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NOTES AND COMMENTS 

CONFIDENCE INTERVALS FOR PARTIALLY IDENTIFIED PARAMETERS 

BY GUIDO W. IMBENS AND CHARLES F MANSKI1 

Recently a growing body of research has studied inference in settings where para- 
meters of interest are partially identified. In many cases the parameter is real-valued 
and the identification region is an interval whose lower and upper bounds may be esti- 
mated from sample data. For this case confidence intervals (CIs) have been proposed 
that cover the entire identification region with fixed probability. Here, we introduce a 
conceptually different type of confidence interval. Rather than cover the entire iden- 
tification region with fixed probability, we propose CIs that asymptotically cover the 
true value of the parameter with this probability. However, the exact coverage proba- 
bilities of the simplest version of our new CIs do not converge to their nominal values 
uniformly across different values for the width of the identification region. To avoid 
the problems associated with this, we modify the proposed CI to ensure that its exact 
coverage probabilities do converge uniformly to their nominal values. We motivate this 
modified CI through exact results for the Gaussian case. 

KEYWORDS: Bounds, identification regions, confidence intervals, uniform conver- 
gence. 

1. INTRODUCTION 

IN THE LAST DECADE a growing body of research has studied inference in settings 
where parameters of interest are partially identified (see Manski (2003) for an overview 
of this literature). In many cases, where the parameter is real-valued, the identification 
region is an interval whose lower and upper bounds may be estimated from sample 
data. Confidence intervals (CIs) may be constructed to take account of the sampling 
variation in these estimates. Early on, Manski, Sandefur, McLanahan, and Powers 
(1992) computed separate confidence intervals for the lower and upper bounds. Sub- 
sequently, Horowitz and Manski (2000) developed CIs that asymptotically cover the 
entire identification region with fixed probability. Recently Chernozhukov, Hong, and 
Tamer (2003) extended this approach to settings with vector-valued parameters defined 
through minimization problems. 

Here, we introduce a conceptually different type of confidence interval. Rather than 
cover the entire identification region with fixed probability a, we propose CIs that as- 
ymptotically cover the true value of the parameter with this probability. The key insight 
is that when the identification region has positive width, the true parameter can be close 
to at most one of the region's boundaries. Suppose that the true value is close to the 
upper bound of the identification region. Then, asymptotically the probability that the 
estimate for the lower bound exceeds the true value can be ignored when making infer- 
ence on the true parameter. This allows the researcher to allocate the entire probability 
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port through Grants SES 0136789 (Imbens) and SES 0314312 (Manski). Imbens also acknowl- 
edges financial support from the Giannini Foundation and the Agricultural Experimental Station 
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of making an error, 1 - a, to values above the upper-bound point estimate. We do not 
know whether the true parameter is close to the upper or lower bound, so one-sided 
intervals with confidence level a are constructed around both bounds. 

To illustrate the nature of our CIs for partially identified parameters, we construct 
CIs for the mean of a bounded random variable when some data are missing and the 
distribution of missing data is unrestricted. We show that our CIs for the parameter are 
proper subsets of the corresponding CIs for the identification region, with the differ- 
ence in width related to the difference in critical values for one- and two-sided tests. 
However, the exact coverage probabilities of the simplest version of our new CIs do 
not converge to their nominal values uniformly across different values for the width of 
the identification region. A consequence is that confidence intervals can be wider when 
the parameter is point-identified than when it is set-identified. To avoid this anomaly, 
we modify the proposed CI to ensure that its exact coverage probabilities do converge 
uniformly to their nominal values. We motivate this modified CI through exact results 
for the Gaussian case. 

2. CONFIDENCE INTERVALS FOR PARAMETERS AND IDENTIFICATION REGIONS 

Many problems of partial identification have the following abstract structure. Let 
(fQ, A, P) be a specified probability space, and let P be a space of probability distri- 
butions on (Q, A). The distribution P is not known, but a random sample of size N 
is available, with empirical distribution PN. Let A be a quantity that is known only to 
belong to a specified set A. Let f(., ): P x A -- IR be a specified real-valued function. 
The object of interest is the real parameter 0 = f(P, A). Then the identification region 
for f(P, A) is the set {f(P, A'), A' E A}. Suppose that A/(P) = argminA,/Af(P, A') and 
A,(P) = argmax,,EAf(P, A') exist for all P E P. We focus on the class of problems in 
which the identification region is the closed interval [f(P, A/(P)), f(P, AU(P))]. Manski 
(2003) describes various problems in this class. 

