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Since the pioneering work by Daniel McFadden, utility-maximization-based
multinomial response models have become important tools of empirical re-
searchers. Various generalizations of these models have been developed to allow
for unobserved heterogeneity in taste parameters and choice characteristics. Here
we investigate how rich a specification of the unobserved components is needed
to rationalize arbitrary choice patterns in settings with many individual decision
makers, multiple markets, and large choice sets. We find that if one restricts the
utility function to be monotone in the unobserved choice characteristics, then
up to two unobserved choice characteristics may be needed to rationalize the
choices.

1. INTRODUCTION

Since the pioneering work by Daniel McFadden in the 1970s and 1980s (1973,
1981, 1982, 1984; Hausman and McFadden, 1984) discrete (multinomial) response
models have become an important tool of empirical researchers. McFadden’s early
work focused on the application of logit-based choice models to transportation
choices. Since then these models have been applied in many areas of economics,
including labor economics, public finance, development, finance, and others. Cur-
rently, one of the most active areas of application of these methods is to demand
analysis for differentiated products in industrial organization. A common feature
of these applications is the presence of many choices.

The application of McFadden’s methods to industrial organization has inspired
numerous extensions and generalizations of the basic multinomial logit model.
As pointed out by McFadden, multinomial logit models have the Independence
of Irrelevant Alternatives (IIA) property, so that, for example, an increase in
the price for one good implies a redistribution of part of the demand for that
good to the other goods in proportions equal to their original market shares.
This places strong restrictions on the substitution patterns (cross-price elasticities)
of products: Elasticities are proportional to market shares. McFadden proposed
various extensions to the standard model in order to relax the IIA property and
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generate more realistic substitution patterns, including “nested logit” models and
“mixed logit” models. The subsequent literature has explored extensions to and
implementations of these ideas. The nested logit model allows for layers of choices,
grouped into a tree structure, where the IIA property is imposed within a nest, but
not across nests (McFadden, 1982; Goldberg, 1995; Bresnahan et al., 1997). The
random coefficients or mixed logit approach was generalized in an influential pair
of papers by Berry et al. (1995, 2004; BLP from here on) and applied to settings
with a large number of choices. BLP developed methods for estimating models
with random coefficients on product attributes (mixed logit models) as well as
unobserved choice characteristics in settings with aggregate data. Exploiting the
logistic structure of the model, Berry (1994) proposed a method to relate market
shares to a scalar unobserved choice characteristic. Their methods have found
widespread application.

One strand of this literature has focused on hedonic models, where the utility is
modeled as a parametric function of a finite number of choice characteristics and a
finite number of individual characteristics. Researchers have considered hedonic
models both with and without individual-choice specific error terms (Berry and
Pakes, 2007; Bajari and Benkard, 2004). These models have some attractive prop-
erties, especially in settings with many choices, because the number of parameters
does not increase with the number of choices. Unlike the nested and random coef-
ficient logit models, hedonic models can potentially predict zero market share for
some choices. On the other hand, simple forms of those models rule out particular
choices for individuals with specific characteristics, making them very sensitive to
misspecification. To make these models more flexible, researchers have typically
allowed for unobserved choice and individual characteristics. To maintain com-
putational feasibility, the number of unobserved choice characteristics is typically
limited to one.

This article explores a version of the multinomial choice model that has re-
ceived less attention in the literature. We consider a random coefficients model
of individual utility that includes observed individual and product characteristics,
as well as multiple unobserved product characteristics and unobserved individ-
ual preferences for both observed and unobserved product characteristics. The
idea of specifying such a model goes back at least to McFadden (1981), but only
a few papers have followed this approach (e.g., Elrod and Keane, 1995; Keane,
1997, 2004; Harris and Keane, 1999; Goettler and Shachar, 2001). This model has
several desirable features. For example, the model nests both models based on un-
observed product characteristics (BLP) as well as unrestricted multinomial probit
models (e.g., McCulloch et al., 2000; hereafter MPR). In addition, by describing
products as combinations of attributes, it is possible to consider questions about
the introduction of new products in particular parts of the product space.

In many cases researchers applying this class of models have employed restric-
tions on the number of unobserved choice characteristics. In other cases (e.g.,
Goettler and Shachar, 2001) authors have allowed for a large number of choice
characteristics, with the data determining the number of unobserved characteris-
tics that enter the utility function. However, the literature has not directly consid-
ered the question of what restrictions are implied by limiting the number of choice
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characteristics, nor is it clear whether, in the absence of parametric restrictions,
the data can provide evidence for the existence of multiple unobserved product
characteristics. Understanding the answers to these questions is important for
empirical researchers who may not always be aware of the implications of the
modeling choices. Although researchers may still find it useful to apply a model
that cannot rationalize all patterns of choice data, we argue that the researcher
should be aware of any limitations the model imposes in this regard. Similarly,
if only functional form restrictions enable the researcher to infer the existence
of multiple unobservable choice characteristics, the researcher should highlight
clearly the role of the functional form.

In this article, we provide formal results to address these questions. We begin
by asking how flexible a model is required—that is, how many and what kind of
unobserved variables must be included in the specification of consumer utility—
to rationalize choice data. We are interested in whether any pattern of market
shares that might be consistent with utility maximization can be rationalized. We
discuss settings and data configurations where one can establish that the utility
function must depend on multiple unobserved choice characteristics instead of
a single unobserved product characteristic. We also discuss the extent to which
models with no unobserved individual characteristics can rationalize observed
data.

We explore the implications of these models in an application to demand for
yogurt. We consider models with up to two unobserved choice characteristics,
and assess the implied price elasticities. In order to implement these models we
employ Bayesian methods. Such methods have been used extensively in multino-
mial choice settings by Rossi et al. (1996; hereafter RMA), MPR, McCulloch and
Rossi (1994), Allenby et al. (2003), Rossi et al. (2005), Bajari and Benkard (2003),
Chib and Greenberg (1998), Geweke and Keane (2002), Romeo (2003), Osborne
(2005), and others. These authors have demonstrated that Bayesian methods are
very convenient for latent index discrete choice models with large numbers of
choices, using modern computational methods for Bayesian inference, in particu-
lar data augmentation and Markov Chain Monte Carlo (MCMC) methods (Tanner
and Wong, 1987; Geweke, 1997; Chib, 2003; Gelman et al. 2004; Rossi et al. 2005).
See Train (2003) for a comparison with frequentist simulation methods.

2. THE MODEL

Consider a model with M “markets,” where markets might be distinguished by
variation in time as well as location. In market m there are Nm consumers, each
choosing one product from a set of J products.2 In this market product j has two
sets of characteristics, a set of observed characteristics, denoted by Xjm, and a set
of unobserved characteristics, denoted by ξ j . The observed product characteris-
tics may vary by market, though they need not do so. The vector of unobserved

2 In the implementation we allow for the possibility that in some markets only a subset of the
products is available. In order to keep the notation simple we do not make this explicit in the discussion
in this section. Similarly, we allow for multiple purchases by the same individual, although the notation
does not make this explicit at this point.
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product characteristics does not vary by market.3 The vector of observed product
characteristics Xjm is of dimension K, and the vector of unobserved product char-
acteristics ξ j is of dimension P. Individual i has a vector of observed characteristics
Zi (which for notational convenience includes a constant term) of dimension L,
and a vector of unobserved characteristics νi of dimension K + P.4

The utility associated with choice j for individual i in market m is Uijm, for
i = 1, . . . , Nm, j = 1, . . . , J , and m = 1, . . . , M. Individuals choose product j if
the associated utility is higher than that associated with any of the alternatives.5

Hence the probability that an individual in market m with characteristics z chooses
product j is

s jm(z) = Pr(Uijm > Uikm for all k �= j |X1m, . . . , XJm, Zi = z).(1)

We assume there is a continuum of consumers in each market so that this probabil-
ity is equal to the market share for product j in market m among the subpopulation
with characteristics z.

We consider the following model for Uijm:

Uijm = g(Xjm, ξ j , Zi , νi ) + εijm,

where g is unrestricted, and the additional component εijm is assumed to be in-
dependent of observed and unobserved product characteristics and observed and
unobserved individual characteristics. It is also assumed to be independent across
choices, markets, and individuals and have a logistic distribution. This idiosyn-
cratic error term is interpreted as incorporating individual-specific preferences
for a product that are unrelated to all other product features.

Let us briefly consider a parametric version of this model in order to relate it
more closely to models used in the empirical literature. Suppose the systematic
part of the utility has the form

g(Xjm, ξ j , Zi , νi ) = X′
jmβi + ξ ′

jγi ,

3 We make the assumption that unobserved product characteristics do not vary by market, a defining
characteristic of multiple markets with the same goods (conditional on observables): If products vary
across markets in unobservable ways, there is little value to having observations from multiple markets
absent additional assumptions about the way in which these unobservables vary across markets. One
common approach to deal with unobservable characteristics that vary by market is to specify a model
with a single unobserved characteristic, specify a model of competition, and assume equilibrium price
setting, so that observed prices are in one-to-one correspondence with the unobservable. Equilibrium
pricing assumptions are clearly more appropriate in some settings than in others (e.g., regulated
markets). We do not pursue that approach here.

4 We assume that the dimension of the unobserved individual component is equal to the sum of
the number of observed and unobserved choice characteristics, allowing each choice characteristic to
have its own individual-specific effect on utility. Although we do establish the importance of allowing
for unobserved individual heterogeneity, we do not explore the extent of this need. It may not be
necessary to allow the dimension of the unobserved individual heterogeneity to be as large as K + P.

5 We ignore the possibility of ties in the latent utilities. In the specific models we consider such ties
would occur with probability zero.



DISCRETE CHOICE MODELS 1163

where the individual specific marginal utilities β i and γ i relate to the observed
and unobserved individual characteristics through the equation

(
βi

γi

)
=

(

o


u

)
Zi +

(
νoi

νui

)
= 
Zi + νi .

