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Abstract

This paper is about e0cient estimation and consistent tests of conditional moment restrictions.
We use unconditional moment restrictions based on splines or other approximating functions for
this purpose. Empirical likelihood estimation is particularly appropriate for this setting, because
of its relatively low bias with many moment conditions. We give conditions so that e0ciency
of estimators and consistency of tests is achieved as the number of restrictions grows with the
sample size. We also give results for generalized empirical likelihood, generalized method of
moments, and nonlinear instrumental variable estimators.
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1. Introduction

Models with conditional moment restrictions are important in econometrics. These
models arise in many econometric settings, including rational expectations, panel data,
and instrumental variable settings. This paper is about e0cient estimation of parameters
of these models and consistent tests of their restrictions. We construct these estimators
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and tests using general approximating functions, such as splines, to form unconditional
moments that grow in number and variety with the sample size.
Empirical likelihood (EL) (Owen, 1988; Qin and Lawless, 1994; Imbens, 1997)

is particularly interesting in our setting where there may be many moments used in
estimation. As shown by Newey and Smith (2002), higher order asymptotic bias of
these estimators is smaller than GMM with many moments, which should lead to bet-
ter asymptotic approximations to 8nite sample distributions, and bias-corrected EL is
higher-order e0cient among bias-corrected estimators. Thus, in cases where bias is a
concern, such as models with endogeneity and covariance models for panel data, EL has
good theoretical properties. Here we give explicit limits on the growth rate for the num-
ber of moments for asymptotic e0ciency of the estimator and for conditional moment
tests to be asymptotically normal. In particular, for B-splines where the density of the
conditioning variables is bounded and bounded away from zero we 8nd that K3=n→ 0
su0ces to obtain asymptotic e0ciency of EL and K4=n → 0 to obtain asymptotic
normality of the EL overidenti8cation test statistic, where K is the number of approxi-
mating functions used in estimation. We also give analogous results for generalizations
of empirical likelihood that include the continuous updating estimator of Hansen et al.
(1996) and the exponential tilting estimator of Imbens et al. (1998) and Kitamura and
Stutzer (1997).
Other estimators may also be useful in imposing many moment conditions. The

two-step generalized method of moments (GMM) (Hansen, 1982) estimator is com-
putationally simpler than the EL estimator and is widely used. Also, the GMM overi-
denti8cation test statistic provides a simple test of the conditional moment restrictions.
We show that under slightly weaker conditions than for EL, K2=n → 0 su0ces for
e0ciency of the estimator and K3=n→ 0 for asymptotic normality of the overidenti8-
cation test statistic, with regression splines. Nonlinear instrumental variables estimation
(IV) (Amemiya, 1974, 1977) is also useful. It is e0cient under the auxiliary assump-
tion of homoskedasticity, and is known to have better small sample properties than
GMM in some settings (e.g. see Arellano and Bond, 1991 for dynamic panel data).
In the homoskedastic case this estimator requires the weakest regularity conditions for
e0ciency. The marginal distribution of the conditioning variables is not restricted; it
can even be discrete. The estimator will be e0cient if K2=n→ 0.

The asymptotic theory for EL is new. These results provide theory for a conditional
version of empirical likelihood that is based on many unconditional moment restrictions.
This approach is complementary to that of LeBlanc and Crowley (1995) and Kitamura
et al. (2001). Both approaches produce an e0cient estimator and a consistent empirical
likelihood test of conditional moment restrictions. Our approach is computationally
simpler, producing a smaller dimensional likelihood, but does not lead to an estimator
of the conditional distribution of the data.
The testing theory is also new, although it is related to previous work. Bierens

(1982) and Newey (1985) suggested testing conditional moment restrictions by many
unconditional ones and de Jong and Bierens (1994) and Hong and White (1995) de-
veloped asymptotic theory for such tests. We provide a result that is more general
than existing ones in several respects. It applies to models where there are endogenous
right-hand side variables. It also has weaker rate restrictions than some in the literature,
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e.g. only requiring that K3=n → 0 for splines rather than K5=n → 0 as in Hong and
White (1995). Also, the conditional moment test statistics have an interesting form. In
addition to including the GMM overidenti8cation statistic, they include the empirical
log-likelihood ratio, and others. Each of these will have the same asymptotic distribu-
tion under the null hypothesis, and be consistent against violations of the conditional
moment restrictions, although they may have very diFerent 8nite sample distributions.
The asymptotic theory for IV and GMM estimators is closely related to previous

results. Newey (1990) and Newey and Chipty (2000) give asymptotic e0ciency results
for linearized versions of IV and GMM, respectively, under exactly the same rate
conditions we have. Our contribution is to obtain these results for the fully iterated
IV and GMM estimators. One nice feature of these results is that they only use the
minimal identi8cation condition from the conditional moment restrictions. Theoretically
speaking, these results “close the loop” by showing that for IV and GMM we get a√
n-consistent estimator (which previously had just been assumed for initial estimators)

under minimal conditions. Also, the asymptotic results for EL are based in part on those
for IV and GMM. These results have been included in the body of the paper, rather
than the appendix, because we thought they might be of some independent interest.
There is other previous work on asymptotic e0ciency of linearized GMM. Newey

(1993) and Hahn (1997) put much stronger restrictions on the growth of K but weaken
the restrictions on the distribution of the instruments. Koenker and Machado (1999)
give general results for a linear model and give primitive conditions for Fourier series.
We obtain e0ciency and consistent asymptotic variance estimation under K2=n → 0
rather than K3=n → 0. The consistency result for IV is similar to that of Newey and
Powell (1989). The GMM consistency result under growing numbers of moments is
new.
Section 2 of the paper will set up the model we consider and brieJy discuss the

virtues of diFerent types of approximating functions for use in forming the moment
conditions. Also, regularity conditions for the approximating functions are discussed.
Section 3 describes empirical likelihood estimation and inference. Section 4 brieJy re-
views IV and GMM. Section 5 gives consistency, asymptotic normality, and asymptotic
e0ciency results for all of the estimators. Section 6 gives limiting distribution results
for tests of conditional moment restrictions. All the proofs are given in the appendix.

2. Moment restrictions

The environment we consider is one where there is a vector of conditional moment
restrictions depending on unknown parameters. To describe this setting let z denote
a single observation, � a p × 1 vector of parameters, and �(z; �) a J × 1 vector of
functions, that often can be thought of as residuals. We specify that there is a subvector
x of z, acting as conditioning variables, and a value of the parameters �0 that satisfy

E[�(z; �0)|x] = 0; (2.1)

where E[:] denotes expectation taken with respect to the distribution of z.



58 S.G. Donald et al. / Journal of Econometrics 117 (2003) 55–93

It is well known that a conditional moment restriction is equivalent to a count-
able number of unconditional moment restrictions, under certain circumstances, see
especially Bierens (1982) and Chamberlain (1987). We brieJy discuss the complete-
ness conditions for this equivalence in our setting. For each positive integer K let
qK (x)=(q1K (x); : : : ; qKK (x))′ be a K×1 vector of approximating functions. We impose
the following fundamental condition on the sequence qK (x) and the distribution of x:

Assumption 1. For all K , E[qK (x)′qK (x)] is 8nite, and for any a(x) with E[a(x)2]¡∞
there are K × 1 vectors �K such that as K → ∞,

E[{a(x)− qK (x)′�K}2] → 0: (2.2)

Lemma 2.1. Suppose that Assumption 1 is satis%ed and E[�(z; �0)′�(z; �0)] is %nite.
If Eq. (2.1) is satis%ed then E[�(z; �0) ⊗ qK (x)] = 0 for all K. Furthermore, if Eq.
(2.1) is not satis%ed then E[�(z; �0)⊗ qK (x)] 
= 0 for all K large enough.

The consequence of this result is that the conditional moment restriction is equivalent
to a sequence of unconditional moment restrictions. Consequently, an e0cient estimator
under the conditional moment restrictions can be constructed from the sequence of
unconditional restrictions. By letting K grow with the sample size all of the information
in the conditional moment restrictions is eventually accounted for. Also, a consistent
test of the conditional moment restrictions can be constructed from a sequence of tests
of unconditional ones. If the conditional moment restriction is not satis8ed then neither
are the unconditional ones for K large enough, so the test detects all violations of the
conditional moment restrictions as K grows. This result is an extension of Chamberlain
(1987) and de Jong and Bierens (1994) to the case where qkK (x) can depend on K .

The speci8c role of Assumption 1 in the e0ciency of the estimator is to ensure that
linear combinations of qK (x) can approximate certain functions of x. From Chamberlain
(1987) we know that an estimator obtained as the solution to

n∑
i=1

B(xi)�(zi; �) = 0; B(x) = E[@�(z; �0)=@�|x]′{E[�(z; �0)�(z; �0)′|x]}−1;

achieves the semiparametric e0ciency bound. Newey (1993) showed that the asymp-
totic variance of the optimal GMM estimator based on the moment function �(z; �)⊗
qK (x) corresponds to a minimum mean-square error approximation of B(x)�(z; �0) by
linear combinations of �(z; �0)⊗ qK (x). Thus, if Assumption 1 is satis8ed linear com-
binations of qK (x) can approximate each component of B(x), so that as K grows the
asymptotic variance of the GMM estimator approaches the semiparametric e0ciency
bound.
If the spanning condition of Assumption 1 is not satis8ed, the estimators we con-

sider will still be asymptotically normal, but they will generally not be asymptotically
e0cient. Instead their asymptotic variance will be the same as a GMM estimator where
B(x)�(z; �0) is replaced by its best mean-square error approximation by linear com-
binations of �(z; �0) ⊗ qK (x). This situation could arise, for example, if only certain
components (or linear combinations) of x were used in forming the instruments. To
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avoid further complications we will not explicitly allow for this possibility in the re-
sults, though it would be straightforward to do so. We would 8nd asymptotic normality
of this estimator under the same conditions given here and could characterize the e0-
ciency of the estimator.
There are many possible choices of qkK (x), including splines, power series, and

Fourier series. Although each will be allowed for in at least some of our conditions, in
several ways splines are the most attractive of these. Unlike power and Fourier series,
spline approximations are not severely aFected by singularities (e.g. discontinuities) in
the function being approximated. Like power series, splines have faster approximation
rates for smoother functions (up to the order of the spline), i.e. for functions where
more derivatives exist. In addition, in our results they allow for restrictions on the
growth of K with the sample size that are as weak as Fourier series, without the
periodicity of Fourier series. As discussed in Gallant and Souza (1991) and Hong
and White (1995), avoiding periodicity by using additional approximating functions or
transforming x to be strictly inside their domain leads to very strong restrictions on
the rate of growth of K .
For splines qkK (x) will consist of functions such that linear combinations are piece-

wise polynomials with join points referred to as knots. To describe splines consider
8rst the scalar x case. Let s be a positive scalar giving the order of the spline. The most
common speci8cation is s=3. Let t1; : : : ; tK−s−1 denote knots and let �(x)=1(x¿ 0)x,
where 1(A) denotes the indicator function for the event A. Then a vector of spline
approximating functions is given by

qK (x) = (1; x; : : : ; xs; �(x − t1)s; : : : ; �(x − tK−s−1)s)′: (2.3)

Some of our regularity conditions will require that the knots tj be placed in the support
of x. In practice this is done by placing them within the range of the observed data.
Although the theory does not allow explicitly for knots chosen in this data-based way,
it can be shown that the results are unaFected by such a use of the data. The growth
rate conditions will also require that the knots be evenly spaced, although other kinds
of knot spacings would also give the same results, as long as the ratio of the smallest
distance between knots to the largest distance is bounded away from zero. Further,
possible multicollinearity can be mitigated by using nonsingular linear transformations
of the spline functions known as B-splines, e.g. see Schumaker (1981).
When x is multivariate, spline approximating functions can be formed from products

of univariate splines for individual components of x. These functions can either be
taken from Eq. (2.3) or can be B-splines.
Except for IV, all the results will depend on a normalization for the second moment

matrix of the approximating functions, as speci8ed in the following condition. Let X
denote the support of xi.

Assumption 2. For each K there is a constant scalar �(K) and matrix B such that
q̃K (x) = BpK (x) for all x∈X , supx∈X ‖q̃K (x)‖6 �(K), E[q̃K (x)q̃K (x)′] has smallest
eigenvalue bounded away from zero uniformly in x, and

√
K6 �(K).
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This assumption is a normalization like that adopted by Newey (1997). The bound
�(K) is meant to be explicit, and plays a crucial role in the theory for EL, GMM,
and the overidenti8cation test statistics. For example, asymptotic e0ciency of EL is
obtained under the condition that �(K)2K2=n → 0: Thus, explicit formulae for �(K)
will be required to obtain explicit limits on the growth rate of K that are su0cient
for e0ciency. The need for these conditions comes from the need for explicit rates
of convergence in probability for estimates of the second moment matrix of g(z; �0)
combined with a need to bound it away from singularity. Only for IV will Assumption
2 not be needed.
Explicit formula for �(K) are available in a number of diFerent cases. For splines,

when x is continuously distributed with rectangular support and density bounded away
from zero on its support, q̃K (x) can be a vector of products of B-splines multiplied
by

√
K . As shown by Stone (1985), Burman and Chen (1989), and Newey (1997)

Assumption 2 is then satis8ed for �(K) = C
√
K and a constant C. Under the same

conditions on x Newey (1988a) and Andrews (1991) showed that for power series this
condition is satis8ed for q̃K (x) equal to products of polynomials that are orthonormal
with respect the uniform distribution, with �(K)=CK for another constant C. Andrews
(1991) also showed that �(K) = C

√
K for Fourier series.