It is natural to estimate the identification region [f(P, A/(P)),f(P, A,(P))] by 
its sample analog [f(PN, Al(PN)), f(PN, AU(PN))], which is consistent under stan- 
dard regularity conditions. It is also natural to construct confidence intervals for 
[f(P, AI(P)), f(P, A,(P))] of the form [f(PN, A/(PN)) - CNO, f(PN, A,(PN)) + CN1], 
where (CNO, CNI) are specified nonnegative numbers that may depend on the sam- 
ple data. Horowitz and Manski (2000) proposed CIs of this form and showed how 
(CNO, CN1) may be chosen to achieve a specified asymptotic probability of coverage 
of the identification region. Chernozhukov, Hong, and Tamer (2003) study confidence 
sets with the same property in more general settings. In this paper, we study the use 
of these intervals as CIs for the partially identified parameter f(P, A). Our most basic 
finding is Lemma 1: 

LEMMA 1: Let CNO > O, CN1 > 0, A e A, and P E P. The probability that the 
interval [f(PN, Al(PN)) - CNO, f(PN, Au(PN)) + CNI] covers the parameter f(P, A) 
is at least as large as the probability that it covers the entire identification region 
[f(P, Al(P)), f(P, AU(P))]. 

All proofs are given in the Appendix. 
An implication of the lemma is that researchers face a substantive choice whether 

to report intervals that cover the entire identification region or intervals that cover the 
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true parameter value with some fixed probability. Although both intervals generally 
converge to the identification region as N -> oo, their difference typically is of the 
order Op(N-112). Which CI is of interest depends on the application. 

3. MEANS WITH MISSING DATA AND KNOWN PROPENSITY SCORE 

In this section we construct CIs for the mean of a bounded random variable when 
some data are missing and the distribution of missing data is unrestricted. Let (Y, W) 
be a pair of random variables, where Y takes values in the bounded set Y and W is 
binary with values {0, 1); without loss of generality, let the smallest and largest elements 
of Y be 0 and 1, respectively. The researcher has a random sample of (Wi, Yi Wi), 
i= 1, ..., N, so W is always observed and Yi is only observed if Wi = 1. Define - = 
E[YIW = 1], A = E[YIW = 0], a2 = V(YIW = 1), and p = E[W], with 0 < p < 1. We 
assume initially that p is known. This will be relaxed in Section 4. Let F(y) be the 
conditional distribution function of Y given W = 1, an element of the set of distribution 
functions F with variance g2 < a2 < a2, for some positive and finite -r2 and -2. The 
distribution of Y given W = 0 is unknown; hence, A e [0, 1]. The parameter of interest 
is 0 = E[Y] = L- p + A (1 - p). The identification region for 0 is the closed interval 
[06, Ou] = [/ - p, - p +1 - p]. 

With p known, the only unknown determinant of the interval boundaries is the 
conditional mean /u. This parameter can be estimated by its sample analog I = 

N=1 Wi Yi/N1 (where N1 = N Wi), and the identification region can be consistently 
estimated by [01, 6u] = [fi ? p, fi p + 1 - p]. The first step towards constructing CIs 
is to consider inference for A. Using standard large sample results, we have V/-N( - 
L .) A'(O , 02/p). A consistent estimator for o2 is a2 = E=1 / * (Yi - /)2/(Ni - 1). 
Hence, the standard 100 . a% confidence interval for ,t is 

(1) CI = [- Z(a+l)/2 
* /' + Z(a+l)/2 

'* a p N 

where z, is the r quantile of the standard normal distribution: 0(z,) = fZ (1/ / 2 ) x 

e-y2/2 dy = r. In the point identified case with p = 1 we have 0 = 01 = Ou = ,L, and thus 
in that case CIA is also the appropriate CI for 0 and [0;, Ou]. 