In this representation β i is a K-dimensional column vector, γ i is an P-dimensional
column vector, 
 is a (K + P) × L-dimensional matrix of coefficients that do
not vary across individuals, and νi is a (K + P)-dimensional column vector. The
unobserved components of the individual characteristics are assumed to have a
normal distribution:

νi | Xm, Zi ∼ N (0, �),

where Xm is the J × K matrix with jth row equal to X′
jm, and � is a (K + P) ×

(K + P)-dimensional matrix. Now we can write the utility as

Uijm = X′
jm
oZi + ξ ′

j
u Zi + X′
jmνoi + ξ ′

jνui + εijm.(2)

We contrast this model with three models that have been discussed and used
more widely in the literature. The first is the special case with no unobserved
product or individual characteristics:

Uijm = X′
jm
oZi + εijm.

This is the standard multinomial logit model (McFadden, 1973). It has the IIA
property that the conditional probablity of making choice j instead of k, given
that one of the two is chosen, does not depend on characteristics of other choices.
This in turn implies severe restrictions on cross-elasticities and thus on substitution
patterns. For a general discussion, see McFadden (1982, 1984).

A second alternative model features a single unobserved product characteristic
(P = 1) and unobserved individual characteristics:

Uijm = X′
jmβi + ξ j + εi j = X′

jm
oZi + ξ j + X′
jmνoi + εijm.

This is a special case of the model used in BLP (who allow for endogeneity of some
of the observed product characteristics, which for simplicity we do not consider
here). This model allows for much richer patterns of substitution, while remaining
computationally tractable even in settings with many choices. This model, with
the generalization to allow for endogeneity of some choice characteristics, has
become very popular in the applied literature. See Ackerberg et al. (2006) for a
recent survey.

The third alternative model is typically set up in a different way, specifying

Uijm = X′
jm
oZi + ηijm,(3)
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with unrestricted dependence between the unobserved components for different
choices. Thus,




ηi1m

ηi2m
...

ηi Jm


 ∼ N (0, �),

where ηi ·m is the J vector with all ηijm for individual i in market m, with the J × J
matrix � not restricted (beyond some normalizations). This is the type of model
studied in MPR and McCulloch and Rossi (1994).

The latter model can be nested in the model in (2). To see this, simplify (2) to
eliminate the idiosyncratic error εijm as well as random coefficients on observable
individual and choice characteristics, leaving the following specification:

Uijm = X′
jm
oZi + ξ ′

jνui ,

where the dimension of the vector of unobserved choice characteristics ξ j and
the dimension of the vector of unobserved individual characteristics νui are both
equal to J. Moreover, suppose that all elements of the J-vector ξ j are equal to zero
other than the jth element, which is equal to one. Then if we assume that νui ∼
N (0, �) and define ηijm ≡ ξ ′

jνui = νuij, it follows that the two models are equivalent:


ηi1m

ηi2m
...

ηi Jm


 = (ξ1 ξ2 . . . ξJ )′νui = νui ∼ N (0, �).

The insight from this representation is that we can view the MPR set up as equiv-
alent to (2) by allowing for as many unobserved choice characteristics as there
are choices. The view underlying this approach is that choices are fundamentally
different in ways that cannot be captured by a few characteristics.

Our discussion below will focus largely on the need for unobserved choice
characteristics in order to explain data on choices arising from utility maximizing
individuals. We will argue that in the absence of functional form restrictions a
single unobserved product characteristic as in the BLP set up may not suffice to
rationalize all choice data, but that the MPR approach allows for more unobserved
choice characteristics than the data can ever reveal the existence of: A model with
as many multiple unobserved choice characteristics as there are choices is non-
parametrically not identified. We show that two unobserved choice characteristics
are sufficient, even in the case with many choices, to rationalize choice data aris-
ing from utility maximizing behavior. By providing formal support for the ability
of characteristic-based models to rationalize choice data, this discussion comple-
ments the substantive discussion in, among others, Ackerberg et al. (2006), who
argue in favor of characteristics-based approaches, and the contrasting arguments
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in Kim et al. (2007), who argue in favor of the view that generally choices cannot
be captured by a low-dimensional set of characteristics.

2.1. The Motivation for the Idiosyncratic Error Term. In this subsection, we
briefly state our arguments for including the additive, choice, and individual spe-
cific extreme value error term εi j in the model. Such an error term is the only
source of stochastic variation in the original multinomial choice models with only
observed choice and individual characteristics, but in models with unobserved
choice and individual characteristics their presence needs more motivation. Fol-
lowing Berry and Pakes (2002) we refer to models without such an εi j as pure
characteristics models. We discuss two arguments in favor of the models with the
additive error term. The first centers on the lack of robustness of the pure charac-
teristics models to measurement error. The second argument concerns the ability
of the model with the additive εi j to approximate arbitrarily closely the model with-
out such an error term. Hence in large samples the inclusion of this error term does
not affect the ability to explain choices arising from a pure characteristics model.

Let us examine these arguments in more detail. First, consider the fact that the
pure characteristics model may have stark predictions: It can predict zero market
shares for some products. An implication of this feature is that such models are
very sensitive to measurement error. For example, consider a case where choices
are generated by a pure characteristics model with utility g(x, ν, z, ξ), and suppose
that this model implies that choice j, with observed and unobserved characteristics
equal to Zj and ξ j , has zero market share. Now suppose that there is a single unit
i for whom we observe, due to measurement error, the choice Yi = j . Irrespective
of the number of correctly measured observations available that were generated
by the pure characteristics model, the estimates of the parameters will not be close
to the true values corresponding to the pure characteristics model due to the single
mismeasured observation. Such extreme sensitivity puts a lot of emphasis on the
correct specification of the model and the absence of measurement error and is
undesirable in most settings.

Thus, one might wish to generalize the model to be robust against small amounts
of measurement error of this type. One possibility is to define the optimal choice
Y∗

i as the choice that maximizes the utility and assume that the observed choice
Yi is equal to the optimal choice Y∗

i with probability 1 − δ, and with probability
δ/(J − 1) any of the other choices is observed:

Pr
(
Yi = y

∣∣ Y∗
i , Xi , νi , Z1, . . . , ZJ , ξ1, . . . , ξJ

) =
{

1 − δ if Y = Y∗
i ,

δ/(J − 1) if Y �= Y∗
i .

This nests the pure characteristics model (by setting δ = 0), without having the
disadvantages of extreme sensitivity to mismeasured choices that the pure char-
acteristics model has. If the true choices are generated by the utility function
g(x, ν, z, ξ), the presence of a single mismeasured observation will not prevent
the true values of the parameters from maximizing the expected log likelihood
function. However, this specific generalization of the pure characteristics model
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has an unattractive feature: If the optimal choice Y∗
i is not observed, all of the

remaining choices are equally likely. One might expect that choices with utilities
closer to the optimal one are more likely to be observed conditional on the optimal
choice not being observed.

An alternative modification of the pure characteristics model is based on adding
an idiosyncratic error term to the utility function. This model will have the feature
that, conditional on the optimal choice not being observed, a close-to-optimal
choice is more likely than a far-from-optimal choice. Suppose the true utility is

U∗
i j = g(Xi , νi , Zj , ξ j ),

but individuals base their choice on the maximum of mismeasured version of this
utility:

Ui j = U∗
i j + εi j = g(Xi , νi , Zj , ξ j ) + εi j ,

with an extreme value εi j , independent across choices and individuals. The εi j here
can be interpreted as an error in the calculation of the utility associated with a
particular choice. This model does not directly nest the pure characteristics model,
since the idiosyncratic error term has a fixed variance. However, it approximately
nests it in the following sense. If the data are generated by the pure characteristics
model with the utility function g(x, ν, z, ξ), then the model with the utility function
λ · g(x, ν, z, ξ) + εi j leads, for sufficiently large λ, to choice probabilities that are
arbitrarily close to the true choice probabilities (e.g., Berry and Pakes, 2007).6

Hence, even if the data were generated by a pure characteristics model, one
does not lose much by using a model with an additive idiosyncratic error term,
and one gains a substantial amount of robustness to measurement or optimization
error.

3. SOME RESULTS ON RATIONALIZABILITY OF CHOICE DATA

In Section 2, we introduced a general nonparametric model. In this section, we
consider the ability of this model to rationalize data arising from choices based
on utility maximizing behavior, as well as the question of whether the primitives
of this model can be identified.

Our model decomposes individual-product unobservables into individual ob-
served and unobserved preferences (random coefficients) for observed and
unobserved product characteristics, where individual- and product-level unob-
servables interact. An initial question concerns how different types of variation
that might be present in a data set potentially shed light on the importance of var-
ious elements of the model. In particular, we ask whether the data can in principle
reject restricted versions of the model, such as a model with a single unobserved

6 This closeness is not uniform, because for individuals who are indifferent between two alterna-
tives the two models will predict different choice probabilities irrespective of the value of λ, but the
proportion of such individuals is assumed to be zero.
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product characteristic or a model with homogeneous individuals conditional on
observables.

A model is said to be testable if it cannot rationalize all hypothetical data sets
that might be observed. Questions about identification and testability are gen-
erally considered in the context of hypothetical data sets that are large in some
dimension. Typically we consider settings with independent draws from a com-
mon distribution, and the limit is based on the number of draws going to in-
finity. In the current setting, there are several different dimensions where the
data set may be large. Specifically, we will consider settings with a large number
of individuals facing the same choice set (large Nm), when each choice corre-
sponds to a vector of characteristics. Some of our results will apply to settings
where the number of choices or products itself is large (large J), so that for
each product there is a nearby product (in terms of observed product charac-
teristics). Such settings have been the motivation for BLP and literature that
follows them (e.g., Nevo, 2000, 2001; Ackerberg and Rysman, 2002; Petrin, 2002;
Bajari and Benkard, 2003). Finally, some of our results will consider a large num-
ber of markets (large M), where some observed choice characteristics may vary
between markets (but all unobserved choice characteristics are constant within
markets).

We shall see that a data set with a large number of choices can be used to dis-
tinguish between the absence or presence of unobserved choice characteristics,
and that a data set with a large number of markets and sufficient variation in ob-
served product characteristics can be used to establish the presence of unobserved
individual heterogeneity.

