. Again we cannot reject the null hypothesis of random sampling. The advantage of
doing the test in two steps rather than doing one comprehensive y? test on all ten cells
(employed or not, for the five age categories) is that we can distinguish between two sources
of non-randomness. Suppose people in particular age categories were over-sampled, but
conditional on age the sampling was random. In that case the information in p; would
still be valid, and our estimator would therefore still be consistent. One would then expect
only the second test to reject. If on the other hand the sampling was conditional on
employment status, but independent of age, the second type of information on ¢; would
still be valid. In that case one would expect the first test to reject the null, but not the
second.

We can also test the model specification. Testing it separately, using only the data
from the random sample is now very insightful, as we cannot even reject the hypothesis
that all slope coefficients are zero in the specification (9). We therefore test the specification
of the conditional distribution using the aggregate information. We will still interpret these
tests as testing mainly the specification of the conditional distribution rather than that of
compatibility.

The Hausman test discussed in Section 2.3, based on the difference between the
efficient and the conditional maximum likelihood estimates is equal to 10-6. Asymptotlcally
it should have an x*(4) distribution. The 95% and 97.5% percentile of the 2%(4) distribution
are 9-5 and 111 respectively. We can therefore marginally reject the null hypothesis.

The method of moments estimators whose results are reported in Tables IV and V
use more moments than parameters. The minimizing value of the objective function has
asymptotically a y? distribution with degrees of freedom equal to the number of over-
identifying restrictions. The test statistic that resulted when we estimated 0 using moments
v and y, is equal to 11-4. Asymptotically it should have a y?(5) distribution. The 95%
and 97-5% percentiles for this distribution are 11-1 and 12-8 respectively. Again, we can
marginally reject the null hypothesis that the model is correctly specified. Testing the
model specification in a method of moments framework with over identifying restrictions
need not be restricted to the use of y, and y,. We can also add the restriction of zero
correlation between y, and y,. In Section 2.3 it was shown that this zero correlation
between the scores of the conditional likelihood and the moments incorporating the aggre-
gate information is a general characteristic of these methods. The appropriate moment to
add for this test is of the form

v/3ij(L’ X, 6)= vllj(La X, 0) . V’Zi(Ly X, 0)

fori=1,...,5and j=1,...,4. Adding these moments will not increase the efficiency of
the estimators, as they already achieve a semi-parametric efficiency bound, but it provides
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an additional specification test. We applied this test using only the following five of the
potential twenty restrictions:

W3i(L9 X, 0)= WII(L’ x90) : w2i(L9 X, 0)
_ L—®(x'0)
O(x'0)(1-D(x'0))

“P(x'0) " Vaepo+sizs+spy * [Pi—P(x'6)]

fori=1,...,5. The test statistic, the minimum value of the objective function, has asymp-
totically a x%(10) distribution. The value obtained was 73.1. We can therefore reject the
specification of the conditional employment probability.

The results of this test should be interpreted with some caution. The construction of
the test uses an estimate for the variance of the moments based on the outer product form.
Such tests, in the context of information matrix tests, are known to have finite-sample
distributions very different from the large-sample distributions. In particular, they tend to
reject too often, even if the restrictions on the covariance matrix implied by the model are
imposed. For a discussion of these issues see Chesher and Spady (1991).

Another difficulty with the last test is that rejection of the null hypothesis is more
difficult to interpret than a rejection would have been with the GMM test using only v,
as the over-identifying moments. Using only v, and y, as moments the test clearly has
power against alternatives that are characterized by an age profile more general than the
quadratic one allowed for in the specification of f(y|x; 8). This is the type of mis-
specification that we are interested in given the presence of direct information on the age
profile, and the fact that both that GMM test and the Hausman test only marginally reject
suggest that the model does not capture the age profile too badly. Additional evidence is
the fact that when we included a cubic term in age, (Age — 35)°, the coefficient was not
significant with a T-value of 0-83. With the GMM test using the moments y,, v, and
W11 - W, it is less clear how to interpret the rejection, or identify alternatives against which
this test has power.