Now consider symmetric CIs for the identification region [0;, Ou] and the parame- 
ter 0. The CI for [0l, Ou] substitutes the lower (upper) confidence bound for A into the 
lower (upper) bound for the identification region: 

(2) CI'l = [(f Z(a+l)/2 / N p( + Za+l)/2 ' 
/ - p + 1-p 

Note that as p -> 1, C[1,0u] -- CI/. The CI for 0 adjusts the critical values to obtain 
the appropriate coverage for 0: 

(3) PCI=[(Oz 
__ p (p 

z -p (3) Ca I [ - 
Za p-N +Z /p J. 

Note that this is a proper interval only if 2z,,a&/pN> > -(1 - p)/p, which is always 
true if a > .5 and will be true with probability arbitrarily close to one for N large if 

1847 



G. IMBENS AND C. MANSKI 

a < .5. One can modify the interval if this condition is not satisfied without affecting 
the asymptotic properties. The following lemma describes the large sample properties 
of these intervals. 

LEMMA 2: For any po > 0, 
(i) infFF,po0<p<l limN1N Pr([0j, Ou] C CIo'oul]) = a; 

(ii) infFe,AeAA,po<p< limN,0 Pr(0 e CIa) = a. 

Although the confidence interval CIO has in large samples the appropriate confi- 
dence level for all values of p, A, and F, it has an unattractive feature. The issue is that 
for any N one can find a value of p and A such that the coverage is arbitrarily close to 
100. (2a - 1)%, rather than the nominal 100 . a%. To see this, we consider an example 
with YIW = 1 normal with mean ,i and known variance 0-2. Let P = Li Wi/N. The 
exact coverage probability of CI? for 0, conditional on p, at A = 0 (so 0 = Lt p) is 

Pr(0 e CI?)= (za. -) A( z . N ( pP )) 

For any fixed p E (0, 1), this coverage probability approaches a with probability one as 
N --- oc. However, for any fixed N < oc, the coverage probability approaches 2a - 1 
with probability one as p -- 1. This example shows that the asymptotic coverage re- 
sult in Lemma 2 is very delicate. One can also see this by considering the width of 
interval CI? equal to 2Za / a -/p/-N + 1 - p. As p -- 1, for fixed N, this width con- 
verges to 2z,a . -/-N. This is strictly less than the width of CIA, which is the stan- 
dard interval for 0 for the point-identified case with p = 1. It is counterintuitive that 
the CI for 0 should be shorter when the parameter is partially identified than when it 
is point-identified. The anomaly arises because the coverage of CI' does not converge 
uniformly in (F, A, p) and, in particular, not uniformly in p. 

We propose here a modification of CIE whose coverage probability does converge 
uniformly in (F, A, p). To motivate the modification, again consider the case where 
YIW = 1 _ AV'(0, C02) with known 0-2. The conditional coverage rate for symmetric in- 
tervals of the form [0r - D, 0u + D] is 

Pr(01- D < 0 < + DIp) 

,:q(+. D+ (1-A) .(1-p,) (/ . D+,A (1-p). 
0 o-p p 

To get the coverage rate to be at least a for all values of A, one needs to choose D to 
solve: 

( N1p3 D+(1-P)) ( N . D ) a. 

To facilitate comparison with the previous CI, let CN = Dv/Np/(po) so that CN solves 

P(CN + NP )- P (-CN) = a, 
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with the corresponding confidence interval 

Po po. CI =[A 

p 

- 
-CN/ A, . 

p 

+ (1- P) + CN . 

For any fixed 0 < p < 1, limNo, CN = Za, which would give us the interval CI? back. 
For fixed N, as p -- 1, the interval estimate now converges to CI" with no discontinuity 
at p = 1. For 0 < p < 1, the confidence interval is strictly wider than the interval for 
p=l. 

For the general case with unknown distribution for Y W = 1, we construct a CI by 
replacing a by ra and p by p: 

(4) CI. = [(-CN vp N) . p, ( + CN /v/i N-) . p + 1 - p], 

where CN satisfies 

(5) (CN + V . ^A) - (-CN) =a. 

