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Abstract

In paired randomized experiments units are grouped in pairs, often based on covariate
information, with random assignment within the pairs. Average treatment effects are
then estimated by averaging the within-pair differences in outcomes. Typically the
variance of the average treatment effect estimator is estimated using the sample vari-
ance of the within-pair differences. However, conditional on the covariates the vari-
ance of the average treatment effect estimator may be substantially smaller. Here we
propose a simple way of estimating the conditional variance of the average treatment
effect estimator by forming pairs-of-pairs with similar covariate values and estimat-
ing the variances within these pairs-of-pairs. Even though these within-pairs-of-pairs
variance estimators are not consistent, their average is consistent for the conditional
variance of the average treatment effect estimator and leads to asymptotically valid
confidence intervals.

1. Introduction

In paired randomized experiments units are grouped in pairs with randomized assignment

within the pairs. Average treatment effects are then estimated by averaging the within-pair

differences in outcomes. Typically, the variance of the average treatment effect estimator

is estimated using the sample variance of the within-pair differences (e.g., Snedecor and

Cochran, 1989). However, often the pairing is based on covariate information at least par-

tially available to the researcher (e.g., Rosenbaum, 1995). Conditional on such information

the variance may be substantially smaller.

The conditional variance of the average treatment effect estimator can be expressed

in terms of the conditional outcome variances. Consistent estimation of these conditional

outcome variances is a difficult task which requires nonparametric estimation involving
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sample-size-dependent smoothing parameter choices (see, e.g., Stone, 1977). Here we pro-

pose a simple way of estimating the conditional variance of the average treatment effect

estimator by forming pairs-of-pairs with similar covariate values. These pairs-of-pairs al-

low us to obtain close-to-unbiased estimators of the conditional outcome variances. Even

though these estimators are not consistent for the conditional outcome variances, their av-

erage is consistent for the conditional variance of the average treatment effect estimator and

allows us to obtain asymptotically valid confidence intervals. A Monte Carlo simulation

suggests that our estimator is accurate even in fairly small samples.

2. Paired Experiments with Covariates

Consider a setup in which N pairs of units are matched on the basis of a vector of covariates.

The covariates will be denoted by Xi, i = 1, . . . , N . Let X′ = (X1, X2, . . . , XN). For each i,

two units are drawn from the subpopulation with X = xi. One of the two units is randomly

selected to receive the active treatment, and for this unit we record the response Yi(1). The

second unit receives the control treatment and for this unit we record the response Yi(0).

Let ∆(x) be the population average treatment effect for the subpopulation with X = x.

Under standard conditions randomization implies:

∆(x) = E[Yi(1)− Yi(0)|Xi = x].

Let εi be the difference between the within-pair difference in outcomes and its population

expectation conditional on Xi:

εi = Yi(1)− Yi(0)−∆(Xi).

Conditional on Xi, εi has mean zero and variance σ2
ε(Xi).

The average treatment effect for the sample conditional on the covariates is:

τ(X) =
1

N

N∑
i=1

∆(Xi).

The average treatment effect for the population is the expected value of ∆(X) (which is the

same as the expected value of τ(X)) over the distribution of X in the population, fX(x):

τ = E[∆(X)] =

∫
∆(x)fX(x)dx.
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The estimator we consider is the average over the sample of the within-pair differences:

τ̂ =
1

N

N∑
i=1

(
Yi(1)− Yi(0)

)
.

Conditional on X, τ̂ is unbiased for the average treatment effect τ(X). Hence, if the

elements of X are chosen as random draws from the distribution of the covariates, τ̂ is

unconditionally unbiased for τ .

The variance of τ̂ conditional on X1, . . . , XN is

V (τ̂ |X) = E
[
(τ̂ − τ(X))2

∣∣∣X
]

=
1

N2

N∑
i=1

σ2
ε(Xi).

The unconditional variance of τ̂ is V (τ̂) = E[(τ̂ − E[τ̂ ])2]. If the vector X is chosen at

random from fX(x) the unconditional variance is

V (τ̂) = E
[
(τ̂ − τ)2] = E

[
V (τ̂ |X)

]
+ V

(
E[τ̂ |X]

)

= E

[
1

N2

N∑
i=1

σ2
ε(Xi)

]
+ V

(
1

N

N∑
i=1

∆(Xi)

)
.

