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Abstract

We consider the construction of con�dence intervals for parameters characterized by moment
restrictions. In the standard approach to generalized method of moments (GMM) estimation,
con�dence intervals are based on the normal approximation to the sampling distribution of the
parameters. There is often considerable disagreement between the nominal and actual coverage
rates of these intervals, especially in cases with a large degree of overidenti�cation. We consider
alternative con�dence intervals based on empirical likelihood methods which exploit the normal
approximation to the Lagrange multipliers calculated as a byproduct in empirical likelihood
estimation. In large samples such con�dence intervals are identical to the standard GMM ones,
but in �nite samples their properties can be substantially di1erent. In some of the examples
we consider, the proposed con�dence intervals have coverage rates much closer to the nominal
coverage rates than the corresponding GMM intervals. c© 2002 Elsevier Science B.V. All rights
reserved.
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1. Introduction

We consider the construction of con�dence intervals for parameters characterized
by moment restrictions. In the standard approach to generalized method of moments
(GMM, Hansen, 1982) estimation, con�dence intervals are based on the normal
approximation to the sampling distribution of the parameters. There is often
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considerable disagreement between the nominal and actual coverage rates of these
intervals, especially in cases with a large degree of overidenti�cation (Robertson and
Pagan, 1997; Altonji and Segal, 1995; Hall and Horowitz, 1996; Hansen et al., 1996).
We consider alternative con�dence intervals based on empirical likelihood methods
(Owen, 1988; Back and Brown, 1990; Qin and Lawless, 1994; Imbens, 1997; Smith,
1997; Kitamura and Stutzer, 1997; Imbens et al., 1998; Smith, 1999; Newey and Smith,
2000). Our alternatives exploit the normal approximation to the Lagrange multipli-
ers calculated as a byproduct in empirical likelihood estimation (e.g., Mykland, 1995;
Smith, 2000). We show that in large samples such con�dence intervals are identical
to those constructed using the standard GMM approach. In �nite samples, however,
the properties of these con�dence intervals can be substantially di1erent. In some of
the examples we consider, the proposed con�dence intervals have coverage rates much
closer to the nominal coverage rates than the corresponding GMM intervals.

2. Standard GMM estimation and asymptotic properties

First we review the standard (e.g., Hansen, 1982) approach to inference in models
characterized by moment restrictions. Let  (Z; �) be a moment function of a random
variable Z and an unknown parameter �, with E[ (Z; �)]=0 for a unique value of the
parameter, denoted by � ∗. We have a random sample of size N from the distribution
of Z , denoted by z1; : : : ; zN . Point estimates for � are obtained by choosing the value
of � such that the average moment,

∑
 (zi; �)=N is as close as possible to zero. When

the dimension of the moment function, denoted by M , is larger than K , the dimension
of the parameter �, it is generally not possible to set the average moment exactly equal
to zero. The standard Hansen approach to GMM is to estimate � by minimizing

QN;C(�) ≡
[

1√
N

N∑
i=1

 (Zi; �)

]′

C−1

[
1√
N

N∑
i=1

 (Zi; �)

]
;

for some positive de�nite M ×M matrix C. The optimal choice for the weight matrix
is the inverse of the expectation of the outer product of the moments,

� ≡ E[ (Z; � ∗) (Z; � ∗)′]:

This expectation is typically not known to the researcher so that it is infeasible to
minimize QN;�−1 (�). Instead researchers typically estimate the inverse of the optimal
weight matrix � using a consistent, but possibly ineJcient, estimator �̃:

�̂=
1
N

N∑
i=1

 (z; �̃) (zi; �̃)′:

In the second step one then estimate � by minimizing the quadratic form with the
estimated �:

�̂
gmm

= argmin
�

QN;�̂(�):

In large samples the distribution of �̂
gmm

is approximately normal,√
N (�̂

gmm − � ∗) d→N(0; (�′�−1�)−1);
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where

� ≡ E
@ 
@�′

(Z; � ∗):

It is important to note that the large sample distribution of �̂
gmm

is not a1ected by the
estimation error in the weight matrix �−1.
For testing purposes it is also important that the value of the objective function

QN;�(�) has a known distribution, both when evaluated at the true value of the para-
meter and when evaluated at the estimated value:

QN;�̂(�
∗) d→X2(M);

and

QN;�̂(�̂
gmm

) d→X2(M − K):

