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Since the pioneering work by Daniel McFadden, utility-maximization-based
multinomial response models have become important tools of empirical re-
searchers. Various generalizations of these models have been developed to allow
for unobserved heterogeneity in taste parameters and choice characteristics. Here
we investigate how rich a specification of the unobserved components is needed
to rationalize arbitrary choice patterns in settings with many individual decision
makers, multiple markets, and large choice sets. We find that if one restricts the
utility function to be monotone in the unobserved choice characteristics, then
up to two unobserved choice characteristics may be needed to rationalize the
choices.

1. INTRODUCTION

Since the pioneering work by Daniel McFadden in the 1970s and 1980s (1973,
1981, 1982, 1984; Hausman and McFadden, 1984) discrete (multinomial) response
models have become an important tool of empirical researchers. McFadden’s early
work focused on the application of logit-based choice models to transportation
choices. Since then these models have been applied in many areas of economics,
including labor economics, public finance, development, finance, and others. Cur-
rently, one of the most active areas of application of these methods is to demand
analysis for differentiated products in industrial organization. A common feature
of these applications is the presence of many choices.

The application of McFadden’s methods to industrial organization has inspired
numerous extensions and generalizations of the basic multinomial logit model.
As pointed out by McFadden, multinomial logit models have the Independence
of Irrelevant Alternatives (ILA) property, so that, for example, an increase in
the price for one good implies a redistribution of part of the demand for that
good to the other goods in proportions equal to their original market shares.
This places strong restrictions on the substitution patterns (cross-price elasticities)
of products: Elasticities are proportional to market shares. McFadden proposed
various extensions to the standard model in order to relax the IIA property and
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generate more realistic substitution patterns, including “nested logit” models and
“mixed logit” models. The subsequent literature has explored extensions to and
implementations of these ideas. The nested logit model allows for layers of choices,
grouped into a tree structure, where the ITA property is imposed within a nest, but
not across nests (McFadden, 1982; Goldberg, 1995; Bresnahan et al., 1997). The
random coefficients or mixed logit approach was generalized in an influential pair
of papers by Berry et al. (1995, 2004; BLP from here on) and applied to settings
with a large number of choices. BLP developed methods for estimating models
with random coefficients on product attributes (mixed logit models) as well as
unobserved choice characteristics in settings with aggregate data. Exploiting the
logistic structure of the model, Berry (1994) proposed a method to relate market
shares to a scalar unobserved choice characteristic. Their methods have found
widespread application.

One strand of this literature has focused on hedonic models, where the utility is
modeled as a parametric function of a finite number of choice characteristics and a
finite number of individual characteristics. Researchers have considered hedonic
models both with and without individual-choice specific error terms (Berry and
Pakes, 2007; Bajari and Benkard, 2004). These models have some attractive prop-
erties, especially in settings with many choices, because the number of parameters
does not increase with the number of choices. Unlike the nested and random coef-
ficient logit models, hedonic models can potentially predict zero market share for
some choices. On the other hand, simple forms of those models rule out particular
choices for individuals with specific characteristics, making them very sensitive to
misspecification. To make these models more flexible, researchers have typically
allowed for unobserved choice and individual characteristics. To maintain com-
putational feasibility, the number of unobserved choice characteristics is typically
limited to one.

This article explores a version of the multinomial choice model that has re-
ceived less attention in the literature. We consider a random coefficients model
of individual utility that includes observed individual and product characteristics,
as well as multiple unobserved product characteristics and unobserved individ-
ual preferences for both observed and unobserved product characteristics. The
idea of specifying such a model goes back at least to McFadden (1981), but only
a few papers have followed this approach (e.g., Elrod and Keane, 1995; Keane,
1997, 2004; Harris and Keane, 1999; Goettler and Shachar, 2001). This model has
several desirable features. For example, the model nests both models based on un-
observed product characteristics (BLP) as well as unrestricted multinomial probit
models (e.g., McCulloch et al., 2000; hereafter MPR). In addition, by describing
products as combinations of attributes, it is possible to consider questions about
the introduction of new products in particular parts of the product space.

