
ELSEVIER Journal of Econometrics 74 (1996) 289-318 

JOURNAL OF 
Econometrics 

Efficient estimation and stratified sampling 

G u i d o  W.  I m b e n s  *'~ , T o n y  L a n c a s t e r  b 

a Department of  Economics, Harvard University, Cambridge, MA 02138, USA 
b Department of  Economics. Brown University. Providence, RI 02912, USA 

(Received June 1992; final version received March 1995) 

Abstract 

In this paper we investigate estimation of a class of  semi-parametric models. The part of  
the model that is not specified is the marginal distribution of the explanatory variables. The 
sampling is stratified on the dependent variables, implying that the explanatory variables 
are no longer exogenous or ancillary. We develop a new estimator for this estimation 
problem and show that it achieves the semi-parametric efficiency bound for this case. In 
addition we show that the estimator applies to a number of  sampling schemes that have 
previously been treated separately. 
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1. Introduction 

In econometric analyses one often assumes that observations are drawn ran- 
domly from a large population. In reality it might neither be true, nor need it be 
desirable to have such a sample. In this paper  we will investigate how inference 
might proceed for a particular class o f  nonrandom sampling schemes. 

The starting point is a model in which two types o f  variables are distin- 
guished. The first arc the dependent variables whose distribution is to be ex- 
plained in terms o f  the variables o f  the second type. The latter will be  re- 
ferred to as explanatory, independent, or  regressor variables. We will assume 
that the researcher has specified a parametric family for the distribution o f  the 
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dependent variable conditional on the explanatory variables. Interest centers on 
the parameters of  this conditional distribution. We do not make assumptions 
about the marginal distribution of the regressors other than assuming that they 
do not depend on the parameters of  the aforementioned conditional distribu- 
tion. 

If the sampling were random, the parameters of the conditional distribution 
could be estimated consistently and efficiently by maximizing the conditional 
likelihood function. Even if the sampling were exogenous, by which we mean 
that the probability of a unit of  the population being sampled depends on the 
values of the explanatory variables, this method would lead to consistent and ef- 
ficient estimates. We investigate sampling strategies that imply that the probability 
of  being sampled depends directly on the value of  the dependent or endogenous 
variables. The particular sampling schemes that we consider are based on a strat- 
ification of  the sample space. The sampling is not random because the probability 
that a unit is drawn from a particular stratum is not equal to the probability that 
an unit randomly drawn from the whole population is from that stratum. Within 
the strata however, the sampling and population distribution are identical. This is 
referred to in the literature as stratified sampling (Jewell, 1985), endogenous sam- 
pling (Hausman and Wise, 1981 )~ or biased sampling (Gill, Vardi, and Wellner, 
1988). 

Another way of looking at this is in terms of the aneillarity or exogene- 
ity of the explanatory variables. If the sample is random or exogenous, the 
marginal distribution of  the regressors does not depend on the parameters of in- 
terest. When the sampling is endogenous, the marginal distribution of the regres- 
sors in th-, sample does depend on the parameters of interest, and consequently 
the regressors are no longer ancillary or exogenous. The guiding principle is 
that one should not condition the analysis on variables that are not ancillary, 
because that might lead to a loss of efficiency, and one should condition on 
variables that are ancillary, because a failure to do so can lead to paradoxical 
results. 

As an example, consider the following standard linear model: 

Y = X ' ~ + ~ ,  e IX ~ ~r(O, a2). (I)  

If the density of  X is h(x), for x E ~ ,  the joint density of  Y and X can be written 
a s  

f ( y , x )  = -~ , - - - ~ - - - /  • h(x), 

where 4~(') is the standard normal density function. Suppose that instead of a 
random sample generated according to the model in (1), we have Ni observa- 
tions drawn randomly from the truncated sample space ( -oo,0]  × ~ and Are 
observations drawn randomly from the truncated sample space (0 ,oo)x  ~ .  The 
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likelihood for the full sample is 

, .h(x.) No~ 
~ =  l-I ~ J 

J"'3 
I1 ~ / z' fl 

where the first No observations arc those with y > 0 and the last N1 observations 
are those with y ~< 0. If we only have observations with y > 0, and therefore 
No = 0, we would have a truncated sample and the standard analysis of  truncated 
models applies. The same holds if Nn = 0 and we have only observations with 
y ~ 0. The complications arise if we have both observations with y > 0 and 
observations with y ~ 0 but in proportions that differ from their proportions in 
the population. Just combining efficient estimates from the two truncated samples 
does not lead to efficient estimates from the full sample. Maximization of the 
likelihood function or its logarithm is complicated by the fact that the marginal 
population density of X, h(x), enters in the numerator as well as the denominator 
of the joint density of Y and X. Efficiently estimation of the parameters of  the 
conditional distribution using the full sample, without parametrizing the marginal 
density of x, is the aim of this paper. 

The problem of estimation when the sampling is based on an endogenous strat- 
ification of a continuous random variable has been considered before in work by 
Hausman and Wise (1981), Jewell (1985), Gill, Vardi, and Weilner (1988), and 
Kalbfleisch and Lawless (1988). Hausman and Wis~ propose a variety of estima- 
tors and investigate their properties. One of our contributions is to develop a new 
and efficient estimator for the model they consider. The procedure we follow in 
deriving this estimator is similar to that used by lmbens (1992) in deriving an 
efficient estimator for discrete choice models with choice-based sampling. This 
procedure leads to a generalized method of moments estimator with the number 
of moments equal to the number of parameters in the conditional density and 
twice the number of strata minus one. 

In addition we address an issue that has led to unnecessary complications in the 
literature on stratified sampling. In this literature a distinction has often been made 
between three types of sampling sehemes. The first, which we label multinomial 
sampling, assumes that the stratum indicators are drawn independently from a 
multinomiai distribution. The second type, labelled standard stratified sampling, 
is one of the sampling schemes discussed by Hausman and Wise (1981). It as- 
sumes that the researcher samples fixed numbers of observations from each of 
the strata. A third sampling scheme assumes that observations are drawn ran- 
domly from the population but retained or discarded with stratl,,m-specific prob- 
abilities. This is referred to as variable probability samplinff by Jewell (1985) 
and Bernoulli samplinff by Kalbfleisch and Lawless (1988). It is also discussed 
by Hausman and Wise. We will show that all three of  these sampling schemes 
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allow the researcher to use the estimation procedure that will be developed in 
this paper. 

The plan of the paper is as follows: In the next section the three sampling 
schemes will be discussed. It will be argued that they are all in principle amenable 
to the same estimation procedures. Section 3 contains the efficient estimation 
procedure. It will be derived in two steps. First we analyze the case where the 
regressors have a discrete distribution. Then we rewrite the equations character- 
izing the maximum likelihood estimates in such a way that they do no longer 
require discreteness of the explanatory variables. In Section 4 we analyze two 
examples with the normal linear model and discus,~ the relations to the analysis 
of truncated models. In the last section some concluding remarks will be made 
and the main findings of the paper will be summarized. 

2. Sampling schemes and likelihood functions 

The notation in analyses where the sampling is nonrandom is usually cumber- 
some. To some extent this cannot be avoided. One has to distinguish between the 
population distribution on the one hand and the distribution according to which 
the data are distributed on the other hand. If the sampling is random, these two 
are equal, and if the sampling is exogenous, they differ but in a way immaterial 
for the purposes of inference about the parameters of the conditional distribution. 
Only in the case where the sampling is dependent on the endogenous variable 
is the difference important. In this paper we try to keep the notation transpar- 
ent without making it imprecise. Most of the notation will be introduced in the 
first subsection. There we introduce the sampling scheme that we will work with 
through most of the paper. In the second subsection we discuss standard strati- 
fied sampling. In the third subsection Bernoulli sampling or variable probability 
sampling will be discussed. 