The conclusion from the tests is therefore mixed. We cannot reject the hypothesis
that the marginal information is correct in that it refers to the population from which the
sample is drawn. We can however, using this information, reject the model specification,
with some reservations. Given that the initial results, where we only used the information
in the sample of 347, indicated that we could not reject the hypothesis that none of the
regressors had any effect on the employment probabilities, this shows that this type of
information can be quite valuable. This is even more surpising given that the extra informa-
tion in itself does not identify any of the parameters. It is the combination of the two
sources of information that makes for a powerful mix.

4. EFFICIENCY GAINS FOR PROBIT MODELS

To put the results from the previous section in perspective we calculate in this section the
efficiency gains for a number of different probit models. In particular we try to answer
two questions. First, are the considerable efficiency gains reported in the previous section
due to the particular parameter values or to the particular distributions of that case?
Second, what type of marginal moment information leads to such gains? The basic model
we investigate has the probability of y=1 equal to ®(0y+x, - 6, +x, - 6,), where ®(-)
is the standard normal distribution function. The regressors x, and x, have, unknown to
the researcher, a bivariate normal distribution with both means equal to zero, both vari-
ances equal to one and the correlation coefficient equal to p. If we set the values of the
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parameters equal to 8,=0, 68,=0-5, 0,=0-5 and p=0, the normalized variances for the
conditional likelihood estimators for 8, and 6, are both equal to 6:85. We then calculate
the variance for the optimal GMM estimators under four different assumptions about
additional information.

I. The researcher knows the expectation of y to be equal to #*. The estimator uses
in addition to the scores from the conditional likelihood function the moment

Yoy, x;0)=h*—®(Og+x, 0,+x;,- 0,).

This reduces the variance of both 8, and 8, by less than 0-01. This type of information
is clearly not very useful. Note that in the logit model information on the marginal mean
of y is not useful about the slope parameters at all. It turns out that in the probit model
this is also approximately true.

II. The researcher knows the expectation of y conditional on x; <0 and conditional
on x;=0. The estimator uses in addition to the scores from the conditional likelihood
function the moments:

vy, x;0)1=14 <o [Af —D(Oo+x,- 0,+x,- 0,)],
vy, x;0)2=1y 20 [ —D(Oo+x, - 0,+x,- 0,)].

This reduces the variance of (31 considerably, from 6-85 to 1-85. It does not decrease the
variance of 0, significantly. If the additional information is about the conditional distribu-
tion of y given x;, then the gains are only in the precision with which one estimates the
coefficient of x;.

III. The researcher knows the expectation of y conditional on x;<—1:282,
—1-282=<x;<—043, —0-43<x,<0:43, 0-43<x,;<1:282 and 1:282<x,. The five addi-
tional moments are:

Va(y, x; 0)1= 1< 1282 [AF —®(Oo+x:1 - 0,+x- 65)],
Y2y, %;0)2= 112835 < 043  [AF —D(Oo+ X, - 0,+x,- 05)],
Y2y, x5 0)3=1_0435x<043" [BF —@(Oo+x, - 0,+x,- 05)],
Y2y, x5 0)a=loazsx <1282 * [AF —@(Oo+x1 - 0, +x, - DJ)],
Yo, x5 0)s=liogr gy, * [AE—@(Bo+x:1 - 0,+x,- 6))].

This again reduces the variance 0, considerably, this time to 1-23. The variance of 6,
again does not decrease. It is interesting to compare these efficiency gains to those under
the previous case where the additional information was on just two moments, E[y|x, <0]
and E[y|x, 20]. Here we know the conditional expectation of y for a much finer partition-
ing of the X, space, but that does not lead to a much larger efficiency gain than with the
coarse partitioning.

IV. The researcher knows the conditional expectation of y conditional on
x1<0, x, 20, x,<0 and x,20. This leads to the following four moments in addition to
the score from the conditional likelihood function.

Va(y,x;0)1=14 <o [AF —D(Op+x, - 0, + x5 6,)],
Yy, x5 0)2= 120 [BF—P(Oo+x, - 0,+x2- 05)],
Yoy, x;0)3= <o [IF—®(Oo+x: - 0,+x;- 6))],
YAy, x; 0)a=ly,z0 [hE—D(Oo+x, - 6,+x2- 0,)].