In many cases researchers applying this class of models have employed restric-
tions on the number of unobserved choice characteristics. In other cases (e.g.,
Goettler and Shachar, 2001) authors have allowed for a large number of choice
characteristics, with the data determining the number of unobserved characteris-
tics that enter the utility function. However, the literature has not directly consid-
ered the question of what restrictions are implied by limiting the number of choice



DISCRETE CHOICE MODELS 1161

characteristics, nor is it clear whether, in the absence of parametric restrictions,
the data can provide evidence for the existence of multiple unobserved product
characteristics. Understanding the answers to these questions is important for
empirical researchers who may not always be aware of the implications of the
modeling choices. Although researchers may still find it useful to apply a model
that cannot rationalize all patterns of choice data, we argue that the researcher
should be aware of any limitations the model imposes in this regard. Similarly,
if only functional form restrictions enable the researcher to infer the existence
of multiple unobservable choice characteristics, the researcher should highlight
clearly the role of the functional form.

In this article, we provide formal results to address these questions. We begin
by asking how flexible a model is required—that is, how many and what kind of
unobserved variables must be included in the specification of consumer utility—
to rationalize choice data. We are interested in whether any pattern of market
shares that might be consistent with utility maximization can be rationalized. We
discuss settings and data configurations where one can establish that the utility
function must depend on multiple unobserved choice characteristics instead of
a single unobserved product characteristic. We also discuss the extent to which
models with no unobserved individual characteristics can rationalize observed
data.

We explore the implications of these models in an application to demand for
yogurt. We consider models with up to two unobserved choice characteristics,
and assess the implied price elasticities. In order to implement these models we
employ Bayesian methods. Such methods have been used extensively in multino-
mial choice settings by Rossi et al. (1996; hereafter RMA), MPR, McCulloch and
Rossi (1994), Allenby et al. (2003), Rossi et al. (2005), Bajari and Benkard (2003),
Chib and Greenberg (1998), Geweke and Keane (2002), Romeo (2003), Osborne
(2005), and others. These authors have demonstrated that Bayesian methods are
very convenient for latent index discrete choice models with large numbers of
choices, using modern computational methods for Bayesian inference, in particu-
lar data augmentation and Markov Chain Monte Carlo (MCMC) methods (Tanner
and Wong, 1987; Geweke, 1997; Chib, 2003; Gelman et al. 2004; Rossi et al. 2005).
See Train (2003) for a comparison with frequentist simulation methods.

2. THE MODEL

Consider a model with M “markets,” where markets might be distinguished by
variation in time as well as location. In market m there are N,,, consumers, each
choosing one product from a set of J products.” In this market product j has two
sets of characteristics, a set of observed characteristics, denoted by Xj,,, and a set
of unobserved characteristics, denoted by &;. The observed product characteris-
tics may vary by market, though they need not do so. The vector of unobserved

2In the implementation we allow for the possibility that in some markets only a subset of the
products is available. In order to keep the notation simple we do not make this explicit in the discussion
in this section. Similarly, we allow for multiple purchases by the same individual, although the notation
does not make this explicit at this point.
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product characteristics does not vary by market.? The vector of observed product
characteristics Xj,, is of dimension K, and the vector of unobserved product char-
acteristics &; is of dimension P. Individual i has a vector of observed characteristics
Z; (which for notational convenience includes a constant term) of dimension L,
and a vector of unobserved characteristics v; of dimension K + P.4

The utility associated with choice j for individual i in market m is Uj,, for
i=1,...,Nyu, j=1,...,J,and m = 1,..., M. Individuals choose product j if
the associated utility is higher than that associated with any of the alternatives.’
Hence the probability that an individual in market 2 with characteristics z chooses
product j is

@ $jm(2) = Pr(Uyn > Upign for all K # | Xipns .., Xymo Z = 2).

We assume there is a continuum of consumers in each market so that this probabil-
ity is equal to the market share for product j in market 2 among the subpopulation
with characteristics z.