2.1. Multinomial sampli~g 

Let Y and X be two, possibly vector-valued, random variables defined on 
x ~ .  The joint probability density function in the population is 

f ( y , x )  = f ( y  Ix,//). h(x), (2) 

where fO '  Ix,//) is a known function of y, x and an unknown parameter//, and 
h(x) is an unknown function. We are interested in the parameter//of the condi- 
tional distribution of Y given X. We are not willing to make assumptions about 
the marginal distribution of X. In that sense the problem is a semi-parametric 
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one. With respect to fl, X is exogenous or ancillary ~ and Y is endogenous. I f  
one had at one's disposal a random sample of  X and Y, one could estimate fl 
by maximizing the logarithm of  the conditional likelihood function: 

N 
L(fl) = ~ In f(Yn Ixn, fl ). ~3) 

n=l 

Because the marginal distribution of  X does not depend on fl, conditioning on 
x does not entail a loss of  efficiency, and there is no need to specify h(x) more 
fully. 

However, if the sampling scheme is not random, this easy separation no longer 
exists in general. If  the sampling is exogenous, i.e., the probability of  being 
sampled depends only on the exogenous variable X, then maximization of  (3) 
s';ili leads to a consistent estimator for/~. We are, however, interested in more 
general sampling schemes where the probability of  being sampled depends on 
Y as well as X. This makes the reluctance to specify h(x) a more complicated 
issue. 

Let ~s, for s = 1 . . . .  T, be subsets of ~ x ~r. The ~s are the strata from 
which the observations are to be drawn. The probability of  a randomly drawn 
observation lying in ~s is 

Qs = f% f ( y  Ix, fl)h(x)dydx. (4) 

The basic sampling scheme that we will in the course of  this paper refer to as 
multinomial sampling, is as follows: with probability Hs we draw an observation 
randomly from r,gs. The Hs are the sampling probabilities with Hr shorthand for 
! - Y~'~sr..~ I H~. With discrete Y this is the sampling scheme discussed by Manski 
and McFadden (1981) in their analysis of  choice-based sampling. 

Examples of  sampling strategies that fit in this framework are: 

1. T = 1, g~ = ~,~ x k r. Random sampling. 

2. r#~ = c#/ x .~r, where . ~  C k r. Pure exogenous sampling. Maximization of  
the random sampling conditional likelihood still gives consistent and efficient 
estimates. 

3. ~ = ~/~ x ~" where .~/~ C ~ .  Pure endogenous sampling. 

4. ~ = o~ x .~r, ~2 C o?/x gt'. In this case we have a random sample augmented 
with extra observations drawn from part of the sample space. 

r oj,. 5. cgsN~t = {~ if  s ~ t, and Us=l~S = ~ x This will be labelled a partioned 
sample. In this case the population probabilities Q~ add up to one. This is not 
necessarily the case for other sampling schemes. 

I See Cox and Hinkley (1974) for a discussion of ancillarity and Engle et al. (1982) for a discussion 
of the related concept of exogeneity. 
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Let the random variable S be an indicator for the stratum from which an ob 
servation was drawn. The sampling density of the triple (S, Y,X), as the density 
induced by the sampling scheme will be called, is 

9(s, y ,x )  = Hsg(y,x Is) 

f (y lx ,  fl) 
= Hs f %  f ( z  Ix, fl)h(v)dzdv 

Hs 
=-~sf(y[x, fl)h(x ) for (y,x)e~,s, s e { l , 2  . . . . .  T}. (5) 

Because/? enters only in the conditional density of  Y and X given S, S is exoge- 
nous with respect to fl, or ancillary, in the analysis. One. call therefore condition 
on S in the analysis without loss o~" efficiency. We will c~me back to this is- 
sue in the next section. The likelihood function for N independent observations 
is 

~" Hs,,f(ynlX,, fl)h(xn) 
~o = I-[ (6) 

n=l f %  f ( z  l v,[:l)h(v)dzdv" 

The distinguishing feature of  endogenous sampling is that maximization of  (6) 
over fl is in general not possible without parametrizing the density of  the ex- 
planatory variables, h(-). If  the sampling were random, h(.) would factor out and 
maximization would not involve the density of  x. Here h(-) enters not only in 
the numerator but also in the integral in the denominator, making it impossible 
to factor it out. 

In the remainder of  this section we will introduce some additional notation and 
highlight various aspects of  endogenous sampling. Define the set ~,..x by 

~es.x= {yc?¢l(y,x)e~'~} . 

~gs.x is the set of  y such that (y,x) is in ~s, implying that the triple (s ,y ,x)  is 
a potential observation. If  we have pure endogenous sampling and if the strata 
do not overlap, the sets ~gs, x would form a partitioning of  ~ .  In addition define 
R(s,x, fl) to be the probability that a randomly drawn observation is in stratum s 
given x: 

g(s,x, [I) = a r ( ( r , x )  S ~6.~ IX = x) 

= Pr(Y E Y~.x IX = x )  

= f f ( z  Ix,/J)dz. 

So we have ~6(,.,x = 0 and R(s.,x, f l )=  0 if  there is no y such that (y,x) E c8,.. 
Note the relation betweeLt Q. ",nd R(s,x, li). The latter is a known function of  s, 
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x, and ft. The former is also a function of s and fl but the form of the functional 
dependence is not known, because of the dependence on the unknown function 
h(x). In fact, Q~ is the expectation of R(s,X, fl), with the expecation taken over 
the population distribution of X,  h(x), 

Qs = Pr((Y,X) E ,~,) = E[R(s,X, fl)] = fR( s , x ,  fl)P,(x),~, 
x 

We can calculate a number of conditional and marginal distributions from the 
joint distribution of S, Y, and X. They illustrate the difference between random 
sampling and endogenous sampling and some of them will be important during 
the course of the paper. 

1. The marginal sampling density of X: 

r ~r H, h(x)P((r ,x)  ~ ~,, I X = x) 
O(x) = ~,  Hto(xl t )  = (7) 

t=, t=, P( (Y ,X)  E c(,t 

r n t  
= h(x) Y~ -~-R(t,x, fl), 

t= l  ~dt 

where we use the fact that the con~'itional density of X in the sample given 
the stratum indicator S equals the population density of X within the stratum: 

o(x Is) = h(x I ( v , x )  ~ 'e,~) 

= h(x)P((Y,X)  E ~,,'t iX  = x) /P( (Y ,X)  E ~,t). 

The fact that the marginal distribution of X depends on fl shows that X is 
no longer exogenous with respect to // in the stratified sample. Hence the 
estimator based on the conditional likelihood will not necessarily be efficient. 
Note that in this case it is the sampling that implies that X is not exogenous, 
not the parametrization of the model. 

2. The conditional sampling density of  S and Y given X: 

O(s, y Ix) = o(s, y,x) _ f ( y  Ix, ~)H, IQ, (8) 
O(x ) f~  Ht 

t= l  Qt R(t'X' ~) 

3. The conditional sampling density of  Y given X now follows directly: 

f ( y  I x, fl) Y] Ht/Qt 
9 ( y l x )  = ~ O(y , t [ x )=  t IO',x)e% (9) 

r H ,  
t I (y.s)~% t=l~ -Qt R(t'x' fl) 
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If the strata C~ are not overlapping, then there is a unique t such that (y,x) E 
~'t, and this density is the same as the conditional density of  Y and S given 
X, given in (7). 

4. The conditional sampling density of  Y given S and X: 

f ( y l x ,  fl) 
O(Y Is, x) = R(s,x, fl) " (10) 

The three conditional distributions g(y Ix), g(yls, x), and O(s, y lx) have par- 
titular importance. In each ease we can consistently estimate fl by maximizing 
the associated conditional likelihood function. Some of  the estimators proposed 
by Hausman and Wise (1982) are based on this approach. However, in none 
of  these eases will the result in general be an efficient estimator, because x 
is not exogenous. Another interesting issue in this context is the exogeneity 
or anci!larity of  the stratum indicator S. Conditioning on S does not in gen- 
eral imply a loss of  efficiency. However, if one is already conditioning on a 
variable that is not ancillary, then conditioning on s is no longer innocuous. 
Inference based on g(s,y Ix) is in general more efficient than inference based 
on g(y Ix, s). 