It is possible to weaken the conditions on the distribution of x at the expense of
much larger bounds on �(K). As shown in Newey (1988b), if the density of x is
bounded away from zero over some open ball, and not necessarily the whole support,
then for power series the smallest eigenvalue of E[qK (x)qK (x)′] is bounded below by
K−CK=C for some constant C. Then q̃K (K) = KCKqK (x) will satisfy Assumption 2
with �(K) = KCK for some constant C: Also, when Fourier series are combined with
power series, or the Fourier series have restricted domain, the smallest eigenvalue of
E[qK (x)qK (x)′] is bounded below by CK as shown by Gallant and Souza (1991), so
that Assumption 2 will be satis8ed with �(K)=CK . Implied restrictions on the rate of
growth of K with n implied by each of these conditions are outlined in the conclusion.

For the density bounded away from zero, among the approximations we consider,
the smallest bound �(K) is obtained for splines. Consequently, splines will require the
weakest restrictions on the growth rate of the number of terms. Furthermore, splines
are well known to have good approximation properties. These features of splines mean
they have the nicest theoretical properties.

3. Empirical likelihood and generalizations

One approach to empirical likelihood with conditional moment restrictions is to use
approximating functions to make the conditional moment restrictions approximately be
satis8ed in the sample. This approach is complementary to smoothing the empirical
likelihood to obtain a conditional distribution estimator, as in Kitamura et al. (2001).
Only one maximization is required for our approach rather than the n maximizations
when smoothing the empirical likelihood. On the other hand, we only estimate the
marginal distribution of a single observation z, rather than the conditional distribution
given x, so we lose some of the richness of the smoothing approach. Our approach does
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su0ce for the purposes of e0ciently estimating � and testing the conditional moment
restrictions consistently. Also, the conditional moment restrictions will be approximately
satis8ed in the sample, in a sense discussed below.
The basic idea is to use empirical likelihood as in Qin and Lawless (1994) and

Imbens (1997) with unconditional moment restrictions of the form E[�(z; �0)⊗qK (x)]=
0, where qK (x) is a vector of approximating functions as discussed in the last section.
The EL estimator of � and of the distribution of a single observations z is obtained as
the solution to

max
�i¿0;�∈B

n∑
i=1

ln �i s:t:
n∑
i=1

�i�(zi; �)⊗ qK (xi) = 0;
n∑
i=1

�i = 1: (3.1)

The distribution of zi is estimated by Pr(z= zi) = �̂i. The positivity constraints will be
satis8ed whenever the unit simplex has a nonempty intersection with the null space of
the matrix [g1(�); : : : ; gn(�)], for gi(�) = �(zi; �) ⊗ qK (xi). The theory will guarantee
that such a nonempty intersection exists with probability approaching one when the
conditional moment restrictions are satis8ed. In practice, positivity may be a problem
when the moment restrictions are severely violated in the data.
For this estimator the conditional moment restrictions will be approximately satis8ed,

in the sense that functions of xi are approximately orthogonal to the residuals in the
sample. To describe this property, let a(x) denote some function of xi. Consider an
approximation of a(x) by a linear combination qK (x)′� of the approximating functions.
Then by the constraints in Eq. (3.1) and the Cauchy–Schwartz inequality, it follows
that for �̂i = �(zi; �̂).∣∣∣∣∣

∣∣∣∣∣
n∑
i=1

�̂ia(xi)�̂i

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

�̂i[a(xi)− qK (xi)′�]�̂i
∣∣∣∣∣
∣∣∣∣∣

6

{
n∑
i=1

�̂i[a(xi)− qK (xi)′�]2
}1=2{ n∑

i=1

�̂i‖�̂i‖2
}1=2

:

The approximation error
∑n

i=1 �̂i[a(xi)− qK (xi)′�]2 will be small, and hence the sam-
ple expectation

∑n
i=1 �̂ia(xi)�̂i close to zero, by virtue of the approximation properties

of qK (x)′�. The sample expectation
∑n

i=1 �̂ia(xi)�̂i will even be uniformly small over
classes of functions that can be uniformly approximated by a linear combination of
qK (x). For example, for univariate x and splines it is known that such a uniform ap-
proximation holds over the class of all functions with uniformly bounded derivatives.
Thus, the conditional moment condition is approximately satis8ed for empirical likeli-
hood, in the sense that functions of x are approximately uncorrelated with the residual.
The maximization problem in Eq. (3.1) is high dimensional. This computational

burden can be avoided by solving a corresponding dual saddle point problem given by

�̂ = argmin
�∈B

max
�∈ ̂(�)

n∑
i=1

ln [1− �′gi(�)]; �̂i = 1={n[1 + �̂′gi(�̂)]};
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where B is a set of possible values for � and  ̂(�) = {�: �′gi(�)¡ 1; i = 1; : : : ; n}.
As discussed in Qin and Lawless (1994), the estimators obtained from this problem
are the same as those obtained from the original one.
The constraint �∈  ̂n(�) bounds the argument of the log function to be within its

domain. This constraint has a linear inequality form and requires that � be an element
of the intersection of n open half spaces for each �. In practice, although it is not too
di0cult to impose this constraint, it is often possible to just ignore it. Ignoring it will
only lead to problems when the moment conditions are far from being satis8ed in the
data. Indeed, in the theory we show that at �̂ it will not be binding with probability
approaching one, when the conditional moment restrictions hold. By continuity, we
would then expect that the constraint is also not binding for small variation around the
optimum with small misspeci8cation.
For inference purposes, it is useful to have a consistent estimator of the asymptotic

variance of
√
n(�̂ − �0). We consider here the estimator of Qin and Lawless (1994).

Let ĝi=�(zi; �̂)⊗qK (xi) and ĝ�i=@�(zi; �̂)=@�⊗qK (xi). An estimator of the asymptotic
variance like that of Qin and Lawless (1994) is

V̂ = (Ĝ
′
#̂Ĝ)−1; Ĝ =

n∑
i=1

�̂iĝ�i; #̂ =
n∑
i=1

�̂iĝiĝ′i :

Of course, one could also use sample averages where �̂i is replaced by 1=n. The es-
timator with �̂i will have the theoretical property that it is an e0cient semiparametric
estimator of the asymptotic variance of

√
n(�̂ − �0) under the conditional moment re-

strictions, as discussed in Brown and Newey (1998).
Another interesting inference issue is testing of the conditional moment restrictions

of Eq. (2.1). Indeed, in some applications such a test may be the primary goal, as
motivated by a test of some econometric model. We can form such a test from the
empirical log-likelihood ratio of Owen (1988). Let

T̂ = 2

[
n ln(1=n)−

n∑
i=1

ln �̂i

]
= 2

n∑
i=1

ln(1− �̂′gi(�̂)):

This statistic is the diFerence of the log-likelihood for the empirical distribution, which
places probability 1=n on each observation, and the restricted distribution with �̂i. For

8xed K , the statistic T̂ d→%2(JK−p) (Qin and Lawless, 1994). As a result of Theorem
2.1 and K growing with the sample size, it will provide a consistent test of the moment
restrictions. Any case where E[�(z; �)|x] 
= 0 for all � should be detected by 8nding
E[�(z; �) ⊗ qK (x)] 
= 0 for large enough K . In the theory we will show that when
normalized this test statistic is asymptotically normal.
The empirical likelihood approach to conditional moment restrictions can be general-

ized. Let s(v) be a concave function with domain V that is an open interval containing
0. We normalize this function so that s1=s2=−1, where sj(v)=@js(v)=@vj and sj=sj(0).
The estimator is given by

�̂ = argmin
�∈B

sup
�∈ ̂(�)

n∑
i=1

s(�′gi(�)); �̂i = s1 (�̂
′
gi(�̂))

/ n∑
j=1

s1(�̂
′
gj(�̂));
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where  ̂(�) = {� : �′gi(�)∈V; i = 1; : : : ; n}. An estimator of the asymptotic variance
can be formed as for EL, with the �̂i given here replacing the EL �̂i in the formula.

This generalized empirical likelihood (GEL) estimator includes EL as a special case,
where s(v) = ln(1 − v). It also includes the exponential tilting estimator of Imbens
et al. (1998) and Kitamura and Stutzer (1997), where s(v) = −exp(v). As shown by
Newey and Smith (2002), it includes the continuous updating estimator of Hansen
et al. (1996), for s(v) =−(1 + v)2=2.
Each of these estimators will be asymptotically equivalent to the empirical likeli-

hood estimator. Thus, each will be asymptotically e0cient with conditional moment
restrictions, and their asymptotic variance can be estimated as for empirical likelihood.
As shown by Newey and Smith (2002), there is some theoretical preference for the
empirical likelihood estimator based on its 8rst-order bias that (unlike the others) does
not grow with K , and based on its higher-order e0ciency after bias correction. An
exception is the case where �(zi; �0) has zero third conditional moments, where all
have the same 8rst-order bias. For this symmetric case Donald et al. (2002) have
derived the higher-order mean-square error of these estimators, and 8nd that compar-
ison between them depends on conditional kurtosis of �(zi; �0) given xi, and that the
continuous updating estimator has smaller mean-square error than a bias corrected
GMM estimator. Of course, the small sample behavior of these estimators may be
diFerent than their asymptotic approximations.
For each of these estimators there is a corresponding test of conditional moment

restrictions based on their objective function. It takes the form

T̂ = 2

{
max
�∈ ̂(�̂)

n∑
i=1

s(�′gi(�̂))− ns(0)
}
;

as in Smith (1997). For empirical likelihood, where s(v) = ln(1 − v), this statistic is
the empirical log-likelihood ratio. For s(v) quadratic, it is equal to the GMM overi-
denti8cation statistic where ĝ(�) =

∑n
i=1 gi(�)=n, #̂(�) =

∑n
i=1 gi(�)gi(�)

′=n,

T̂ = nĝ(�̂)′#̂(�̂)−1ĝ(�̂):

This statistic is like that of Hansen (1982), where the e0cient estimator �̂ is used
in the middle matrix in the test statistic. For the exponential tilting estimator where
s(v) =−exp(v) the statistic is

T̂ = 2

{
n− min

�∈ ̂(�̂)

n∑
i=1

exp(�′gi(�̂))

}
:

These statistics are mutually asymptotically equivalent. The distribution of each can be
approximated by %2(JK − p), even as K grows with n, at the rates we specify.

4. GMM and IV

The GMM and IV estimators are alternatives to EL that are simpler to compute and
are of long standing interest in econometrics. Also, the low bias of EL surely has some
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cost in terms of variance, so that GMM or IV may be preferred in some settings. For
these reasons we brieJy discuss these estimators here.
GMM and IV are obtained as the minimum to a quadratic form,

�̂ = argmin
�∈B

ĝ(�)′Ŵ ĝ(�);

where Ŵ is a positive semi-de8nite matrix. For GMM the matrix Ŵ is

Ŵ = #̂(�̃)−1;

where �̃ is some preliminary estimator of �0 (such as IV). For IV the matrix Ŵ is

Ŵ = (̃−1 ⊗ Â−; Â=
n∑
i=1

qK (xi)qK (xi)′=n;

where (̃ is a positive de8nite matrix and Â− is any generalized inverse of Â (i.e.
satis8es ÂÂ−Â = Â). The IV weighting matrix will not lead to an e0cient estimator
in general, but will in the homoskedastic case where ((x) = E[�(zi; �0)�(zi; �0)′|x]
is constant and (̃ is a consistent estimator of ( = ((x). In at least some settings
the IV estimator has better 8nite sample properties than GMM, e.g. see Arellano and
Bond (1991).
For IV the generalized inverse is important because it allows for perfect

multicollinearity among the approximating functions, even asymptotically. This is one
of the attractive features of the estimation theory for IV that diFers from the theory
for GMM and EL. For IV it is possible to avoid conditions for guaranteeing positive
de8niteness of the second moment matrix of the approximating functions in large sam-
ples. Consequently, no restrictions need be put on the marginal distribution of x.
For GMM and IV the asymptotic variance of

√
n(�̂ − �0) can be estimated by

V̂ = (Ĝ
′
Ŵ Ĝ)−1; Ĝ = @ĝ(�̂)=@�:

Also, the matrix Ŵ can be updated and the corresponding asymptotic variance estimator
be constructed. For GMM this variance estimator would replace Ŵ with #̂(�̂)−1: For
IV Ŵ is replaced by (̂−1⊗Â− where (̂=

∑n
i=1 �(zi; �̂)�(zi; �̂)

′=n. For IV these variance
estimators will only be consistent under homoskedasticity.
For GMM and IV the test of conditional moment restrictions is the overidentifying

test statistic. This test statistic is

T̂ = nĝ(�̂)′Ŵ ĝ(�̂):

As for the asymptotic variance estimator, Ŵ can be replaced by an update. For GMM,
this test is similar to the GEL test in the quadratic s(v) case. For IV the matrix Ŵ is
only appropriate under homoskedasticity, so that the asymptotic distribution approxima-
tion will only be correct under this assumption. These test statistics will be discussed
in more detail in Section 6.