3.1. Rationalizability in a Single Market. In this subsection, we set M = 1 and
suppress the subscript indicating the market in our notation. First, consider the
case with a finite number of choices J and an infinite number of individuals. We can
summarize what we can learn from the data in terms of the conditional probability
of choice j given individual characteristics Zi = z. We denote this probability, equal
to the market share because we have a large number of individuals in each market,
by sj (z). Note that utility maximization does not place restrictions on how the
functions sj (·) vary with z; any pattern of market share variation is possible. We
proceed to ask how rich a model is necessary to rationalize all possible patterns
of market shares, starting with the case of a finite number of products and then
proceeding to the case where the number of products grows large enough so that
there are multiple products with very similar characteristics.

To begin, we show that a model with no unobserved individual and no un-
observed choice characteristics cannot rationalize all choice data. Let the utility
associated with choice j for individual i be Ui j = g(Xj , Zi ), without functional
form assumptions. Consider the subpopulation with characteristics Zi = z. Within
this subpopulation all individuals face the same decision problem,

max
j∈{1,...,J }

g(Xj , z).
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Since we have no randomness in this simplified model, the market shares sj (z)
implied by this model are degenerate: If individual i with characteristics Zi =
z prefers product j, then g(Xj , z) > g(Xk, z) for all k �= j , so that any other
individual i′ with Zi ′ = z would make the same choice. Hence, under this model
we would expect to see a degenerate distribution of choices conditional on the
individual characteristics. Specifically, all individuals would choose j, where j =
arg max j ′=1,...,J g(Xj ′ , z), so that for this j we have sj (z) = 1, and for all other choices
k �= j we would see sk(z) = 0. Hence, as soon as we see two individuals with the
same observed individual characteristics making different chocies, we can reject
such a model with certainty.

Next, consider a slightly more general model, where in addition to the observed
choice and individual characteristics there is an additive idiosyncratic error term
εi j , independent across choices and individuals. We argue that this model has
no testable restrictions, so long as there is a finite number of choices. The utility
associated with individual i and choice j is then g(Xj , Zi ) + εi j . In that case we
would see a distribution of choices even within a subpopulation homogenous in
terms of the observed individual characteristics, and we would see sj (z) > 0 for all
j = 1, . . . , J given large enough support for εi j .

For purposes of exposition, suppose that the εi j have an extreme value distri-
bution (although for computational reasons we will consider normally distributed
εi j when implementing the model from Section 5.1). Then the probabilities sj (z)
have a logit form:

s j (z) = exp(g(xj , z))∑J
k=1 exp(g(xk, z))

.

This in turn implies that the log of the ratio of the probability of choice j versus
choice k has the form

ln
(

s j (z)
sk(z)

)
= g(Xj , z) − g(Xk, z).

We can normalize the functions g(x, z) by setting g(X1, z) = 0. For a finite number
of choices, all with unique characteristics, we can always find a continuous function
g(x, z) that satisfies this restriction for all pairs (j, k) and all z. Hence in this setting
we cannot reject the semiparametric version of the conditional logit model, nor
its implication of independence of irrelevant alternatives.

One reason we cannot reject this simple model is that we never see individuals
choosing among products that appear similar. In other words, there need not be
choices with similar observable characteristics. We now turn to consider a setting
with a large number of choices, so that some choices are similar in observable
characteristics. We show that in this setting, the simple model does have testable
restrictions.

Following Berry et al. (2004), consider a model where for all choices j and for all
individual characteristics z the choice probabilities, normalized by the number of
choices J, are bounded away from zero and one, so that 0 < c

¯
≤ J · s j (z) ≤ c̄ < 1.
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Suppose that we observe J · sj (z) for a large number of choices and all z ∈ Z. With
the choice characteristics in a compact subset of R

K, it follows that eventually we
will see choices with very similar observed characteristics. Now suppose we have
two choices j and k with Xj equal to Xk. In that case, we should see identical choice
probabilities within a given subpopulation, or sj (z) = sk(z). Thus, the model will
be rejected if in fact we find that the choice probabilities differ.

One possible source of misspecification is an unobserved choice characteris-
tic. Note that the finding sj (z) �= sk(z) can not be explained by (unobserved)
heterogeneity in individual preferences: If the two products are identical in all
characteristics, their market shares within the same market should be identical
(given that the idiosyncratic error εi j is independent across products).

Now let us consider whether, and under what conditions, it is sufficient to have
a single unobserved product characteristic. Much of the existing literature (e.g.,
BLP) assumes that the utility function is strictly monotone in the unobserved
choice characteristics for each individual and that there is a single unobserved
product characteristic. We now argue that this combination of assumptions can
be rejected by the data. Without loss of generality assume that g(x, z, ξ) is nonde-
creasing in the scalar unobserved component ξ . Consider two choices j and k with
the same values for the observed choice characteristics, Xj = Xk. Suppose that for
a given subpopulation with observed characteristics Zi = z we find that sj (z) >

sk(z). We can infer that the unobserved choice characteristic for product j is larger
than that for product k: ξ j > ξk. Now suppose we have a second subpopulation
with different individual characteristics Zi = z′. The assumption of monotonicity
of the utility function in ξ implies that the same ordering of the choice proba-
bilities must hold for this second subpopulation: sj (z′) > sk(z′). If we find that
sj (z′) < sk(z′), we can reject the original model with a single unobserved choice
characteristic.

A natural source of misspecification is that the model ruled out multiple unob-
served choice characteristics. If we relax the model to allow for two unobserved
choice characteristics ξ j1 and ξ j2, it could be that individuals with Zi = z put more
weight in the utility function on the first characteristic ξ ·1, and as a result prefer
product j to product k because ξ j1 > ξk1, although individuals with Zi = z′ put
more weight on the second characteristic ξ ·2 and prefer product k to j because ξ j2 <

ξk2. This argument shows that in settings with a single market and no variation
in product characteristics, the presence of multiple choices with similar observed
choice characteristics can imply the presence of at least two choice characteristics,
under monotonicity of the utility function in the unobserved choice characteristic.
Again, the presence of unobserved individual heterogeneity cannot explain the
pattern of the probabilities described above.

An alternative way to generalize the model has been considered in an inter-
esting study of the demand for television shows by Goettler and Shachar (2001).
They allow for the presence of multiple unobserved characteristics that enter the
utility function in a nonmonotone manner (in their application consumers have a
bliss point in each unobserved choice characteristics, and utility is quadratic; each
consumer’s bliss point is unrestricted). Models with multiple unobserved product
characteristics have been considered in an interesting series of papers by Keane
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and coauthors (Elrod and Keane, 1995; Harris and Keane, 1997; Keane, 1997,
2004) and in work by Poole and Rosenthal (1985).

Here, we argue that with a flexible specification of utility and a countable num-
ber of products, a single dimension of unobserved product characteristics can
rationalize the data. However, it is necessary that utility be nonmonotone in this
unobservable characteristic. With a restriction to utility that is monotone in the
unobservable, it is not sufficient to have a single unobserved product character-
istic. However, one can say more. In the example it was possible to rationalize
the data with two unobserved choice characteristics that enter the utility function
monotonically. We show that this is true in general, as formalized in the following
theorem.

The setting is one with a countable number of products with identical observed
product characteristics, and a compact set of observed individual characteristics.
There are many individuals, so the market shares sj (z) are known for all z ∈ Z and
for all j = 1, . . . , J . We show that irrespective of the number of products J we can
rationalize the pattern of market shares with a utility function that is increasing
in two unobserved product characteristics.

THEOREM 1. Suppose that for each subpopulation indexed by characteristics
z ∈ Z, and for all J = 1, . . . , ∞, there exist J products with identical observed char-
acteristics and an observable vector of market shares sjJ(z), j = 1, . . . , J , such that∑J

j=0 s j J (z) = 1. Then we can rationalize these market shares with a utility function

Ui j = g(Zi , ξ j ) + εi j ,

where ξ j is a scalar, εi j has an extreme value distribution and is independent of ξ j ,
and where g(z, ξ) is continuous in ξ . Moreover we can also rationalize these market
shares with a utility function

Ui j = h(Zi , ξ1 j , ξ2 j ) + εi j ,

where ξ 1 j , ξ 2 j are scalars, εi j has an extreme value distribution and is independent
of ξ 1 j , ξ 2 j , and where h(z, ξ 1, ξ 2) is continuous and monotone in ξ 1 and ξ 2.

PROOF. The proof is constructive. Under the assumptions in the theorem we
can infer the market shares sj (z) for all choices and all values of z. The form of
the utility function implies that the market shares have the form

s j (z) = exp(g(z, ξ j ))∑J
k=1 exp(g(z, ξk))

.

Define r j (z) = ln(sj (z)/s1(z)) (so that r1(z) = 0). The proof of the first part of
the theorem amounts to constructing a function g(z, ξ) and a sequence ξ 1, . . . , ξ J

such that r j (z) = g(z, ξ j ) for all z and j. First, let

ξ j = 1 − 2− j , for j = 1, . . . , J.(4)
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Next, for ξ ∈ [0, 1]

g(z, ξ) =




r j (z) if ξ = 1 − 2− j , j = 1, . . . , J

0 if 0 ≤ ξ < 2−1

r j (z) + ξ−(1−2− j )
2− j −2−( j+1) · (r j+1(z) − r j (z)) if 1 − 2− j < ξ < 1 − 2−( j+1)

rJ (z) if 1 − 2−J < ξ ≤ 1.

(5)

This function g(z, ξ) is continuous in ξ on [0, 1] for all z, and piece-wise linear
with knots at 1 − 2− j . Thus, the function is of bounded variation.