IMBENS & LANCASTER COMBINING MICRO AND MACRO DATA 675

TABLE VII
Changing 6,
)| I III v
0o eff () eff (0)) | eff (60)) eff (0,) | eff (6)) eff(0;) | eff (61) eff(02)
0-13 0-10 0-12 0-11

-2:0 0-96 0-99 0-98 0-94
-1-0 1-00 1-00 0-23 0-99 0-15 1-00 0-22 0-21
00 100 1-00 027  1.00 018 1:00 026 026
1:0 099 099 024 1.00 016 1:00 022 021
2:0 1-00 1-00 0-16 0-97 0-11 0-96 0-12 0-12
TABLE VIII
Changing 6,
I II III v
0o eff (0,) eff (0;) | eff (8)) eff (0,) | eff (6)) eff(0,) | eff (6)) eff(6,)
-00 1-00 1-00 0-19 1-00 0-14 1-00 0-19 0-07
0-1 1-00 1-00 0-19 1:00 | 013 1-00 0-19 0-08
0-5 1-00 1-00 0-27 1-00 0-17 1-00 0-28 0-26
1-0 1-00 1-00 0-36 1-00 0-21 0-99 0-38 0-51

This reduces both the variance of 6, and that of 6, to 1-78. Knowing
E[y|x,<0], E[y|x;20], E[y|x,<0], and E[y|x,=0] is almost equivalent to having a
sample four times as large as the original sample. Note that these four expectations are
all estimable from data sets that contain information about only two variables at a time.
Such data sets do not identify any of the parameters by themselves, but they do make
estimation with a random sample much more precise.

In the following tables we compare the variances of the efficient GMM estimators
under these four different assumptions about additional information to the variances of
the conditional maximum likelihood estimators for different values of the parameters. We
report the ratios:

eff (0)) = {[F +T5A; ' Tl Y22/ {F "}z
eff (02) = {[£ +T4A; ' Tl " }33/{F "}

where {A4},; is the ij-th element of the matrix 4. The expected values ., I'; and A, are
estimated using 10,000 simulated observations, replacing the expectation by an average,
evaluated at the true parameter values.

In Table VII we change the value of the intercept. For values of the intercept that
make the marginal probability of y=1 close to zero or one the efficiency gains are consider-
ably larger. This is true for all four types of extra information.

In Table VIII we change the value of ;. This does not seem to have a major impact
on the efficiency gains for 6,. If the extra information is about both the conditional
distribution of y given x, and that of y given x,, the smaller 6,, the more valuable the
information is for 6. In Table IX we change the value of 0,. This has considerable effect
on the value of information about the conditional distribution of y given x;. The smaller
0,, the more valuable such information is. The value for estimation of 6, is not much
affected by the magnitude of 6,.

In Table X we change both 6, and 6, at the same time. If both are equal to zero,
the covariance matrix becomes singular, and the parameters converge faster than \/N. The
smallest value that we look at is therefore 0-01. In that case the efficiency gains are very
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TABLE IX
Changing 6,
I I 11 v
0, eff (6)) eff (6;) | eff (0,) eff(02) | eff (6)) eff (62) | eff (6,) eff(02)
0-0 1-00 1-00 0-07 1-00 0-01 1-00 0-07 0-19
0-1 1-00 1-00 0-09 1-00 0-02 0-98 0-08 0-18
0-5 1-00 1-00 0-27 0-99 0-17 0-99 0-26 0-26
1-0 1-00 1-00 0-51 1-00 0-40 1-00 0-51 0-38
TABLE X
Changing 6,, 0,
I 1I 11 v
0y, 6, eff (0,) eff (0;) | eff (6:) eff (0,) | eff (6:) effi(0;) | eff (6:) eff(6>)
0-01 1-00 1-00 0-00 1-00 0-00 0-08 0-00 0-00
0-10 1-00 1-00 0-01 1-00 0-01 0-96 0-01 0-01
0-50 1-00 1-00 0-27 1-00 0-17 0-99 0-26 0-26
1-00 1-:00 1-00 0-61 1:00 0-49 0-99 0-62 0-61
TABLE XI