5. Another function that plays a special role is the bias function: 

b(,~, Q, p,x) = R(s,x,[O (11) 
s = !  

This function has expectation equal to one if evaluated at the true values of  
H,  Q, aad ft. If  it is equal to one for all x, the sampling is either random, or Y 
and X ,are independent. In both cases the sampiing and population distribution 
of  X ace identical; g(x)= h(x). For this condition to be fulfilled it is not 
sufficient to have Hs = Qs for all s, because the strata Cs can be overlapping. 

The first expression of  the probability density function of  (S, Y,X) in (5) 
was in terms of  H,  fl, and h(.). Subsequently it was written in terms of  
H,  fl, Q, and h(.), with Q~ shorthand for f c f ( z l v ,  fl)h(v)dzdv as in (4). 
However, the role Qs plays in these models is much more important than just 
as a way of  compressing notation,. The fact that most o f  the literature has 
focused exclusively on the case where Qs is known a priori is a reflection 
of  this importance. In this paper we will propose an estimator for the finite- 
dimensional parameter ~, = (H Q fl) rather than for the infinite-dimensional 
parameter (H fl h(.)). Introducing Q allows one to eliminate h(.) from the 
analysis and reduce the dimensionality of  the problem to a finite number. 

Whenever confusion might arise, stars will denote true or F~pulation values. 
* " Z * For example, fl* is the population value of  thc parameter fi ai,d Q~ =Jc~ f (  l, [J ) 



G.W. Imbens, T. Lancasterl Journal of  Econometrics 74 (1996) 289-318 297 

h(v)dzdv is the true population proportion of people in stravam s. The estimator 
that will be derived will allow for incorporation of  linear restrictions on H, 
Q, and fl (with the restriction Q = Q* the most important of  these) in a 
straightforward manner. 

2.2. Standard stratified sampling 

It can be argued that the multinomial sampling scheme discussed in the previ- 
ous section is not relevant, gn practice a researcher would not draw the stratum 
indicator from a multinomial distribution. Instead she might fix the number of  
observations to be drawn randomly from each of the strata. This sampling scheme 
is used by Hausman and Wise (1981) and by Cosslett (1981) in his analysis of 
choice-based sampling. In this section we will investigate the consequences of  
such a sampling strategy. 

Let Ns be the number of  observations from stratum s, and let N~ be the S- 
dimensional vector with typical element N~. Also, let s be the N-dimensional 
vector with typical element s,,, and y and x the matrices with rows y" and x', 
respectively. The likelihood function for this sampling strategy can be factorized 
into the marginal likelihood of s given N~, and the conditional likelihood of  y 
and x given s and Ns, 

= ~ ' l (s  I Ns) • Ae2(y,x I s,Ss). (12) 

The second factor is equal to 

N f (Yn ]xn, fl)h(xn) 
~e2(y,x I s,Ns) = 1-[ 

,,=l f ¢~, f ( z  I v, fl)h(v)dzdv " 
(13) 

This is identical to the conditional likelihood of y and x given s under multinomial 
sampling. The likelihood of s given Ns is the likelihood of  the sequence of  
stratum indicators given the total number of observations to be drawn from each 
stratum. Since this sequence is fixed by the researcher, it does not depend on 
fl or h(.), and therefore s is ancillary. In the ease of multinomia! sampling s 
was also shown to be ancillary, and conditioning on it would therefore again not 
entail a loss of efficiency. The likelihood principle implies that inference should 
be identical for the two sampling schemes. Hence, we will proceed with the 
inference as if the sampling were multinomial. 

The conclusion of this section can therefore be summarized as follows: !) s 
is ancillary under both standard stratified sampling and multinomial sampling; 
2) the conditional likelihood of y and x given s is identical foz ~ both sampling 
schemes. The~e two results imply that we can ignore the actual sampling scheme 
because efficient inference should be identical for both, according to the likelihood 
principle. 
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2.3. Bernoulli samplirg 

A third sampling scheme that has been considered in the literature is 
known as Bernoulli sampling (Kalbfleisch and Lawless, 1988) and variable prob- 
ability sampling (Jewell, 1985). It is also employed by Hausman and Wise 
(1981). 

The general sampling scheme is characterized as follows: A unit is drawn 
randomly from the population. The researcher determines which stratum the unit 
belongs to (for this purpose it is important that the strata are not overlapping). If  
the corresponding stratum is s, the unit is retained with probability Ps, set by the 
researcher. With probability 1 - P s  the unit is discarded. This efficiency of  such 
a sampling scheme clearly depends on the cost of  measuring a stratum relative 
to measuring x and y for any unit. 

If we denote the event that an observation is retained by I = l and its com- 
plement by I = 0, we can write the joint probability density of  (1,S, Y,X) as 

_ i 9(i,s,y,x) -- P's" (1 - Ps) I-i .  f ( y  Ix, fl). h(x). 

We do not record the values of  y and x for discarded observations. We might, 
however, know the number of  discarded observations. We assume here that this 
is not the ease. We therefore condition on I = 1. The conditional density of  
(S, Y,X) given 1 = 1 is 

e(s,y, xl l  = ! ) =  
PsfO' Ix, fl)h(x) 

Pr(J = 1 ) 

Psf(Y Ix, fl)h(x) 
T 

Pt f f ( z  I v, ll)h(v)dzdv 
1=1 Ct 

= P~f(y Ix, fl)h(x) 
T 

EP, .Q, 
t= l  

To connect this sampling scheme to the multinomiai sampling scheme consid- 
ered in Section 2.1, consider the following transformation of  parameters from 
(P, fl, h(.)) to (n,/3,h(-)): 

P, fc, f(z Iv, B)h(v)d dv P," Qt 
H t =  T T 

~P~ f f(z]v,  fl)h(v)dzdv ~_,P,,.Q,~ 
s C~ s= I 

(14) 
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T--I  for t= 1,2 . . . . .  T -  1, and Hr  = 1 -~"~t=l Hr. The joint density of  (S, Y,X) given 
I = 1 can then be written as 

O(s, y ,x  II = 1 ) = H s f ( y  Ix, fl)h(x)/ f c ,  f ( z  I v, fl)h(v)dzdv 

= ~ s f ( y  lx, fl)h(x), 

which is the same as (4). This implies that the two sampling schemes are observa- 
tionally equivalent. If  the data are generated according to the variable probability 
sampling scheme, the distribution of  the data is such that there is always a multi- 
nomial sampling scheme that would lead to exactly the same distribution of  the 
data. In fills paper we will mostly assume multinomial sampling and estimate 
the parameters of  that model: H,  Q, and ~. If  one has prior knowledge of  some 
of  the retention probabilities, which is very likely if  the actual sampling scheme 
is that described in this section, one can incorporate them as restrictions on Q 
and H or transform back to the (Q,P,~) parametrization once the estimator is 
derived. 

It is interesting to note that in the parametrization in terms of  Ps rather than 
Hs the stratum indicator s is no longer ancillary. In fact, the probability of  an 
observation having stratum indicator s is under this sampling scheme and param- 
etrization: 

Ps " f c, f(zlv'fl)h(v)dzdv 
o ( s ) =  r 

P"  f c, f ( z  [ v,~)h(v)dzdv 
t=l 

which does depend on ft. In the parametrization in terms of  H it is equal to Hs. 
This loss of  ancillarity will have no consequences for the estimation as we will 
derive an estimator for the multinomial sampling scheme that is identical whether 
one conditions on s or not. It implies that the lirak between standard stratified 
sampling and Bernoulli sampling is indirect, via the equivalence, in t~rms of  
inference, of  both standard stratified and Bernoulli sampling to multinomial sam- 
pling. 

In the parametrization in terms of  fl, Q, and P, the marginal distribution of  X 
is 

T 

Y] PtR( t,x, fl) 
o(x) = h ( x )  '=~ s 

E P, Q, 
t=l 

This clearly shows that x is not ancillary or exogenous and that conditioning on 
it therefore might entail a loss of  efficiency. 
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We have shown in this section that the Bernoulli sampling model is just a 
reparametrization of the multiwomial sampling model, and that inference should 
therefore be identical for both models. 