Lemma 3 shows that the new interval has a coverage rate that converges uniformly in 
(F, A, p): 

LEMMA 3: For any po > 0, 

lim inf Pr(O E CI) = a. 
N->oo FeY,AeA,po< p<l 

It is interesting to compare the three intervals CII"' u, CI1, and CI in terms of the 
constants that multiply &r/^/p? N, the standard error of f. The form of the intervals 
is the same for all three cases and the width of the intervals is strictly increasing in 
this constant, so we can compare the widths by directly comparing these constants. For 
CI[Il'ou1, the constant is Z(a+l)/2, which solves P(C) - P(-C) = a. For CI?, the constant 

is z, which solves P(oo) - P(-C) = a, and which is strictly smaller. For CI,, the 
constant is CN which solves 

d)(Pc+VN C *1AP) - +I(-C) = a. 

Unless p = 1, this is strictly between the first two constants so CI c CI c CCI I c CI'. 
If the parameter is point identified (p = 1), then CN = Z(a+l)/2 and CIO c C.I = 
CI[l,?uI = CIA. 

a a 1a 

4. THE GENERAL CASE 

Here we develop a confidence interval that converges uniformly in more general 
settings, including ones in which the width of the identification region is a nuisance 
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parameter that must be estimated. We use the same structure and notation as in Sec- 
tion 2. Define 0l = f(P, At(P)), 0, = f(P, A1,(P)), and A = 0, - O1, and let 0,, 0,, and 
A = 0, - 0I be estimators for 01, 0., and A. Then the identification region [10, Ou] is 

naturally estimated by its sample analog [01, o]. 
We consider the following set of assumptions: 

ASSUMPTION 1: (i) There are estimators for the lower and upper bound 01 and Ou that 
satisfy: 

(O-0 \OU ((?)' (Polo 
2 ,a a 

uniformly in P E V, and there are estimators 6&2, ̂  2, and for ol2, 2, and p that converge 
to their population values uniformly in P E P. (p may be equal to one in absolute value, as 
in the case where the width of the identification region is known.) 

(ii) For all P E 7, (J2 < af, J2, < a2 for some positive and finite a2 and 2, and 

, - 0,1 A < O. 

(iii) For all E > O, there are v > O, K, and No such that N > No implies Pr(/NIA - 
AIl > KA) < E, uniformly in P e P. 

Given Assumption 1 we construct the confidence interval as: 

(6) CI = [1, - c /, N +O CN U/ u ], 

where CN satisfies 

(7) (CN + N . A 
x ) - (-CN) = a 

The following lemma gives the general uniform coverage result. 

LEMMA 4: Suppose Assumption 1 holds. Then 

lim inf Pr(0 E CI) > a. 
N --oc PE P, AE 

Next we return to the missing data problem of Section 3. We allow for an unknown p 
(assuming p is bounded away from zero) and show that this problem fits the assumption 
sufficient for the application of Lemma 4. Because the conditional variance of Y given 
W = 1 is bounded and bounded away from zero, Assumption l(ii) is satisfied. The 
lower bound can be estimated by 01 = (1/N) i 1 W/. Yi. The upper bound can be 
estimated by ,u = (1/N) y N=I (Wi Y + 1 - W). Both estimators are asymptotically 
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d 2 an ~i~, 8,4 NO, ,2" d 
normal, with VN(01 - 01) -./(0, 1u) and /(Ou - OU) A'(, o2), where -2 = r2 . 
p+/2 .p (1 - p) and 02 = 0-2.p L2 p . (1 - p) p. (1- p) -2. p. (1 - p).Since 
the convergence is also uniform in P, Assumption l(i) is satisfied. Finally, consider 
Assumption l(iii). Let v = 1/2, and No = 1. In the missing data case A = 1 - p. The 
variance of A is A(l - A)/N. Hence, E[N (A - )2] < A. Now apply Chebyshev's 
inequality, with K = 1//-, so that 

Pr(VNlA - Al > K AP) = Pr(N(A - A)2 > K2 . A2V) 

< E[N. (A - A)2]/(K2A2V) 

< A/(K2A2v) = 1/K2 = E. 