This last equation shows that the marginal variance V (τ̂) is larger than the average of the

conditional variance V (τ̂ |X) by the variance of the treatment effect ∆(X). Therefore, if

the average effect of the treatment varies substantially with the covariates, the difference

between the marginal variance and the average conditional variance will be large.

It is straightforward to estimate the normalized unconditional variance using the sample

variance of the within-pair differences:

N · V̂ (τ̂) =
1

N − 1

N∑
i=1

(
Yi(1)− Yi(0)− τ̂

)2

, (1)

which has expectation equal to N · V (τ̂). See for example Snedecor and Cochran (1989).

Estimating the normalized conditional variance N · V (τ̂ |X) is more difficult because it in-

volves the unknown function σ2
ε(x). In this article, we propose a simple matching estimator

of the conditional variance of τ̂ .

The choice of conditional or unconditional variance corresponds to a focus on the sample

average treatment effect τ(X) versus the population average treatment effect τ . There are

two reasons for our interest in the former. The first is that in many paired experiments
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the sample is not chosen at random from a well-defined population and there is therefore

no well-defined population average effect. The second reason is that we view it as useful

to separate the uncertainty about the treatment effects for the sample (as captured by the

conditional variance) from the uncertainty coming from the uncertainty stemming from the

extrapolation from the sample to the population (which is combined with the former in the

unconditional variance).

3. A Matching Estimator for the Variance

The conditional variance of the average treatment effect estimator depends on the condi-

tional variance of the outcome differences, σ2
ε(x). Estimating these consistently requires

non-parametric estimation of conditional expectations, which in turn requires choices of

smoothing parameters that depend on sample size (see, e.g., Stone, 1977). However, we

are not interested in the conditional variances at every x, only in the average of these

conditional variances in the form of the normalized conditional variance:

N · V (τ̂ |X) =
1

N

N∑
i=1

σ2
ε(Xi). (2)

To estimate (2) we propose a nearest neighbor or matching approach. This matching

approach produces an approximately unbiased estimator of σ2
ε(x) at every x, but not a

consistent one. However, the average of these inconsistent variance estimators is consistent

for the average of the variances in the same way that, although the unit-level difference

Yi(1)− Yi(0) are unbiased but not consistent for ∆(Xi), the average difference
∑

i(Yi(1)−
Yi(0))/N is consistent for τ .

Suppose we have two pairs i and j with the same covariates, Xi = Xj = x. The average

of the squared difference between the two within-pair differences is:

E
[(

(Yi(1)− Yi(0))− (Yj(1)− Yj(0))
)2∣∣∣Xi = Xj = x

]
= 2 · σ2

ε(x).

Therefore,

1

2

(
(Yi(1)− Yi(0))− (Yj(1)− Yj(0))

)2

is unbiased for σ2
ε(x). In practice, it may not be possible to find different pairs with the

same value of the covariates. Hence let us consider the nearest pair to pair i by solving

j(i) = argminj:j 6=i||Xi −Xj||,
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where ||a|| is the standard vector norm, ||a|| = (
∑k

n=1 a2
n)1/2. Let

s2
ε(Xi) =

1

2

(
(Yi(1)− Yi(0))− (Yj(i)(1)− Yj(i)(0))

)2

.

Consider the conditional expectation of this variance estimator:

E
[
s2

ε(Xi)
∣∣∣X

]
=

1

2

(
σ2

ε(Xi) + σ2
ε(Xj(i)) +

(
∆(Xi)−∆(Xj(i))

)2
)

,

which differs from σ2
ε(Xi) by a bias term

Bi = E
[
s2

ε(Xi)
∣∣∣X

]
− σ2

ε(Xi) =
1

2

(
σ2

ε(Xj(i))− σ2
ε(Xi) +

(
∆(Xi)−∆(Xj(i))

)2
)

.

At an intuitive level, if the conditional moments of Yi(1) − Yi(0) given Xi are sufficiently

smooth in the covariates, the bias of the pair-level variance estimates, Bi will vanish asymp-

totically if the matching discrepancies, ‖Xi−Xj(i)‖, vanish as N increases. However, even

if the bias goes to zero as the sample size increases, the pair-level variance estimators,

s2
ε(Xi), do not estimate the variances σ2

ε(Xi) consistently because the variances of s2
ε(Xi)

do not vanish. In fact, as N increases the variance of s2
ε(Xi), conditional on Xi, converges

to V (ε2
i |Xi)/2.