To construct the function h(z, ξ 1, ξ 2) we use the fact that a continuous function
k(ξ) of bounded variation on a compact set can be written as the sum of a nonde-
creasing continuous function k1(ξ) and a nonincreasing function k2(ξ). We apply
this to the function g(z, ξ) in (5) for each value of z so that g(z, ξ) = h1(z, ξ) +
h2(z, ξ) with h1(z, ξ) nondecreasing and h2(z, ξ) nonincreasing, and both contin-
uous. Then define

h(z, ξ1, ξ2) = h1(z, ξ1) + h2(z, 1 − ξ2),(6)

which is by construction nondecreasing and continuous in both ξ 1 and ξ 2. Then
choose ξ 1 j = ξ j and ξ 2 j = 1 − ξ j , where ξ j is as defined in equation (4), and the
function satisfies

h(z, ξ1 j , ξ2 j ) = h(z, ξ j , 1 − ξ j ) = h1(z, ξ j ) + h2(z, ξ j ) = g(z, ξ j ) = r j (z).(7)

�

In both cases, utility will potentially be highly nonlinear in the unobservable, and
so with a restriction to linear and monotone effects of the unobservables, a partic-
ular functional form might fit better with multiple dimensions of unobservables,
to capture nonlinearities in the true model. However, to conclude that the true
model has multiple dimensions of unobserved characteristics, one must rely cru-
cially on the functional form assumption. Thus, the researcher should emphasize
that a finding that a model with a particular number of unobserved characteris-
tics fits the data well can be meaningfully interpreted only relative to the given
functional form.

The restriction in the theorem that all products have the same observed char-
acteristics is imposed only to simplify the notation. We can allow for a finite set of
different values for the observed product characteristics. More generally, we inter-
pet this theorem as demonstrating that unless one allows for utility functions that
are highly nonlinear, with derivatives large in absolute value, one may need two
unobserved product characteristics (or one if one allows for nonmonotonicity in
this unobserved product characteristic), in order to rationalize arbitrary patterns
of market shares.

The construction in the theorem implies that neither of the two models consid-
ered there (the model with one unobservable and the model with two unobserv-
ables and monotonicity restrictions) are uniquely identified, even after making
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location and scale normalizations. By reordering the products in the construction
of g, one obtains a function with a different shape. This is a substantive prob-
lem because there will typically be no “natural” ordering of the products, and
even the ranking of the magnitudes of market shares will typically vary with z.
Thus, establishing what additional assumptions and normalizations are required
for identification, particularly for models that also include unobserved individual
heterogeneity, remains an open problem.

3.2. Rationalizability in Multiple Markets. In this subsection, we consider the
evidence for the presence of unobserved heterogeneity at the individual level.
We show that when there is a large number of markets and sufficient variation
in observable choice characteristics across markets, a model without unobserved
individual heterogeneity can be rejected.

To some extent allowing for unobserved individual heterogeneity substitutes for
heterogeneity in unobserved choice characteristics. It was argued before that in
the case with no unobserved choice or individual characteristics one would expect
to see the choice probabilities be equal to zero or one. Introducing unobserved
individual characteristics will generate a distribution of choices in that case. More
importantly, however, unobserved individual characteristics generate substitution
patterns that are more realistic. Consider again a situation with a large number of
individuals and a finite number of choices J. We have already argued that such a
model fits the data arbitrary well. However, suppose that we have data from mul-
tiple markets. Markets may be distinguished by geography or time. These markets
have different populations, and thus potentially different distributions of individ-
ual characteristics. We assume that the choice set is the same in all markets, but
the observed choice characteristics of the products may differ between markets.
Key examples of such choice characteristics that vary by market include prices
and marketing variables.

In order to discuss this setting we need to return to the general notation of Sec-
tion 2. Let m = 1, . . . , M index the markets. In market m there are Nm individuals.
They choose between J products, where product j has observed characteristics Xjm

and unobserved characteristics ξ j . The general form for the utility for individual
i in market m associated with product j is

Uijm = g(Xjm, ξ j , Zi , νi ) + εijm,

for i = 1, . . . , Nm, j = 1, . . . , J , and m = 1, . . . , M. The idiosyncratic error εijm

is independent of εi ′ j ′m′ unless (i, j, m) = (i′, j′, m′), and has an extreme value
distribution.

First consider a model with no unobserved individual characteristics, so that

Uijm = g(Xjm, ξ j , Zi ) + εijm.

Recall that the unobserved choice characteristics do not vary by market. Consider
a subpopulation of individuals with observed characteristics Zi = z. Consider two
markets m and m′, and three choices, j, k, and l, where for two of the choices, j and
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k, the characteristics do not differ between markets, and for the third choice, l,
the observed characteristics do differ between markets, so that Xjm = Xjm′ , Xkm =
Xkm′ , and Xlm �= Xlm′ . In this case the market share of choice j in markets m and
m′ is

s jm(z) = exp(g(Xjm, ξ j , z))
exp(g(Xjm, ξ j , z)) + exp(g(Xkm, ξk, z)) + exp(g(Xlm, ξl , z))

and

s jm′(z) = exp(g(Xjm′ , ξ j , z))
exp(g(Xjm′ , ξ j , z)) + exp(g(Xkm′ , ξk, z)) + exp(g(Xlm′ , ξl , z))

.

The ratio of the market shares for choices j and k in the two markets are

s jm(z)
skm(z)

= exp(g(Xjm, ξ j , z))
exp(g(Xkm, ξk, z))

and
s jm′(z)
skm′(z)

= exp(g(Xjm′ , ξ j , z))
exp(g(Xkm′ , ξk, z))

.

These relative market shares are identical in both markets because Xjm = Xjm′ and
Xkm = Xkm′ , and by assumption the unobserved choice characteristics do not vary
by market. Thus the IIA property of the conditional logit model implies in this
case that the ratio of market shares for choices k and j should be the same in the
two markets.7 If the two ratios differ, obviously one possibility is that the unob-
served choice characteristics for these choices differ between markets. (Note that
a market-invariant choice-specific component would not be able to explain this
pattern of choices.) Ruling out changes in unobserved choice characteristics across
markets by assumption, another possibility is that there are unobserved individ-
ual characteristics that imply that individuals who are homogenous in terms of
observed characteristics do in fact have differential preferences for these choices.

Let us assess how unobserved individual heterogeneity can explain differences
in market share ratios in such settings. The unobserved individual components
are interpreted here as individual preferences for product characteristics, such as
a taste for quality. As before, let us denote such components by νi . We assume the
distribution of individual unobserved characteristics is constant across markets.
The utility becomes

Uijm = U(Xjm, Zi , νi ) + εijm,

still with the εijm independent across all dimensions. Given the observed and
unobserved individual characteristics the market share for product j in market m,
given Zi = z and νi = ν, is

7 Although other functional forms for the distribution of εi j do not impose the independence of
irrelevant alternatives property, as long as independence of εi j is maintained, other functional forms
also impose testable restrictions on how market shares vary when product characteristics change.
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s jm(z, ν) = exp(g(Xjm, ξ j , z, ν))
exp(g(Xjm, ξ j , z, ν)) + exp(g(Xkm, ξk, z, ν)) + exp(g(Xlm, ξl , z, ν))

.

Integrating over ν the marginal market share becomes

s jm(z) =∫
ν

exp(g(Xjm, ξ j , z, ν))
exp(g(Xjm, ξ j , z, ν)) + exp(g(Xkm, ξk, z, ν)) + exp(g(Xlm, ξl , z, ν))

fν(ν) dν.

If the characteristics of product l varies across markets, the ratio of markets shares
for choices j and k are no longer restricted to be identical in two markets even if
their observed characteristics are the same in both markets. Thus the IIA property
no longer holds in the presence of unobserved individual heterogeneity in tastes.
This model still requires that two markets with exactly the same set of products
have the same market shares for all products. More generally, the question of
whether and under what conditions this model has additional testable restrictions
remains open.8

So far we have considered a fixed distribution over individual characteristics. If
we relax this assumption, it is straightforward to see that a model with unobserved
individual heterogeneity can always rationalize observed market shares. To see
why, note that in each market, market shares can be rationalized without individual
heterogeneity using the analysis of Theorem 1. Let gm(Xjm, ξ j , z) be the function
that rationalizes the data in market m constructed in the proof of Theorem 1. Then
given any order over markets, we can let g(Xjm, ξ j , z, ν) = gm(Xjm, ξ j , z) for ν in a
neighborhood of m, and we can let f ν(ν) put all the weight on that neighborhood
in market m.

4. PREDICTING THE MARKET SHARE OF NEW PRODUCTS

Suppose we wish to predict the market share of a new product, call it choice 0.
In order to make such a prediction, the analyst must provide some information
about the product’s observed and unobserved characteristics. One possibility is to
consider products that lie in some specified quantile of the distribution of char-
acteristics in the population. For example, one could consider a product with the
median values of observed and unobserved characteristics. However, that may or
may not be an interesting hypothetical product to consider, since products in the
population may tend to be outliers in some dimensions and not others.

A second alternative approach might be to make some assumptions about
the costs of entry and production at various points in the product space, and
to calculate the optimal position for a new product. Although an assumption of

8 In a simple example with two markets and four products, where each market has a different subset
of three products, it is straightforward to verify that a model with just two distinct types of individuals
with the same distribution in both markets can rationalize any market share patterns. To address the
problem more generally, one must specify how the number of products changes with the number of
markets.
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equilibrium pricing on the part of firms might enable inferences about marginal
costs of production for different products, additional assumptions would be re-
quired to estimate entry costs at different points.

If there are many products, a third approach would be to model the joint distri-
bution of observed and unobserved product characteristics in the population, and
take draws from that joint distribution, thus generating a distribution of predicted
market shares. Our estimation routine generates different conditional distribu-
tions of unobserved characteristics for each product, and to construct this joint
distribution, it would be necessary to combine these estimates with an estimate of
the marginal distribution of observed characteristics. Some extrapolation would
be required to infer this distribution at values of observed characteristics that are
not observed in the population.

Finally, as a fourth approach, in some cases it might be interesting to con-
sider entry of a product with prespecified observed characteristics but unknown
unobserved characteristics. For example, a foreign entrant might be planning to
introduce an existing product with observable attributes into the markets under
study. In that case, the analyst must make some decisions about how to model the
unobserved characteristics for this product. One possibility is to use the marginal
distribution of unobserved product characteristics in the population. This is the
method we use in our empirical application. However, this approach has some
important limitations. Most importantly, it does not account for the fact that un-
observed characteristics may vary systematically with observed characteristics:
For example, prices may vary with unobserved quality. As described in the third
approach, it is possible to generate an estimate of the distribution of unobserved
characteristics conditional on a particular set of observables, but it requires some
extrapolation; since our application has only eight brands, we do not pursue it
here.