3. Efficient estimation 

In this section an efficient solution to the estimation problem presented in 
Section 2 will be derived. Its derivation and eventual form closely match those 
proposed for the choice-based sampling problem by Imbens (1992). The under- 
lying idea is very' simple and goes back to work by Chamberlain (1987). He 
uses it to prove efficiency for method of moments estimators, while here it will 
primarily be used to find an estimator. We initially assume that x has a dis- 
crete distribution with known points of support. In that case the model is fully 
parametric instead of semi-parametric and standard maximum likelihood theory 
can be applied to obtain a consistent and efficient estimator. The next step is to 
rewrite the maximum likelihood estimator for the discrete case in such a way 
that its validity no longer depends on x being a discrete random variable. Then 
we have an estimator that is consistent and efficient for a much wider class of 
distributions of the explanatory variables. 

The first subsection will use the full likelihood function under multinomial 
sampling and calculate the maximum likelihood estimator for the case where 
the regressors are discrete random variables. In the second subsection we show 
that the maximand of the full likelihood equals the maximand of the conditional 
likelihood. This implies that the estimator also applies to the standard stratified 
sampling scheme. We also show how the estimator would be applied to the 
Bernoulli sampling scheme. In the third subsection we show that the estimator 
derived for the discrete regressor case is valid even if the regressors have a 
continuous distribution. Finally we prove that the estimator is efficient in this 
general ease. 

3.1. Discrete regressot~ 

The first step, as mentioned above, is to analyze the case where x has a discrete 
distribution. 

Assumption 3.1. X is a discrete random variable with known points o f  support 
x t, for  l = 1,2 . . . . .  L. In the population Pr(X = x I) = rot. 

Now we have a fully parametric model with an (L + K + T - l)-dimensional 
parameter vector (H' ~' ~')', as opposed to the semi-parametric model in (5) 
where h(-) is an unknown nuisance function. The probability density function 
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for an observation (s ,y,  1) where In is equal to j if xn = x J, 

f ( y  ix  t, fl)g! 
g ( s , y , l ) = H s  L 

~zmR( s , x  m, fl ) 
m=l 

(15) 

Note that the inte~al involving h(x) that created the problems in applying stan- 
dard likelihood theory, has been replaced by a sum. The log-likelihood function 
corresponding to this density function is 

N L 
L(H,p,~) = ~ lnHs,, + lnnl. + l n f ( y l x t " , p )  - In ~ nmR(s.,x'L[3). (16) 

n=l m=! 

If we maximize this with respect to H, fl, and ~, subject to the restriction 
~ = 1  nm= 1, we obtain the following first-order conditions: 

o= ~-~(n,~,~) 
N = ~ l{s.=t} l{s.=r} (17) 
.:I /~, /~T ' 

o= ~(~,,~,,~) 

1 { t .= j }  ^ ^ 

= ~ -2" 1~ -- R(sn,XJ, f l)  ~zmR(sn,Xm, f l)  , 
n=l 71:j m=l 

(18) 

~L ^ 
0 = ~-~(H, fl, ~) 

= )'~ - I  " - ~ , Y n  l .  " L : O R  . L . ^ 

n=I f ( y .  Ix ", f l )  
(19) 

L 
o = ~ ~.,. (20) 

m=l 

In (18) ti is the Lagrange multiplier corresponding on the adding-up restriction 
E ll~m ----" 1. This Lagrange multiplier #x is equal to zero. This can be seen by 
multiplying (18) by 7rj and adding up over j =  1 . . . . .  L. 

The first-order conditions, and especially the one corresponding to fl, (19), 
depend on the parameters ~ of the marginal distribution of X. In order to 
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remove dependence on these parameters it is convenient to introduce the maxi- 
mum likelihood estimates of the population probabilities Qs: 

L 
Qs = E ~mRfs, xm, fl) • (21) 

m=l 

This enables us to obtain an explicit solution for ~j in terms of the data and the 
other parameter estimates: 

~j = E l{l.=j} Rfsn,xJ, fl) . 
n=l 

= N n=l ~ 1 {/.=j} Ls=l ~ s  R(s,x ,//)] . (22) 

Using (22), we can characterize the estimates Qt by the T equations 
^ 

0 = ~l .=,~ Q , - R ( t , x . , ] ~ ) / [ s = ,  f ]  HT~R(s'x"'fl)l'~2s J , =  1.2 . . . . .  T - 1 ,  (23) 

o=l ,~=l{ l - l / [ ,=~R(s ,  xn, fl)]}. (24) 

The last equality follows from the fact that Y~; ~y = 1. 
Note that we need (24) and cannot use (23) for s = 1,2 . . . . .  T because mul- 

til;!ying (23) by fls/Qs and adding up over s shows that the Tth equation is 
automatically set equal to zero if the other T -  1 are equal to zero. 

Eq. (22) will also be used to rewrite the second part of the first-order condition 
for r ,  (19): 

N L L).~ ~ / 
~_. ~_~ ~,n (Sn,X",fl) Qs,, 
n=l m=? 

"' I'" °" ']/I 1 n=l ~ m=l i=l s=l 

~R t," 

,,:, ,=, Q, 

,.I / " 

i=I z..,, I ~-e Ls=l Qs " J 

n=l s=l ~-~s J OS 
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This allows us to rewrite the equations characterizing H,/~, and Q in a way that 
does not involve ~ directly. Define: 

~lt(H, fl, Q , s , y , x ) = H t  - l{s=t), t =  1 . . . . .  T -  1, (25) 

and 

1 Of 
~2(H,p ,Q,s ,y ,x )  - f ( y  Ix, P) ~-fl(Y Ix, P) 

-:  
' (26)  

rHs 

for t = 1,2 . . . . .  7"-  1, and finally, 

04(H, fl, O , s , y , x )  = 1 - - -  R(s,x, fl) (28) 
j = l  

The part of the solution to the first-order conditions corresponding to ,8, Q, and 
H can be written as 

& ~ @(H, fl, O, Sn, Yn,Xn)=O, (29) 
At n=l 

where ~ = ( ~  ~ ~ ~b4)'. This characterizatien of/~,/~, and 0 is crt:ciai. Firstly, 
it allows us to compute/~, H, and 0 without having to solve a [dim(fl)+dim(H) 
+dim(;r)]-dimensional system (17)-(20). Instead, we only have to, solve a [dim(p) 
+ d im(H)  + d im(Q)  - 1]-dimensional system with the solution fiw H trivial. As 
dim(Q) is likely to be much smaller than dim(rr), this is a major computational 
advantage. Secondly, this approach can be extended in two ways. In the next sec- 
tion we show that the estimator also applies if the other sampling schemes that 
we discussed in Section 2 are employed. In the section following that we will 
prove that the estimator still retains its properties of consistency and efficiency 
even if the distribution of the regressors is not discrete. 

A final point is that if there is a linear restriction on the Q's, some of the 
moments ~ may be perfectly correlated. For example, if the strata ~gs are mutually 
exclusive and cover the sample space, a linear combination of the ~ t  is equal 
to ~b4: T-I ~'~t=l ( 1 + Qr" Ht / (Hr .  Qt))" ~ t  = ~'4. One of the moments ~ t  or ~b4 will 
have to be dropped in that case. 

3.2. Standard stratified and Bernoulli sampling 

In the previous section the maximum likelihood estimator was derived for the 
case with discrete regressors and given multinomial sampling. In this section we 
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will show that if the regressors are discrete, but one of  the other sampling schemes 
is employed, the estimator still has the same properties. In Section 2.2 it was 
shown that, conditional on s, the likelihood for the multinomial and the standard 
stratified sampling schemes were identical. Because the vector s is ancillary in 
both cases, the likelihood principle and the principle of  conditionality imply that 
inference should be identical for both cases and be based on the conditional 
likelihood. In the previous section, however, we have been working with the full 
likelihoed based on the multinomial sampling scheme. Here we shall show that 
this does not matter. 