We use these pair-level variance estimates to estimate the normalized conditional vari-

ance as:

N · V̂ (τ̂ |X) =
1

N

N∑
i=1

s2
ε(Xi). (3)

Now, if the bias of N · V̂ (τ̂ |X) converges to zero, then it is sufficient to show that the

variance also converges to zero in order to prove consistency. Notice that the pair-level

variance estimates s2
ε(Xi) are not all independent as the same pair may get used as a

match more than once. Nevertheless, we will show that because the maximum number of

times that a pair can be used as a match is bounded (depending only on the dimension of

X, see Miller et al. 1997) the average, N · V̂ (τ̂ |X), is consistent.

The next two assumptions contain sufficient regularity conditions for consistency of our

estimator of the conditional variance in paired experiments, defined in equation (3).

Assumption 1: (1/N)
∑N

i=1 ‖Xi −Xj(i)‖2 → 0.
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Assumption 2: (i) ∆(x) and σ2
ε(x) are Lipschitz in X, with constants C∆ and Cσ2

ε
, re-

spectively, and (ii) the fourth moments of the conditional distribution of εi given X = x

exist and are uniformly bounded by some constant, µ̄4.

Assumption 1 is not primitive. However, the next lemma shows that boundedness of the

set X, from which the elements of X are chosen, is enough for Assumption 1 to hold.

Lemma 1: If the components of the vector X are chosen from a bounded set, X, then

Assumption 1 holds.

Assumption 2 contains regularity conditions. The following theorem shows that, under

assumptions 1 and 2 the estimator of the conditional variance described in equation (3) is

consistent.

Theorem 1: Suppose that assumptions 1 and 2 hold. Then, conditional on X:

N
(
V̂ (τ̂ |X)− V (τ̂ |X)

)
=

1

N

N∑
i=1

(
s2

ε(Xi)− σ2
ε(Xi)

) p−→ 0.

4. Discussion

The pair-level variance estimators, s2
ε(Xi), can be interpreted as nearest-neighbor nonpara-

metric estimators of σ2
ε(Xi). For consistency of such estimators it is typically required that

the number of neighbors increases with the sample size. However, increasing the number

of neighbors is not required for consistency of the normalized conditional treatment effect

variance estimator, N V̂ (τ̂ |X) =
∑

i s
2
ε(Xi)/N . This is somewhat similar to Eicker’s (1967)

estimation of the variance in regression models with heteroskedasticity. Although his esti-

mators do not estimate the form of the heteroskedasticity consistently, they do consistently

estimate the average variance.

Although it is not required for consistency, one can use more than one neighbor to

estimate the variances, σ2
ε(Xi). Let Di = Yi(1) − Yi(0) and let jm(i) be the index of the

m-th closest match to pair i in term of the covariates. An estimator of σ2
ε(Xi) that uses

M neighbors is:

σ̂2
ε(Xi) =

1

M

M∑
m=0

(
Djm(i) − D̄M(i)

)2
,
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where Dj0(i) = Di and D̄M(i) = (M + 1)−1
∑M

m=0 Djm(i). If σ2
ε(Xi) does not vary much

with the covariates, using multiple neighbors may result in a more precise estimator for the

variance and thus in improved confidence intervals in small samples. Notice that for the

limiting case of M = N − 1, the estimators in (1) and (3) are identical.

Notice also that alternative estimators of N · V (τ̂ |X) could be constructed as:

1

N

N∑
i=1

σ̂2
ε(Xi),

where σ̂2
ε(x) is a consistent estimator of σ2

ε(x) given by non-parametric smoothing tech-

niques (e.g., series or kernel regression). The advantage of our matching estimator of

N · V (τ̂ |X) is that it does not require consistent estimation of the function σ2
ε(x), and

therefore it does not force researchers to choose smoothing parameters as functions of the

sample size.

If the vector X is chosen at random from the distribution, fX(x), then the standard

variance estimator in (1) provides asymptotically conservative confidence intervals for the

conditional average treatment effect τ(X), as well as valid confidence intervals for the pop-

ulation average treatment effect τ . The variance estimator proposed here in (3) provides

asymptotically tighter, but valid, confidence intervals for the conditional average treatment

effect τ(X) regardless of how X is chosen, but not for the population average treatment

effect τ . Conditioning on the covariates can therefore be interpreted as changing the es-

timand. Which estimand is of interest may differ in applications, although often interest

is in the specific sample at hand, and thus in τ(X), especially when the sample is not

representative of the population of interest in their covariate distribution.