We consider the following model for Ujj,:

Uim = 8 Xjm, &, Zi, vi) + €ijm.

where g is unrestricted, and the additional component ¢;;, is assumed to be in-
dependent of observed and unobserved product characteristics and observed and
unobserved individual characteristics. It is also assumed to be independent across
choices, markets, and individuals and have a logistic distribution. This idiosyn-
cratic error term is interpreted as incorporating individual-specific preferences
for a product that are unrelated to all other product features.

Let us briefly consider a parametric version of this model in order to relate it
more closely to models used in the empirical literature. Suppose the systematic
part of the utility has the form

g(X]m7 é,-:]v Ziv Ui) = X/]mlgl + éf;')/i,

3 We make the assumption that unobserved product characteristics do not vary by market, a defining
characteristic of multiple markets with the same goods (conditional on observables): If products vary
across markets in unobservable ways, there is little value to having observations from multiple markets
absent additional assumptions about the way in which these unobservables vary across markets. One
common approach to deal with unobservable characteristics that vary by market is to specify a model
with a single unobserved characteristic, specify a model of competition, and assume equilibrium price
setting, so that observed prices are in one-to-one correspondence with the unobservable. Equilibrium
pricing assumptions are clearly more appropriate in some settings than in others (e.g., regulated
markets). We do not pursue that approach here.

4 We assume that the dimension of the unobserved individual component is equal to the sum of
the number of observed and unobserved choice characteristics, allowing each choice characteristic to
have its own individual-specific effect on utility. Although we do establish the importance of allowing
for unobserved individual heterogeneity, we do not explore the extent of this need. It may not be
necessary to allow the dimension of the unobserved individual heterogeneity to be as large as K + P.

3 We ignore the possibility of ties in the latent utilities. In the specific models we consider such ties
would occur with probability zero.
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where the individual specific marginal utilities 8; and y; relate to the observed
and unobserved individual characteristics through the equation

Bi A, Voi
— e =AZ +v;.
<yi Ay 4 Vui Z '
In this representation §; is a K-dimensional column vector, y; is an P-dimensional
column vector, A is a (K + P) x L-dimensional matrix of coefficients that do
not vary across individuals, and v; is a (K + P)-dimensional column vector. The

unobserved components of the individual characteristics are assumed to have a
normal distribution:

Vi |Xm, Zl "“N(O, Q),

where X,, is the J x K matrix with jth row equal to Xj,, and Qis a (K + P) x
(K + P)-dimensional matrix. Now we can write the utility as

(2) Uim = XjyBoZi + §;8uZi + X'ypVoi + & Vui + €ijm-

We contrast this model with three models that have been discussed and used
more widely in the literature. The first is the special case with no unobserved
product or individual characteristics:

Uvijm = X/]‘mAOZ + €ijm-

This is the standard multinomial logit model (McFadden, 1973). It has the IIA
property that the conditional probablity of making choice j instead of k, given
that one of the two is chosen, does not depend on characteristics of other choices.
This in turn implies severe restrictions on cross-elasticities and thus on substitution
patterns. For a general discussion, see McFadden (1982, 1984).

A second alternative model features a single unobserved product characteristic
(P = 1) and unobserved individual characteristics:

Ujm = X, Bi + &+ eij = Xy Do Zi + & + X'y Voi + €ijm-

This is a special case of the model used in BLP (who allow for endogeneity of some
of the observed product characteristics, which for simplicity we do not consider
here). This model allows for much richer patterns of substitution, while remaining
computationally tractable even in settings with many choices. This model, with
the generalization to allow for endogeneity of some choice characteristics, has
become very popular in the applied literature. See Ackerberg et al. (2006) for a
recent survey.
The third alternative model is typically set up in a different way, specifying

(3) Uijm = X/]‘onZi + Nijm,»
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with unrestricted dependence between the unobserved components for different
choices. Thus,

Nilm
Ni2m
) ~ N(0, ),

NiJm

where 7;.,, is the J vector with all 5;;, for individual i in market m, with the J x J
matrix Q not restricted (beyond some normalizations). This is the type of model
studied in MPR and McCulloch and Rossi (1994).