Consider the log-likelihood function conditional on s for the discrete regressor 
case: 

N L 

L([I, re) = ~ In r~,,,, + In . f (y ,  I xl,,, fl) - In ~ rrmR(s,,,Xm, [I). 
tl=[ II1=1 

(30) 

Maximizing this over fl and ~ leads to first-order conditions identical to 
(18) and (19). Because the solution for [/ to (18) and (19) is the same as 
the solution for [I found by solving (29), the latter must equal the conditional 
maximum likelihood estimator for /I. I?t is in that case not to be interpreted 
as an estimator for H*, but as a ancillary statistic that simplifies calculation. 
The consequence of  this is that no matter whether the sampling scheme 
is multinomial or standard stratified, the solution to (29) gives the correct 
estimator. 

If the data are gathered with multinomial sampling, the asymptotic variance 
of  the estimator for [J* can be calculated in a number of  different ways. Firstly, 
one can interpret the estimator as maximizing the full likelihood function as 
given in (16). In that case one would calculate the asymptotic variance using the 
average outer product of  the scores or the second derivatives of  the log-likelihood 
function. Exactly the same estimates would be obtained using the conditional (on 
s) likelihood interpretation because the scores are identical tbr the two likelihood 
functions. Secondly, an estimate can be obtained by using the characterization in 
(29) and interpreting the estimator as a generalized method of  moments estimator. 
There may be a difference between the two variance estimates in small samples 
but asymptotically they are identical. The GMM interpretation is convenient for 
computational reasons. 

If we have standard stratified sampling, we can only use the conditional like- 
lihood interpretation to get the asymptotic variance. But, as argued above, all 
asymptotic variance estimates must asymptotically be the same, and therefore the 
one obtained via the method of  moments interpretation must also be valid for 
the fixed stratum size sampling scheme. 

In Section 2.3 the Bernoulli sampling scheme was discussed. Now we have 
derived an efficient procedure for estimating H, Q, and fl for the multinomial 
sampling scheme, it is straightforward to derive an efficient estimator for that 
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sampling scheme. Define: 

~l,(P,Q, fl, s ,y ,x)= -l{s=,} + - -  
Pt Qt 

T 

E P Oj 
j= l  

t = i  . . . . .  T - l ,  

~2(p,Q, fl, s, y,x) - 
1 ~ f  

f (y [x, fl) -~(Y Ix'fl) 

(b3t(P,Q, fl, s , y , x )=Qt -R( t , x ,  f l) '[j=~PJQJ]/[j=~PjR(j,x,  fl)], 

t = l  . . . . .  T - I .  

Because for this sampling scheme it is necessary that the strata are mutually 
exclusive we can leave out the equivalent of ~b4, which would have been 

= ~ 1 + • ~3t(e,o, fl, s,y,x), 
t=l 

and which is therefore perfectly correlated with ~3. These moments are a direct 
transformation of the moments (25)-(28), using the relation between H and P 
given in (14). We can estimate P, Q, and fl by solving 

1 ~b(P,Q, fl, s,,,vn,xn)=O, 
N ,=l 

with ~ = (~'l ~2 ~'3)'. /5 ~,  and [3 are again the exact maximum likelihood 
estimators if X is a discrete random variable. 

3.3. Tile qcneral case 

In the preceding two sections it was shown that if x has a discrete distribution, 
both the conditional and the full likelihood estimator can be characterized by the 
system (25)-(28). In this section we will look at a different interpretation of  the 
estimator characterized by that system of equations. The new interpretation will 
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validate the estimator for a much larger class of distributions for the explanatory 
variables than just discrete ones. 

To reinterpret Eqs. (25)-(28), we go back to the multinomial sampling scheme 
with sampling density given by g(s ,y ,x )  in (4). We no longer assume a dis- 
crete distribution for X. Straightforward calculation shows that the expectation of  
~(H, fl, Q,S, Y,X),  evaluated at H*, Q*, and fl* equals zero (with the expectatio~ 
taken over the distribution induced by the sampling scheme). This implies that 
~b is in general a valid moment in a generalized method of  moments procedure. 
To ensure that solving (29) does indeed lead to a consistent and asymptotically 
normal estimator, we will make the following assumptions: 

Assumption 3.2. For all s = 1 . . . . .  T, Q*~ E (6, 1 - 6), H~* E (6, i - 6) Jbr some 
6 > 0, fl* E intM, a compact subset o f  ;~¢K, and x EiI', a compact subset o f  .~f. 

Assumption 3.3. f ( y  Ix, fl) is a twice continuously differentiable function of  fl 
for  all fl E .~, and f and its first two deritatirc:; are continuous on ~q x :~'. 

Assumption 3.4. The solution (H* Q* fl*) to E~b(H, fl, Q , s , y , x ) = O  is unique. 

Assumption 3.5. The expected outer product o f  the moments, A0 = E~b(H*,fl*, 
Q*,s, y , x ) .  ~b(H*,fl*,Q*,s, y ,x ) ' ,  is nonsinqular. 

Assumption 3.6. The matrix o f  first derivatives o f  the moments, F0 = E[t3~b/ 
~(n '  fl' Q' )](H*, I1", Q*, s, y, x), has ful l  rank'. 

Most of  the assumptions are standard and require little discussion. Assumption 
3.4 implies the parameters are identified. For this assumption to be satisfied, it 
is sufficient, but not necessary, that the parameters are identified given a random 
sample from any one of  the strata. For example, often it is possible to estimate the 
parameters consistently given only a random sample from a truncated distribution. 
If the model is a standard normal linear model, all that would be required is 
that the covariance matrix of  the regressors has full rank in at least one of  the 
strata. 

Betbre stating the formal results we will look at the case where exact prior 
information on H, fl, and or Q is available. Since most of the literature con- 
centrated almost exclusively on the estimation problem with Q and H known, 
this is clearly an important case to consider. An obvious way to deal with re- 
strictions of  this type is to go back to the discrete case and impose the restric- 
tions at the level of the log-likelihood function (16). Maximizing (16) subject 
to the constraints would lead to a consistent and efficient estimator for the free 
parameters. That would be a very cumbersome way to derive restricted estima- 
tors. It would in particular be difficult to rewrite the equations characterizing 
the estimates in a way similar to (25)-(28). However, there is another way 
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of estimating the parameters subject to the restrictions witb the same efficiency 
as the constrained maximum likelihood estimator. The key is the generalized 
method of moments interpretation of (25)-(28). We have to modify the objec- 
tive function to allow for estimation with more moments than free parameters. 
Define: 

| N 
~N(H. fl.Q) = -~ ~ ~b(H.fl .Q.s, .y, .x,) .  

n=l 

Tc,,,N(H, fl, Q) = JPN(H,~,Q)" C:v " ~v(H, fl, Q), 

for CN converging almost surely to a positive definite Co. Minimizing Tcv,~ 
over H, Q, and B is equivalent to solving (29). If there is a linear restriction on 
H, Q, and fl we estimate the remaining, free parameters simply by minimizing 
T subject to the restriction. If the limiting weight matrix Co is chosen opti- 
mally (i.e., equal to Aol), Lemma 3.1 in lmbens (1992) proves that the resulting 
estimator is asymptotically as efficient as the constrained maximum likelihood 
estimator. 

For ease of notation define 7 = (H' ff  Q')'  and 7" similarly. Let (~  7~) ~ be a 
partition of (possibly a re-ordered version of) 7 and partition F0 similarly. 

Theorem 3.1. Suppose that Assumpl'ions 3.2-3.5 hold. Then the estimator ~ for 
~* converges almost surely to 7" and satisfies 

v:N(:- 7*) d .,v.(o, ro, aor,o_~). 

We can estimate 7~ in the case that 7~ is known with the minimand Yt 
o f  T(yt, 7~ ). ~71 converoes almost surely to 7~ and satisfies 

v~(:, - ~7) J, x(o, (r~, Coro~ )-trOt CoaoCoro~(r~t Coro~ )-~). 