5. A Small Simulation Study

In this section we carry out a small simulation study to investigate the small sample prop-

erties of the proposed variance estimator and the associated confidence intervals. We draw

samples of N = 50 and N = 200 pairs. In each replication the scalar covariate is drawn

from a uniform distribution on [0, 4]. In our initial Monte Carlo specification, conditional

on Xi = x, Yi(0) has a normal distribution with mean x and variance equal to 1, and

Yi(1) has a normal distribution with mean zero and variance equal to 0.5. In Table 1, we

report the average standard error based on the standard formula (1), the average standard
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error based on the proposed formula (3), and the coverage rates of the associated 95% and

90% confidence intervals of the conditional treatment effect τ(X) (which differs between

replications because the covariates are re-drawn each time). We use 50,000 Monte Carlo

repetitions. In the simulations in Table 1, for both sample sizes (N = 50 and N = 200)

the average standard error is considerably smaller for the matching variance estimator. In

addition, the confidence intervals based on this variance estimator have approximately the

right coverage, whereas the standard variance estimator leads to substantial over-coverage.

A sample size of 50 pairs seems sufficiently large to lead to fairly accurate estimates of the

variance.

Table 2, reports Monte Carlo results for the cases of multiple matches (Panel A) and

heteroskedasticity (Panel B). In Panel A of Table 2, we repeat the analysis of Table 1 using

one, five, and twenty-five matches for the calculation of the conditional variance estimator.

For N = 50 coverage rates improve by using five matches, relative to just one. For N = 50,

coverage rates deteriorate when we go from five to twenty-five matches, but they stay

reasonably close to nominal levels. For N = 200, coverage rates improve as we increase the

number of matches from one to five, and from five to twenty-five. In Panel B, we repeat

the analysis of Panel A, this time allowing for heteroskedasticity, and we obtain the same

results.

In Table 3, we consider the case in which the the variance of ∆(Xi) is equal to zero,

so both the standard variance estimator in (1) and the matching variance estimator in (3)

produce valid inference for τ(X). As expected, confidence intervals constructed using the

standard variance estimator and the matching variance estimator produce coverage rates

that are close to nominal levels.
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Appendix

Proof of Lemma 1: Because the set X is bounded, it is enough to prove that the
(1/N)

∑N
i=1 ‖Xi−Xj(i)‖ converges to zero. (Because the matching discrepancies are bounded

by the diameter of X, convergence of (1/N)
∑N

i=1 ‖Xi−Xj(i)‖ to zero implies that (1/N)
∑N

i=1

‖Xi−Xj(i)‖2 converges to zero too.) Given that the set X is bounded, we can always embed
X in a hypersphere of the same diameter. Without loss of generality, assume that the radius
of such hypersphere is equal to one. Now, suppose that there are M matching discrepancies
greater than 2ε, with ε < 1/2: ‖Xi−Xj(i)‖ > 2ε. Construct an open ball of radius ε around
each such point. These M balls do not intersect because their radii are smaller than half
of the distances between their centers. The volume of each such ball is equal to (εk/k)Sk,
where Sk is the surface area of a unit hypersphere in k dimensions. Obviously, all such balls
are embedded in a hypersphere of radius (1 + ε). Therefore: M(εk/k)Sk < ((1 + ε)k/k)Sk.
As a result, ∀ε < 1/2:

M <

(
1 + ε

ε

)k

.

Then, because the diameter of X is bounded by 2, we obtain:

1

N

N∑
i=1

‖Xi −Xj(i)‖ < 2
M

N
+ 2ε

(N −M)

N
< 2(M/N + ε) < 2

(
1

N

(
1 + ε

ε

)k

+ ε

)
.

Consider ε = N−1/(1+k). As N →∞, ε → 0, and

1

N

(
1 + ε

ε

)k

=
Nk/(1+k)

N
O(1) = o(1).