Like the normalized limiting distribution of the estimators for �, these limiting chi-
squared distributions are not a1ected by the estimation of �, or more formally,
QN;�̂(�

∗)− QN;�(� ∗) = op(1), and QN;�̂(�̂
gmm

)− QN;�(�̂
gmm

) = op(1).
We focus on con�dence intervals for �1, the �rst element of �, with �2 denoting the

remaining part of �; �=(�1; �′2)
′. The �rst con�dence interval we consider is based on

the normal approximation to the sampling distribution of �̂
gmm
1 . Let V11 be the (1,1)

element of (�′�−1�)−1, the covariance matrix for �̂
gmm

. Then, the standard 100�%
con�dence interval for �1 is

CIgmm
� = (�̂

gmm − z1−�=2

√
V 11; �̂

gmm
+ z�+(1−�=2)

√
V 11); (1)

where z� is the � quantile of the standard normal distribution. Because V is unknown,
we have to use an estimate for V , and we use the standard estimate

V̂ = (�̂
′
�̂
−1

�̂)−1;

where

�̂=
1
N

N∑
i=1

 (Zi; �̂
gmm

) (Zi; �̂
gmm

)′; and �̂ =
1
N

N∑
i=1

@ 
@�′

(Zi; �̂
gmm

);

are the estimated matrix of expected outer product and derivatives, respectively. This
use of estimates does not a1ect the asymptotic validity of the con�dence intervals.
In practice, however, the sampling variation in �̂ and �̂ can have important conse-

quences for the accuracy of the asymptotic approximations in �nite samples. Altonji
and Segal (1996) consider in a simulation study biases arising from sampling vari-
ation in �̂, and Newey and Smith (2000) document substantial higher order biases
arising from correlations between the estimated derivative �̂ and the average moments∑

 (Zi; � ∗)=N .

3. Alternative estimators

The lack of accuracy of asymptotic approximations in �nite samples for standard
GMM methods motivates the search for alternative methods. To develop such
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alternatives to the standard GMM estimators for � we �rst consider estimators for
the distribution function of Z . The idea behind empirical likelihood approaches is that
without restrictions on the joint distribution of the observables the empirical distri-
bution function is an optimal estimator for the distribution function. In the presence
of restrictions this is no longer true, because the empirical distribution function does
not necessarily satisfy these restrictions. We therefore consider estimators for the dis-
tribution function that are closest to the empirical distribution function, among those
distribution functions that obey all (moment) restrictions. The measure of closeness
we use is the Cressie–Read power-divergence statistics (Cressie and Read, 1984; Read
and Cressie, 1988; Corcoran, 1995; Imbens et al., 1998). See Smith (1999) for an
alternative class of empirical likelihood type estimators. Consider two discrete distri-
butions with common support s1; : : : ; sL and probabilities p1; : : : ; pL and q1; : : : ; qL. The
power-divergence statistic, indexed by a parameter �, is

I�(p; q) =
1

�(1 + �)

L∑
i=1

pi

[(
pi

qi

)�

− 1

]
:

If pi = qi for all i = 1; : : : ; K , then the statistic I�(p; q) equals zero. If some of the
probabilities di1er, that is, pi �= qi for some i, the power-divergence statistic is positive.
We consider this statistic with the support equal to the sample support, z1; : : : ; zN , the
�rst distribution, {pi}, equal to the empirical distribution, or pi = 1=N for all i, and
choose the distribution {qi} to be the distribution closest to {pi} among all distributions
with the same support, that obey the moment restrictions for at least one value of �.
Formally, for a given choice of �, and with � an N -vector of ones, we solve

min
�;�

I�(�=N; �) subject to
N∑
i=1

 (zi; �)�i = 0; and
N∑
i=1

�i = 1:

For any choice of � the estimator for � is consistent with a limiting normal distribution
that is identical to that of the eJcient GMM estimator

√
N (�̂

CR(�) − � ∗) d→N(0; (�′�−1�)−1):