The latter model can be nested in the model in (2). To see this, simplify (2) to
eliminate the idiosyncratic error €5, as well as random coefficients on observable
individual and choice characteristics, leaving the following specification:

l]ijm = /]‘onZi +%—1,‘Vui,

where the dimension of the vector of unobserved choice characteristics £; and
the dimension of the vector of unobserved individual characteristics v,; are both
equal toJ. Moreover, suppose that all elements of the J-vector §; are equal to zero
other than the jth element, which is equal to one. Then if we assume that v,; ~
N (0, ) and define njj, = &jvu; = vy, it follows that the two models are equivalent:

Nilm
Ni2m

=& .. &) v = v ~ N(0, Q).
NiJm

The insight from this representation is that we can view the MPR set up as equiv-
alent to (2) by allowing for as many unobserved choice characteristics as there
are choices. The view underlying this approach is that choices are fundamentally
different in ways that cannot be captured by a few characteristics.

Our discussion below will focus largely on the need for unobserved choice
characteristics in order to explain data on choices arising from utility maximizing
individuals. We will argue that in the absence of functional form restrictions a
single unobserved product characteristic as in the BLP set up may not suffice to
rationalize all choice data, but that the MPR approach allows for more unobserved
choice characteristics than the data can ever reveal the existence of: A model with
as many multiple unobserved choice characteristics as there are choices is non-
parametrically not identified. We show that two unobserved choice characteristics
are sufficient, even in the case with many choices, to rationalize choice data aris-
ing from utility maximizing behavior. By providing formal support for the ability
of characteristic-based models to rationalize choice data, this discussion comple-
ments the substantive discussion in, among others, Ackerberg et al. (2006), who
argue in favor of characteristics-based approaches, and the contrasting arguments
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in Kim et al. (2007), who argue in favor of the view that generally choices cannot
be captured by a low-dimensional set of characteristics.

2.1. The Motivation for the Idiosyncratic Error Term. In this subsection, we
briefly state our arguments for including the additive, choice, and individual spe-
cific extreme value error term ¢;; in the model. Such an error term is the only
source of stochastic variation in the original multinomial choice models with only
observed choice and individual characteristics, but in models with unobserved
choice and individual characteristics their presence needs more motivation. Fol-
lowing Berry and Pakes (2002) we refer to models without such an ¢;; as pure
characteristics models. We discuss two arguments in favor of the models with the
additive error term. The first centers on the lack of robustness of the pure charac-
teristics models to measurement error. The second argument concerns the ability
of the model with the additive ¢;; to approximate arbitrarily closely the model with-
outsuch an error term. Hence in large samples the inclusion of this error term does
not affect the ability to explain choices arising from a pure characteristics model.

Let us examine these arguments in more detail. First, consider the fact that the
pure characteristics model may have stark predictions: It can predict zero market
shares for some products. An implication of this feature is that such models are
very sensitive to measurement error. For example, consider a case where choices
are generated by a pure characteristics model with utility g(x, v, z, §), and suppose
that this model implies that choice j, with observed and unobserved characteristics
equal to Z; and &, has zero market share. Now suppose that there is a single unit
i for whom we observe, due to measurement error, the choice Y; = j. Irrespective
of the number of correctly measured observations available that were generated
by the pure characteristics model, the estimates of the parameters will not be close
to the true values corresponding to the pure characteristics model due to the single
mismeasured observation. Such extreme sensitivity puts a lot of emphasis on the
correct specification of the model and the absence of measurement error and is
undesirable in most settings.

Thus, one might wish to generalize the model to be robust against small amounts
of measurement error of this type. One possibility is to define the optimal choice
Y} as the choice that maximizes the utility and assume that the observed choice
Y; is equal to the optimal choice Y} with probability 1 — &, and with probability
8/(J — 1) any of the other choices is observed:

Pr(Y; Y:, X, 7 7.6 &) 1-6 ifY=Y;,
I\ = i Aiy Vi, Ly, ...y S P = .