5. Large sample properties of the estimators

We proceed by giving conditions for consistency, asymptotic normality, and asymp-
totic e0ciency of IV, GMM, and generalized EL. We follow this outline because the
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conditions tend to increase in strength as we consider each of these estimators in turn.
We begin with the following condition for consistency.

Assumption 3. The data are i.i.d. and (a) �0 is unique value of � in B satisfying
E[�(z; �)|x] = 0; (b) B is compact; (c) E[sup�∈B ‖�(z; �)‖2|x] is bounded; (d) there

is )(z) and *¿ 0 such that for all �̃; �∈B; ‖�(z; �̃) − �(z; �)‖6 )(z)‖�̃ − �‖* and
E[)(z)2]¡∞.

This condition imposes the minimal identi8cation condition, that �0 is the unique
value where the conditional moment restrictions are satis8ed. In particular, the existence
of a known K such that the unconditional moment restrictions E[�(z; �) ⊗ qK (x)] = 0
serve to identify �0 is not required. We are able to use this weak assumption because
K is growing with n, and so �0 will be identi8ed by Lemma 2.1. This hypothesis also
imposes a bounded second conditional moment and Lipschitz condition, that is used to
apply the uniform convergence result of Newey (1991).
With these conditions in place we obtain the following consistency result:

Theorem 5.1. If Assumptions 1 and 3 are satis%ed, (̃
p→(, ( is positive de%nite, K →

∞, and K=n→ 0 then the IV estimator satis%es �̂
p→�0.

The only rate condition imposed here is the minimal one K=n→ 0, that is needed for
the variance of series estimators to vanish in large samples. This result is a parametric
version of Theorem 5.1 of Newey and Powell (1989) for the vector �(z; �) case.
An additional condition is needed for asymptotic normality. Let ��(z; �)=@�(z; �)=@�,

D(x) = E[��(z; �0)|x]; and �j��(z; �) = @2�j(z; �)=@�@�′, (j = 1; : : : ; J ).

Assumption 4. (a) �0 ∈ int(B); (b) �(z; �) is twice continuously diFerentiable in a
neighborhood N of �0, E[sup�∈N ‖��(z; �)‖2|x] and E[‖�j��(z; �0)‖2|x] are bounded,
(j = 1; : : : ; J ); (c) E[D(x)′D(x)] is nonsingular.

These are quite standard regularity conditions. Part (c) is a local identi8cation con-
dition that is essential for asymptotic normality. The other conditions are familiar
smoothness conditions, although the assumption of twice diFerentiability of the resid-
ual vector is stronger than is usually assumed. This assumption is useful in showing√
n-consistency when the number of moments is growing with the sample size.
Our IV asymptotic normality result is the following:

Theorem 5.2. If Assumptions 1, 3, and 4 are satis%ed, (̃
p→(, ( is positive de%nite,

K → ∞, and K2=n→ 0 then the IV estimator satis%es
√
n(�̂ − �0) d→N(0; V ) for

V = (E[D(x)′(−1D(x)])−1E[D(x)′(−1((x)(−1D(x)](E[D(x)′(−1D(x)])−1:

Also, if ((x) = ( then V̂
p→V = (E[D(x)′(−1D(x)])−1.

The slower rate of growth for K here as compared with the consistency result is
essential when there is endogeneity. As shown in Donald and Newey (2001), there is
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a bias term for
√
n(�̂− �0) that is of order K=

√
n, that must converge to zero for the

asymptotic distribution to be centered at zero. This condition for asymptotic normality
of IV is the same as in Newey (1990) for a one-step estimator. This result adds to
the previous literature by giving conditions for asymptotic normality of IV under the
weakest possible identi8cation condition, that the conditional moment restrictions are
uniquely satis8ed at the truth. Also, it shows e0ciency of IV under homoskedasticity
for the fully iterated estimator, while the results of Newey (1990) only apply to a
one-step estimator.
Neither of these results requires Assumption 2. This is one of the virtues of the theory

for IV, that no conditions need be imposed on the marginal distribution of x. For GMM,
the theory here requires the stronger conditions of Assumption 2. Indeed, we can show
consistency under conditions like those of IV, with the addition of Assumption 2 and
the following condition:

Assumption 5. (a) ((x) = E[�(z; �0)�(z; �0)′|x] has smallest eigenvalue bounded away
from zero; (b) for a neighborhood N of �0, E[sup�∈N‖�(z; �)‖4|x] is bounded, and
for all �∈N, ‖�(z; �)− �(z; �0)‖6 )(z)‖� − �0‖ and E[)(z)2|x] is bounded.

This condition is useful in obtaining a convergence rate for the sample second mo-
ment matrix #̂(�̃) and for guaranteeing that it is bounded away from singularity.

Theorem 5.3. If Assumptions 1–3 and 5 are satis%ed, �̃ = �0 + Op(1=
√
n), K → ∞,

and �(K)2K=n→ 0 then the GMM estimator satis%es �̂
p→�0.

As previously discussed, �(K)6C
√
K for splines and �(K)6CK for power series,

so that K2=n→ 0 su0ces for splines and K3=n→ 0 for power series. These conditions
are stronger than for IV. It is di0cult to weaken them because they are used to control
the singularity of the second moment matrix #̂(�̃). This seems to be the 8rst result
showing consistency of the two-step GMM estimator when the number of moment
restrictions grow with the sample size. Previous results, such as those of Newey (1993)
and Hahn (1997) only apply to a one-step estimator.
Asymptotic normality and asymptotic e0ciency of the GMM estimator holds under

the additional condition of Assumption 4.

Theorem 5.4. If Assumptions 1–5 are satis%ed, K → ∞, �̃ = �0 + Op(1=
√
n), and

�(K)2K=n→ 0 then the GMM estimator satis%es
√
n(�̂ − �0) d→N(0; V ); V̂

p→V = (E[D(x)′((x)−1D(x)])−1:

This result gives conditions for the GMM estimator to attain the semiparametric
asymptotic variance bound V . This seems to be the 8rst asymptotic normality result
for the fully iterated two-step nonlinear GMM estimator with growing numbers of
moments. Newey (1993) and Hahn (1997) only consider linearization around an initial
asymptotically normal estimator and Koenker and Machado (1999) linear models with
stronger restrictions on the growth rate of K .
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The following condition is useful for generalized empirical likelihood:

Assumption 6. (a) s(v) is twice continuously diFerentiable with Lipschitz second deriva-
tive in a neighborhood of 0; (b) there is �¿ 2 with E[sup�∈B ‖�(zi; �)‖�]¡∞ and
�(K)2K=n1−2=� → 0.

Part (b) of this assumption imposes a slightly stronger restriction on the growth rate
of K than the condition �(K)2K=n → 0 used in GMM estimation, that is less strong
the more moments of �(zi; �) there are.
With these conditions we obtain the following consistency result:

Theorem 5.5. If Assumptions 1–3, 5, and 6 are satis%ed and K → ∞ then the GEL
estimator satis%es �̂

p→�0.

The restrictions on the growth rate of K may be stronger than are needed. Indeed,
as shown in Newey and Smith (2002), the bias of the empirical likelihood estimator
should be of smaller order for large K than that of the two-step GMM estimator.
Consequently even K2=n → 0 may not be needed for

√
n-consistency. We leave the

pursuit of a weaker bound on the growth rate of K to future research.
We also have the following asymptotic normality result:

Theorem 5.6. If Assumptions 1–6 are satis%ed, K → ∞, and �(K)2K2=n → 0, then
the GEL estimator satis%es

√
n(�̂ − �0) d→N(0; V ); V̂

p→V; V = (E[D(x)′((x)−1D(x)])−1:

This result gives conditions for generalized EL estimators to attain Chamberlain’s
(1987) semiparametric e0ciency bound. As previously discussed, �(K)6C

√
K for

splines and �(K)6CK for power series, so that the rate conditions correspond to
K3=n → 0 for splines and K4=n → 0 for power series. These seem to be the 8rst
results of any kind on the asymptotic properties of GEL estimators when the number
of moment restrictions can grow with the sample size.

6. Consistent conditional moment tests

We consider tests based on GEL, GMM, and IV. The GEL test has the form given
above,

T̂GEL = 2

{
max
�∈ ̂(�̂)

n∑
i=1

s(�′gi(�̂))− ns(0)
}
:

The GMM test statistic is

T̂GMM = nĝ(�̂)′#̂(�̃)−1ĝ(�̂);
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where �̃ is some
√
n-consistent estimator. The IV test has the form

T̂ IV = nĝ(�̂)′((̃−1 ⊗ Â−)ĝ(�̂); Â=
n∑
i=1

qK (xi)qK (xi)′=n;

where (̃ is a consistent estimator of Var(�(zi; �0)). Unlike GEL and GMM, the distri-
bution results we give for this test statistic will require homoskedasticity.
The relationship of these tests with some in the literature is clari8ed by some special

cases of the IV test. Consider the case where J = 1, so

T̂ IV = ĝ(�̂)′Â−1ĝ(�̂)=(̃:

This test statistic can be interpreted as (-̂2=(̃)nR2, where R2 is the constant unadjusted
r-squared from a regression of �(zi; �̂) on qK (xi )̇ and -̂2=

∑n
i=1 �(zi; �̂)

2=n. For instance,
consider the case where for large enough K

�(zi; �) = yi − [SqK (xi)]′�;

and S is a selection matrix that picks out the same variables for each K . In other
words, �(z; �) is a residual for a linear regression where the right-hand side variables
are included in qK (x). Also, suppose that (̃ is the sum of squared residuals from a
regression of yi on qK (xi) divided by n − K . Then T̂ is K − p times the F-statistic
for the null hypothesis that all but the regressors SqK (xi) have zero coe0cients. This
statistic was previously considered in Eubank and Spiegelman (1990) and Hong and
White (1995). We obtain the asymptotic distribution of this statistic under weaker
conditions on the growth rate of K than previously given in some cases. Our results
also generalize previous results by allowing for endogeneity in right-hand side variables
in testing conditional moment restrictions.
For 8xed K the asymptotic distribution of all of the statistics is known to be %2(JK−

p), under the null hypothesis that the conditional moment restrictions are satis8ed. Here
we show that this approximation will continue to hold as K grows with the sample
size. For this purpose we use the asymptotic normal approximation to the chi-square
for large degrees of freedom. From the fact that a random variable Ym ∼ %2(m) has the
same distribution as the sum of m i.i.d. random variables with mean 1 and variance 2,
the central limit theorem gives

%2(JK − p)− (JK − p)√
2(JK − p)

d→N(0; 1);

as K → ∞. We will give conditions for

T̂ − (JK − p)√
2(JK − p)

d→N(0; 1): (6.1)

It follows from these two results that for q*;m the 1−* quantile of the %2(m) distribution,

Pr(T̂¿ q*;JK−p) = Pr

(
T̂ − (JK − p)√

2(JK − p) ¿
q*;JK−p − (JK − p)√

2(JK − p)

)
→ *:
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Thus, Eq. (6.1) will imply that the %2(JK −p) approximation to the distribution of T̂
will be asymptotically correct even with K growing.
One could also use directly the asymptotic normality result of Eq. (6.1), choosing a

rejection region of the form

T̂ − (JK − p)√
2(JK − p) ¿ z1−*;

where z1−* is the 1−* quantile of the standard normal distribution. Either this rejection
region or the one T̂¿ q*;JK−p have asymptotic level *. We have a preference for the
chi-squared approximation because it is correct for 8xed K , and because the asymptotic
normality approximation does not depend on the value of p used in Eq. (6.1) or on
the estimator used in forming the test, as we show below. A formal justi8cation of
this preference would depend on the use of higher order asymptotic approximations,
which we reserve to future work.
Before showing asymptotic normality of the statistics we 8rst present two preliminary

results. These results are of interest because they apply more generally, to other moment
restriction settings as well as those considered here. Also, they help to highlight the
diFerences between the testing theory given here and that already in the literature. For
each of them, let g(zi; �) be some m× 1 vector of functions, that is not necessarily of
the Kronecker product form we have considered here. Let

ĝ(�) =
n∑
i=1

g(zi; �)=n;

# = E[g(zi; �0)g(zi; �0)′]; G = E[@g(z; �0)=@�]:

Also, let �̂ and #̂ denote estimators of �0 and # respectively (that need not be GEL,
GMM, or IV). The 8rst result is:

Lemma 6.1. If E[g(zi; �0)]=0,
√
n(�̂−�0)=Op(1), ‖#̂−#‖=op(1=

√
m), the smallest

eigenvalue of # is bounded away from zero, g(z; �) is di:erentiable in a neighborhood
of �0, ‖@ĝ( T�)=@�−G‖ p→0 for any T� with ‖ T�− �0‖6 ‖�̂− �0‖, G′#−1G is bounded,
and m→ ∞ then for any constant a

nĝ(�̂)′#̂−1ĝ(�̂)− nĝ(�0)′#−1ĝ(�0)√
2(m− a)

p→0: (6.2)

Although this result is similar to a combination of Lemmas 4 and 5 of de Jong and
Bierens (1994), it is diFerent in some useful ways. Since ĝ(�̂)′#̂−1ĝ(�̂) is invariant to
nonsingular linear transformations of g(zi; �0), the restriction that the smallest eigen-
value of # is bounded away from zero is a normalization, e.g. that can be obtained
by replacing g(z; �) by #−1=2g(z; �). This normalization loads all of the rate and size
restrictions onto the condition ‖#̂−#‖= op(1=

√
m). This normalization actually leads

to weaker rate conditions than can be obtained in other ways, in some cases. In
addition, this result is stated with general conditions, allowing it to be applied to
any GMM overidentifying tests where the number of moment restrictions is growing
with the sample size.