Following the third or fourth approaches, one immediate implication of the
presence of unobserved choice characteristics is that we are unable to predict
the market share exactly even in settings with an infinite number of individuals.
Instead, a given set of observable characteristics of a new product would be con-
sistent with a range of market shares. We view this as a realistic feature of the
model. Of course, the analyst is free to put more structure on the prediction of the
unobservable characteristics, along the lines suggested in the second approach.

5. A BAYESIAN APPROACH TO ESTIMATION

This section presents a proposed approach for estimating a model with multiple
unobserved choice characteristics. Although our rationalizability discussion was
largely nonparametric, we focus on estimation of parametric models. Our view is
that these can be viewed as approximations to the nonparametric models studied
in the previous sections, with our results showing that the evidence for, for ex-
ample, multiple unobserved product characteristics, is not coming solely from the
functional form restrictions. We begin by returning to the parametric model intro-
duced in Section 2, after which we describe a Bayesian approach to estimation. A
Bayesian approach is in this case attractive from a computational perspective.
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5.1. The Parameterized Model. Recall the general model for Uijm:

Uijm = g(Xjm, ξ j , Zi , νi ) + εijm,

where the additional component εijm is assumed to be independent of (Xjm, ξ j , Zi ,
νi ). Rather than assume that each εijm has an extreme value distribution, as we did
in some of the discussion above, for the purposes of estimation we assume that
it has a standard (mean zero, unit variance) normal distribution, independent of
(Xjm, ξ j , Zi , νi ), as well as independent across choices, markets, and individuals.
We parametrize the systematic part of the utility associated with choice j as

g(Xjm, ξ j , Zi , νi ) = X′
jmβi + ξ ′

jγi =
(

Xjm

ξ j

)′ (
βi

γi

)
,

where the individual specific coefficients θ i satisfy(
βi

γi

)
=

(

o


u

)
Zi +

(
νoi

νui

)
= 
Zi + νi .

In this representation β i is a K-dimensional column vector, γ i is an P-dimensional
column vector, 
 is a (K + P) × L-dimensional matrix, and νi is a (K + P)-
dimensional column vector. The unobserved components of the individual char-
acteristics are assumed to have a normal distribution:

νi | Xm, Zi ∼ N (0, �),

where Xm is the J × K matrix with jth row equal to X′
jm, and � is a (K + P) ×

(K + P)-dimensional matrix.
Now we can write Uijm as

Uijm =
(

Xjm

ξ j

)′
(
Zi + νi ) + εijm

= X′
jm
oZi + ξ ′

j
u Zi + X′
jmνoi + ξ ′

jνui + εijm.

Let us consider the vector of latent utilities for all J choices for individual i in
market m:

Ui ·m =




Ui1m

Ui2m

...
Ui Jm


 = (Xm ξ)
Zi + (Xm ξ)νi + εi ·m,(8)

where ξ is the J × P matrix with jth row equal to ξ ′
j . Conditional on Xm, Zi , and

ξ the joint distribution of the J-vector Ui ·m is
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Ui ·m | Xm, Zi , ξ ∼ N ((Xm ξ)
Zi , (Xm ξ)�(Xm ξ)′ + IJ ).

This model imposes considerable structure on the correlation between the latent
utilities, with the covariance matrix and the mean parameters intricately linked,
but at the same time does allow for complex patterns in this correlation structure.

5.2. Posterior Calculations. In order to estimate the parameters of interest
and carry out inference we use a Bayesian approach. We specify prior distributions
for the parameters 
, �, and ξ and use MCMC methods for obtaining draws
from the posterior distribution of these parameters and functions thereof. The
structure of the model is particularly well suited to such an approach. There are
large numbers of parameters that can be treated as unobserved random variables
and imputed in the MCMC algorithm. In addition, the likelihood function is likely
to have multiple modes, implying that quadratic approximations to its shape are
likely to be poor, resulting in poor properties of large sample confidence intervals
for the underlying parameters. It should be noted though that these multiple
modes need not make the normal approximation to the posterior distribution of
the effects of policies of interest (e.g., price changes or the market share of a new
product) inaccurate. For example, one problem with frequentist inference in the
current setting with at least two unobserved product characteristics is that these
are never separately identified. This does not matter for most purposes because
many estimands of interest would be invariant to the relabeling of the unobserved
product characteristics. However, if an asymptotic approximation is based on a
quadratic approximation to the likelihood function in all its arguments, followed
by the delta method, the results could be sensitive to such multiple modes. More
generally, the numerical problems in locating the maximum or maxima of the
likelihood function can be severe.

The implementation of the MCMC algorithm borrows heavily from RMA as
well as more indirectly from work by Chib and Greenberg (1998) on Gibbs sam-
pling in latent index models. For a general discussion of MCMC methods see
Tanner (1993), Gelman et al. (2004), and Geweke (1997). Here we briefly discuss
the general approach we take in this article. The Appendix contains more details
on the specific implementation.

The specific model we estimate is given in (8). Let Yit denote the choice, Yit ∈
{1, . . . , J}. We observe Ti choices for individual i, each in a different market. For
each of these choices we observe the product chosen, the product characteristics
of the all the products in that market, Xjm, and the individual characteristics Zit .
We assume that conditional on νi , ξ j , Zit , and Xjm the idiosyncratic error term
εijt is normally distributed with mean zero and unit variance. Conditional on ξ j ,
Zit , and Xjm the unobserved individual component νi is normally distributed with
mean zero and covariance matrix �.

In order to calculate the posterior distribution we need to specify prior distribu-
tions for common parameters �, 
, and for the unobserved choice characteristics
ξ j . We use proper prior distributions for each parameter. The prior distribution
on each element of 
 is normal with mean zero and variance 1/4. The elements
of 
 are assumed to be independent a priori. The prior variance of the elemets of
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TABLE 1
SUMMARY STATISTICS: INDIVIDUAL CHARACTERISTICS

Characteristic Mean SD Minimum Maximum

Number of purchases 16.21 24.04 1.00 285.00
Household income 34.47 22.98 2.50 125.00

NOTES: The first row gives summary statistics for the number of purchases
for the 1038 households. The second row gives summary statistics for income
per household, weighted by the number of purchases per household. Total
number of purchases is 16,824.


 is chosen so that the prior variance of the effect of an increase of one standard
deviation in observed choice and individual characteristics (e.g., 
kl · std(Xk) ·
std(Zl)) is of the same magnitude as the variance of the idiosyncratic error term,
to ensure that the prior distribution does not impose that one of these two compo-
nents dominates the other. The prior distribution on � is Wishart with parameters
100 and 0.01 times the K + P dimensional identity matrix. This allows for the
possibility that the variance of the individual heterogeneity is small. The prior
distribution on ξ j is normal with mean zero and unit variance, allowing the unob-
served choice characteristics to have an effect comparable in magnitude to that of
the idiosyncratic error term.

6. APPLICATION

6.1. Data. To illustrate the methods developed in this article we analyze the
demand for yogurt using scanner data from a market research firm (A.C. Nielsen)
collected from 1985 through 1988. See Ackerberg (2001, 2003) for more informa-
tion regarding these data. We focus on data from a single city, Springfield, Illinois.
We restrict attention to purchases of a single-serving size. We excluded purchases
where more than a single unit of yogurt was purchased.9 Eight brands of yogurt
appear in the remaining data set. We have a total of 16,824 purchases by 1038
households. These are divided over 21 stores during a period of 138 weeks. For
each household we use a single observed household characteristic, household in-
come. This is measured in 14 categories, ranging from 0–5000 to more than 100,000.
For each category we impute the midpoint of the category as the actual house-
hold income, with 125,000 for the highest (over 100,000) income category. Table 1
presents some summary statistics for this variable and for the number of purchases
per household. We average the income over the 1038 households, weighted by the
number of purchases per household.

9 We lose about one third of the observations due to this restriction. This is clearly a crude approach
to dealing with the issues that arise in modeling multiple purchases, which may include multiple
purchases of a single brand as well as purchases of more than one brand on a single trip. However, it
simplifies the analysis and exposition of the application of the methods.
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For each yogurt brand we use two observed characteristics, price measured in
cents10 and a binary indicator for whether the product was featured in advertising
that week. In our empirical model, we treat price as exogenous; substantively, this
assumption holds if the consumer population that purchases yogurt is stable in
terms of its unobservables and unrelated to price variation.11 For each purchase
we directly observe these variables for the brand that was actually purchased.
For our analysis we also need to know the values of these variables for the seven
brands that were not purchased in that transaction for that particular market. We
take the market to be a store in a particular week. We impute the price for the
other seven brands by taking the average price for all purchases of each of these
seven brands over all transactions for that brand in the same week and in the same
store. We impute the feature variable as one if for any purchase of that brand in
the same store in the same week the product was featured. Typically there was no
recorded purchase for at least some of the eight brands during that week in that
store. In that case we remove the brands for which there were no purchases from
the choice set of the individual for that purchase. As a result the choice set varies in
size across observations. On average there are 2.36 brands in a consumer’s choice
set on a trip in which the consumer purchased yogurt.

Table 2 reports summary statistics for the eight brands. We report averages
over all purchases where the brand was included in the choice set, as well as over
purchases of each brand. For example, the second row of Table 2 presents the
information for the biggest brand, Dannon. Its market share is 49%. Its average
price (averaged over all purchases where Dannon was in the choice set) was 60.13
cents, ranging from 20 to 73 cents. It was featured in the store during 9% of the
purchases. It was in 88% of the choice sets. Averaged over all purchases of Dannon
its price was 58.36 cents, slightly lower than the average over all purchases. It was
more likely to be featured when it was purchased. On average there were 2.25
products in the choice set when Dannon was purchased.

6.2. Posterior Distribution of Parameters and Elasticities. We estimate four
versions of the model. These versions are nested, so that it is straightforward
to see the biases generated by placing unwarranted restrictions on the model.
First we estimate the model with no unobserved product characteristics (P = 0),
and with no unobserved individual characteristics (� = 0). The second model
allows for individual unobserved heterogeneity by freeing up �. The third mod-
el incorporates a single unobserved choice characteristic (P = 1). The fourth model
allows for two unobserved product characteristics (P = 2).