I f  Co = Ao I. then the distribution o f  ~t simplifies to 

v:N(~ - ~;) d, ~:(o,(r6,~o,ro ~)_~). 

Proof See Appendix. 

We have derived and motivated the estimator using maximum likelihood theory 
for the discrete regressor case. Now we will try to give some intuition for it 
directly in terms of the moments (25)-(28), and relate it to some of the estimators 
discussed before. (26) is the easiest to give intuition for. It is equal to the score 
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for the conditional likelihood of  Y and S given X. 2 The second set of moments 
extracts information from the marginal distribution of X. The restriction on Q in 
the population is 

Q.~. = EpR(s ,x ,  fl) = f t . :  R(s ,x ,  f l ) f ( x ) d x ,  

which translates into 

Q.~ = EsR(s,x ,[3)  . b ( H , Q , ~ , x )  = f c: R(s ,x ,[J)  . b (H ,Q , [3 , x )o (x )dx ,  

where the subscripts p and s denote expectations taken over the population and 
sample distributions, respectively, and b(.) is the bias function given in (!1). 
(27) i~ the moment corresponding to this expectation. 

More difficult to explain is the role of (25). If H is unknown, this moment 
corresponds to the score for H, and its role is clear. Even if H is known, the 
presence of  this moment is important despite the fact that in that case the mo- 
ment does not contain any unknown parameters. Its influence works through its 
effect on the weight matrix in the method of  moments procedure. In other words, 
it depends on the correlation between (25) and the other moments. An ana- 
logy is Seemingly Unrelated Regression where the same phenomenon can occur. 
Lancaster (1990) gives some intuition by showing that the presence of this mo- 
ment ensures that the estimator is conditional on the ancillary statistic Ns. A 
different derivation of these moments for the discrete choice case, providing ad- 
ditional intuition, is given in Lancaster and Imbens (1991). 

The derivation of the estimator, using maximum likelihood estimation for a 
particular parametrization and then generalizing the applicability to a larger class 
of  problems, suggests that the estimator is efficient. Chamberlain (1987) extends a 
definition of efficiency, local asymptotic minimax, to this type of  semiparametric 
problem. An alternative semiparametric efficiency concept developed by Begun 
et al. (1984) and discussed in Newey (1990) is applied to estimators for choice- 
based sampling by Imbens (1992). In that framework we look at the supremum of 
all Cram6r-Rao lower bounds for parametric models that include the true model. 
In this case we already have a candidate for the supremum and an estimator 
that attains the candidate bound. We therefore only have to show that there is a 
sequence of Cram6r-Rao bounds that does converge to this proposed bound. We 
do so by constructing a partition of the ?/" space into L nonoverlapping subsets, 
.°l't, with the unknown parameters fit = Pr(x E flt'l)= f..l, h(z )dz .  We then let 

2 The conditional likelihood, based on the conditional density given in (7), is equal to 

L([~) = In H~,, - In Q~,, + In f(yn Ixn,[~1) - In ~ R(t,x,,,[~). 
n=:l t = l  
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the partition become finer and look at the sequence of Cram6r-Rao bounds. The 
formal result is: 

Theorem 3.2. The asympto t ic  covariance m a t r i x  V f o r  any regular es t imator  

f o r  l~, H, and Q satisfies 

z - r o ~ A O ( r ' o )  -~ >>.o, 

in a posi t ive semi-defini te  m a t r i x  sense. In other words, no regular es t imator  is 

more  efficient than the es t imator  in Theorem 1. 

Proof.  See Appendix. 

4. The normal linear model: A Monte Carlo investigation 

In this section we carry out a Monte Carlo analysis of a number of examples 
of stratified sampling in the normal linear model. So, as in the example in the 
introduction, we have the following model: 

y = x ' f l  + e, e Ix . . . .  ~P(O, a 2 ), 

with the joint density of (Y,X), 

- -  . , 

f ( y , x )  = tr - c ~  < y < c~, x 6 :[. 

There are two strata: 

~ 0 = ( - o e ,  c~)x.°/" and cWl=(C, oo) x.~.  

We will denote Hi by H and Ql by Q, with H0 = 1 - H  and Q0 = 1 - Q .  
This type of stratified sampling is common in large survey data sets such as 
the Panel Study of Income Dynamics (PSID) which contains a sample of poor 
households in addition to a random sample, or the National Longitudinal Survey 
(NLS) which deliberately oversamples specific subpopulations. 

The joint density of (S, Y , X )  induced by this sampling scheme is 

g(s, y , x )  = - • (~ • h (x )  . • 
t7 

The first moment in the efficient moment vector is again the difference between 
H and the stratum indicator s: 

~Ot(H,[3, a z, Q , s , y , x )  = H - s. 
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The second moment is equal to the derivative of  the logarithm of the conditional 
density. The conditional density is 

y H s 

The derivative of  its logarithm with respect to fl is 

~l(H, fl, a2,Q,s, y,x) 

~lno(s, ylx)  
eft 

y - x ' f l  ( H ~ b ( y - x ' f l ) x ' [ 3  / ( H  (x__aft_) ) 
=x.  \ O /  C - - g - - . - - g - "  + ( l - n )  . 

The derivative with respect to 62 is 

~b22( H, fl, aZ, Q, s, y,x ) 

~3 lno(s,y Ix) 
~a 2 

H , / y -x ' f l , ( x t f l )  2 . q~ (x~_~_~) _i_ ( 1 I (Y-X'[3)2 ( - Q ) q ) , ~ j ~ . / ( Q  -HO. 
- -  26 ~ -I- 6 4  

The third moment is equal to the difference between Q and R( I,x, [3)= q~(x'[3/a) 
divided by the bias function: 

H ~O3(,,[3,02,Q,s,y,x)=Q - q ~ ( ~ - ~ - ) / ( ~ -  q ~ ( ~ - ~ ) +  ( 1 - H ) ) .  

The last moment if4 is equal to 

) ~04(H,[3,a2,Q,s,y,x)= i - .q~ + ( 1  - H )  . 

Because ~b4 = - ~ .  H/((Q. (! - H ) ) ,  we leave out the last moment ~4. 
We compare seven estimators. Four estimators assume no knowledge of  Q. 

The first is the GMM estimator developed in this paper (GMMI).  The second is 
the parametric maximum likelihood estimator based on a normal distribution for 
X (ML). The third and fourth are OLS estimators, one (OLSI)  using only the 
observations from stratum % and the other (OLS2) using all observations. The 
second OLS estimator and the parametric maximum likelihood estimator are not 
consistent under some of  the experiments we carry out. When the distribution 
of  the regressor in the population is indeed normal, ML is the most efficient 
estimator in this set of  four estimators. GMMI is more efficient than OLSI. 
OLS2 cannot be ranked because it will be inconsistent in all experiments. 



G. W. Imbens, T. Lancaster/Journal o f  Econometrics 74 (1996) 289 318 311 

The three estimators that do require knowledge of Q are the optimal GMM 
estimator (GMM2), the conditional maximum likelihood estimator (CML), and 
the weighted maximum likelihood estimator (WML). The CML estimator is based 
on solving 

N 
p([i, a 2 ) = Y]~ d/2( H, l:l, a2, Q,s, y , x  ) = O. 

n=l 

Because without stratified sampling the maximum likelihood estimator would be 
least squares, the WML estimator is weighted least squares with weights 

wn \ l - t t J  " H + ( I - H ) . Q  " 

where 6(-) is the indicator function. WML and CML are both more efficient than 
OLSI, but less than GMM2. They cannot in general be ranked relative to GMMI 
or ML. GMM2 is more efficient than GMMI, but cannot be ranked relative to 
ML. 

Example 1. The first Monte Carlo experhnent sets the distribution o f  X equal 
to a normal distribution with zero mean and unit variance. The parameter 
values are ~ = 0,/~ = !, and a 2 = 1. The cutoff point for  the second stratum is 
C = 0.954. This implies that the probability that a randomly chosen observation 
is in the second stratum is Q=0.25. There is a total of  200 observations, equally 
distributed over the two .strata. 