70 S.G. Donald et al. / Journal of Econometrics 117 (2003) 55–93

The only condition that this result imposes on the estimated parameters is that they
are

√
n-consistent. Thus, the limiting distribution of the quadratic form nĝ(�̂)′#̂−1ĝ(�̂)

will be invariant to the choice of estimator. This occurs because the growth of the
number of moment restrictions m overwhelms the eFect of the estimated parameters.
In addition the condition on convergence of the moment Jacobian is generally weaker
than the one on convergence of #̂, while boundedness of G′#−1G is easily seen to
hold quite generally. Note that (G′#−1G)−1 is the asymptotic variance matrix of the
optimal GMM estimator, which will generally be bounded below by the semiparametric
e0ciency bound, for whatever model the moments come from, so that G′#−1G is
bounded above. Thus, boundedness of G′#−1G above is satis8ed in great generality.
The next result is essentially Theorem 1 of de Jong and Bierens (1994), for a general

GMM setting:

Lemma 6.2. If E[g(zi; �0)] = 0, m→ ∞, and E[{g(zi; �0)′#−1g(zi; �0)}2]=(m
√
n) → 0,

then for any constant a,

nĝ(�0)′#−1ĝ(�0)− (m− a)√
2(m− a)

d→N(0; 1): (6.3)

These basic results lead directly to the asymptotic distribution results for the GEL,
GMM, and IV test statistics. Indeed, most of the conditions of Lemmas 6.1 and 6.2
were shown in the course of deriving the asymptotic normality results of Section 5.
We give the limiting distribution result for the GMM and IV statistics in the next
theorem.

Theorem 6.3. If Assumptions 1–4 are satis%ed K → ∞, �̃ = �0 + Op(1=
√
n), and

�(K)2K2=n→ 0 then

T̂GMM − (JK − p)√
2(JK − p)

d→N(0; 1):

If in addition (̃= (+Op(1=
√
n) and Var(�(z; �0)|x) is constant then

(T̂ IV − T̂GMM)√
2(JK − p)

p→0:

This result is new in providing an asymptotic distribution result for the GMM (and
IV) overidenti8cation test statistics of conditional moment restrictions. These results
allow for endogeneity of the variables, which is important in many settings. Also, the
rate conditions are weaker than several in the literature. For Fourier series and splines
�(K)2K2=n → 0 is equivalent to K3=n → 0. This is the same rate given for Fourier
series in de Jong and Bierens (1994) and Hong and White (1995), but is better than
the K5=n → 0 for splines given in Hong and White (1995). Also, for multivariate
power series it su0ces that K4=n→ 0: This condition is new, power series having not
been considered before, except with a Gaussian disturbance in Eubank and Spiegelman
(1990).
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Table 1
Rate restrictions; density of x bounded positive

qkK (x) EL GMM IVa EL Test GMM Test

Splines K3=n→ 0 K2=n→ 0 K2=n→ 0 K4=n→ 0 K3=n→ 0
Power series K4=n→ 0 K3=n→ 0 K2=n→ 0 K5=n→ 0 K4=n→ 0
Fourier series K3=n→ 0 K2=n→ 0 K2=n→ 0. K4=n→ 0 K3=n→ 0

aIV does not require density of x bounded positive.

We can state a corresponding result for the generalized empirical likelihood statistic
T̂GEL. We will allow any

√
n-consistent estimator �̂ to be used in forming the test.

Theorem 6.4. If Assumptions 1–6 are satis%ed, K → ∞, �̂ = �0 + Op(1=
√
n), and

�(K)2K3=n→ 0 then (T̂GEL − T̂GMM)=
√
2(JK − p) p→0.

This gives a new asymptotic distribution result for empirical likelihood and its gen-
eralizations. The rate conditions here are stronger than for the GMM and IV tests, but
still weaker than the spline results of Hong and White (1995).
A full analysis of the power properties of these tests is beyond the scope of this

paper. Here we just note that GMM tests of overidentifying restrictions should perform
similarly to other tests. The following general result provides an illustration. Here
let �a denote the limit of �̂ under misspeci8cation, #a = E[g(zi; �a)g(zi; �a)′]; and
Ga = E[@g(zi; �a)=@�].

Lemma 6.5. If �̂
p→�a, ‖#̂ − #a‖ p→0, the smallest eigenvalue of #a is bounded away

from zero, g(z; �) is di:erentiable in a neighborhood of �a, ‖@ĝ( T�)=@� − Ga‖ p→0
for any T� with ‖ T� − �a‖6 ‖�̂ − �a‖, G′

a#
−1
a Ga is bounded, m → ∞, m=n → 0,

E[g(zi; �a)]′#−1
a E[g(zi; �a)] → 4 then for any constant a(√

m
n

)
nĝ(�̂)′#̂−1ĝ(�̂)− (m− a)√

2(m− a)
p→4=

√
2:

This result implies that the statistic that is asymptotically normal under the null
hypothesis grows at rate n=

√
m under the alternative. This is the same rate of growth

obtained by de Jong and Bierens (1994) and Hong and White (1995).

7. Conclusion

We have derived limits on the rate of growth for the number of moment restrictions
that lead to asymptotic e0ciency of GMM and GEL. We summarize primitive condi-
tions for these results in Table 1, under the condition that the density of x is bounded
away from zero (except for IV).
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It is possible to weaken the condition that the density of x is bounded away from
zero, at the expense of stronger restrictions on the growth of K . As shown in Newey
(1988b), if the density is bounded away from zero over some interval, not the whole
support, then for power series the smallest eigenvalue of E[qK (x)qK (x)′] is bounded
below by K−CK=C for some constant C. Then q̃K (K)=KCKqK (x) will satisfy Assump-
tion 2 with �(K) = KCK for some constant C. The resulting rate restriction for power
series is

Power series; density bounded positive on subset of support :

K ln(K)=ln(n) → 0:

This condition shows a trade-oF between the strength of the assumptions on the dis-
tribution of x and the restrictions on the growth rate for K . Here the density is only
required to be bounded away from zero over an arbitrarily small interval, but a very
strong restriction is imposed on the growth rate for number of terms.
Strong restrictions on the growth rate of K are also needed for Assumption 2 when

Fourier series are modi8ed by also including power series and/or restricting the domain
of the power series. As discussed in Gallant and Souza (1991), the smallest eigenvalue
goes to zero very quickly for such series, when the density of x is bounded away from
zero on its support. For the case where the density is bounded away from zero on its
support we have

Fourier Jexible form : K=ln(n) → 0:

It would be useful to know how to choose K in practice. The rate results we have
presented are useful preliminaries for the development of sample based methods for
choosing K . Donald et al. (2002) give criteria that can be used for choosing the number
of moment restrictions.

Appendix A. Proofs

Throughout appendix, C will denote a generic positive constant that may be diFerent
in diFerent uses. Also, with probability approaching one will be abbreviated as w.p.a.1,
positive semi-de8nite as p.s.d., positive de8nite as p.d., �min(A) and �max(A), and A1=2

will denote the minimum and maximum eigenvalues, and square root, respectively,
of a symmetric matrix A. Let

∑
i denote

∑n
i=1. Also, let CS, M, and T refer to the

Cauchy–Schwartz, Markov, and triangle inequalities, respectively.

Proof of Lemma 2.1. The 8rst conclusion follows by iterated expectations. To show
the second conclusion, �= �(z; �0) and 8K be such that E[‖E[�|x]−8KqK (x)‖2] → 0.
It then follows that E[qK (x)′8′

K�] = E[qK (x)′8′
KE[�|x]] → E[‖E[�|x]‖2]¿ 0, implying

that E[�⊗ qK (x)] 
= 0 for all K large enough.

The following is a version of the standard consistency result that will be useful in
the proofs:
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Lemma A.1. Suppose that (i) R(�) has a unique minimum at �0 ∈B; (ii) B is com-
pact; (iii) R(�) is continuous; and (iv) sup�∈B |R̂(�)− R(�)|

p→0. Then for any �̃∈B,
if R̂(�̃)

p→R(�0) then �̃
p→�0.

Proof. By (iv) and the triangle inequality, R(�̃)
p→R(�0). Also, for any open set N

containing �0, by (i)–(iii) inf �∈B\NR(�)¿R(�0), so that �̃∈N w.p.a.1.

Lemma A.2. If Assumption 2 is satis%ed then it can be assumed without loss of
generality that q̃K (xi) = qK (xi) and that E[qK (xi)qK (xi)′] = IK .

Proof. All of the estimators are invariant to a nonsingular linear transformation of
qK (x). In particular, the estimator is the same with q̃K (x) as with qK (x), giving the
8rst conclusion. Now, let B=E[qK (xi)qK (xi)′] and TqK (x)=B−1=2qK (x). By the smallest
eigenvalue of B bounded below, the largest eigenvalue of B−1 is bounded above. Then
‖ TqK (x)‖=

√
qK (x)′B−1qK (x)6C‖qK (x)‖6C�(K). Furthermore, E[ TqK (xi) TqK (xi)′]=IK

holds, giving the conclusion.

The next result is helpful to introduce some notation. Let qi = qK (xi).

Lemma A.3. If Assumption 1 is satis%ed, (i) �̂
p→�̃; (ii) ai(�) = a(zi; �) and bi(�) =

b(zi; �) are r × 1 vectors of functions that are continuous at �̃ with probability
one and there is a neighborhood N of �̃ such that E[sup�∈N ‖ai(�)‖2]¡∞ and
E[sup�∈N ‖bi(�)‖2]¡∞, E[‖ai(�̃)‖2|x] and E[‖bi(�̃)‖2|x] are bounded; (iii) Ui =
U (xi) is r × r p.d. matrix that is bounded and has smallest eigenvalue bounded
away from zero; (iv) K → ∞, and K=n→ 0, then

∑
i

ai(�̂)′ ⊗ q′i
(∑

i

Ui ⊗ qiq′i
)−∑

i

bi(�̂)⊗ qi=n p→E[E[ai(�̃)′|xi]U−1
i E[bi(�̃)|xi]]:

Proof. Let Fi =U
1=2
i be a symmetric square root of Ui, Pi =Fi ⊗ q′i , P= [P′

1; : : : ; P
′
n]

′,
Ai(�) = F−1

i ai(�), A(�) = [A1(�)′; : : : ; An(�)′]′, Â= A(�̂), A= A(�̃), Bi(�) = F−1
i bi(�),

B(�) = [B1(�)′; : : : ; Bn(�)′]′, B̂ = B(�̂), and B = B(�̃). Note that
∑

i Ui ⊗ qiq′i = P′P,
and that

∑
i

ai(�̂)′ ⊗ q′i
(∑

i

Ui ⊗ qiq′i
)−∑

i

bi(�̂)⊗ qi = Â′QB̂;

Q = P(P′P)−P′:

It follows by Lemma 4.3 of Newey and McFadden (1994), with a(z; >) there equal to
4(z; �) = [b(z; �)− b(z; �̃)]′U (x)−1[b(z; �)− b(z; �̃)], and by Q idempotent that

T̂ B
def=(B̂− B)′Q(B̂− B)=n6 ‖B̂− B‖2=n

6
∑
i

4(zi; �̂)=n
p→E[4(zi; �̃)] = 0:
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Also, the same result holds T̂ A de8ned in the analogous way. For X = (x1; : : : ; xn), let

ai=ai(�̃), Tai=E[ai|xi], and note that TAdef=E[A|X ]=( Ta′1F1; : : : ; Ta
′
nFn)

′. Note that by i.i.d.
observations,

E[(A− TA)(A− TA)|X ] = diag(F−1
1 Var(a1|x1)F−1

1 ; : : : ; F−1
n Var(an|xn)F−1

n )6CI:

By iterated expectations and tr(Q)6CK , so for T̃ A
def=(A− TA)′Q(A− TA)=n,

E[T̃ A] = E[tr(QE[(A− TA)(A− TA)′|X ]Q)]=n6CE[tr(Q)]=n6CK=n→ 0:

Then T̃ A
p→0 by M. Also, the same result holds for T̃ B de8ned in the analogous way.

By Assumption 1 there exists 8K such that E[‖U−1
i Tai − 8Kqi‖2] → 0. Then for �̃K =

vec(8′
K); by M,

‖ TA− P�̃K‖2=n=
∑
i

‖F−1
i Tai − (Fi ⊗ q′i)�̃K‖2=n

=
∑
i

‖Fi‖2‖U−1
i Tai − (I ⊗ q′i)�̃K‖2=n

=
∑
i

‖Fi‖2‖U−1
i Tai − 8Kqi‖2=n6C

∑
i

‖U−1
i Tai − 8Kqi‖2=n p→0:

It follows by QP = P and I − Q idempotent that

TTA
def= TA

′
(I − Q) TA=n= ( TA− P�̃K)′(I − Q)( TA− P�̃K)=n6 ‖ TA− P�̃K‖2=n p→0;

with the same result holding for the analogous term TTB.
Next, note that by CS,

TA = (Â− TA)′Q(Â− TA) = (Â− A+ A− TA)′Q(Â− A+ A− TA)

6 T̂ A + T̃ A + 2
√
T̂ A

√
T̃ A

p→ 0:

Also, by M, TA
′ TA=n = Op(1). The analogous results also hold for B replacing A. Then

by the CS and T,

|Â′QB̂=n− TA
′ TB=n| = |(Â− TA)′Q(B̂− TB) + (Â− TA)′Q TB

+ TA
′
Q(B̂− TB)− TA

′
(I − Q) TB|=n

6
√
TA
√
TB +

√
TA

√
TB
′ TB=n+

√
TA
′ TA=n

√
TB +

√
TTA

√
TTB

p→ 0:
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Noting that TA
′ TB=n =

∑
i Ta

′
iU

−1
i

Tbi=n, the conclusion follows by Khintchine’s law of
large numbers.