10 We ignore the presence of coupons. Coupons are notoriously difficult to deal with because whether
or not a consumer has access to a coupon is unobservable. It is possible to impute whether a coupon
was in principle available in a market by checking whether any consumer used one for a particular
product in a particular week, but not all consumers are aware of available coupons. Ackerberg (2001)
ignores manufacturer coupons within a city, and treats store coupons as a control variable. Our sample
from Springfield, Illinois, has negligible use of store coupons. See Osborne (2005) for an innovative
way of estimating the propensity to use coupons.

11 For yogurt, seasonal and holiday effects, which might shift both price and the distribution of
consumer tastes for products, are less important than for some other consumer products. Ackerberg
(2001) also makes this assumption.
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TABLE 2
SUMMARY STATISTICS: CHOICE CHARACTERISTICS

Averaged over All Transactions Brand Purchases

Market Price Feature Incl in Price Feature Ave Size
Brand Share Ave SD Min Max Ave Choice Set Ave Ave Choice Set

Wght Wtch 0.09 62.74 6.79 25.00 73.00 0.04 0.41 61.33 0.09 2.73
Dannon 0.49 60.13 9.84 20.00 73.00 0.09 0.88 58.36 0.13 2.25
Elmgrove 0.04 30.94 3.56 22.00 33.00 0.15 0.11 29.84 0.25 2.77
YAMI 0.04 32.06 9.54 20.00 59.00 0.21 0.11 29.18 0.36 2.56
HWT MDY 0.06 30.72 3.54 25.00 33.00 0.13 0.15 29.33 0.22 2.16
HILAND 0.10 37.20 9.62 20.00 55.00 0.16 0.24 35.49 0.21 2.47
NTRL LE 0.02 32.40 10.39 20.00 55.00 0.11 0.11 32.81 0.09 3.10
CTL BR 0.17 35.65 5.79 20.00 45.00 0.20 0.36 34.47 0.23 2.30

NOTES: Column 2 reports the market share of the brand in this data set. Columns 3–6 report the average
price over all store/weeks in which this brand was in the choice set, as well as the standard deviation,
minimum, and maximum. Column 7 reports the fraction of the times the brand was featured. Column
8 reports the fraction of the store/week combinations that the brand was in the choice set (had at least
one purchase in that market). Columns 7 and 8 report averages for price and feature variable over the
all purchases of the brand. Column 9 gives the average size of the choice set during the purchases of
that brand.

In Table 3, we report the posterior distribution for selected parameters. First,
we report the posterior mean and standard deviation for the average of the price
coefficient βprice. We also report measures of the variation in this coefficient. We
decompose this variation into the part due to variation in the observed individual
coefficients and due to variation in the unobserved individual characteristics. We
report the standard deviation of both components. We also report the summary
statistics for the average and the two standard deviations of the feature coefficient
β feature. Finally, we report summary statistics of the posterior distribution of the
effect of income on the price coefficient, 
price,income, and the effect of income on
the feature coefficient, 
feature,income.

For the model with two unobserved product characteristics we see that on av-
erage, a higher price lowers utility (the posterior mean of the average over all
individuals of βprice is negative), but that there is considerable variation in the
price coefficient between individuals. This variation is partly due to variation in
the observed individual characteristics (a standard deviation of 0.233) and partly
due to variation in the unobserved individual characteristics (a standard deviation
of 0.463). On average being featured increases demand for a product. Invididuals
with higher income are found to be less price sensitive (the posterior mean of

price,income is positive). With income measured in 10,000s of dollars, the point es-
timates suggest that individuals with a household income of $60,000 have a price
coefficient of approximately zero (−4.09 + 60 × 0.069 ≈ 0). (Recall from Table
1 that average household income in this data set is $35,000.) Income does not
appear to have much of an effect on the relation between feature and demand.

It is interesting to note that with no unobserved choice characteristics the model
estimates a much larger role for the feature variable. This would be consistent with
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TABLE 3
SUMMARY STATISTICS POSTERIOR DISTRIBUTION FOR SELECTED PARAMETERS

P = 0, � = 0 P = 0 P = 1 P = 2

Parameter Mean SD Mean SD Mean SD Mean SD

Mean(βprice) −0.012 0.004 −0.007 0.007 −0.302 0.020 −0.409 0.020
SD(
price,income · Zincome) 0.253 0.005 0.289 0.041 0.230 0.039 0.233 0.039√

�price,price 0 0 0.586 0.022 0.541 0.021 0.463 0.027

Mean(βfeature) 0.663 0.026 0.743 0.041 0.449 0.051 0.379 0.047
SD(
feature,income · Zincome) 0.111 0.008 0.379 0.100 0.070 0.034 0.067 0.037√

�feature,feature 0 0 0.983 0.070 0.133 0.017 0.153 0.026


price,income 0.048 0.003 0.060 0.010 0.053 0.011 0.069 0.010

feature,income −0.007 0.013 −0.025 0.032 −0.028 0.017 −0.011 0.024

NOTES: Columns 2–3 report the mean and standard deviation for various parameters for the model
with no unobserved choice characteristics (P = 0) and no unobserved individual heterogeneity
(� = 0). Columns 4–5 report the mean and standard deviation for the same parameters for the model
with no unobserved choice characteristics (P = 0) allowing for unobserved individual heterogeneity
(� �= 0). Columns 6–7 report the mean and standard deviation for the same parameters for the model
with a single unobserved choice characteristics (P = 1) allowing for unobserved individual hetero-
geneity (� �= 0). Columns 8–9 report the mean and standard deviation for the same parameters for
the model with two unobserved choice characteristics (P = 2) allowing for unobserved individual het-
erogeneity. The parameters reported on include the average effect of price on the utility, the standard
deviation of the component of that effect corresponding to the observed individual characteristics, and
the standard deviation of the component of that effect corresponding to the unobserved individual
characteristics, the same three parameters for the feature variable, and the effect of the interactions
of income and price and income and feature on utility. The price is measured in dollars.

the feature variable being a noisy measure for the unobserved product character-
istics that actually matter for utility.

A potentially important difference between the estimates from the model with
two unobserved choice characteristics and the model with only one is that the
estimated standard deviation of the price coefficient is larger in the model with one
unobserved choice characteristic (.541 versus .463, with the standard deviations of
these parameters equal to 0.021 and 0.027, respectively). This suggests that using
a model that is too restrictive in terms of unobservable product characteristics
can force estimates that imply too much heterogeneity in price sensitivity. For
some counterfactuals, these differences might lead to inaccurate predictions. For
example, using a model with only one unobserved product characteristic, the entry
of a low-price, low-quality brand or a high-price, high-quality brand might lead to
predictions of market shares for the new product that are too large.

Next we report own- and cross-price elasticities for the eight brands. To estimate
the elasticities, we first estimate them for each individual conditional on the choice
sets and the unobserved individual and choice characteristics. Then we average
over all individuals. The results for the four models are in Tables 4–7. For the first
two models we see large positive own-price elasticies, as well as numerous (large)
negative cross-price elasticities. For the model with one unobserved characteristic
the elasticities have a few entries with unexpected signs and magnitudes. For
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TABLE 4
ELASTICITIES FOR MODEL WITH NO UNOBSERVED PRODUCT CHARACTERISTICS AND NO UNOBSERVED

INDIVIDUAL HETEROGENEITY (P = 0, � = 0)

With
Respect to → Wght W Dannon Elmgr YAMI HWT HILA NTRL CTL

Wght Wtch 4.94 −5.99 0.93 −0.16 1.18 0.18 −0.04 0.36
Dannon −5.74 1.22 0.84 0.50 0.73 −0.06 −0.03 0.30
Elmgrove 1.10 1.45 −1.83 0.00 2.67 2.65 2.10 2.10
YAMI −0.23 0.91 0.00 −1.19 1.86 −0.29 −0.65 1.13
HWT MDY 1.31 1.29 2.69 2.91 −1.29 0.00 0.00 4.37
HILAND 0.28 −0.10 1.98 −0.25 0.00 −1.23 2.46 1.68
NTRL LE −0.07 −0.05 1.68 −0.63 0.00 3.29 −2.84 1.46
CTL BR 0.49 0.42 2.45 1.24 5.12 1.57 1.34 −0.51

NOTES: Each row reports average elasticities for one product with respect to its own price and with
respect to the price of the seven other products. These elasticities are calculated at the individual level
for all markets that had both products in the choice set and then averaged over all those markets
weighted by the number of transactions per market. A “–” indicates that there were no markets
(store/week combinations) with both products.

TABLE 5
ELASTICITIES FOR MODEL WITH NO UNOBSERVED PRODUCT CHARACTERISTICS (P = 0, � �= 0)

With
Respect to → Wght W Dannon Elmgr YAMI HWT HILA NTRL CTL

Wght Wtch 16.16 −17.93 0.72 −1.32 1.06 0.20 −0.21 0.28
Dannon −16.12 4.82 0.92 0.28 0.27 −0.51 −0.32 0.10
Elmgrove 0.74 1.70 −3.13 0.00 9.53 5.96 5.34 5.14
YAMI −2.04 0.52 0.00 −2.20 4.82 4.56 −1.89 2.99
HWT MDY 1.08 0.50 9.60 8.89 −1.94 0.00 0.00 6.92
HILAND 0.31 −0.89 4.71 2.51 0.00 −3.17 7.56 4.60
NTRL LE −0.34 −0.72 4.28 −1.81 0.00 9.60 −7.97 4.46
CTL BR 0.38 0.14 6.63 3.15 12.71 3.80 3.57 −0.61

the model with two unobserved product characteristics we see all of the own-
and cross-price elasticities are of the expected sign, and they are of reasonable
magnitudes (all own-price elasiticies are larger than one in absolute value). For
the largest brand, Dannon, the own-price elasticity is −5.37, and the cross-price
elasticity of Dannon with respect to the second biggest is 2.84. These results suggest
an important role for unobserved product characteristics, which could include the
propensity to issue coupons (which were excluded from our model for simplicity),
quality, flavor mix (also excluded for simplicity), and brand recognition.