As a result,

1

N

N∑
i=1

‖Xi −Xj(i)‖ → 0,

which along with boundedness of X proves the statement of the lemma. ¤

Proof of Theorem 1: Because,

E
[
s2

ε(Xi)
∣∣∣X

]
− σ2

ε(Xi) =
1

2

(
σ2

ε(Xj(i))− σ2
ε(Xi) +

(
∆(Xi)−∆(Xj(i))

)2
)

,

and Assumption 2, we obtain:

∣∣∣E
[
s2

ε(Xi)
∣∣∣X

]
− σ2

ε(Xi)
∣∣∣ ≤ C∆

2
‖Xi −Xj(i)‖+

C2
σ2

ε

2
‖Xi −Xj(i)‖2.
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By Assumption 1:

1

N

N∑
i=1

‖Xi −Xj(i)‖2 → 0.

Cauchy-Schwarz Inequality implies that:

1

N

N∑
i=1

‖Xi −Xj(i)‖ ≤
(

1

N

N∑
i=1

‖Xi −Xj(i)‖2

)1/2

→ 0.

Therefore:

1

N

N∑
i=1

(
E

[
s2

ε(Xi)
∣∣∣X

]
− σ2

ε(Xi)
)
→ 0. (A.1)

Notice that:

1

N

N∑
i=1

(
s2

ε(Xi)− E
[
s2

ε(Xi)
∣∣∣X

])
=

1

2N

N∑
i=1

(
ε2

i − σ2
ε(Xi)

)

+
1

2N

N∑
i=1

(
ε2

j(i) − σ2
ε(Xj(i))

)

− 1

N

N∑
i=1

εiεj(i) (A.2)

+
1

N

N∑
i=1

εi

(
∆(Xi)−∆(Xj(i))

)

− 1

N

N∑
i=1

εj(i)

(
∆(Xi)−∆(Xj(i))

)
.

Clearly, the conditional expectations of all the terms on the right-hand-side of equation
(A.2) are equal to zero. Next, we show that the conditional variances of all the terms on
the right-hand-side of equation (A.2) converge to zero. Because the expectations of all the
terms, conditional on X are equal to zero, the variances are equal to the expectations of the
squares. The maximum of number of times that an observation can be used as a match,
given that the dimension of X is equal to k, is bounded by L̄(k). The integer L̄(k) < ∞
(sometimes called the “kissing number” in k dimensions) is equal to the maximum number
of non-overlapping unit balls in Rk that can be arranged to overlap with a unit ball. For
k = 1, 2, 3, L̄(k) = 2, 6, 12, respectively. (See Miller et al. 1997.) For each of the five terms
on the right-hand-side of equation (A.2), the conditional second moments are:

E




(
1

2N

N∑
i=1

(
ε2

i − σ2
ε(Xi)

)
)2 ∣∣∣X


 =

1

4N2

N∑
i=1

V (ε2
i |X) ≤ µ̄4

4N
.
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E




(
1

2N

N∑
i=1

(
ε2

j(i) − σ2
ε(Xj(i))

)
)2 ∣∣∣X


 = E

[
1

4N2

N∑
i=1

(
ε2

j(i) − σ2
ε(Xj(i))

)2
∣∣∣X

]

+ E

[
1

2N2

N∑
i=1

∑
t>i

(
ε2

i − σ2
ε(Xi)

) (
ε2

j(i) − σ2
ε(Xj(i))

) ∣∣∣X
]

≤ µ̄4

4N
+

L̄(k)µ̄4

2N
.

E




(
1

N

N∑
i=1

εiεj(i)

)2 ∣∣∣X

 = E

[
1

N2

N∑
i=1

ε2
i ε

2
j(i)

∣∣∣X
]

+ E

[
2

N2

N∑
i=1

∑
t>i

εiεj(i)εtεj(t)

∣∣∣X
]

≤ µ̄4

N
+

2L̄(k)µ̄4

N
.

E




(
1

N

N∑
i=1

εi

(
∆(Xi)−∆(Xj(i))

)
)2 ∣∣∣X


 = E

[
1

N2

N∑
i=1

ε2
i

(
∆(Xi)−∆(Xj(i))

)2
∣∣∣X

]

≤ µ̄
1/2
4

N
E

[
1

N

N∑
i=1

(
∆(Xi)−∆(Xj(i))

)2
∣∣∣X

]

≤ µ̄
1/2
4

N
C2

∆

1

N

N∑
i=1

‖Xi −Xj(i)‖2.