Lemma A.4. If Assumption 1 is satis%ed, Ai and Yi are r × 1 random vectors with
E[Ai|xi] = 0, E[‖Ai‖2|xi]6C, and E[‖Yi‖2|xi]6C, Ui = U (xi) is a r × r p.d. matrix
that is bounded and has smallest eigenvalue bounded away from zero, K → ∞, and
K2=n→ 0 then

∑
i

Y ′
i ⊗ q′i

(∑
i

Ui ⊗ qiq′i
)− ∑

i

Ai ⊗ qi=
√
n−

∑
i

E[Yi|xi]′U−1
i Ai=

√
n

p→ 0:

Proof. Let Fi and P be as speci8ed in the proof of Lemma A.3, Ai = F−1
i Yi, TAi =

E[Ai|xi]=F−1
i E[Yi|xi], A=(A′1; : : : ; A

′
n)

′, TA=( TA′1; : : : ; TA
′
n)

′, Bi=F−1
i Ai, and B=(B′

1; : : : ; B
′
n)

′.
Then, similarly to Lemma A.3, by E[bi|xi] = 0,

∑
i

Y ′
i ⊗ q′i

(∑
i

Ui ⊗ qiq′i
)− ∑

i

Ai ⊗ qi=
√
n−

∑
i

E[Yi|xi]′U−1
i Ai=

√
n

=A′QB=
√
n− TA

′
B=
√
n= (A− TA)′QB=

√
n− TA

′
(I − Q)B=√n:

It follows as in the proof of Lemma A.3 that (A− TA)′Q(A− TA) = Op(K) and B′QB=
Op(K) so that

|(A− TA)′QB=
√
n|6

√
(A− TA)′Q(A− TA)

√
B′QB=

√
n=Op(K=

√
n)

p→ 0:

Also, as in Lemma A.3, E[ TA
′
(I − Q) TA]=n→ 0, so by iterated expectations

E[‖ TA′(I − Q)B=√n‖2] = E[ TA
′
(I − Q)E[BB′|x](I − Q) TA]=n

6CE[ TA
′
(I − Q) TA]=n→ 0:

the conclusion then follows M and T.

For the statement of the next result, let

R̂(�) = ĝ(�)′[(̃−1 ⊗ Â−]ĝ(�);
R(�) = E[E[�(z; �)|x]′(−1E[�(z; �)|x]]: (A.1)

Lemma A.5. If Assumptions 1 and 3 are satis%ed, (̃
p→(; ( is positive de%nite, K →

∞, and K=n → 0, then R(�) has a unique minimum at �0, R(�) is continuous on B
and sup�∈B |R̂(�)− R(�)|

p→ 0.

Proof. By ( p.d., for any � 
= �0 it follows by E[�(z; �)|x] 
= 0 that

R(�)¿CE[E[�(z; �)|x]′E[�(z; �)|x]]¿0 = R(�0):
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To show continuity of R(�), note that by (−1 p.d. and CS,

|R(�̃)− R(�)|6 E[E[�(z; �̃)− �(z; �)|x]′(−1E[�(z; �̃)− �(z; �)|x]]
6CE[‖E[�(z; �̃)− �(z; �)|x]‖2]6CE[‖�(z; �̃)− �(z; �)‖2]
6CE[)(z)2]‖�̃ − �‖2*:

By Corollary 2.2 of Newey (1991) it su0ces to show that (i) R̂(�)
p→R(�) for each

� in B and (ii) that there is D̂=Op(1) with |R̂(�̃)− R̂(�)|6 D̂‖�̃− �‖*. To show (i),
apply Lemma A.1 with a(z; �) = a(z) = �j(z; �) and b(z; �) = b(z) = �k(z; �), with �
8xed, to obtain, for �j = (�j(z1; �); : : : ; �j(zn; �))′ and T�ji = E[�j(zi; �)|xi],

�′jQ�k=n
p→E[ T�ji T�ki]:

Then by the continuous mapping theorem, (̃−1 p→(−1 and

R̂(�) =
J∑

j; k=1

((̂−1)jk(�′jQ�k=n)
p→

J∑
j; k=1

((−1)jkE[ T�ji T�ki] = R(�):

To show (ii), let �j(�) = (�j(z1; �); : : : ; �j(zn; �))′ and �̃j = �j(�̃). Note that by
Assumption 3 and M, D̂) = [

∑n
i=1 )(zi)

2=n]1=2 = Op(1). Also,

‖�̃j − �j‖=
√
n=

[
n∑
i=1

(�̃ji − �ji)2=n
]1=2

6 D̂)‖�̃ − �‖*:

Furthermore, for any 8xed T�∈B, note that by M and Assumption 3, TD=[
∑n

i=1 �(zi; T�)
2=

n]1=2 = Op(1). Then

sup
�∈B

‖�j(�)‖=
√
n6 sup

�∈B
‖�j(�)− �j( T�)‖=

√
n+ TD

6 D̂) sup
�∈B

‖� − T�‖* + TD6CD̂) + TD =Op(1):

Then by the T and CS, and by Q idempotent, for D̂( =maxj; k |((̂−1)jk |=Op(1)

|R̂(�̃)− R̂(�)|6 D̂(
J∑

j; k=1

|�̃′jQ�̃k − �′jQ�k |=n

6 D̂(
J∑

j; k=1

[|(�̃j − �j)Q�̃k |+ |�jQ(�̃k − �k)|]=n

6 D̂‖�̃ − �‖*; D̂ = D̂(2J 2D̂)[CD̂) + TD] = Op(1);

giving (ii).

Proof of Theorem 5.1. By Lemma A.5 and compactness of B, all the hypotheses of
Theorem 2.1 of Newey and McFadden (1994) are satis8ed, the conclusion of which
gives the result.
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Proof of Theorem 5.2. By �0 ∈ int(B) and Theorem 2.1, �̂∈ int(B) w.p.a.1. Therefore,
w.p.a.1 the 8rst order conditions are satis8ed, i.e.

@R̂(�̂)=@� = [@ĝ(�̂)=@�]′Ŵ ĝ(�̂) = 0:

By a mean-value expansion in �, there is T� on the line joining �̂ and �0 such that

[@2R̂( T�)=@�@�′](�̂ − �0) + @R̂(�0)=@� = 0: (A.2)

By the chain rule @2R̂( T�)=@�@�′ = [@ĝ( T�)=@�]′Ŵ [@ĝ( T�)=@�] + TF , where TF is the p ×
p matrix with rth column [@2ĝ( T�)=@�@�r]Ŵ ĝ( T�). Note also that by Assumption 3,
E[‖�(z; �0)‖2|x] is bounded, �(z; �) is continuous at �0, and

sup
�∈B

‖�(z; �)‖26C

[
sup
�∈B

‖�(z; �)− �(z; �0)‖2 + ‖�(z; �0)‖2
]

6C[)(z)2 + ‖�(z; �0)‖2]:

Then by Assumptions 1, 3, and 4 the hypotheses of Lemma A.3 are satis8ed for
�̂ = T�, �̃ = �0, a(z; �) = @2�j(z; �)=@�r@�s, and b(z; �) = �k(z; �). Then by Lemma A.3

a(�̂)′Qb(�̂)=n
p→ 0. It then follows by (̃−1 p→(−1 and the continuous mapping theorem

that TF
p→ 0. Similarly the hypotheses of Lemma A.3 are satis8ed for �̂ = T�, �̃ = �0,

a(z; �) = @�j(z; �)=@�r and b(z; �) = @�k(z; �)=@�s, so by Lemma A.3 a(�̂)′Qb(�̂)=n
p→

E[Djr(x)Dks(x)]. It then follows by (̃−1 p→(−1 and the continuous mapping theorem

that [@ĝ( T�)=@�]′Ŵ [@ĝ( T�)=@�]
p→E[D(x)′(−1D(x)], so that

@2R̂( T�)=@�@�′
p→E[D(x)′(−1D(x)]: (A.3)

Next, for each r, (r = 1; : : : ; p), let Yij = @�j(zi; �0)=@�r , Aik = �k(zi; �0), and Ui = 1.
Then the hypotheses of Lemma A.4 are satis8ed, so that for Yj = (Y1j; : : : ; Ynj)′,

Y ′
j QAk=

√
n=

∑
i

Djr(xi)�k(zi; �0)=
√
n+ op(1):

It follows from (̃−1
jk =Op(1) that,

√
n@R̂(�0)=@�r =

∑
j; k

(̃−1
jk (Y ′

j QAk=
√
n) =

∑
j; k

(̃−1
jk

∑
i

Djr(xi)Aik =
√
n+ op(1):

Also, the Slutzky Lemma and consistency of (̃−1
jk give∑

j; k

(̃−1
jk

∑
i

Djr(xi)Aik =
√
n=

∑
j; k

(−1
jk

∑
i

Djr(xi)Aik =
√
n+ op(1)

=
∑
i

Dr(xi)′(−1�(zi; �0)=
√
n+ op(1)
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where Dr(x) is the rth column of D(x). Note also that D(xi) is bounded, so that
Zi=D(xi)′(−1�(zi; �0) has 8nite second moment, and that it has mean zero by iterated
expectations. Therefore, by the Lindbergh–Levy central limit and Slutzky theorems,

√
n@R̂(�0)=@� =

n∑
i=1

D(xi)′(−1�(zi; �0)=
√
n+ op(1)

d→N(0;E[D(x)′(−1((x)(−1D(x)]): (A.4)

The remainder of the asymptotic normality proof follows from Eqs. (A.2)–(A.4) by
standard arguments. Consistency of the asymptotic variance estimator follows similarly
to the proof of @ĝ( T�)=@�′Ŵ @ĝ( T�)=@�

p→E[D(x)′(−1D(x)] given above, with �̂ replacing
T�.

For the purposes of the next several results, let �̂ be some p × 1 random vector
(not necessarily equal to the estimators we have considered), ĝi = gi(�̂), gi = gi(�0),
(i = ((xi), and

#̂ =
∑
i

ĝiĝ′i =n; #̃ =
∑
i

gig′i =n; T# =
∑
i

(i ⊗ qiq′i =n; # = E[gig′i]:

Lemma A.6. If Assumption 2 and 5(b) are satis%ed and �̂=�0 +Op(Cn) with Cn → 0
then

‖#̂ − #̃‖=Op(CnK); ‖#̃ − T#‖=Op(�(K)
√
K=n);

‖ T# − #‖=Op(�(K)
√
K=n):

If Assumption 5(a) is also satis%ed then 1=C6 �min(#)6 �max(#)6C, and if CnK +
�(K)

√
K=n → 0 then w.p.a.1, 1=C6 �min(#̂)6 �max(#̂)6C, 1=C6 �min( T#)6 �max

( T#)6C.

Proof. By Lemma A.2, E[‖qi‖4]6C�(K)2E[‖qi‖2] = C�(K)2K . For )i = )(zi), �i =
�(zi; �0), and �̂i=�(zi; �̂) we have ‖�̂i−�i‖6 )i‖�̂−�0‖ for each i=1; : : : ; n w.p.a.1.
Also, note that Mi=)2i +2)i(zi)‖�i‖ has E[Mi|xi] bounded by CS, so that E[Mi‖qi‖2]=
E[E[Mi|xi]‖qi‖2]6CE[‖qi‖2]6CK . Then by the T, CS, and M, w.p.a.1

‖#̂ − #̃‖6
∑
i

‖�̂i�̂′i − �i�′i‖‖qi‖2=n

6
∑
i

(‖�̂i − �i‖2 + 2‖�̂i − �i‖‖�i‖)‖qi‖2=n

6C‖�̂ − �0‖
∑
i

Mi‖qi‖2=n=Op(CnE[Mi‖qi‖2]) = Op(CnK);
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giving the 8rst conclusion. Also,

E[‖#̃ − T#‖2] = E



∣∣∣∣∣
∣∣∣∣∣
∑
i

(�i�′i − (i)⊗ qiq′i =n
∣∣∣∣∣
∣∣∣∣∣
2



= tr E[(�i�′i − (i)2 ⊗ {qiq′i}2=n]
6 tr E[‖�i‖2�i�′i ⊗ ‖qi‖2qiq′i =n]
= E[E[‖�i‖4|xi]‖qi‖4]=n6C�(K)2K=n;

so the second conclusion follows by M. The third conclusion follows by M and

E[‖ T# − #‖2] = E



∣∣∣∣∣
∣∣∣∣∣
∑
i

(i ⊗ qiq′i =n− #
∣∣∣∣∣
∣∣∣∣∣
2

6 tr E[(2

i ⊗ {qiq′i}2]=n

6CE[‖qi‖4]=n= C�(K)2K=n:
For the fourth conclusion, note that C−1IJ 6(i6CIJ , so that

C−1IJK = C−1E[IJ ⊗ qiq′i]6#6CE[I ⊗ qiq′i] = CI:
Hence, C−16 �min(#)6 �max(#)6C. Also, note that if CnK + �(K)

√
K=n→ 0 then

‖#̂ − T#‖ p→ 0 and ‖ T# − #‖ p→ 0 by the 8rst two conclusions, so ‖#̂ − #‖ p→ 0 by M.
Then, by |�(A) − �(B)|6 ‖A − B‖, where �(A) denotes the minimum or maximum
eigenvalue, it follows that

|�min(#̂)− �min(#)| p→ 0; |�max(#̂)− �max(#)| p→ 0;

giving the fourth conclusion. The other conclusions follow similarly.