6.3. Predicting Market Shares for New Products. To compare the counterfac-
tual predictions arising from the different models, we simulate market shares for
a new product. The product we introduce has the same observed characteristics in
each market, a price equal to the average value of the price in the entire market
(47 cents), and is never featured (feature = 0). It is included in every individual’s
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TABLE 6
ELASTICITIES FOR MODEL WITH A SINGLE UNOBSERVED PRODUCT CHARACTERISTIC (P = 1, � �= 0)

With
Respect to → Wght W Dannon Elmgr YAMI HWT HILA NTRL CTL

Wght Wtch 1.52 −3.19 0.96 0.34 2.10 0.45 0.11 1.02
Dannon −1.23 −4.28 2.60 3.66 2.66 3.03 1.15 3.64
Elmgrove 0.68 6.40 −6.09 0.00 9.86 10.78 6.60 7.51
YAMI 0.23 9.99 0.00 −7.32 5.68 10.92 1.90 4.57
HWT MDY 1.37 7.23 9.64 13.93 −5.22 0.00 0.00 8.97
HILAND 0.52 6.68 6.79 3.67 0.00 −7.54 8.77 7.06
NTRL LE 0.13 3.75 5.41 2.18 0.00 13.56 −13.12 6.26
CTL BR 0.84 7.34 12.01 4.78 16.78 5.26 3.72 −4.19

TABLE 7
ELASTICITIES FOR MODEL WITH TWO UNOBSERVED PRODUCT CHARACTERISTICS (P = 2, � �= 0)

With
Respect to → Wght W Dannon Elmgr YAMI HWT HILA NTRL CTL

Wght Wtch −6.40 2.92 1.83 3.79 3.02 2.04 1.83 2.84
Dannon 1.17 −5.37 2.34 3.94 2.85 3.60 1.60 3.54
Elmgrove 1.48 5.73 −5.60 0.00 8.78 8.82 4.48 7.42
YAMI 2.21 11.15 0.00 −7.72 5.10 9.12 3.56 3.57
HWT MDY 1.90 7.34 10.16 10.32 −5.10 0.00 0.00 9.34
HILAND 2.58 8.21 7.04 3.81 0.00 −8.49 8.68 8.03
NTRL LE 2.70 5.75 5.01 3.17 0.00 14.39 −14.78 6.29
CTL BR 2.44 7.17 12.63 3.60 21.83 5.59 3.15 −4.51

choice set. For the first two models this information is sufficient to predict the mar-
ket share. For the models with unobserved product characteristics we also need
to specify values for the unobserved characteristics. As discussed in Section 4, we
draw the unobserved choice characteristics randomly from the marginal distribu-
tion of unobserved choice characteristics estimated from the sample. This has the
effect of making the predicted market shares more uncertain, so that even with
an infinitely large sample we would not be able to predict the market share for
the new product with certainty. Instead, there is a range of possible market shares,
depending on the values of the unobserved characteristics.

The results for this exercise are in Table 8, where the additional variation from
adding unobservable product characteristics is apparent. Perhaps surprisingly,
there is little change in the estimates from including two versus one unobserved
product characteristic.

6.4. Sensitivity to Choices for Prior Distributions. Here we investigate the
sensitivity of the results to the specification of the prior distributions. We focus
on the most general model with two unobserved choice characteristics, which is
most likely to be sensitive to this specification. For five different specifications
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TABLE 8
PREDICTED MARKET SHARE FOR NEW PRODUCT

P = 0, � = 0 P = 0 P = 1 P = 2

Average 0.254 0.201 0.241 0.254
Standard deviation 0.001 0.001 0.110 0.125
0.05 quantile 0.252 0.199 0.117 0.116
0.95 quantile 0.256 0.203 0.360 0.394

NOTES: The first row contains posterior means for the market share
for a new product that is available in each market (each store/week),
always with a price of 47 cents and not featured. For the models with
unobserved product characteristics we draw the unobserved product
characteristic(s) from their estimated marginal distribution. The sec-
ond row gives the posterior standard deviation of this market share,
and the third and fourth rows give the 0.05 and 0.95 quantiles of this
posterior distribution.

TABLE 9
SENSITIVITY OF POSTERIOR DISTRIBUTIONS TO PRIOR DISTRIBUTION

Parameter Base Prior Prior II Prior III Prior IV Prior V

Mean(βprice) −0.40 0.02 −0.39 0.02 −0.42 0.02 −0.41 0.02 −0.40 0.02
SD(
price,income · Zincome) 0.26 0.03 0.25 0.04 0.22 0.08 0.26 0.07 0.26 0.04√

�price,price 0.49 0.04 0.46 0.03 0.62 0.05 0.56 0.03 0.48 0.03

Mean(βfeature) 0.40 0.05 0.405 0.05 0.37 0.07 0.38 0.06 0.39 0.05
SD(
feature,income · Zincome) 0.07 0.04 0.08 0.04 0.19 0.14 0.23 0.09 0.08 0.04√

�feature,feature 0.15 0.03 0.16 0.03 1.00 0.12 0.61 0.08 0.17 0.03

price,income 0.07 0.01 0.06 0.01 0.08 0.02 0.07 0.02 0.06 0.01

feature,income −0.01 0.03 −0.01 0.03 −0.01 0.04 −0.01 0.03 −0.01 0.03
Cross-elast D wrt CRT BL 3.66 0.27 3.49 0.27 3.61 0.25 3.72 0.27 3.62 0.30
Own elast D −5.36 0.35 −5.27 0.30 −4.88 0.33 −5.12 0.24 −5.31 0.28
Market share new product 0.25 0.13 0.26 0.12 0.26 0.12 0.25 0.12 0.25 0.12

of the prior distributions we report the same parameter estimates as in Table 3,
the own-price for Dannon, and the cross-price elasticity for Dannon with respect
to the price of CTL BR, and the summary statistics for the distribution of the
predicted market share for a new product.

In the first pair of columns we report the results for the baseline prior distribu-
tion. Differences between these columns and the previously reported results for
the P = 2 model reflect on the lack of accuracy of the MCMC calculations (based
on runs of 40,000 iterations). In the second pair of columns we change the prior
variance for 
 from an identity matrix multiplied by 0.25 to an identity matrix mul-
tiplied by 0.125. In the third pair of columns we change the first parameter of the
prior distribution of � from 100 to 50. In the fourth pair of columns we change the
second parameter of the prior distribution of � from 0.01 to 0.1. The results are in
Table 9. Generally the specification of the prior distributions changes the posterior
distributions somewhat, but it does not change the qualitative conclusions.
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7. CONCLUSION

This article explores an issue first raised by McFadden (e.g., 1981), namely, the
extent to which discrete choice models should incorporate unobserved product
characteristics in order to rationalize choice data in settings with many products
and/or multiple markets. We find that in general a model should include at least
two unobserved choice characteristics if monotonicity of the utility function in the
unobserved choice characteristics is imposed. More than two unobserved charac-
teristics may be needed only if the functional form of the utility function (and in
particular, its dependence on unobserved characteristics) is restricted.

We find that MCMC methods enable us to implement such models in a straight-
forward manner. We illustrate the method using scanner data about yogurt
purchases. Our main findings are that the inclusion of two unobserved choice
characteristics leads to more reasonable estimates of elasticities. We also argue
that our approach leads to more realistic predictions about the heterogeneity in
potential market shares that might arise on introduction of a new product. With
additional structure, these predictions can be sharpened. In addition, the depen-
dence of predicted market share on the location of a new product in characteristic
space (both observable and unobservable characteristics) can be analyzed. We
believe that an important advantage of the framework we propose is that the
unobservable component of utility has a fair amount of structure, and the in-
terpretability of the resulting estimates help guide the researcher in conducting
counterfactual simulations. In applications, it may be possible to analyze and in-
terpret the unobservable product characteristics, in order to gain a sense of how
existing products are positioned and to help discover what parts of the product
space might be most ripe for entry.

A number of questions are left open for future work. Among these is the ques-
tion of how much individual heterogeneity is necessary to rationalize choice data
in a variety of settings, and how that depends on any functional form or mono-
tonicity restrictions that are imposed in the specification of individual utility.

APPENDIX

A.1. Implementation of the Markov-Chain-Monte-Carlo Algorithm. In this
appendix, we describe the specific implementation of the Gibbs algorithm we use
for obtaining draws from the posterior distribution of the parameters of interest.
It relies critically on viewing the latent utitilies as well as the individual specific
parameters as unobserved random variables to be imputed given the observed
variables. The implementation borrows heavily from RMA, as well as more indi-
rectly from Chib (2003) and Chib and Greenberg (1998). For a general discussion
of MCMC methods see Tanner (1993) and Gelman et al. (2004). For notational
simplicity we focus on the case with a single market and with only one purchase
per household.

We construct an MCMC sequence that imputes the unobserved latent utilities
Ui, j,t , the individual specific parameters β i and γ i , and the unobserved prod-
uct characteristics ξ j , and delivers draws from the posterior distribution of the
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common parameters 
, �. We divide the unobserved random variables (includ-
ing the parameters) into five groups. The first consists of the latent utilities Uik for
all individuals and all choices. The second consists of the individual taste parame-
ters θ i = (β i , γ i ) for all individuals. The third group consists of the (matrix-valued)
common taste parameter 
. The fourth group consists of the unobserved choice
characteristics ξk. The final group consists of the covariance matrix of the individ-
ual taste parameters �.

A.2. Preliminary Result. Suppose that X and Y are random vectors of dimen-
sion MX and MY respectively, with

X | Y ∼ N (a + BY, �X|Y),

Y ∼ N (µY, �Y).

Here a is MX × 1, B is MX × MY, �X|Y is MX × MX, µY is MY × 1, and �Y is
MY × MY. Then

Y | X ∼ N
((

B′�−1
X|Y B + �−1

Y

)−1(
B′�−1

X|Y X + �−1
Y µY

)
,
(
B′�−1

X|Y B + �−1
Y

)−1)
.