P YT A v A TSU e SIE s~ 1) i Y £ Y
This nests the pure characteristics model (by setting § = 0), without having the
disadvantages of extreme sensitivity to mismeasured choices that the pure char-
acteristics model has. If the true choices are generated by the utility function
g(x, v, z, £), the presence of a single mismeasured observation will not prevent
the true values of the parameters from maximizing the expected log likelihood
function. However, this specific generalization of the pure characteristics model
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has an unattractive feature: If the optimal choice Y} is not observed, all of the
remaining choices are equally likely. One might expect that choices with utilities
closer to the optimal one are more likely to be observed conditional on the optimal
choice not being observed.

An alternative modification of the pure characteristics model is based on adding
an idiosyncratic error term to the utility function. This model will have the feature
that, conditional on the optimal choice not being observed, a close-to-optimal
choice is more likely than a far-from-optimal choice. Suppose the true utility is

l];; :g()(l, Vi, Z]vé])’

but individuals base their choice on the maximum of mismeasured version of this
utility:

Uj = U +€ij = g(Xi, vi, Z;, &) + €ij,

with an extreme value ¢;;,independent across choices and individuals. The ¢;; here
can be interpreted as an error in the calculation of the utility associated with a
particular choice. This model does not directly nest the pure characteristics model,
since the idiosyncratic error term has a fixed variance. However, it approximately
nests it in the following sense. If the data are generated by the pure characteristics
model with the utility function g(x, v, z, &), then the model with the utility function
A - g(x,v,z &) + €;; leads, for sufficiently large A, to choice probabilities that are
arbitrarily close to the true choice probabilities (e.g., Berry and Pakes, 2007).6

Hence, even if the data were generated by a pure characteristics model, one
does not lose much by using a model with an additive idiosyncratic error term,
and one gains a substantial amount of robustness to measurement or optimization
error.

3. SOME RESULTS ON RATIONALIZABILITY OF CHOICE DATA

In Section 2, we introduced a general nonparametric model. In this section, we
consider the ability of this model to rationalize data arising from choices based
on utility maximizing behavior, as well as the question of whether the primitives
of this model can be identified.

Our model decomposes individual-product unobservables into individual ob-
served and unobserved preferences (random coefficients) for observed and
unobserved product characteristics, where individual- and product-level unob-
servables interact. An initial question concerns how different types of variation
that might be present in a data set potentially shed light on the importance of var-
ious elements of the model. In particular, we ask whether the data can in principle
reject restricted versions of the model, such as a model with a single unobserved

6 This closeness is not uniform, because for individuals who are indifferent between two alterna-
tives the two models will predict different choice probabilities irrespective of the value of A, but the
proportion of such individuals is assumed to be zero.
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product characteristic or a model with homogeneous individuals conditional on
observables.

A model is said to be testable if it cannot rationalize all hypothetical data sets
that might be observed. Questions about identification and testability are gen-
erally considered in the context of hypothetical data sets that are large in some
dimension. Typically we consider settings with independent draws from a com-
mon distribution, and the limit is based on the number of draws going to in-
finity. In the current setting, there are several different dimensions where the
data set may be large. Specifically, we will consider settings with a large number
of individuals facing the same choice set (large N,,), when each choice corre-
sponds to a vector of characteristics. Some of our results will apply to settings
where the number of choices or products itself is large (large J), so that for
each product there is a nearby product (in terms of observed product charac-
teristics). Such settings have been the motivation for BLP and literature that
follows them (e.g., Nevo, 2000, 2001; Ackerberg and Rysman, 2002; Petrin, 2002;
Bajari and Benkard, 2003). Finally, some of our results will consider a large num-
ber of markets (large M), where some observed choice characteristics may vary
between markets (but all unobserved choice characteristics are constant within
markets).

We shall see that a data set with a large number of choices can be used to dis-
tinguish between the absence or presence of unobserved choice characteristics,
and that a data set with a large number of markets and sufficient variation in ob-
served product characteristics can be used to establish the presence of unobserved
individual heterogeneity.