Hence Assumption 1 is satisfied, and Lemma 4 can be used to construct a CI which is 

equivalent to that obtained by substituting p for p in CI, given in (4). 
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APPENDIX 

PROOF OF LEMMA 1: Define the following two events: 

A1 = f(P, A) E [f(PN, Al(PN)) - CNO, f(PN, AU(PN)) + CN1], 

A2 = [f(P, A,(P)), f(P, Au(P))] c [f(PN, Al(PN)) - CNO, f(PN, Au(PN)) + CN1]. 

Because f(P, A) E [f(P, Al(P)), f(P, AU(P))], it follows that A2 implies A1 and that the cover- 
age probability for the set (equal to the probability of the event A2) is less than the coverage 
probability for the parameter (equal to the probability of the set A1). Q.E.D. 

PROOF OF LEMMA 2: For the first part, fix F and p. Then 

Pr([0, c Oul C/Il ) 

= Pr( i > (i- Z(a+l)/2 * p and 

Ou< ( + z+l)/2' p + l - p 

= 1 -Pr( 0 < ( - Z(a+)/2 + / .- p or 

Ou > (A + Z(a+l)/2 p + 1 -p 
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=1 Pr tt.p<2 z(a?) p.N) J 

-Pr (A.p+1 p>(/LZ+ 2 A z PN,) 

=1-Pr(P<A-Z(+1) p2 N - Pr(IL > +Z(a+l)2 

which converges to 1 - (1 - a)/2 - (1 - a)/2 = a as N gets large. For the second part consider 
the three possibilities for A: A = 0, A = 1, and 0 < A < 1. If A = 0, we have 6 = /u p. Hence, the 
coverage probability of CI,' is, for N large enough so that 2z,a&/ p_N> -(1 - p)/p, 

Pr(O E CI )=P((Ir - Za ) P<ii P< A Za' .(4 + Za p N )) 

=1 Pr((/ Za' 
P N > )I ) 

- Pr(iLL.P>(A+za. p N) 
( (ai~~~~l-p ? 

The second term converges to 1 - a. The third term converges to zero, which implies the cover- 
age rate is a. A similar argument applies when A = 1. When A E (0, 1) the coverage probability 
converges to one. Q.E.D. 

Before presenting a proof of Lemma 3 we present a number of preliminary results. 

LEMMA 5 (Uniform Central Limit Theorem, Berry-Esseen): Suppose X1, X2, ... are inde- 

pendent and identically distributed random variables with c.df. F E F. Let XN 1:i=1 XiIN, 
p_t(F) = EFIX], o'2(F) =EF[(X p)2], and let 0 <o2 <o2(F) <&2 < oc, and EF[IXI] <00 

for all F E T. Then 

Sup P r N_(v ( 
XN - A <a - iP(a 0. 

See, e.g., Shorack (2000). Next, we show that we can use this to construct confidence intervals 
for sample means with asymptotically uniform convergence even with estimated variances. 

LEMMA 6: Under the same conditions as in Lemma 5, 

inf PrKXN - Z(a,+)/2 <AL<XN + Z(,,+1)/2 a. 
FE_'F/N 

PROOF OF LEMMA 6: First, 

inf Pr (N - Za1)/2 <_ _ X 

inf Pr Z(,+l)/2<V 
k < Z(a+l)/2 

FEY o/ 

Hence it will suffice to show that 

-os)a<oo,Fup (1(X ) <a) a -0. 
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By the triangle inequality: 

Pr(/ XN a) < a)- ) 

< Pr(v (N 
- 

)< a)- (a-a) + |i(a )- (a). 

By Lemma 5 the first term converges to zero, and by uniform convergence of - to a the second 
one converges to zero. Q.E.D. 

PROOF OF LEMMA 3: First we prove that the asymptotic coverage probability is greater than 
or equal to a. For fixed A the coverage probability is 

Pr((i 
- CN -' //pN) p < p + A (1 - p) < ( + CN //pN) p + 1 - p) 

=Pr(-CN- v -N . (1-p 
or O-C a 

< NfN A< CN +,/I-.(-- (+ A) (l--p) 

-a/ , p / / a -a .P 

For any e > 0, there almost surely exists an No such that for N > No, I((- - a)/oal < , so that 
e > 1 - -r/o. Therefore for N > No, 

Pr(-C N / . (-p) -i<CN + 
.a (-T. a/N. 0 a a'7 f O 

r( (1 -,).(1-p)) 

> Pr(-CN(1 ) - . 
A (1 - p) 

AA/1 <CN(l1-E)+<N (l1-A) (1-P)) <x /N . z-fIN <(1 0'-r l'/-. / -ff 

For N large enough this can be made arbitrarily close to 

(1 )+ (1-A) 1-p)) ( -CN(1-e)- (1- p) 
CN(C + "/-I. (1 (--p _CN /N.) 