(A.1)

A.2.1. Step I: Starting values. The first step consists of choosing starting val-
ues for the individual characteristics β i and γ i , for i = 1, . . . , N, for the choice
characteristics ξk, k = 1, . . . , K, and the latent utilities Ui j . If there is only a single
unobserved product characteristic the starting values are drawn randomly from
a standard normal distribution. With P > 1 the starting values for the first set
of unobserved choice characteristics are set equal to the posterior mode for the
unobserved product characteristic in the P = 1 case, which is ξ 1· = (). The starting
values for the second unobserved choice characteristic are drawn from a standard
normal distribution. Next, we draw the latent utilities in two steps. We first fix
the latent utilities at one for the product chosen and at zero for the products not
chosen. Then we sequentially draw the latent utilities from a truncated normal
distribution with mean zero and unit variance, with the truncation determined
by the values of the other latent utilities. Finally, we draw starting values for the
individual-specific parameters β i and γ i using the latent utilities and the observed
and unobserved choice characteristics, as described in more detail in Step III
below.

A.2.2. Step II: Latent utilities Ui j . The second step consists of drawing the
latent utilities Ui j given the observed choices Y = (Y1, Y2, . . . , YN)′, the observed
individual characteristics Z, the observed and unobserved choice characteristics
X and ξ , and the individual preference parameters β and γ . Following RMA,
we do this sequentially, individual by individual, and choice by choice, each time
conditioning on the latent utilities for the other K − 1 choices. Thus, for the jth
choice, we draw from the conditional distribution of Ui j given Yi , (Uik)k=1, ... , J,k�= j ,
X, Z, β, γ , �, and 
.
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First note that

Ui j | Ui1, . . . , Ui j−1, Ui j+1, . . . , Ui J , U1·, . . . , Ui−1·, Ui+1·, . . . , UN·,

Y, X, Z, ξ, β, γ, 
, �

∼ Ui j | Ui1, . . . , Ui j−1, Ui j+1, . . . , Ui J , U1·, . . . , Ui−1·, Ui+1·, . . . , UN·,

Y, X, Z, ξ, β, γ.

∼ Ui j | Ui1, . . . , Ui j−1, Ui j+1, . . . , Ui J , Yi , Xj , ξ j , βi , γi .

Conditioning only on Xj , β i , ξ j , and γ i , we have

Ui j ∼ N (X′
jβi + ξ ′

jγi , 1).

Conditioning also on Yi and Ui j for k �= j changes this into a truncated normal dis-
tribution. Let N̄ (c, µ, σ 2) denote a normal distribution with mean µ and variance
σ 2 truncated from below at c, and N̄ (c, µ, σ 2) a normal distribution with mean µ

and variance σ 2 truncated from above at c. If Yi = j , then Ui j ≥ max k�= jUi j , and
so

Ui j | Ui1, . . . , Ui j−1, Ui j+1, . . . , Ui J , Yi = j, Xj , βi , ξ j ,

γi ∼ N̄
(

max
k�= j

Uik, X′
jβi + ξ ′

jγi , 1
)

.

Similarly, if Yi �= j , then Ui j ≤ maxk�= jUik, and so

Ui j | Ui1, . . . , Ui j−1, Ui j+1, . . . , Ui J , Yi �= j, Xj , βi , ξ j ,

γi ∼ N̄
(

max
k�= j

Uik, X′
jβi + ξ ′

jγi , 1
)

.

The problem of drawing from a normal truncated distribution from below or
above can be reduced to that of drawing from a standard (mean zero, unit variance)
normal distribution truncated from below by c. Again following RMA we consider
three cases. If c < 0 we draw v from a standard normal distribution and reject the
draw if w < c. If 0 ≤ c ≤ 0.6 we draw from the distribution of |v| where v has
a standard normal distribution, and reject the draw if |v| < c. If c > 0.6, we use
importance sampling. We draw v from a standard exponential distribution, divide
by c and add c. We then accept the draw with probability equal to the ratio of the
normal density to the density we drew from, divided by the maximum of that ratio
over the range of the random variable. This leads to an acceptance probability
equal to

exp(−c2/2)

c
√

2π
· (1/

√
2π) exp(−v2/2)

c exp(−c(v − c))
.
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A.2.3. Step III: Individual coefficients β i and γ i . Consider the distribution of
the K + P-dimensional vector of individual coefficients, θ i = (β ′

i , γ ′
i )′:

θi | {θ j } j �=i , U, Y, X, Z, ξ, 
, � ∼ θi | Ui , X, ξ, Zi , 
, �.

Consider the conditional distribution of the latent utilities:

Ui j | X, Zi , θi , ξ, 
, � ∼ N
((

Xj

ξ j

)′
θi , 1

)
.

Define the J-vector Ui · = (Ui1 Ui2 . . . Ui J ), the K × J matrix X = (X1 X2 . . . XJ ),
and the P × J matrix ξ = (ξ 1 ξ 2 . . . ξ J ), so that

Ui · | X, Zi , θi , ξ, 
, � ∼ N
((

X
ξ

)′
θi , IJ

)
.

Also,

θi | X, Zi , ξ, 
, � ∼ N (Zi
, �).

Hence, using (A.1),

θi | Ui ·, X, ξ, Zi , 
, �

∼ N


((

X

ξ

) (
X

ξ

)′
+ �−1

)−1 ((
X ξ

)′
Ui · + �−1 Zi


)−1
,

((
X

ξ

) (
X

ξ

)′
+ �−1

)−1

 .

A.2.4. Step IV: Common regression coefficients 
. Let θ be the N × (K + P)
dimensional matrix with ith row equal to θ ′

i . Then


 | Y, X, Z, ξ, θ, � ∼ 
 | Z, θ, �.

Moreoever, the N rows of θ are independent of each other conditional on (Z, 
,
�) and

θi | Z, 
, � ∼ N (
′ Zi , �).

Let δ = (
1·, 
2·, . . . , 
(K+P)·)′, so that δ is a L · (K + P)-dimensional column
vector. Then we can write

θi | Z, 
, � ∼ N ((IK+P ⊗ (Z′
i ))δ, �).

Stack all the K + P vectors θ i into a N × (K + P) dimensional column vector θ̃ ,
and stack all the matrices I K+P ⊗ (Z′

i ) into the N · (K + P) × L · (K + P) matrix
Z̃. Then we have the following distribution for θ̃ :
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θ̃ | Z, 
, � ∼ N (Z̃δ, IN ⊗ �).

The prior distibution for δ is normal with mean equal to the L · (K + P)-vector
of zeros, and as variance σ 2

δ times the L · (M + P)-dimensional identity matrix
I L×(K+P). Thus the posterior distribution for δ given (Y, X, Z, ξ, �, θ̃) is

δ | Y, X, Z, ξ, �, θ̃ ∼ N
((

σ−2
δ · IL×(M+P) + Z̃′ (IN ⊗ �−1) Z̃

)−1 (Z̃′ (IN ⊗ �−1) θ̃),(
σ−2

δ · IL×(M+P) + Z̃′ (IN ⊗ �−1) Z̃
)−1)

.

A.2.5. Step V: Latent choice characteristics ξ j . Consider the conditional distri-
bution of the latent choice characteristics ξ j :

ξ j | θ, U, ξ1, . . . , ξ j−1, ξ j+1, . . . , ξJ , Y, X, Z, 
, � ∼ ξ | U·, j , Xj , θ.

First,

Ui j − β ′
i Xj | U1 j , . . . , Ui−1, j , Ui+1, j , . . . , UNj , θ, ξ j ∼ N (γ ′

i ξ j , 1),

so that

U· j − β Xj | X, θi , ξ ∼ N (γ ξ j , IN),

where β is the N × K matrix with ith row equal to β ′
i , and γ is the N × P matrix

with ith row equal to γ ′
i .The prior distribution on ξ j is normal with the mean equal

to the P-vector of zeros, and as variance the P × P dimensional identity matrix.
Hence

ξ j | U· j , X, θ ∼ N
(
(γ ′γ + IP)−1(γ ′(U· j − β Xj ), (γ ′γ + IP)−1).

A.2.6. Step VI: Covariance matrix of individual taste parameters �. First,

� | X, Z, Y, θ ∼ � | ν,

where ν is the N × (K + P) matrix with ith row equal to θ i − Z′
i


′. Next,

νi ⊥ νi ′ | �,

and

νi | � ∼ N (0, �).

The prior distribution for �−1 is a Wishart distribution with degrees of freedom 100
and scale matrix I K+P. Hence the posterior distribution of �−1 given ν is a Wishart
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distribution with degrees of freedom 100 + N and scale matrix IK+P + ∑N
i=1 νiν

′
i ,

so

�−1 | X, Z, Y, θ ∼ W
(

100 + N, IK+P +
N∑

i=1

νiν
′
i

)
.

A.3. Calculation of Elasticities. Here we describe the calculation of the price
elasticities reported in Section 6.2. The elasticities vary by price and individual, and
depend on unknown parameters. We summarize these by calculating an average
elasticity over all individuals and transactions, and by integrating out the unknown
parameters using their posterior distribution. First we average over all transactions
where products j and k are both in the choice set:

ε jk = pricek
1

Njk

∑
j,k∈Ci

pr(Yi = j)
· 1

N

∑
j,k∈Ci

∂pr(Yi = j)
∂pricek

,(A.2)

where Ci is the choice set for transaction i, consisting of all brands for which
we observe a transaction in the market (store/week combination), and N jk is
the number of transactions where both products j and k are in the choice set.
We calculate the probability of individual i purchasing product j conditional on
the observed and unobserved individual- and choice-specific components. Rather
than calculating the exact probability and its derivatives given the unobserved
components we approximate them using a the approximate equality of a normal
distribution with mean zero and variance three and an extreme value distribution,
so that

pr(Yi = j | j ∈ Ci , ξ j , Xjm, βi , γi ) = exp(
√

3 · (X′
jmβi + ξ ′

jγi ))∑
k∈Ci

exp(
√

3 · (X′
kmβi + ξ ′

kγi ))
.(A.3)

Substituting (A.3) and its derivative into (A.2) gives us the elasticities as a function
of the individual unobserved components β i and γ i and the unobserved choice
characteristics ξ j (as well as observed quantities). We then average these condi-
tional elastiticities over the posterior distribution of the unknown quantities.

For the average pricek we use the average price for product k over all transac-
tions where product k was in the choice set, that is the average prices in column
2 in Table 2. Note also that in calculating (A.2) we average over all transactions,
in each case calculating the choice probabilities as if all eight products are in the
choice set.
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