3.1. Rationalizability in a Single Market. In this subsection, we set M =1 and
suppress the subscript indicating the market in our notation. First, consider the
case with a finite number of choices J and an infinite number of individuals. We can
summarize what we can learn from the data in terms of the conditional probability
of choice j given individual characteristics Z; = z. We denote this probability, equal
to the market share because we have a large number of individuals in each market,
by s;(z). Note that utility maximization does not place restrictions on how the
functions s;(-) vary with z; any pattern of market share variation is possible. We
proceed to ask how rich a model is necessary to rationalize all possible patterns
of market shares, starting with the case of a finite number of products and then
proceeding to the case where the number of products grows large enough so that
there are multiple products with very similar characteristics.

To begin, we show that a model with no unobserved individual and no un-
observed choice characteristics cannot rationalize all choice data. Let the utility
associated with choice j for individual i be U;; = g(X;, Z;), without functional
form assumptions. Consider the subpopulation with characteristics Z; = z. Within
this subpopulation all individuals face the same decision problem,

X;. 2).
max  g(Xj, 2)

jell,...,
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Since we have no randomness in this simplified model, the market shares s;(z)
implied by this model are degenerate: If individual ¢ with characteristics Z; =
z prefers product j, then g(X;, z) > g(Xx, z) for all k # j, so that any other
individual ¢ with Z; = z would make the same choice. Hence, under this model
we would expect to see a degenerate distribution of choices conditional on the
individual characteristics. Specifically, all individuals would choose j, where j =
argmax;—i s &(Xj, z),so thatfor thisjwe have s;(z) =1, and for all other choices
k # j we would see s,(z) = 0. Hence, as soon as we see two individuals with the
same observed individual characteristics making different chocies, we can reject
such a model with certainty.

Next, consider a slightly more general model, where in addition to the observed
choice and individual characteristics there is an additive idiosyncratic error term
€;j, independent across choices and individuals. We argue that this model has
no testable restrictions, so long as there is a finite number of choices. The utility
associated with individual i and choice j is then g(X;, Z;) + ¢;;. In that case we
would see a distribution of choices even within a subpopulation homogenous in
terms of the observed individual characteristics, and we would see s;(z) > 0 for all
j=1,...,J given large enough support for ¢;;.

For purposes of exposition, suppose that the ¢;; have an extreme value distri-
bution (although for computational reasons we will consider normally distributed
€;j when implementing the model from Section 5.1). Then the probabilities s;(z)
have a logit form:

exp(g(x;, 2)) _
Yy exp(g(xk, 2))

This in turn implies that the log of the ratio of the probability of choice j versus
choice k has the form

s5i(2) =

In (ﬂ) = g(Xj, 2) — (X, 2)-

sk(2)

We can normalize the functions g(x, z) by setting g( X1, z) = 0. For a finite number
of choices, all with unique characteristics, we can always find a continuous function
g(x, z) that satisfies this restriction for all pairs (j, k) and all z. Hence in this setting
we cannot reject the semiparametric version of the conditional logit model, nor
its implication of independence of irrelevant alternatives.

One reason we cannot reject this simple model is that we never see individuals
choosing among products that appear similar. In other words, there need not be
choices with similar observable characteristics. We now turn to consider a setting
with a large number of choices, so that some choices are similar in observable
characteristics. We show that in this setting, the simple model does have testable
restrictions.

Following Berry et al. (2004), consider a model where for all choices j and for all
individual characteristics z the choice probabilities, normalized by the number of
choices J, are bounded away from zero and one, so that0 < ¢ < J -5;(z) <¢ < 1.
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Suppose that we observe J - s;(z) for a large number of choices and all z € Z. With
the choice characteristics in a compact subset of RX, it follows that eventually we
will see choices with very similar observed characteristics. Now suppose we have
two choices j and k with X; equal to X;. In that case, we should see identical choice
probabilities within a given subpopulation, or s;(z) = sk(z). Thus, the model will
be rejected if in fact we find that the choice probabilities differ.

One possible source of misspecification is an unobserved choice characteris-
tic. Note that the finding s;(z) # sx(z) can not be explained by (unobserved)
heterogeneity in individual preferences: If the two products are identical in all
characteristics, their market shares within the same market should be identical
(given that the idiosyncratic error ¢;; is independent across products).