Changing p
I II I v

p eff (01) eff (6;) | eff (6:) eff(62) [ eff (1) eff(6;) | eff (61) eff(62)
-0-99 1-00 1-00 0-98 1-00 0-94 0-96 0-08

0-08

-0-90 1-00 1-00 0-82 1-00 0-81 0-98 0-20 0-20
—0-50 1-00 1-00 0-45 1-00 0-42 1-:00 0-27 0-28
0-00 1-00 1-00 0-25 1-00 0-17 1:00 0-25 0-25
0-50 1-00 1-00 0-30 1-00 0-17 1-00 0-19 0-19
0-90 1-00 1-00 0-72 1-00 0-68 1-00 0-08 0-08
0-99 1-00 1-00 0-97 1-00 0-96 1-:00 0-03 0-03

large. In general, the larger the values of the parameters, the less valuable the additional
information becomes. This is true for both 6, and 8, and for all four types of information.

In Table XI we change the correlation between the regressors. If the additional infor-
mation is only about the conditional distribution of y given one of the regressors (cases
2 and 3), then a correlation coefficient close to one in absolute value decreases the value
of the additional information. This does not happen if the information is about both the
conditional distribution of y given x; and about the conditional distribution of y given
x,. One should keep in mind when interpreting these results that with the correlation
coefficient close to one in absolute value the ratio reported here is the ratio of two variances
that are both much larger than the corresponding variances when the correlation coefficient
is close to zero.

Table XII shows the effect of different distributions of the regressors. We look, in
addition to the normal distribution used so far at the uniform distribution and discrete
distributions with two and four points of support (all points of support have equal prob-
ability). In each case the mean and variance are fixed at zero and one respectively. The
fewer the points of support, the more valuable any given amount of aggregate information.
For example, knowing the conditional probabilities P(y=1|x,<0) and P(y=1|x,20) is
much more valuable if the distribution of x, is binary than if the distribution of x; has
four points of support, or is uniform or normal. Intuitively the reason is that if x, is binary
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TABLE XII
Changing the distribution of x,
I I II1 v
Distribution eff (1) eff (0:) | eff (6)) eff (6,) | eff (6:) eff (6;) | eff (1) eff (02)
Normal 1-00 1-00 0-27 1-00 0-18 1-00 0-26 0-26
xe{—1,1} 1-00 1-00 0-16 1-00 0-16 1-00 0-22 0-26

3 11 3}
T 1:00  1-00 022 100 016  1-00 022 026
x'e{ﬁ NN
Uniform [—/3, /3] 100  1-00 0-21 1-00 015  1-00 021 026

the aggregate information amounts to knowing the entire conditional distribution
P(y=1|x,) rather than just two probabilities as in the continuous case.

5. CONCLUSION

In this paper we develop a method for using aggregate data in the estimation of micro-
econometric models. The estimator that efficiently incorporates this type of information
is a generalized method of moments estimator. The efficiency gains that result are consider-
able. Since this type of information is both freely and widely available there seems to be
a strong case for using this type of information, in the framework outlined in this paper.

The typical example where this approach may be useful is one where the investigator
has a small survey with all relevant variables, in combination with aggregate data on some
of the variables. One qualification is that one should be sure that the aggregate data are
not based on exactly the same survey data. In that case one could erroneously conclude
that bringing in the aggregate data leads to substantial gains while any gains would be
spurious.

Another example where this approach might be particularly useful is that where one
wishes to use micro-level data to predict or track patterns of aggregate data. See for
instance Blundell, Pashardes and Weber (1989) and Heckman and Walker (1989). Using
the aggregate data available to link the model more closely to the past pattern of these
macro data might lead to a considerable improvement in predictions.

There are of course many questions unanswered. We have only looked at a very
limited set of parametric models. What are the efficiency gains for models other than the
ones analysed in this paper? Can these procedures be adapted to deal with general semi-
parametric models where the conditional distribution of y given x is not parametrically
specified? What if there are measurement errors destroying the direct link between the
micro and the macro variables?