= C+ . (1-A)(-))- -C - 
( pP )2ACN(()-) 

for some w. Because CN < Z(a+l)/2 (see definition of CN), and since 4(-) is bounded, the last term 
can be made arbitrarily small by choosing E small. The sum of the first two terms has a negative 
second derivative with respect to A, and so it is minimized at A = 0 or A = 1. By the definition of 
CN it follows that at those values for A the value of the sum is a. Hence, for any v > 0, for N large 
enough, we have 

Pr(( - CN - //pN) p < p+ A (1 - p) < (f + CN / pN) p + 1- p) 

> a - v. 

To prove equality, note that at p = 1 the CI is identical to CId, so in that case the asymptotic 
coverage rate is equal to a. Q.E.D. 
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Before proving Lemma 4 we establish a couple of preliminary results. Define CN and CN by 

p(CN+1N max( )) - (-CN)=a and 

(N +V . max(N,N CN)a. 

max(ol, oru) 

Note that CN and CN are stochastic (as they depend on A), while CN is a sequence of constants. 
Next we give two results without proof that show that one can ignore estimation error in 

Trl and oru. 

LEMMA 7: Suppose Assumption 1 holds. Then, uniformly in P E P, 

ICN - CNI - . 

LEMMA 8: For all E > O, there is an No such that for N > No, uniformly in P E P and A E A, 

|Pr(0l - CN . ,//N < 0 < 0, + CN' 'u//-) 

-Pr(0 
- CN o l //- < 0 < On + +CN a O'u/V/N) < E. 

The next two lemmas account for the effects of estimation error in A. 

LEMMA 9: For any 77, e > O, there is an No such that for N > No, uniformly in P e 7P, 

Pr( (CN+ .v/-N. ) )m-ax(-CN) <a- rl)<E. 
\ \ max(ot7, u)E. 

PROOF OF LEMMA 9: Because CN satisfies 0(CN + VNA/max(-, ou)) - (-CN)= a , we 

only need to prove that 

Pr (W()(N+ N ) N-(I)C+VN- >r) <E. 
Pr( ( max(o(7, u,)/ max(o-,, Ju) / 

By Assumption l(iii) there are v, K, and No such that with 8 = v/5 and N > max(No, K'/6), 

Pr(VlVI - Al > N'A^) < Pr({/Nla -Al > KA") < e. 

Then: 

5cN+ . -N+(cN- N+ N-) 
\max, omax(o-, qru) 

(8) =I1{A<A} (o(CNVN- max( ) -(CN+ 
m t , )) 

= {max(o(7, , u) m o- max (o7 (Ou) 

+ ll{ > A, -NlA - Al N,"}) 

+ max(l, 7u)) max(o((, u) 

x(4(cN+ IN- max()) - + 
A 

N 
max(o/1, qu) max(mo-, qu) 
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(9) < {A > A, AVNla - AI < NbAV} 

((C +N ' max(o, ) j? max(o, - max(r), )) 

(10) + l{4Ira - I > N'AV}, 

using the fact that (8) is nonpositive. The expectation of (10) is less than E. By a mean value 
theorem (9) is, for some y E [0, 1], equal to 

ILa>A, VN Z - Al < NbA'v 

(" r- A +y -V AA \ A-A 
x( (CN + +/N max(a -N ) -N/N 

max(o(r, )o-) max(co-, ma , 

Because the product is zero unless a > A, and CN, A > 0, this can be bounded from above by 

(11) l{A>A, VlA-Al<N6AV}. (Q max( 
. * max(,a-a 

max(ocr1,7) max(o71, o.) 