Now let us consider whether, and under what conditions, it is sufficient to have
a single unobserved product characteristic. Much of the existing literature (e.g.,
BLP) assumes that the utility function is strictly monotone in the unobserved
choice characteristics for each individual and that there is a single unobserved
product characteristic. We now argue that this combination of assumptions can
be rejected by the data. Without loss of generality assume that g(x, z, £) is nonde-
creasing in the scalar unobserved component £. Consider two choices j and k with
the same values for the observed choice characteristics, X; = X;. Suppose that for
a given subpopulation with observed characteristics Z; = z we find that s;(z) >
sk(z). We can infer that the unobserved choice characteristic for product j is larger
than that for product k: &; > &;. Now suppose we have a second subpopulation
with different individual characteristics Z; = z’. The assumption of monotonicity
of the utility function in £ implies that the same ordering of the choice proba-
bilities must hold for this second subpopulation: s;(z") > s«(z’). If we find that
5j(z") < si(z'), we can reject the original model with a single unobserved choice
characteristic.

A natural source of misspecification is that the model ruled out multiple unob-
served choice characteristics. If we relax the model to allow for two unobserved
choice characteristics £;; and &5, it could be that individuals with Z; = z put more
weight in the utility function on the first characteristic £.1, and as a result prefer
product j to product k because &;; > &1, although individuals with Z; = 7’ put
more weight on the second characteristic £ ; and prefer product k tojbecause & <
&jo. This argument shows that in settings with a single market and no variation
in product characteristics, the presence of multiple choices with similar observed
choice characteristics can imply the presence of at least two choice characteristics,
under monotonicity of the utility function in the unobserved choice characteristic.
Again, the presence of unobserved individual heterogeneity cannot explain the
pattern of the probabilities described above.

An alternative way to generalize the model has been considered in an inter-
esting study of the demand for television shows by Goettler and Shachar (2001).
They allow for the presence of multiple unobserved characteristics that enter the
utility function in a nonmonotone manner (in their application consumers have a
bliss point in each unobserved choice characteristics, and utility is quadratic; each
consumer’s bliss point is unrestricted). Models with multiple unobserved product
characteristics have been considered in an interesting series of papers by Keane
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and coauthors (Elrod and Keane, 1995; Harris and Keane, 1997; Keane, 1997,
2004) and in work by Poole and Rosenthal (1985).

Here, we argue that with a flexible specification of utility and a countable num-
ber of products, a single dimension of unobserved product characteristics can
rationalize the data. However, it is necessary that utility be nonmonotone in this
unobservable characteristic. With a restriction to utility that is monotone in the
unobservable, it is not sufficient to have a single unobserved product character-
istic. However, one can say more. In the example it was possible to rationalize
the data with two unobserved choice characteristics that enter the utility function
monotonically. We show that this is true in general, as formalized in the following
theorem.

The setting is one with a countable number of products with identical observed
product characteristics, and a compact set of observed individual characteristics.
There are many individuals, so the market shares s;(z) are known for all z € Z and
forall j =1,...,J. We show that irrespective of the number of products J we can
rationalize the pattern of market shares with a utility function that is increasing
in two unobserved product characteristics.

THEOREM 1. Suppose that for each subpopulation indexed by characteristics
z€Z,and forall ] =1,...,00,there exist J products with identical observed char-
acteristics and an observable vector of market shares s;(z), j = 1,...,J, such that

Z]J‘=o 5j7(z) = 1. Then we can rationalize these market shares with a utility function
Uj=g(Z, &) +eij,

where &; is a scalar, €;; has an extreme value distribution and is independent of &;,
and where g(z, €) is continuous in &. Moreover we can also rationalize these market
shares with a utility function

Uij = h(Z;, &1, &j) + €ij.

where &1}, &5 are scalars, €;; has an extreme value distribution and is independent
of &1, &2j, and where h(z, &1, &2) is continuous and monotone in &1 and &.