All of these questions deserve further attention, but the conclusion based on the
results in this paper is that using aggregate data to improve on estimates based on micro
data alone is both a feasible and a fruitful approach.

APPENDIX

First we give a useful lemma from Imbens (1992):

Lemma 1.  Suppose the maximum likelihood estimator of a vector 8 with 0= (0} 050%)’ can be characterized
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by
Z:,:, hl(él; éz, Xx,)=0
ZLI hy(8:, 8, 65, x,)=0

with dim (h\) =dim (6,)+dim (0,) and dim (h;) =dim (83). Then, the optimal constrained method of moments
estimator for 0, given 0,=0 based on minimization of

Lo ' o
[NZF' h(6,,0, xn)] cAn- [ﬁZ":IhI(BI ,0, xn)]
where Ay = [Ehy - hi]_', has the same asymptotic covariance matrix as the constrained maximum likelihood estima-
tor. In other words, it achieves the Cramér-Rao lower bound.

Proof. See Imbens (1992). |

Proof of Theorem 1. The proof is similar to that of Theorem 2 in Imbens and Lancaster (1991) and
based on work on semi-parametric efficiency bounds by Begun, Hall, Huang and Wellner (1983) Chamberlain
(1987) and Newey (1990). We take a sequence of parameterizations of the marginal density of x, r(x). We then
show that the sequence of Cramér-Rao bounds associated with this sequence of parameterizations converges to
V, the asymptotic covariance matrix of 6. Therefore any estimator that has an asymptotic covariance matrix
that is less than V, must be more efficient than a maximum likelihood estimator. This implies that it cannot be
a regular estimator.

The sequence of parameterizations is indexed by &. For any £>0 partition X into L, subsets X, such that
X;n X,,=0 for all I#£m, and for all x° and x'eX,||x"~x'|| <&. Let ¢, =1 if xe X, and 0 otherwise. Define

re(x)=r (x)/ [Z, i f r (z)dz] .
X

The parameterization we will use is
S(ylx; 80) - %, 81¢icre(x)

with parameters 6 and 6. The true value of .§; is jX,r(z)dz. The maximum likelihood estimator for 6 can be
characterized by

1l v Inf -
0=— —(Ynlxn; 0 12
NZ,,=. a‘9()’ [%n5 0) 12)

and that for &, by
_tow 8
o—ﬁzn=l ¢1x"‘6[.

Given the maximum likelihood estimators 6 and 8, the maximum likelihood estimator for h* = Eh(y, x) can be
written as

I?=jj h(v, 2)f (v|z; a) Y, Sl¢lz’5(2)dvdz

or

1 ~ ~

0=~ ¥, [h—z, ¢,,,f j h(v, 2) f (v]z; 0)rs(z)dvdz:|. (13)
xvy

The fact that we can characterize / and 8 as solutions to moment equations (12) and (13) that do not involve

& implies that we can invoke the above lemma. This lemma implies that the GMM estimator for 6* given h*

based on the optimally weighted combination of the two moments.

ol
V(3 x; 0, h)=5';¥(y|x; 9)
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and

Vey, x; 0, h)y=h— Y Pix ‘[ f h(v, 2)f (v|z; 0)r(z)dvdz

x Yy

is as efficient as the constrained maximum likelihood estimator. Therefore the sequence of Cramér-Rao bounds
is identical to the sequence of asymptotic covariance matrices for the GMM estimator of 8*. This sequence is
equal to

Ve=[£+T.A;'T,]"
with
Ac=Eya(y, x; 0%, 1*) - yo(y, x; 0%, b*Y

and
Fsz=E%(y, x; 0% h*).
00’

Sufficient for convergence of ¥, to V is that I', and A, converge to I" and A. For this to hold it is sufficient that
Vea(y, x| 0, h) and Oy .,/00 (y, x| 6, h) converge uniformly to

h—f h(v, x)f (v]|x; 0)dv
Y
and

- J; h(v, x)g—{;(v |x; 0)dv

respectively. This follows from the assumption that f is twice differentiable, the compactness of X, ®, and the
boundedness of A(y, x). ||
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