In Table 1 we report means, mean squared errors, medians, and median absolute 
errors for ~ and fl for the seven estimators. Without knowledge of  Q the ML and 
GMMI estimators perform almost identical. Knowledge of the functional form 
of  the marginal density of  X does not seem to add any information. The OLSi 
estimator using only the fifty observations from the first stratum performs notice- 
ably worse. The inconsistent OLS2 estimator does remarkably well for the slope 

Table I 
N = 200, fl = I, ~ = 0, a = I, C = 0.954, Q = 0.25, H = 0.5, X ..... t (0, I ), 500 replications 

Estimator Q mean rinse median mac mean rms¢ media,,, mac 

GMM I unknown 0.999 0.069 1.000 0.048 0.000 0.090 -P,.005 0.057 
ML unknown 0.997 0.070 0.996 0.050 0.002 0.091 - 0.004 0.061 
OLS I unknown 0.995 0.094 0.989 0.059 -0.002 0.102 -0.004 0.067 
OLS2 unknown 1 . 0 1 1  0.072 1.009 0.053 0.446 0.452 0.447 0.447 
GMM2 known 0.999 0.070 1.000 0.048 -0.001 0.067 -0.002 0.042 
CML known 1.000 0.069 1.000 0.048 0.001 0.075 -0.004 0.048 
WML known 0.997 0.081 0.999 0.058 -0.002 0.095 -0.005 0.062 
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coefficient. The bias of  the intercept is large, but the increase in precision leads 
to a lower root mean squared error for the slope coefficient compared to OLSI. 

Knowledge of Q leads to sizable gains in the precision of  the estimator for the 
intercept (cf. GMM2 and GMMI ) but no perceptible gain in precision for the 
slope coefficient. This is reminiscent of results in choice-based sampling where 
in logit models it can be shown that knowledge of  marginal shares affects only 
precision in intercepts but not precision of slope coefficients. In this experiment 
the maximum conditional likelihood estimator performs marginally better than 
the weighted estimator. 

It is also interesting to compare OLS 1 and WLS. WLS is more efficient because 
it uses the second subsample, even if not in a fully efficient way. In this setup 
there is only a modest gain from using the observations from the stratum ~l 
relative to not using them at all. 

From the results presented in Table ! we can also compare the efficiency of 
the estimators relative to a completely random sample of  size 200 by dividing 
the rmse and mae for OLSI by v ~  to get 0.066 and 0042, respectively. This 
shows that we would have been better off with a completely random sample of 
size 200 than with a augmented sample with 10e observations randomly drawn 
and 100 observations from the stratum cg~. 

Example 2. The second Monte Carlo experiment changes the cutoff point from 
C---0.954 to C = O. This implies that the probability that a randomly chosen 
observation is in the second stratum is now higher at Q = 0.5. 

In Table 2 we report means, mean squared errors, medians, and median absolute 
errors for ~ and fl fe~" the seven estimators. With the second stratum closer to 
the population, and therefore the stratification less important, the bias of  the 
inconsistent OLS estimator goes down. The relative merits of the other estimators 
is barely affected. Again the rinse (0.071) and mae (0.043) for a random sample 
of  size 200, obtained by dividing those reported in Table 2 for OLSI by v/2 
suggest there is no gain from the particular stratification. 

Table 2 
N = 200, fl = I, :t -- 0, o = I C = O, Q = 0.5, H = 0.5, X ~,. I "(0, I ), 500 replications 

Estimator Q mean rinse median mac mean m~se median mac 

GMM ! unknown 1 . 0 0 1  0.071 1.003 0.047 -0.057 0.080 0.003 0.058 
ML unknown 0.999 0.069 1.002 0.047 0.005 0.084 0.006 0.060 
OLSI unknown 0.996 0.100 0.997 0.0o] -0.003 0.098 -0.003 0.067 
OLS2 unknown 0.914 0.112 0.915 0.087 0.310 0.317 0.311 0.311 
GMM2 known 1.004 0.069 1.004 0.046 -0.006 0.042 -0.002 0.034 
CML known 1.003 0.070 I.OOI 0.04.3 -0.003 0.065 0.002 0.048 
WML known 1.000 0.070 1.004 0.053 0.004 0.086 0.002 0.062 
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Table 3 
N = 2 0 0 ,  f l  = I ,  ~t = 0 ,  a = 1, C = 0 . 8 0 2 ,  Q = 0 . 2 5 ,  H = 0 . 5 ,  X --~ t~( 1 ) - I, 500 replications 
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Estimator Q mean rinse median mae mean rmse median mae 

GMMI unknown 1.006 0.056 1.006 0.037 -0.006 0.087 -0.004 0.060 
ML unknown 0.927 0.100 0.923 0.075 0.103 0.143 0.101 0.112 
OLS1 unknown 0.992 0.104 0.993 0.076 -0.012 0.103 -0.012 0.070 
OLS2 unknown 0.916 0. l01 0.919 0.081 0.467 0.473 0.466 0.466 
GMM2 known 1.006 0.055 1.006 0.035 -0.007 0.062 -0.004 0.042 
CML known 1.007 0.055 1.005 0.036 -0.005 0.071 -0.002 0.045 
WML known 1.001 0.070 1.003 0.044 -0.004 0.093 0.002 0.058 

Table 4 
N = 200, fl = 0.5, ~t = 0, cr = I,C = 0.954, Q = 0.194, H = 0.5, X -,,, if(0, I ), 500 r e p l i c a t i o n s  

Estimator Q mean rmse median mac mean rmsc median mac 

GMMI unknown 0.498 0.132 0.501 0.048 -0.010 0.188 0.008 0.062 

ML unknown 0.503 0.069 0.501 0,047 0.004 0.095 0.009 0.061 
OLS I unknown 0.504 0.103 0.506 0.073 -0.002 0.102 -0.001 0.066 
OLS2 unknown 0.544 0.085 0.545 0.058 0.617 0.621 0.622 0.622 
GMM2 known 0.503 0.070 0.501 0.047 -0.010 0.051 -0.010 0.033 
CML known 0.504 0.069 0.503 0.047 -0.001 0.067 0.000 0.040 
WML known 0.506 0.082 0.512 0.053 0.002 0.098 0.007 0.062 

Example 3. The third Monte Carlo experiment sets the distribution of  X equal 
to a unii exponential distribution minus one, implying the regressor has mean 
zero and unit variance as before. The parameter values are oc = 0, fl = 1, and 
~2 = I. Given the cutoff point for the second stratum, C = 0.802, the probability 
that a randomly chosen observation is in the ,second stratum is Q = 0.25. 

In Table 3 we report means, mean squared errors, medians, and median absolute 
errors for g and fl for the seven estimators in this case. In this example the 
parametric likelihood estimator ML is inconsistent which shows up clearly in 
both the slope coefficient and in the intercept. The relative ranking of  the other 
estimators is not affected. With the thick-tailed distribution for the regressor, there 
are some advantages from the stratification. Given a random sample of  size 200 
the rmse and mac should be approximately 0.071 and 0.054, respectively, higher 
than the rmse and mae for GMMI. 

Example 4. The last Monte Carlo experiment keeps the distribution of  X 
normal as in the .first two examples but decreases the slope coefficient to 
fl = 0.5. This implies that the probability Jbr the second stratum changes to 
Q = 0.194. 
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In Table 4 we report means, mean squared errors, medians, and median absolute 
errors for ~ and fl for the seven estimators for this scenario. With the slope 
coefficient smaller, the stratum c~l has smaller probability in the population. This 
makes the stratified sample more information than a random sample of the same 
size. The gain of actually using the second stratum by weighting (WLS) relative 
to only using the random subsample (OLSI) is now much larger than in the 
previous setups. 