E




(
1

N

N∑
i=1

εj(i)

(
∆(Xi)−∆(Xj(i))

)
)2 ∣∣∣X




= E

[
1

N2

N∑
i=1

ε2
j(i)

(
∆(Xi)−∆(Xj(i))

)2
∣∣∣X

]

+ E

[
1

N2

N∑
i=1

∑

t 6=i

εj(i)

(
∆(Xi)−∆(Xj(i))

)
εj(t)

(
∆(Xt)−∆(Xj(t))

) ∣∣∣X
]

<
µ̄

1/2
4

N
C2

∆

1

N

N∑
i=1

‖Xi −Xj(i)‖2

+ L̄(k)µ̄
1/2
4 C2

∆

1

N2

N∑
i=1

‖Xi −Xj(i)‖
∑

j(t)=j(i)

‖Xt −Xj(t)‖

≤ o(1) + L̄(k)µ̄
1/2
4 C2

∆

1

N

N∑
i=1

‖Xi −Xj(i)‖
(

1

N

N∑
t=1

‖Xt −Xj(t)‖
)

.
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As a result, the conditional second moments of each of the five terms on the right-hand-side
of equation (A.2) converge to zero. This implies that

V

(
1

N

N∑
i=1

(
s2

ε(Xi)− E
[
s2

ε(Xi)
∣∣∣X

]) ∣∣∣X
)

= o(1),

and therefore, conditional on X:

1

N

N∑
i=1

(
s2

ε(Xi)− E
[
s2

ε(Xi)
∣∣∣X

])
= op(1). (A.3)

Now, the result of the theorem follows from equations (A.1) and (A.3). ¤
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Table 1 – Monte-Carlo Simulation: Basic Results

X ∼ U [0, 4]
Y (0)|X = x ∼ N(x, 1), Y (1)|X = x ∼ N(0, 1/2)
50,000 replications, one match

N = 50 N = 200
average 95% conf. 90% conf. average 95% conf. 90% conf.

s.e. interv. interv. s.e. interv. interv.

Standard variance estimator .2370 .9915 .9742 .1189 .9918 .9743

Matching variance estimator .1716 .9410 .8892 .0864 .9463 .8963
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Table 2 – Monte-Carlo Simulation: Multiple Matches and Heteroskedasticity

Panel A: Homoskedasticity
X ∼ U [0, 4]
Y (0)|X = x ∼ N(x, 1), Y (1)|X = x ∼ N(0, 1/2)
50,000 replications, one and multiple matches

N = 50 N = 200
average 95% conf. 90% conf. average 95% conf. 90% conf.

s.e. interv. interv. s.e. interv. interv.

Standard variance estimator .2370 .9915 .9742 .1189 .9918 .9743

Matching variance estimator
1 match .1716 .9410 .8892 .0864 .9463 .8963

5 matches .1732 .9472 .8961 .0865 .9474 .8971
25 matches .1920 .9688 .9296 .0871 .9488 .9003

Panel B: Heteroskedasticity
X ∼ U [0, 4]
Y (0)|X = x ∼ N(x, 1), Y (1)|X = x ∼ N(0, 1− x + x2/4)
50,000 replications, one and multiple matches

N = 50 N = 200
average 95% conf. 90% conf. average 95% conf. 90% conf.

s.e. interv. interv. s.e. interv. interv.

Standard variance estimator .2297 .9926 .9775 .1153 .9940 .9784

Matching variance estimator
1 match .1616 .9403 .8887 .0814 .9463 .8965

5 matches .1629 .9456 .8940 .0815 .9478 .8970
25 matches .1787 .9659 .9259 .0819 .9491 .8985
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Table 3 – Monte-Carlo Simulation: V (∆(X)) = 0

X ∼ U [0, 4]
Y (0)|X = x ∼ N(0, 1), Y (1)|X = x ∼ N(0, 1/2)
50,000 replications, one and multiple matches

N = 50 N = 200
average 95% conf. 90% conf. average 95% conf. 90% conf.

s.e. interv. interv. s.e. interv. interv.

Standard variance estimator .1723 .9467 .8940 .0865 .9476 .8976

Matching variance estimator
1 match .1715 .9412 .8890 .0864 .9463 .8962

5 matches .1721 .9456 .8936 .0865 .9473 .8970
25 matches .1722 .9454 .8942 .0865 .9473 .8976
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