The choice of � does not matter for the asymptotic distribution. It does matter for
higher order approximations to the distribution. Newey and Smith (2000) show that all
members in this class have, in the case with many over-identifying restrictions, lower
bias than the standard GMM estimator.
Three choices for � have received most of the attention in the literature. Taking

the limit �→ 0 leads to the empirical likelihood (EL) estimator. If the distribution of
Z is in fact discrete, this estimator corresponds to the multinomial maximum likeli-
hood estimator. In that case the estimates for the probabilities, qi, are also equal to
the maximum entropy estimates (e.g., Golan et al., 1996a, b), derived from a di1erent
perspective. Newey and Smith (2000) show that this empirical likelihood estimator
particularly attractive bias properties when there are many over-identifying restrictions.
Fixing � = −2 leads to the log Euclidean likelihood (LEL) estimator. This estimator
is very similar to standard GMM estimators. It has in fact been developed through a
di1erent approach by Hansen et al. (1996) as the continuously updated GMM estima-
tor, obtained by maximizing the quadratic form QN;�̂(�)(�) over the � in the average
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moments as well as the � in the weight matrix. See Newey and Smith (2000) for the
demonstration of this equivalence. Finally, taking the limit � → −1 gives the expo-
nential tilting (ET) estimator. Although all estimators in this empirical likelihood class
share a number of desirable features, we focus in this discussion on the ET estimator
for a number of reasons. In simulations it appears more stable than some of the other
estimators in the Cressie–Read class, as discussed in Imbens et al. (ISJ, 1998) and it
is easier to compute.
With �→−1, the optimization program can be rewritten as maximizing the Kullback—

Leibler information criterion, or equivalently, as minimizing Shannon’s entropy measure
(e.g., Golan et al., 1996b):

min
�;�

N∑
i=1

�i ln �i subject to
N∑
i=1

 (zi; �)�i = 0; and
N∑
i=1

�i = 1:

This characterization of the estimator for � is not particularly convenient because it
requires minimization in a space with dimension larger than the sample size. In com-
parison, the standard two-step GMM procedures only requires two minimizations in
K-dimensional spaces. One way to simplify this problem is to concentrate out the
probabilities �, similar to the dual form in the maximum entropy approach (Golan et
al., 1996a). This leads to a characterization of the estimator for � as the solution to a
saddle point problem involving both � and the normalized Lagrange multipliers in the
original optimization program:

max
�

min
t

K(t; �);

with t the normalized Lagrange multipliers, and where K(t; �) is the empirical cumulant
generating function,

K(t; �) = ln

[
1
N

N∑
i=1

exp(t′ (zi; �))

]
; (2)

with derivatives Kt(t; �) = (@K=@�)(t; �) and K�(t; �) = (@K=@�)(t; �). The implicit esti-
mates of the probabilities �i are

�̂i =
exp(t′ (zi; �))∑N
j=1exp(t

′ (zj; �))
:

For �xed �, solving for t is straightforward through minimization of exp(K(t; �)). This
objective function is strictly convex, and with its second derivative easy to calculate,
Newton–Raphson methods work very eJciently and fast. Given the implicit function
t(�) de�ned as

t(�) = argmin
t

K(t; �);

one can then maximize K(t(�); �)) using standard algorithms such as Davidon–Fletcher–
Powell (e.g., Gill et al., 1981). In various Monte Carlo experiments we have found
this a reliable and fast method for calculating the empirical likelihood estimates.
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4. Con�dence intervals based on Lagrange multipliers

As the empirical likelihood estimators are in general, that is for all choices of � in
the Cressie–Read characterization, as eJcient as the standard GMM estimator, one can
construct con�dence intervals using the symmetric interval around the estimator using
the standard estimator for the variance, (�′�−1�)−1. Here, we discuss some alterna-
tives. The key to our proposed construction of con�dence intervals are the normalized
Lagrange multipliers t̂ calculated in the empirical likelihood approach. In large sam-
ples these Lagrange multipliers have a normal distribution with mean zero and variance
depending on variance and average derivative of the moments. Mykland (1995), ISJ,
and Smith (2000) discuss tests based on these Lagrange multipliers. See also Diciccio
and Romano (1990) and Efron (1981) for the construction of con�dence intervals in
related settings. Let t̂ denoted the solution for t in the optimization problem (2). Then

√
N t̂ d→N(0; Vt);

where

Vt = �−1 − �−1�(�′�−1�)−1�′�−1);

where, as before, � is the covariance matrix of the moments  and � the matrix of
expected derivatives. This covariance matrix Vt is singular with rank equal to the num-
ber of over-identifying restrictions M −K . In particular, if the model is just-identi�ed,
all Lagrange multipliers are equal to zero and the rank of Vt is zero.