Let ��(z; �) = @�(z; �)=@�, D(x) = E[��(z; �0)|x], Di = D(xi), and

Ĝ =
∑
i

��(zi; �̂)⊗ qi=n; TG =
∑
i

Di ⊗ qi=n; G = E[Di ⊗ qi]:

Lemma A.7. If Assumptions 2 and 5(b) are satis%ed and �̂=�0+Op(Cn) with Cn → 0
then

‖Ĝ − TG‖=Op(Cn
√
K +

√
K=n); ‖ TG − G‖=Op(

√
K=n):

Proof. Let ��i = ��(zi; �0), )i = )(zi), and G̃ =
∑

i ��(zi; �0)⊗ qi=n. Then by Lemma
A.2,

E[‖G̃ − TG‖2] = E



∣∣∣∣∣
∣∣∣∣∣
∑
i

(��i − Di)⊗ qi=n
∣∣∣∣∣
∣∣∣∣∣
2



= tr E[(��i − Di)′(��i − Di)‖ qi‖2=n]
6 E[E[‖ ��i‖2|xi]‖qi‖2]=n6CK=n:
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Then ‖G̃ − TG‖=Op(
√
K=n) by M. Also, by the T, CS, and M, w.p.a.1

‖Ĝ − G̃‖6
∑
i

‖��(zi; �̂)− ��i‖ ‖qi‖=n6 ‖�̂ − �0‖
∑
i

)i‖qi‖=n

= Op(CnE[E[)i|xi]‖qi‖]) = Op(Cn{E[‖qi‖2]}1=2) = Op(Cn
√
K):

The 8rst conclusion follows by T. The second conclusion follows by M and Di
bounded,

E[‖ TG − G‖2] = E



∣∣∣∣∣
∣∣∣∣∣
∑
i

Di ⊗ qi=n− G
∣∣∣∣∣
∣∣∣∣∣
2

6E[‖Di‖2‖qi‖2]=n

6CE[‖qi‖2]=n= CK=n:

Lemma A.8. If Assumption 2, 4, and 5 are satis%ed and �̂= �0 +Op(Cn) with CnK +
�(K)

√
K=n→ 0 then

‖ TG
′ T#−1(#̂ − T#)‖=Op(Cn

√
K + �(K)=

√
n):

Proof. By Lemma A.3, with U (x)=((x), a(z; �) equal to the rth column of D(x), and
b(z; �) equal to the sth column of D(x), it follows that to obtain TG

′ T#−1 TG
p→E[D(x)′

((x)−1D(x)] and (hence) TG
′ T#−1 TG=Op(1). Let Hi= TG

′ T#−1(IJ⊗qi). Then by CIJ 6(i,∑
i

‖Hi‖2=n= tr
(∑

i

HiH ′
i =n

)
6C tr( TG

′ T#−1 TG) = Op(1):

Next, let Mi = )2i + 2)i‖�i‖ and R̂n =
∑
i
Mi‖Hi‖‖qi‖=n. Let X = (x1; : : : ; xn). It is well

known that if E[R̂n|X ] = Op(*n) for some *n then R̂n =Op(*n). By CS and M

E[R̂n|X ]6C
∑
i

‖Hi‖‖qi‖=n6C

(∑
i

‖Hi‖2=n
)1=2(∑

i

‖qi‖2=n
)1=2

= Op({E[‖qi‖2]}1=2) = Op(
√
K);

so that Rn =Op(K1=2). Therefore, by T and CS,

‖ TG
′ T#−1(#̂ − #̃)‖6

∑
i

‖Hi‖‖�̂i�̂′i − �i�′i‖‖qi‖=n6 ‖�̂ − �0‖R̂n =Op(Cn
√
K):

It also follows similarly to the proof of Lemma A.5 that

E[‖ TG
′ T#−1(#̃ − T#)‖2|X ]6

∑
i

E[‖�i‖4|xi]‖Hi‖2‖qi‖2=n2

6C[�(K)2=n]
∑
i

‖Hi‖2=n=Op(�(K)2=n);

so that ‖ TG
′ T#−1(#̃ − T#)‖=Op(�(K)=

√
n). The conclusion follows by T.
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Lemma A.9. If Assumptions 2 and 3 are satis%ed and ((x) is bounded then ‖ĝ(�0)‖=
Op(
√
K=n).

Proof. By Lemma A.2,

E[‖ĝ(�0)‖2] = E[‖�i‖2‖qi‖2]=n= E[tr((i)‖qi‖2]=n6CE[‖qi‖2]=n= CK=n;
so the conclusion follows by M.

We now prove the GMM results. Here let #̂ = #̂(�̃).

Proof of Theorem 5.3. Let ĝ = ĝ(�̂) and Tg = ĝ(�0). By Assumption 5 and �̃ = �̂ +
Op(1=

√
n) all of the hypotheses of Lemma A.6 are satis8ed for �̂=�̃ and Cn=1=

√
n. Let

Ŵ=#̂−1. Then by Lemma A.6, �max(Ŵ )=�min(#̂)−16C and �min(Ŵ )=�max(#̂)−1¿C
w.p.a.1. Also, de8ne W̃ = IJ ⊗ Â−. It follows from Lemma A.6 for the special case
where (i = IJ (and hence W̃ = T#) that �max(W̃ )6C w.p.a.1. Then by Lemma A.9
and the de8nition of �̂, w.p.a.1

ĝ′W̃ ĝ6C‖ĝ‖26Cĝ′Ŵ ĝ6C Tg′Ŵ Tg6C‖ Tg‖2 = Op(K=n)
p→ 0:

Now, note that ĝ′W̃ ĝ= R̂(�) as in Eq. (A.1), for (̃= IJ . Then, by Lemma A.5 all of
the conditions of Lemma A.1 are satis8ed, and its conclusion gives the result.

Proof of Theorem 5.4. Let Ŝ(�)= ĝ(�)′#̂−1ĝ(�)=2. By consistency of �̂, it follows by
the 8rst-order conditions and a mean-value expansion that w.p.a.1,

[@2Ŝ( T�)=@�@�′](�̂ − �0) + @Ŝ(�0)=@� = 0; (A.5)

where T� denotes a mean value and, by the chain rule, @2Ŝ( T�)=@�@�′ = Ĝ
′
#̂−1Ĝ + TF ,

for Ĝ = @ĝ( T�)=@� and TF the p × p matrix with rth column [@2ĝ( T�)=@�@�r]#̂−1ĝ( T�).
Note that by Assumptions 4 and 5, E[D(x)′((x)−1D(x)]¿CE[D(x)′D(x)], so that
V ={E[D(x)′((x)−1D(x)]}−1 exists. Now successively apply Lemma A.3 with �̃=�0,
�̂= T�, a(z; �) = @�(z; �)=@�r , b(z; �) = @�(z; �)=@�s, and U (x) =((x), for r; s=1; : : : ; J ,
to obtain Ĝ

′ T#−1Ĝ
p→V−1. Also, by Lemma A.6, �max( T#−1) = �min( T#)−16C w.p.a.1.

Thus, for B̂= T#−1Ĝ,

‖B̂‖2 = tr(B̂′
B̂)6Ctr(Ĝ

′ T#−1Ĝ) = Op(1):

Also, by Lemma A.6 �max(#̂−1)6C w.p.a.1, so by Lemma A.6, T, and CS

‖Ĝ′
#̂−1Ĝ − Ĝ′ T#−1Ĝ‖ = ‖B̂′{ T# − #̂ + ( T# − #̂)#̂−1( T# − #̂)B̂‖

6 ‖B̂‖2(‖ T# − #̂‖+ C‖ T# − #̂‖2) p→ 0:

Then by T,

Ĝ
′
#̂−1Ĝ

p→V−1: (A.6)
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With analogous arguments, e.g. applying Lemma A.1 with a(z; �) = @2�(z; �)=@�s@�r
and b(z; �) = �(z; �), gives TF

p→ 0. It then follows by the triangle inequality that

@2Ŝ( T�)=@�@�′
p→V−1: (A.7)

Next, consider @Ŝ(�0)=@�=G̃
′
#̂−1ĝ(�0), where G̃=@ĝ(�0)=@�. For TG=

∑
i Di⊗qi=n,

it follows by Lemma A.7 with �̃=�0 and Cn=0 that ‖G̃− TG‖=op(
√
K=n). By Lemmas

A.6 and A.9, w.p.a.1 ‖#̂−1 Tg‖26C‖ Tg‖=Op(
√
K=n).

‖(G̃′
#̂−1 − TG

′ T#−1) Tg‖6 (‖G̃ − TG‖+ ‖ TG
′ T#−1(#̂ − T#)‖)‖#̂−1 Tg‖

= Op([
√
K + �(K)]=

√
n)Op(

√
K=n) = op(1=

√
n):

Furthermore, by Lemma A.4, with Yi equal to D(xi), Ai = �i, and Ui = ((xi),

TG
′ T#−1 Tg−

∑
i

D(xi)′((xi)−1�i=n= op(1=
√
n):

By the Lindbergh–Levy central limit theorem,
∑

i D(xi)
′ ((xi)−1�i=

√
n d→N(0; V−1),

so it follows by the triangle inequality and the Slutzky theorem that
√
n@Ŝ(�0)=@�

d→N(0; V−1):

The 8rst conclusion follows by Eq. (A.7) and the Slutzky and continuous mapping
theorems in the usual way. Also, consistency of V̂ follows exactly as in the proof of
Eq. (A.6).

The following results are useful for the proofs for GEL. Let Ŝ(�; �)=
∑
i
s(�′gi(�))=n.

Lemma A.10. If Assumption 6 is satis%ed then for any )n = o(n−1=��(K)−1) and
 n={� : ‖�‖6 )n} we have max�∈B; �∈ n;i6n |�′gi(�)|

p→ 0 and w.p.a.1  n ⊂  ̂(�) for
all �∈B.

Proof. For bi = sup�∈B ‖�(zi; �)‖, it follows by M that maxi6n )i =Op(n1=�), so

max
�∈B;�∈ n; i6n

|�′gi(�)|6 )n�(K)max
i6n

bi
p→ 0;

giving the 8rst conclusion. Also, by the 8rst conclusion, w.p.a.1 �′gi(�)∈V for all
�∈B and �∈ n, giving the second conclusion.

Lemma A.11. If Assumptions 2, 5, and 6 are satis%ed, �̃=�0+Op(Cn), CnK → 0, and
‖ĝ(�̃)‖ = Op(

√
K=n) then sup�∈ ̂(�̃) Ŝ(�̃; �)6 s0 + Op(K=n), �̃ = argmax�∈ ̂(�̃) Ŝ(�̃; �)

exists w.p.a.1, and ‖�̃‖=Op(
√
K=n).

Proof. Choose )n =o(n−1=��(K)−1) and
√
K=n=o()n), which is possible by �(K)2K=

n1−2=� → 0. Then for  n as in the statement of Lemma A.10, it follows by the
conclusion of Lemma A.10 that Ŝ(�̃; �) is twice continuously diFerentiable on  n,
w.p.a.1. Then T�= argmax�∈ n Ŝ(�̃; �) exists w.p.a.1. Let g̃i = gi(�̃), and g̃= ĝ(�̃). By
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assumption we have ‖g̃‖ = Op(
√
K=n). Also, by Assumption 6(b) �(K)

√
K=n → 0,

so by Lemma A.6, �min(
∑

i g̃ig̃
′
i =n)¿C w.p.a.1. Furthermore, by Lemma A.10 and

Assumption 6(a), for any �̇ on the line joining T� and 0, w.p.a.1 maxi6n s2(�̇
′
g̃i)6−C.

By a Taylor expansion around �= 0 with Lagrange remainder, w.p.a.1.

s0 = Ŝ(�̃; 0)6 Ŝ(�̃; T�) = s0 − T�
′
g̃+ T�

′
[∑

i

s2(�̇
′
gi)g̃ig̃′i =n

]
T�=2

6 s0 + ‖ T�‖‖g̃‖ − C T�
′
(∑

i

g̃ig̃′i =n

)
T�6 s0 + ‖ T�‖‖g̃‖ − C‖ T�‖2:

Then subtracting s0−C‖ T�‖2 from both sides and dividing by ‖ T�‖, we obtain C‖ T�‖6 ‖g̃‖.
It follows from this that ‖ T�‖=Op(

√
K=n), so that w.p.a.1 ‖ T�‖¡)n, i.e. T�∈ int( n). It

then follows that @Ŝ(�̃; T�)=@�=0. Also, since  n ⊂  ̂(�̃), we also have T�∈  ̂(�0). By
concavity of Ŝ(�̃; �) and convexity of  ̂(�̃) it then follows that Ŝ(�̃; T�) = max�∈ ̂ (�̃)

Ŝ(�̃; �), giving the second and third conclusions with �̃ = T�. The last inequality of the
above equation then gives Ŝ(�̃; �̃)6 s0 + ‖�̃‖‖g̃‖ − C‖�̃‖2 = s0 + Op(K=n).