Proor. The proof is constructive. Under the assumptions in the theorem we
can infer the market shares s;(z) for all choices and all values of z. The form of
the utility function implies that the market shares have the form

exp(s(z. )
>y exp(g(z. £))

Define rj(z) = In(s;j(z)/s1(z)) (so that r1(z) = 0). The proof of the first part of
the theorem amounts to constructing a function g(z, £) and a sequence &1,...,&;
such that r j(z) = g(z, &;) for all z and j. First, let

sj(z) =

4) gi=1-27 forj=1,...,J.
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Next, for & € [0, 1]

ri(2) ife=1-27j=1,...J
0 if0<& <2

O 8ED=) e 5020 (@ - r(@) 12T <€ <1-2°04)
r1(2) if1-277 <&<1.

This function g(z, &) is continuous in & on [0, 1] for all z, and piece-wise linear
with knots at 1 — 27/, Thus, the function is of bounded variation.

To construct the function h(z, &1, &,) we use the fact that a continuous function
k(&) of bounded variation on a compact set can be written as the sum of a nonde-
creasing continuous function k; (£) and a nonincreasing function k,(¢). We apply
this to the function g(z, £) in (5) for each value of z so that g(z, &) = hi(z, €) +
hy(z, &) with hy(z, &) nondecreasing and /,(z, &) nonincreasing, and both contin-
uous. Then define

(6) h(z, &1, &) = hi(z,61) + ha(z, 1 = &),

which is by construction nondecreasing and continuous in both &; and &;. Then
choose &£1; = &; and &;; = 1 — §;, where §; is as defined in equation (4), and the
function satisfies

(7 Az 81, &)) =h(z,§;,1 = &) =h(z, &) +ha(z, &) = g(z. &) =1(2).
[ ]

In both cases, utility will potentially be highly nonlinear in the unobservable, and
so with a restriction to linear and monotone effects of the unobservables, a partic-
ular functional form might fit better with multiple dimensions of unobservables,
to capture nonlinearities in the true model. However, to conclude that the true
model has multiple dimensions of unobserved characteristics, one must rely cru-
cially on the functional form assumption. Thus, the researcher should emphasize
that a finding that a model with a particular number of unobserved characteris-
tics fits the data well can be meaningfully interpreted only relative to the given
functional form.

The restriction in the theorem that all products have the same observed char-
acteristics is imposed only to simplify the notation. We can allow for a finite set of
different values for the observed product characteristics. More generally, we inter-
pet this theorem as demonstrating that unless one allows for utility functions that
are highly nonlinear, with derivatives large in absolute value, one may need two
unobserved product characteristics (or one if one allows for nonmonotonicity in
this unobserved product characteristic), in order to rationalize arbitrary patterns
of market shares.

The construction in the theorem implies that neither of the two models consid-
ered there (the model with one unobservable and the model with two unobserv-
ables and monotonicity restrictions) are uniquely identified, even after making
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location and scale normalizations. By reordering the products in the construction
of g, one obtains a function with a different shape. This is a substantive prob-
lem because there will typically be no “natural” ordering of the products, and
even the ranking of the magnitudes of market shares will typically vary with z.
Thus, establishing what additional assumptions and normalizations are required
for identification, particularly for models that also include unobserved individual
heterogeneity, remains an open problem.

3.2. Rationalizability in Multiple Markets. In this subsection, we consider the
evidence for the presence of unobserved heterogeneity at the individual level.
We show that when there is a large number of markets and sufficient variation
in observable choice characteristics across markets, a model without unobserved
individual heterogeneity can be rejected.

To some extent allowing for unobserved individual heterogeneity substitutes for
heterogeneity in unobserved choice characteristics. It was argued before that in
the case with no unobserved choice or individual characteristics one would expect
to see the choice probabilities be equal to zero or one. Introducing unobserved
individual characteristics will generate a distribution of choices in that case. More
importantly, however, unobserved individual characteristics generate substitution
patterns that are more realistic. Consider again a situation with a large number of
individuals and a finite number of choices J. We have already argued that such a
model fits the data arbitrary well. However, suppose that we have data from mul-
tiple markets. Markets may be distinguished by geography or time. These markets
have different populations, and thus potentially different distributions of individ-
ual characteristics. We assume that the choice set is the same in all markets, but
the observed choice characteristics of the products may differ between markets.
Key examples of such choice characteristics that vary by market include prices
and marketing variables.

In order to discuss this setting we