Overall the simulations lead to a number of tentative conclusions. First, the 
GMM estimators perform well relative to the full likelihood estimator. If the 
marginal distribution of the regressors is correctly specified, there is Iittle loss 
of precision from not using it and instead usinlz the GMM estimators. If on 
the other hand the distribution of the regressors is misspecified, there can be a 
considerable bias for the ML estimator. There is therefore no reason to use the 
parametric likelihood estimator. Its potential gains when correctly specified are 
small compared to the potc~ltial losses when misspecified. 

Second, the gain in precision from knowledge of the stratum probabilities is 
largely confined to the intercept, similar to conclusions in choice-based sampling. 

Third, the conditional maximum likelihood estimator seems to be slightly better 
than the weighted least squares estimator. ~-lowever, the weighted least squares 
estimator is clearly better than the other 'simple' estimators, i.e., estimators that 
require little additional programming beyond implementing programs for random 
samples, OLSI and OLS2. 

Fourth, the smaller the marginal probability of the strata, the more informative 
a stratified sample is relative to a random sample of the same size. In other 
words, given fixed strata, the smaller in absolute value the slope coefficients, the 
more informative a stratified sample. 

These simulations suggest that in practice the choice should be between the 
efficient GMM estimators or the inefficient, but computationally simpler WLS 
estimator. On the one hand is the computational ease of the WLS estimator, which 
only requires introducing weights into the same estimation procedure that would 
be used if the researcher had a random sample from the population, compared 
to the efficient GMM estimator, which requires programming of the modified 
moment functions and even in simple examples numerical optimization. On the 
other hand is the e~ciency loss of the WLS estimator, which in these examples 
is between 20 and 40% of the variance of the efficient estimator. 

5. Conclusion 

In this paper we study the problem of estimating parameters of the conditional 
distribution if the sampling is stratified. Stratified sampling schemes can be im- 
plemented in a number of ways. We discuss three common types and show that 
they can be analyzed in a unified manner. We then derive an estimator for the 
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general case. The procedure used to derive the estimator is similar to that pro- 
posed by lmbens (1992) for choice-based sampling. The estimator we propose is 
a computationally simple, generalized method of  moments estimator. We show 
that the estimator is efficient using semi-parametric efficiency bounds proposed 
by Begun et al. (1983). 

A Monte Carlo experiment shows that the estimator has good properties in 
moderately sized samples. This experiment also indicates that the gains of  using 
fully parametric models are small relative to the losses due to potential misspec- 
ification. Finally, knowledge of  stratum probabilities seems relevant mainly for 
estimating intercepts rather than the typically more interesting slope coefficients. 

Appendix: Proofs of  Theorems 3.1 and 3.2 

Proof of Theorem 3.1 
The assumptions made, (2.1)-(2.2)  and (3.2)-(3.3),  guarantee the conditions 

needed fbr standard theorems on generalized method of  moments estimation to 
hold. See for an extensive discussion and reference Hansen (1982) and Newey 
and McFadden (1994). ~d~,~ 

Proof of Theorem 3.2 
For ease of  notation we will assume that X has density h(x) on :~'. 3 For any 

e. > 0 partition : f  into L,: subsets :g't in such a way that if  ! ~ m, :?ft N ~m = 0, 
and i fx ,  zE: f t ,  then ] x - z  I <e.. Define ~bl.~ to be equal to 1 i f x E . f t  and 0 
otherwise, and 

:~'! 

The density of  x, h(x), is now parametrized as 

L 
h(x; 6) = h,:(x) • ~ 61" 4~/.~, 

I=1 

with h,: a known function. The sequence of  parametrizations we will employ is 
indexed by ~:: 

HJ' (y  Ix, ~)h,:(x) ~ 6tdptx 
I 

O,:(s,i,x)= L, 
6t f R(s,z,/~)h,:(z)cL- 

I= I .fl 

3 As it has been shown in Section 3.1 that the estimator is exactly maximum likelihood if the 
regressors have a discrete distribution, it is clear that we only have to look at the continuous case. 
The mixed case can be dealt with at the expense of additional notation. 
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with H, fl, and 6 the unknown parameters. For fixed e we now have a fully 
parametric estimation problem with unknown parameter vector (H fl 6) of  
dimension T -  1 + K + L, : -  I. The unknown function h(x) in the semi-parametric 
model has been replaced by a known function depending on an unknown finite- 
dimensional vector 6. We show that for small e the efficiency bound for the 
fully parametric model is arbitrarily close to the variance of  the semi-parametric 
estimator developed in this paper, implying that the latter is efficient. 

The intuition is that tile difference between the semiparametric and the fully 
parametric problem is in the knowledge of  h~(x). The proof amounts to showing 
that knowledge of  h~(x) does not matter for small e. Hence the semi-parametric 
estimator is efficient in the absence of  knowledge of  the marginal distribution of  
the regressors. 

Let fl, 6, and/-) be the maximum likelihood estimators for fl, 6, and H. If we 
are not interested in the estimator for 6, we can eliminate it following exactly 
the same procedure used in Section 3.1 to eliminate ft. Defining the maximum 
likelihood estimator of  Q as 

L ^ 

O, = g 6, .f 
I=1 .t; 

we can characterize the maximum likelihood estimators for (H, fl, Q) as GMM 
estimators with moments 

~b,:z,( H, fl, Q, y , s , x  ) = 

~k~:2(H, fl, Q, y , s , x )  = 

~:3t( H, fl, Q, y , s , x  ) = 

H t -  ll.,.=t }, 

{~ .I" {~-~- (y Ix,/~) l,(y/,/~) 

/4 .  L ,~ 

I=I  .lJ 

,=,-~t ~" ~L, f R(t,z, fl)h,:(z)dz , 
/=1 ,1"~ 

Qt-{~l~blx'rR(t 'z ' f l)h':(z)dz. ,r ,  

/ [  , ]} H,__, E ~lx f R(t ' ,z,  fl)h,:(z)cL ~ • 
F = I  ~ 'F  /=1 . t '  I 

t =  !,2 . . . . .  T -  I, 
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~b~:4(H, fl, Q,  y , s , x )  = I - i Ht___~, ~ d?lx f R ( t t , z ,  f l )hr . ( z )dz  . 
/ / = l  Qt, I = l  .t'l 

In order to study the difference between the asymptotic covariance matrix E. for 
this estimator and that for the estimator in Theorem 3.2 [(V = FolAo(F~)-l)]  it 
is convenient to define: 

L 
~,:R(s,x,l~) = ~ ~x f R(s,z.#)h~(z)dz, 

1= I .'f l 

d' JR s x L, JR , :~(  , ,t~) = E ~,x f ~(s,~,t~)h,:(z)dz, 
/=1  .~'! 

and ~',:(J2R/j[lOff)(s,x, fl) accoTdingly. The difference between the moments ~b~: 
and ~b in (29)-(31) is that the the former depend on g,:R(s,x, fl), .~,:(dR/~[J)~,x, fl), 
and e~,:(O2R/jfl~fl')(s,x, fl), while the latter depend on R(s,x, fl), (OR/~fl)(s,x, fl), 
and (j2R/~[h3fl')(s,x, fl), respectively, with the functional dependence being the 
same. 

Define now: 

A,: = E~,:(H,Q, fl, y , s ,x )  . ~:(H,Q, fl, y ,s ,x) ' ,  

I',: = E ~,:(H,Q, fl, s,Y, x) 
~(H'  Q ' / / ' )  

The fact that R and its first two derivatives with respect to fl are continuously 
differentiable with respect to x on the compact set :1" implies that R and its first 
two derivatives with respect to fl have bounded derivatives with respect to x. This 
implies uniform convergence in x for all s of  ~,:R, 6",:(JR/Jfl) and d,:(~2R/JflJfl') 
to R, (JR/~fl) and (~2R/jflJfl'). This in turn implies that the limits of  A,: and 
F,: equal A0 and F0, respectively. This in turn implies that V,: = FT. IA,:(F') -I  
converges to V. Since no regular estimator can have an asymptotic variance lower 
than the Cramrr-Rao bound, it cannot improve on the limit of this sequence 
and therefore it cannot improve on the asymptotic variance of the estimator in 
Theorem 3.2. ~6 '~  
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