The construction of the con�dence intervals follows that of tests for the over-
identifying restrictions. In the standard approach to GMM such tests are based on the
GMM objective function QN;�̂(�̂). ISJ suggest alternative tests based on the limiting
distribution of

t̂ ′�t̂ d→X2(M − K):

The preferred test statistic in ISJ uses the sandwich estimator for covariance matrix:

N t̂ ′AB−1At̂;

where

A=
N∑
i=1

�̂i (zi; �̂) (zi; �̂)′; and B=
N∑
i=1

�̂2
i  (zi; �̂) (zi; �̂)

′:

Just as the empirical likelihood estimators are �rst order equivalent to the GMM es-
timator, these tests for over-identifying restrictions are equivalent, up to �rst order, to
the standard GMM test.
The ISJ tests for over-identifying restrictions are the basis for our proposed con�-

dence intervals. Again we focus on construction of con�dence intervals for the �rst
element of the parameter vector � where � = (�1; �′2)

′. De�ne the Lagrange multiplier
as a function of the parameters:

t(�1; �2) = argmin
t

K(t; �1; �2)
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and the estimator for �2 as a function of �1:

�̂2(�1) = argmax
�2

K(t(�1; �2); �1; �2):

First consider the just-identi�ed case with the number of moments equal to the
number of over-identifying restrictions. With M =K and no binding restrictions (other
than the adding up of the probabilities) all the Lagrange multipliers in the program
(2) are equal to zero,

t(�̂1; �̂2) = 0:

Now, consider imposing the restriction �1 = � 0
1 . The implied solutions for �2 and t are

�2(�01); and t(�01; �2(�
0
1)):

Using the results in ISJ, we have the following convergence in distribution:

T (�01) = Nt(�01; �2(�
0
1))

′�t(�01; �2(�
0
1))→ dX2(1);

under the null hypothesis that �1 = � 0
1 . The proposed con�dence interval for this case

is then the set of �1 such that the implied test statistic T (�1) is less than or equal to
the appropriate quantile for the chi-squared distribution with one degree of freedom.
Formally, the proposed 100�% con�dence interval is

CIet� = {�1|Nt(�1; �2(�1))′�t(�1; �2(�1))¡X2
�(1)}; (3)

where the � quantile of a chi-squared distribution with k degrees of freedom is denoted
by X2

�(k). The estimate for � used in the construction is again the sandwich estimator
AB−1A as described before.

The justi�cation of this construction of con�dence intervals for the just-identi�ed
case follows directly from the construction of tests for over-identifying case. This
can be extended to construction of con�dence intervals for the over-identi�ed case in
two ways. First, consider the Lagrange multiplier for the unrestricted estimator. The
unrestricted estimator for �1 is �̂1, and the unrestricted estimator for �2 is �2(�̂1),
leading to the Lagrange multiplier:

tu = t(�̂1; �2(�̂1)):

Unlike in the just-identi�ed case discussed above, tu will generally di1er from zero
when M ¿K . It has a limiting normal distribution with rank of the covariance matrix
equal to the number of over-idenifying restrictions. For the restricted case,

tr = t(�01; �2(�
0
1)):

The �rst statistic we consider is based on a second test for the hypothesis that
�1 = � 0

1 , using the fact that

N (tu − tr)′�(tu − tr) (4)

has a chi-squared distribution with one degree of freedom. The corresponding 100�%
con�dence interval is

CIet1� = {�1|N (t(�1; �2(�1))− t(�̂1; �2(�̂1)))′�(t(�1; �2(�1))

− t(�̂1; �2(�̂1)))¡X2
�(1)}:
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The second statistic we consider as the basis of the con�dence intervals is the dif-
ference in the over-identifying test statistics:

T1 = Nt′r�tr − Nt′u�tu:

Under the hypothesis that �1=� 0
1 , this test statistic has again a chi-squared distribution

with one degree of freedom. The corresponding 100�% con�dence interval is

CIet2� = {�1|Nt(�1; �2(�1))′�t(�1; �2(�1))− Nt(�̂1; �2(�̂1))′�t(�̂1; �2(�̂1))¡X2
�(1)}:

This construction has a disadvantage. The test statistic is not necessarily positive, which
can lead to awkward results for the corresponding con�dence intervals.
The following argument shows that in large samples the two con�dence intervals

are very close (see also Smith, 1999):

N (tu − tr)′�(tu − tr)− (Nt′r�tr − Nt′u�tu) = 2N (tu − tr)′�tu:

Use the Cholesky decomposition to de�ne �1=2 such that � = �1=2�1=2′ , and de�ne
%= �−1=2 ∑  (Z; �0)=

√
N . ISJ show that

√
Ntu can be written as

√
Ntu = (I − �−1�(�′�−1�)−1�′)�−1 1√

N

N∑
i=1

 (Zi; �0) + op(1)

= (�−1=2′ − �−1�(�′�−1�)−1�′�−1=2)%+ op(1):

Using RX to denote the matrix calculating the deviation from the least squares pro-
jection on X , or RX = I − X (X ′X )−1X ′, and de�ning �̃ = �−1=2�, we can write
this as√

Ntu = �−1=2′R�̃%; and similarly;
√
Ntr = �−1=2′R�̃2

%:

Now the di1erence in test-statistics can be written as

2N (tu − tr)′�tu = 2%(R�̃ − R�̃2
)�−1=2��−1=2′R�̃%+ op(1)

= 2%(R�̃ − R�̃2
)R�̃%+ op(1):

Because �̃ = (�̃1�̃2)′, the residual from the projection on �̃ is orthogonal to both �̃
and �̃2, and hence (R�̃ − R�̃2

)R�̃ is equal to zero, and

N (tu − tr)′�(tu − tr)− (Nt′r�tr − Nt′u�tu) = op(1):

Hence, the two con�dence intervals will be identical in large samples.

5. A Monte Carlo investigation

To compare the �nite sample properties of the three methods of constructing con-
�dence intervals we carry out a small Monte Carlo investigation. We focus on three
examples where standard asymptotics are not necessarily a good guide to �nite sample
properties. In each example we simulate 10 000 data sets. For each data set we �rst
estimate the unknown parameter using the standard two-step GMM estimator. The ini-
tial weight matrix used is the identity matrix. Given the GMM estimator an estimate
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Table 1
Example 1, exponential distribution with two moments

GMM ET Nominal Coverage rates
coverage

Wald LM1 LM2

Reg Boot Reg Boot Reg Boot

Mean 0.969 0.976 0.900 0.782 0.865 0.860 0.878 0.845 0.889
SD 0.105 0.105 0.950 0.845 0.921 0.918 0.932 0.906 0.937
0.025∗ 0.774 0.782 0.990 0.908 0.970 0.972 0.978 0.961 0.978
0.975∗ 1.183 1.189 0.999 0.947 0.987 0.991 0.992 0.985 0.991

∗Quantile.

of the variance is obtained and the con�dence intervals are constructed. Second, we
calculated the exponential tilting estimator and the restricted and unrestricted Lagrange
multipliers. We then check whether the true value of the parameter is in the con�dence
interval by calculating the two test-statistics.
In addition to the coverage rates obtained by the above procedures we report cov-

erage rates from bootstrapped versions of each of these procedures. In each case we
use the non-parametric bootstrap to get quantiles for the distribution of the test statis-
tics which are then used to construct the con�dence intervals. We do not correct the
probabilities with which we sample in the bootstrap to take account of the overidenti-
�cation, as described in Brown et al. (1997). The motivation is that because we can
write the estimator as a solution to a set of moment equations, it can be interpreted
as a just-identi�ed GMM estimator, and therefore standard results on bootstrapping
for GMM apply. We can then interpret the chi-squared statistics as pivotal, and the
bootstrapping can result in improvements of the testing procedures.

5.1. Example 1: exponential distribution with two moments

In the �rst example there is a single random variable Z and a single parameter
�. There are two moment conditions, connecting the �rst and second moment of the
random variable to the unknown parameter.

 (z; �) =
(

z − �
z2 − 2� 2

)
:

In the simulations Z has a exponential distribution with mean � = 1. The number of
observations is 100. The number of replications reported in Table 1 is 10 000.
The results in Table 1 report the summary statistics for the distribution of the two

estimators, means and standard deviations over the 10 000 replications and 0.025 and
0.975 quantiles. It can be seen that the sampling distribution of especially the stan-
dard GMM estimator is very asymmetric, due to the extreme skewness of the second
moment. This carries over into the properties of the con�dence intervals and leads the
coverage rate of the standard, symmetric, con�dence interval to be below the nominal
levels. The con�dence intervals based on the Lagrange multipliers perform much better,
especially the one based on the di1erence in Lagrange multipliers in (4).
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Table 2
Example 2, Burnside–Eichenbaum