<{z^ >a, A -a/ <N8,/}- A,< . a(qrN? ' 
\-S max(ot , O'u)o max(try, m ou) 

<by(VN. (--. A N NAV 

< N-- # . a N6AW 
<- ' 

O 
/Nmax(crl, o-U) ' max(o-l, (u) 

Maximizing this over A gives 

N6-1 exp(-v/2),V/2 max(o-1, or)-1/V7T. 

Given that 8 < v, this can be bounded arbitrarily close to zero uniformly in P E P. Q.E.D. 

LEMMA 10: For any 17, E > O, there is an No such that for N > No, uniformly in P E P, 

Pr(CN N <N- Nr) < E. 

PROOF: Let 4 = (Z(a+l)/2). Note that CN and CN are positive and less than Z(,+1)/2, and thus 

(CN) > _ and 5(C7N) > q. Using Lemma 9 there is an No such that for N > No 

Pr(Q(CN+ v N- A 
)- C) (-CN)<a-T)) <E, 

max(o(r, oru) 

uniformly in P e P. Since 

eCN+ AN- ) -P(-CN)> a-7 'G 
max(o-, oru) 

= v+ V ) _N+ 
) -A 

- 0( CN + 
) 

max( max(, o- ma)(( 

- (-CN) + a(-CN) >-71 4 

(0 
N+ - max(o-, 

o) ) + (C-CN) 

+ (C,N + ry (, - 
C))) (CN - ) > -CN) 7 
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= - 4 (CN -CN) > -1 

= CN-CN > -, 

for some y E [0, 1] by the mean value theorem, and thus with probability CN - CN > -7r with 
probability at least 1 - E. Q.E.D. 

Note that Lemma 10 does not imply that ICN - N I converges to zero uniformly. This is not 
necessarily true unless we are willing to rule out values of A close to zero, which is exactly the 
point-identified area with which we are concerned. 

PROOF OF LEMMA 4: We will prove that for any positive E, for N sufficiently large, 

Pr(60 - CN ' '/VN < 0 _< OU + CN u/VN) > a - E, 

uniformly in P e P. We will prove this for 0 = Ou. The proof for 0 = 01 is analogous, and by 
joint normality of the estimators for the upper and lower boundary the coverage probability is 
minimized at the boundary of the identification region. 

For arbitrary positive 61, 62, and 63, choose N large enough so that the following conditions 
are satisfied (i), supZ I Pr(N7(0 - 0I)/o-t < z) - ?(z)I < E1, (ii), sup I Pr(VY(0u - Ou)l/cu 
z) - 0(z)I < El, and (iii), Pr(lCN - C(N < -E2) < e3. Existence of such an N follows for conditions 
(i) and (ii) from Assumption 4.2, and for condition (iii) from Lemma 10. Define the following 
events: 

E1 - , - CN . C1N < O < bu + CN .U/-N, 

E2 = 1 - CN 07l/V < Ou < OU + CN .U/0I/-N, 

E3 =6 - (CN - 62) ' a0/V/-N < OU < 6U + (CN - E2) (Tru/rN, 

E4 _ - (CN // < 0, < U bQ + CN ' a,/W, 

E5 CN -CN > -62, and E5 -CN -CN < -62. 

Note that (E5 n E3) = E2 and thus (E5 n E3) = (E2 n E3). Define also 

P3 = ((CN - E2 + /IN ' 
A/ol) 

- 0(-CN + E2) 

and 

P4 =- (C,N + V/NW A/o ) - 0(-N) = a. 

By conditions (i) and (ii), IP3 - Pr(E3)l < 2e1 and IP4 - Pr(E4)\ < 2e1. Also, IP3 - P4I < 2E2/, and 
by (iii), Pr(E6) < E3. By Lemma 8 it follows that for any 64 > 0 we can choose N large enough so 
that IPr(E1) - Pr(E2)l < E4. Then, by elementary set theory 

Pr(E1) > Pr(E2) - E4 > Pr(E2 n E3) - 4 > Pr(E5 n E3) - e4 > Pr(E3) - Pr(E?) - 64 

> P3 - 2E1 
- 63 - 

E4 > P4 - 2E1 - E3 - 2e62 - 64 = a - 2E6 - E3 - 2E20 - E4. 

Since E1,..., 64 were chosen arbitrarily, one can make Pr(E1) > a- e for any e > 0. 

1856 

Q.E.D. 
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