Lemma A.12. If Assumptions 2, 5, and 6 are satis%ed and K�(K)2=n → 0 then for
any )n = o(n−1=��(K)−1),  n = {�: ‖�‖6 )n}, �̃∈B, and �̃∈ n, it is the case that
�max(−

∑n
i=1 s2(�̃

′
g̃i)g̃ig̃′i =n)6C w.p.a.1.

Proof. Let g̃i= gi(�̃) and �̃i=�(zi; �̃). By Lemma A.10 and Assumption 6(a), w.p.a.1
maxi6n − s2(�̃

′
g̃i)6C, so that −∑n

i=1 s2(�̃
′
g̃i)g̃ig̃′i =n6C

∑n
i=1 g̃ig̃

′
i =n w.p.a.1. Also,

for bi = sup�∈B ‖�(zi; �)‖, by CS, �̃i�̃′i6Cb2i IJ , so that w.p.a.1
∑n

i=1 g̃ig̃
′
i =n6C#̃,

#̃ =
∑n

i=1 (IJ ⊗ qiq′i)b
2
i =n. Then similarly to the proof of Lemma A.6 it follows that

‖#̃ − E[#̃]‖ p→ 0. Since

E[#̃] = E[b2i (IJ ⊗ qiq′i)] = E[E[b2i |xi](IJ ⊗ qiq′i)]6CIJK ;

it follows similarly to the proof of Lemma A.6 that �max(#̃)6C, implying #̃6CIJK
w.p.a.1. The conclusion then follows by the inequalities previously shown in this
proof.

Lemma A.13. If Assumptions 2, 3, 5, and 6 are satis%ed then for any T�∈  ̂(�̂) it is
the case that w.p.a.1,

Ŝ(�̂; T�)6 sup
�∈ ̂(�̂)

Ŝ(�̂; �)6 s0 + Op(K=n):

Proof. The 8rst inequality is obvious. Also, by Lemma A.9 the hypotheses of Lemma
A.11 are satis8ed for �̃ = �0, so that sup�∈ ̂(�0) Ŝ(�0; �)6 s0 + Op(K=n). Then by the

de8nition of �̂ we have sup�∈ ̂(�̂) Ŝ(�̂; �)6 sup�∈ ̂(�0) Ŝ(�0; �), giving the second in-
equality.
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Lemma A.14. If Assumptions 2, 3, 5, and 6 are satis%ed then ‖ĝ(�̂)‖=Op(
√
K=n).

Proof. Let ĝ= ĝ(�̂) and choose )n=o(n−1=��(K)−1),
√
K=n=o()n), and  n as in the

statement of Lemma A.10. Let T� =−)nĝ=‖ĝ‖, so that T�
′
ĝ=−)n‖ĝ‖. Then T�∈ n, so

by an expansion and Lemma A.12,

Ŝ(�̂; T�) = s0 − T�
′
ĝ+ T�

′
[∑

i

s2(�̇
′
ĝi)ĝiĝ′i =n

]
T�=2

¿ s0 − T�
′
ĝ− C‖ T�‖2¿ s0 + )n‖ĝ‖ − C)2n: (A.8)

Subtracting s0 from both sides of this equation and applying Lemma A.13 gives )n‖ĝ‖−
C)2n6Op(K=n). Also, by the choice of )n, K=(n)n) =

√
K=n(

√
K=n=)n) = o(

√
K=n) =

o()n). Subtracting and dividing by )n gives

‖ĝ‖6Op(K=(n)n)) + C)n =Op()n):

Now, for any An → 0 consider �̃=−Anĝ. Then ‖�̃‖=op()n), so that �̃∈ n, and hence
�̃∈  ̂(�̂) w.p.a.1. It follows by the second equality above that for n large enough,

Ŝ(�̂; �̃)¿ s0 − �̃′ĝ− C‖�̃‖2 = s0 + ‖ĝ‖2(An − CA2n)¿s0 + ‖ĝ‖2An=2;
where the last inequality follows by An → 0, and hence (An − CA2n)¿An=2 for n
large enough. Then by Lemma A.13, and subtracting s0 from both sides we have
‖ĝ‖2An =Op(K=n). Since An is any sequence converging to zero, it follows that ‖ĝ‖2 =
Op(K=n).

Proof of Theorem 5.5. De8ne W̃ = IJ ⊗ Â−. As in the proof of Theorem 5.3 we have
�max(W̃ )6C w.p.a.1. Then by Lemma A.14,

ĝ′W̃ ĝ6C‖ĝ‖2 = Op(K=n)
p→ 0:

Now, note that ĝ′W̃ ĝ= R̂(�) as in Eq. (A.1), for (̃= IJ . Then, by Lemma A.5 all of
the conditions of Lemma A.1 are satis8ed, and its conclusion gives the result.

Lemma A.15. If Assumptions 1–4 and 6 are satis%ed then �̂ = �0 + Op(
√
K=n).

Proof. By Theorem 5.5 �̂
p→ �0. By an expansion, ĝ= Tg+ G̃(�̂−�0) for G̃=@ĝ( T�)=@�

and T� the mean-value. Let W̃ = IJ ⊗ Â−1 and R̂(�) = ĝ(�)′W̃ ĝ(�).

R̂(�̂) = R̂(�0) + 2 Tg′W̃ G̃(�̂ − �0) + (�̂ − �0)′G̃′
W̃ G̃(�̂ − �0):

By T and CS, for D̂ = [(�̂ − �0)′G̃′
WG̃(�̂ − �0)]1=2 and F̂ = [R̂(�̂) + R̂(�0)]1=2,

D̂26 F̂2 + R̂(�0)1=2D̂6 F̂2 + F̂D̂6 F̂2 + 2F̂D̂:

Subtracting 2F̂D̂ from and adding F̂2 to both sides, and then taking square roots gives
|D̂− F̂ |6√

2F̂ . By T, |D̂− F̂ |¿ D̂− F̂ , so that D̂6 (
√
2+1)F̂=CF̂ . By Lemma A.6,
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�max(W̃ )6C, so W̃ 6CIJK w.p.a.1. Then by Lemmas A.9 and A.14 and T, F̂2 =
Op(K=n). Also, by Lemma A.3, G̃

′
WG̃

p→E[D(x)′D(x)] which is nonsingular, so that
D̂2¿C‖�̂ − �0‖2 w.p.a.1. Thus,

C‖�̂ − �0‖26 D̂26CF̂2 = Op(K=n):

Lemma A.16. If Assumptions 2, 5 and 6 are satis%ed and ‖�̃‖ = Op(Cn), then
V# =−∑i svv(�̃

′
ĝi)ĝiĝi=n and VG =−∑i sv(�̃

′
ĝi)@gi(�̂)=@�=n satisfy

‖ V# − #̂‖=Op(Cn�(K)
√
K); ‖ VG − Ĝ‖=Op(Cn

√
K):

Furthermore, if Cn�(K)
√
K → 0 then 1=C6 �min( V#)6 �max( V#)6C w.p.a.1.

Proof. By Lemma A.6, �max(#̂)6C w.p.a.1. For bi = sup�∈N‖�(zi; �)‖, by T, CS
and M,

‖ V# − #̂‖6C
∑
i

|�̃′ĝi|b2i ‖qi‖2=n6
√
�̃
′
#̂�̃
√∑

i

b4i ||qi||4=n

6 ‖�̃‖Op({E[E[b4i |xi]‖qi‖4]}1=2) = Op(Cn�(K)
√
K):

Also, changing to bi = sup�∈N ‖��(zi; �)‖,

‖ VG − Ĝ‖6C
∑
i

|�̃′ĝi|bi‖qi‖=n6
√
�̃
′
#̂�̃
√∑

i

b2i ||qi||2=n

6 ‖�̃‖Op({E[E[b2i |xi]‖qi‖2]}1=2) = Op(Cn
√
K):

The last conclusion follows from Lemma A.6 and ‖ V# − #̂‖ p→ 0, as in the proof of
Lemma A.6.

Lemma A.17. If Assumptions 2, 5 and 6 are satis%ed and ‖�̃‖=Op(Cn) then ‖ TG
′ T#−1

( V# − #̂)‖=Op(Cn�(K)).

Proof. For Hi = Hi = TG
′ T#−1(IJ ⊗ qi), let R̂n =

∑
i ‖Hi‖2)4i ‖qi‖2=n. As in the proof

of Lemma A.8 we have
∑

i ‖Hi‖2=n= Op(1). Then E[R̂n|X ]6C�(K)2
∑

i ‖Hi‖2=n=
Op(�(K)2), so that R̂n =Op(�(K)2). Then by T and CS,

‖ TG
′ T#−1( V# − #̂)‖6

∑
i

‖Hi‖|�′ĝi|)2i ‖qi‖=n

6

√
�̃
′
#̂�̃

(∑
i

‖Hi‖2)4i ‖qi‖2=n
)1=2

6Op(Cn�(K)):
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Proof of Theorem 5.6. By Lemmas A.14 and A.15 the hypotheses of Lemma A.11 are
satis8ed with �̃ = �̂ and Cn =

√
K=n, so that �̂ exists w.p.a.1 and ‖�̂‖ = Op(

√
K=n).

By Assumption 6 there is )n such that )n = o(n−1=��(K)−1) and
√
K=n= o()n). Then

�̂∈ n={�: ‖�‖6 )n}, so by Lemma A.10 maxi6n |�̂′ĝi| p→ 0. Also, by consistency of �̂
it will be an element of int(B) w.p.a.1. It follows that w.p.a.1 Ŝ(�; �)=

∑
i s(�

′ĝi(�))=n
is twice continuously diFerentiable in a neighborhood of (�̂; �̂). Also, by Lemma A.6
with Cn =

√
K=n, w.p.a.1 #̂ =

∑n
i=1 ĝiĝ

′
i =n is nonsingular, and by continuity of s2(v),

s2(�̂
′
ĝi)6 − C for each i, so that @2Ŝ(�̂; �̂)=@�@�′ =

∑
i s2(�̂

′
ĝi)ĝiĝ′i =n is nonsingular

w.p.a.1. Then by the 8rst-order condition @Ŝ(�̂; �̂)=@� = 0 and the implicit function
theorem (e.g. Theorem 9.28 of Rudin, 1976), for all � in a neighborhood of �̂ there is
�̂(�) such that @Ŝ(�; �̂(�))=@�=0 and �̂(�) is continuously diFerentiable in �. By con-
cavity of Ŝ(�; �) we have Ŝ(�; �̂(�))=max�∈ ̂(�)Ŝ(�; �). Then the 8rst-order conditions

for �̂ and the envelope theorem give

0 = @Ŝ(�; �̂(�))=@�|�=�̂ = @Ŝ(�̂; �̂)=@� = VG
′
�̂= 0;

VG = n−1
n∑
i=1

s1(�̂
′
ĝi)@gi(�̂)=@�:

Expanding the 8rst-order condition for �̂ around �= 0 gives

0 =−ĝ− V#�̂= 0; V# =−
∑
i

s2(�̃
′
ĝi)ĝiĝ′i =n:

By Lemma A.16 with Cn=
√
K=n, �min( V#)¿C w.p.a.1. Solving for �̂, plugging in the

8rst-order condition for �̂, and multiplying by s2(0)=s1(0)

VG
′ V#−1ĝ= 0:

Expanding ĝ around �0 gives, for a mean value �̇ and Ġ = @ĝ(�̇)=@�,

VG
′ V#−1Ġ(�̂ − �0) + VG

′ V#−1 Tg= 0:

It follows similarly to the proof of Theorem 5.4 that VG
′ V#−1Ġ

p→V−1. Also, it follows
from Lemmas A.8, A.17 and T that ‖ TG

′ T#−1( V# − T#)‖ = op(
√
K=n) and VG

′ V#−1 Tg =
TG
′ T#−1 Tg + op(n−1=2). As in the proof of Theorem 5.4 it follows that

√
n TG

′ T#−1 Tg d→
N(0; V−1). The remainder of the asymptotic normality result follows by standard
arguments.
Next, consider the consistency of the variance estimator. Replacing s2(v) with s1(v)

in V# in Lemma A.16 and using also Lemmas A.6 and A.7, with Cn =
√
K=n we have

‖ V# − #‖=Op(�(K)
√
K2=n)

p→ 0;

‖ VG − G‖=Op(
√
K2=n)

p→ 0:
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It then follows as in the proof of Theorem 5.4 that VG
′ V#−1 VG

p→V−1. Furthermore, by
s1(0) =−1 an expansion gives∣∣∣∣∣1 +

∑
i

s1(�̂
′
ĝi)=n

∣∣∣∣∣
=

∣∣∣∣∣
∑
i

s2(�̃
′
ĝi)ĝ′i �̂=n

∣∣∣∣∣6C

(
‖�̂‖
∑
i

‖ĝi‖=n
)

6Op(
√
K=n)�(K)

∑
i

sup
�∈B

‖�(zi; �)‖=n=Op(
√
K=n�(K))

p→ 0:

Then by T,

Ĝ
′
#̂−1Ĝ − G′#−1G

= − VG
′ V#−1 VG

[
1 + n

/∑
i

s1(�̂
′
ĝi)

]
+ VG

′ V#−1 VG − G′#−1G
p→ 0:

Then the conclusion follows by G′#−1G → V−1 and T.