GMM ET Nominal Coverage rates
coverage

Wald LM1 LM2

Reg Boot Reg Boot Reg Boot

Mean 0.965 0.977 0.900 0.720 0.887 0.783 0.904 0.801 0.930
SD 0.045 0.045 0.950 0.797 0.941 0.855 0.953 0.867 0.969
0.025 0.873 0.888 0.990 0.939 0.987 0.938 0.991 0.939 0.995
0.975 1.060 1.072 0.999 0.987 0.999 0.979 0.999 0.979 0.999

The bootstrapped con�dence intervals all perform much better than the corresponding
non-bootstrapped versions, with the bootstrapped Lagrange multiplier based intervals
still superior to the bootstrapped standard GMM ones.

5.2. Example 2: Burnside–Eichenbaum

This example is related to one studied by Burnside and Eichenbaum (1996) and
Altonji and Segal (1996). Let Z1; : : : ; ZM be independent normal random variables with
mean zero and variance �. We consider estimation of � through the M moments:

 (z1; : : : ; zM ; �) =




z21 − �

z22 − �

...

z2M − �


 : (5)

In the simulations we use samples of size 100 and M = 10 moments. The true value
of � is one.
The results for this data generating process are in Table 2. Again we calculate

both the standard GMM and exponential tilting estimators. The same three con�dence
intervals as before are constructed and the frequency with which the con�dence interval
does not include the true value is reported. The exponential tilting estimator is slightly
less biased than the standard GMM estimator. Its sampling distribution is also more
symmetric. Altonji and Segal focus on the bias in the estimation of � in this context
and attribute it to estimation of the weight matrix in the GMM procedure.
The performance of the Lagrange-multiplier-based con�dence intervals is again con-

siderably better than those of the standard con�dence interval. The interval based on
the di1erence in Lagrange multipliers gets the undercoverage down to about half that
of the standard interval, and the interval based on the di1erence in over-identifying
test-statistics is even more accurate.
The bootstrapped intervals perform quite well here, with nominal and actual coverage

rates very close.



G.W. Imbens, R. Spady / Journal of Econometrics 107 (2002) 87–98 97

Table 3
Example 3, normal distribution

GMM ET Nominal Coverage rates
coverage

Wald LM1 LM2

Reg Boot Reg Boot Reg Boot

Mean −0:003 −0:003 0.900 0.846 0.926 0.883 0.922 0.899 0.912
SD 0.032 0.032 0.950 0.900 0.965 0.935 0.956 0.952 0.969
0.025 −0:072 −0:069 0.990 0.970 0.996 0.985 0.993 0.991 0.993
0.975 0.068 0.066 0.999 0.991 1.000 0.997 1.000 0.999 1.000

5.3. Example 3: normal distribution with .ve moments

In the third example the data come from a normal distribution. We observe a normal
random variable with mean � and unit variance. The moments we consider are based
on the �rst 5 cumulants:

 (z; �) =




z − �

z2 − � 2 − 1

z3 − � 3 − 3�

z4 − � 4 − 6� 2 − 3

z5 − � 5 − 10� 3 − 15�




: (6)

The number of observations is 1000, and the true value for � is 0. In this example some
of the moments have large kurtosis, suggesting that the estimates of the covariance
matrix of the moments may be imprecise. Table 3 reports the results for this example.
Again we �nd that the Lagrange multiplier based con�dence intervals outperform the
standard intervals by a wide margin.
In this example, the bootstrapped intervals improve the coverage rate of the standard

intervals but do not signi�cantly a1ect the Lagrange multiplier based intervals which
are quite accurate already.

6. Conclusion

In this paper, we suggest alternatives ways of constructing con�dence intervals in
generalized method of moments settings. The con�dence intervals apply both in the
just and over-identi�ed case and have the same �rst order asymptotic properties as the
standard intervals. We study the �nite sample properties of the intervals in a number
of examples. In two of the examples the proposed con�dence intervals perform con-
siderably better with closely similar nominal and actual coverage rates. In the third
example all con�dence intervals perform poorly, with the proposed intervals perform-
ing best. Comparisons with bootstrapped versions of all intervals suggests that although
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bootstrapping generally improves the performance of all con�dence intervals, after boot-
strapping the empirical likelihood based intervals continue to behave better.
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