Proof of Lemma 6.1. Let Tg= ĝ(�0) and ĝ= ĝ(�̂). By a mean value expansion

ĝ= Tg+ TG(�̂ − �0); TG = @ĝ( T�)=@�: (A.9)

Note that |�min(#̂)− �min(#)|6 ‖#̂ − #‖ p→ 0, so �min(#̂)¿C w.p.a.1, and hence,

‖#̂−1( TG − G)‖2 = tr(( TG − G)′#̂−1=2#̂−1#̂−1=2( TG − G))

6C tr(( TG − G)′#̂−1( TG − G))6C‖ TG − G‖2 p→ 0:

It follows similarly that w.p.a.1, ‖#̂−1(#̂ − #)‖6C‖#̂ − #‖ p→ 0. Note also that by
G′#−1G bounded,

‖#−1G‖2 = tr(G′#−1=2#−1#−1=2G)6 tr(G′#−1G)6C:

It then follows by T and CS that

‖#̂−1 TG − #−1G‖6 ‖#̂−1( TG − G)‖+ ‖#̂−1(#̂ − #)#−1G‖

6C‖ TG − G‖+ ‖#̂ − #‖‖#−1G‖ p→ 0:

It also follows by T that ‖#̂−1 TG‖=Op(1). Also, note that for gi = g(zi; �0),

E[ Tg′#−1 Tg] = E[g′i#
−1gi]=n= E[tr(#−1gig′i)]=n= tr(Im)=n= m=n:
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Then by M, ‖#−1 Tg‖26C
√

Tg′#−1 Tg=Op(
√
m=n). Therefore, by T and CS

‖ TG
′
#̂−1 Tg− G′#−1 Tg‖ = ‖ TG

′
#̂−1(#̂ − #)#−1 Tg‖+ ‖( TG − G)′#−1 Tg‖

6 (‖ TG
′
#̂−1‖‖#̂ − #‖+ ‖ TG − G‖)‖#−1 Tg‖

= [Op(1)op(1) + op(1)]Op(
√
m=n) = op(

√
m=n):

Also,

E[‖G′#−1 Tg‖2] = E[tr(G′#−1 Tg Tg′#−1G)] = tr(G′#−1G)=n6C=n;

so by M, ‖G′#−1 Tg‖=Op(1=
√
n) = op(

√
m=n). Then by T,

‖ TG
′
#̂−1g‖= op(

√
m=n):

Also, it follows by T and CS that,

‖ TG
′
#̂−1 TG − G′#−1G‖6 (‖ TG

′
#̂−1‖+ ‖#−1G‖)‖ TG − G‖

+ ‖ TG
′
#̂−1‖‖#̂ − #‖‖#−1G‖

so that TG
′
#̂−1 TG =Op(1). Therefore, by substituting in Eq. (A.9), we have

|nĝ′#̂−1ĝ− n Tg′#̂−1 Tg|=
√
2(m− p)

6 [|2(�̂ − �0)′ TG′
#̂−1 Tg|+ |(�̂ − �0)′ TG′

#̂−1 TG(�̂ − �0)|]n=
√
2(m− p)

= [Op(1=
√
n)op(

√
m=n) + Op(1=n)]n=

√
2(m− p)

= op(
√
m=n)n=

√
2(m− p) p→ 0:

Furthermore, we have similarly to Eq. (A.10) that

|n Tg′#̂−1 Tg− n Tg′#−1 Tg|=
√
2(m− p)

= |n Tg′(#̂−1 − #−1) Tg|=
√
2(m− p)

6 |n Tg′#−1(#̂ − #)#−1 Tg|+ |n Tg′#−1(#̂ − #)#̂−1(#̂ − #)#−1 Tg|=
√
2(m− p)

6 n‖#−1 Tg‖2(‖#̂ − #‖+ C‖#̂ − #‖2)=
√
2(m− p)

=nOp(m=n)op(1=
√
m)=
√
2(m− p) p→ 0:

The conclusion then follows by T.
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Proof of Lemma 6.2. Let T = [n Tg′#−1 Tg− (m− a)]=√2(m− a), and note that

T = T1T2 + T3 + T4; T1 =
√

m
m− a ; T2 =

∑
i; j:i¡j

√
2
n2m

g′i#
−1gj;

T3 =

(∑
i

g′i#
−1gi=n− m

)/√
2(m− a); T4 = a=

√
2(m− a):

Note that T1 → 1 and T4 → 0. Also, E[T3] = 0 and Var(T3)6E[(g′i#
−1gi)2]=(2n(m−

a)) → 0, so by M, T3
p→ 0. Therefore, by the Slutzky Theorem it su0ces to show that

T2
d→N(0; 1). To do this we show that the hypotheses of Lemma 2 of Hall (1984), as

cited by de Jong and Bierens (1994), are satis8ed. Let Hn(u; v)=
√
2=(n2m)g(u; �0)′#−1

g(v; �0) and

Gn(u; v) = E[Hn(z1; v)Hn(z1; u)]

=
2
n2m

g(u; �0)′#−1E[g1g′1]#
−1g(v; �0) =

√
2
n2m

Hn(u; v):

Note that E[Hn(z1; z2)|z1] =
√

2=(n2m)g(z1; �0)′#−1E[g2] = 0 and that

E[Hn(z1; z2)2] = 2E[g′1#
−1g2g′2#

−1g1]=(n2m)

= 2E[g′1#
−1g1]=(n2m) = 2=n2:

It follows by the Cauchy–Schwartz inequality that

n−1E[Hn(z1; z2)4]={E[Hn(z1; z2)2]}2 = 4n−5m−2E[(g′1#
−1g2)4]=(4=n4)

6 n−1m−2E[(g′1#
−1g1)2(g′2#

−1g2)2]

6 {E[(g′1#−1g1)2]=(m
√
n)}2 → 0:

Also,

E[Gn(z1; z2)2]={E[Hn(z1; z2)2]}2 = [2=(n2m)]=E[Hn(z1; z2)2]

= 1=m→ 0:

Therefore, the conclusion follows from the conclusion of Lemma 2 of Hall (1984).

Proof of Theorem 6.3. To prove the 8rst conclusion, let #̂ in Lemma 6.1 equal #̂(�̃).
By Lemma A.6 and �(K)2K2=n→ 0, we have �min(#)¿C and

‖#̂ − #‖=Op([K3=2=
√
n+ �(K)K=

√
n]=K1=2) = Op(1=

√
m); (A.10)

for m= JK . Also, it follows by Lemma A.7 that ‖@ĝ( T�)=@�−G‖ p→ 0 for any T�=�0 +
Op(1=

√
n). It also follows as in the proof of Theorem 5.4 that G′#−1G is bounded.

Thus, all of the hypotheses of Lemma 6.1 are satis8ed. Furthermore, note that

E[{g′i#−1gi}2]6CE[‖gi‖4]6CE[‖�(zi; �0)‖4‖qi‖4]6CE[‖qi‖4]6C�(K)2K:
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Therefore, it follows that the hypotheses of Lemma 6.2 are satis8ed, so that the 8rst
conclusion follows by Lemmas 6.1 and 6.2. To show the second conclusion, let #̂ =
(̃ ⊗ Â. It follows similarly to Lemma A.6 that under homoskedasticity Eq. (A.10) is
also satis8ed here. The rest of the hypotheses of Lemma 6.1 then hold as before, so
the second conclusion follows by the conclusion of Lemma 6.1.

Proof of Theorem 6.4. Note that for ĝ= ĝ(�̂) and Tg= ĝ(�0),

‖ĝ− Tg‖6
∑
i

‖�(zi; �̂)− �(zi; �0)‖‖qi‖=n

6

(∑
i

)2i =n

)1=2(∑
i

‖qi‖2=n
)1=2

‖�̂ − �0‖=Op(
√
K=n):

It then follows by the triangle inequality and Lemma A.6 that ‖ĝ‖=Op(
√
K=n). Then by

Lemma A.14 we have ‖�̂‖=Op(
√
K=n). It then follows as in the proof of Theorem 5.6

that �̂∈  ̂n(�̂) w.p.a.1. Therefore, the 8rst-order conditions for �̂ are satis8ed w.p.a.1.
Expanding around �= 0 then gives

0 = @Ŝ(�̂; �̂)=@�=
n∑
i=1

s1(�̂
′
ĝi)ĝi=n= s1(0)ĝ+ s2(0) V#�̂;

V# =
n∑
i=1

[s2( T�
′
ĝi)=s2(0)]ĝiĝ′i =n:

It follows as in Lemma A.6 that �min( V#)¿C w.p.a.1, so inverting gives

�̂=−[s1(0)=s2(0)] V#−1ĝ:

Furthermore, expanding Ŝ(�̂; �̂) around �= 0 and plugging in gives

T̂GEL =−2n[s2(0)=s1(0)2]{s1(0)ĝ′�̂+ s2(0)�̂′ W#�̂=2}
= nĝ′(2 V#−1 − V#−1 W# V#−1)ĝ;

where W# =
n∑
i=1

[s2( W�
′
ĝi)=s2(0)]ĝiĝ′i =n and W� lies on the line joining �̂ and 0.

Now, note that (2 V#−1 − V#−1 W# V#−1)−1 = V#(2 V#− W#)−1 V#, so all of the conditions of
Lemma 6.1 will be satis8ed if it can be shown that ‖ V#(2 V#− W#)−1 V#−#‖=op(1=

√
K).

By Lemmas A.6 with Cn = 1=
√
n and (A.16) with Cn =

√
K=n we have

‖ V# − #‖=Op(�(K)
√
K2=n=

√
K) = op(1=

√
K); ‖ W# − #‖= op(1=

√
K):

It follows that for B̂= 2 V#− W# we have ‖B̂−#‖ p→ 0, so that �max(B̂−1)6C w.p.a.1.
Then we have

‖ V#B̂−1 V# − #B̂−1#‖6 ‖( V# − #)B̂−1( V# − #)‖+ 2‖#B̂−1( V# − #)‖
6C(‖ V# − #‖2 + ‖ V# − #‖) = op(1=

√
K):
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We also have, by �max(#)6C,

‖#B̂−1# − #‖= ‖#B̂−1(# − B̂)‖6 ‖#B̂−1(# − B̂)‖= op(1=
√
K):

Proof of Lemma 6.5. Note that for ĝ= ĝ(�̂),(√
m
n

)
nĝ′#̂−1ĝ− (m− a)√

2(m− a) = T1ĝ
′#̂−1ĝ+ T2; T1 =

√
m

2(m− a) → 1√
2
;

T2 = T1

(
−m− a

n

)
→ 0:

Therefore it su0ces to show that ĝ′#̂−1ĝ
p→4. Let gai = g(zi; �a), Tg =

∑
i gai=n, and

ga = E[gia]. Note that Var(gi)6#, so that

E[( Tg− ga)′#−1( Tg− ga)]6E[( Tg− ga)′Var(gai)−1( Tg− ga)]6Cm=n→ 0:

Then by T and CS,

| Tg′#−1
a Tg− g′a#−1

a ga|6 |( Tg− ga)′#−1
a ( Tg− ga)|+ 2|g′a#−1

a ( Tg− ga)|

6 op(1) + 2
√
g′a#

−1
a ga

√
( Tg− ga)′#−1

a ( Tg− ga):

Thus, by g′a#
−1
a ga → 4, we have Tg′#−1

a Tg=Op(1). Also, ĝ= Tg+ G̃(�̂− �a). Note that

(�̂ − �a)′G′
a#

−1
a Ga(�̂ − �a) p→ 0 and

|(ĝ− Tg)′#−1
a (ĝ− Tg)− (�̂ − �a)′G′

a#
−1
a Ga(�̂ − �a)|

6 |(�̂ − �a)′(G̃ − Ga)′#−1
a (G̃ − Ga)(�̂ − �a)|

+2|(�̂ − �a)′G′
a#

−1
a (G̃ − G)(�̂ − �a)|

6 ‖G̃ − Ga‖2‖�̂ − �a‖2

+ 2
√
(�̂ − �a)′G′

a#
−1
a Ga(�̂ − �a)‖G̃ − Ga‖‖�̂ − �a‖ p→ 0:

Therefore, (ĝ− Tg)′#−1
a (ĝ− Tg) = Op(1). It now follows that

|ĝ′#−1
a ĝ− Tg′#−1

a Tg|6 |(ĝ− Tg)′#−1
a (ĝ− Tg)|+ 2| Tg′#−1

a (ĝ− Tg)|

6 op(1) + 2
√

Tg′#−1
a Tg
√
(ĝ− Tg)′#−1

a (ĝ− Tg)
p→ 0;

so that ĝ′#−1
a ĝ=Op(1). We then have

|ĝ′(#̂−1 − #−1
a )ĝ|6 |ĝ′#−1

a (#̂ − #a)#−1
a ĝ|+ |ĝ′#−1

a (#̂ − #a)#̂−1(#̂ − #)#−1ĝ|
6 ‖#−1

a ĝ‖2(‖#̂ − #a‖+ C‖#̂ − #a‖2):

It then follows by the triangle inequality that ĝ′#̂−1ĝ
p→4.
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