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In Imbens and Ingrist (1994), Angrist, Imbens and Rubin (1996) and Imbens and Rubin 
(1997), assumptions have been outlined under which instrumental variables estimands can be given 
a causal interpretation as a local average treatment effect without requiring functional form or 
constant treatment effect assumptions. We extend these results by showing that under these 
assumptions one can estimate more from the data than the average causal effect for the subpopula- 
tion of compliers; one can, in principle, estimate the entire marginal distribution of the outcome 
under different treatments for this subpopulation. These distributions might be useful for a policy 
maker who wishes to take into account not only differences in average of earnings when contemplat- 
ing the merits of one job training programme vs. another. We also show that the standard instru- 
mental variables estimator implicitly estimates these underlying outcome distributions without 
imposing the required nonnegativity on these implicit density estimates, and that imposing non- 
negativity can substantially alter the estimates of the local average treatment effect. We illustrate 
these points by presenting an analysis of the returns to a high school education using quarter of 
birth as an instrument. We show that the standard instrumental variables estimates implicitly 
estimate the outcome distributions to be negative over a substantial range, and that the estimates 
of the local average treatment effect change considerably when we impose nonnegativity in any of 
a variety of ways. 

1. INTRODUCTION 

In recent empirical work (e.g. Angrist (1990), Angrist and Krueger (1991), Kane and 
Rouse (1992), Butcher and Case (1993), Card (1993), McClellan and Newhouse (1994)) 
researchers have attempted to estimate causal effects using instrumental variables to deal 
with possible self-selection into a treatment. Although there is a long tradition in cross- 
section econometrics of using instrumental variables estimation in self-selection problems 
(e.g. Gronau (1974), Willis and Rosen (1979), Heckman and Robb (1985)), this recent 
work, part of the natural experiments literature, differs from the older instrumental vari- 
ables literature in its increased focus on the validity of the instruments, often at the expense 
of the strength of the relation between the instrument and the endogenous regressor. In 
Imbens and Angrist (1994), Angrist and Imbens (1995), Angrist, Imbens and Rubin (1996) 
and Imbens and Rubin (1997), assumptions have been outlined under which such instru- 
mental variables estimands can be given a causal interpretation as a local average treatment 
effect without requiring functional form or constant treatment effect assumptions. 
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In this paper we make two points: first we show that under these assumptions one 
can estimate more from the data than the average causal effect for the subpopulation of 
compliers; one can, in principle, estimate the entire marginal distribution of the outcome 
under the different treatments for this subpopulation. These distributions might be useful 
for a policy maker who wishes to take into account not only differences in average earnings 
but also differences in dispersion of earnings when contemplating the merits of one 
programme or treatment vs. another. 

Second, we show that the standard instrumental variables estimator implicitly esti- 
mates these underlying outcome distributions without imposing the required nonnegativity 
condition on density estimates, and that imposing nonnegativity on these implicit density 
estimates can substantially alter the estimates of the local average treatment effect. 

We illustrate these points in two ways. First we present an analysis of the returns to 
a high school education using quarter of birth as an instrument. We show that the standard 
instrumental variables estimates implicitly estimate the outcome distributions to be nega- 
tive over a substantial range, and that the estimates of the local average treatment effect 
change considerably when we impose nonnegativity in any of a variety of ways. Second, 
we do a small Monte Carlo study to show that the proposed estimators that impose 
nonnegativity on the outcome distributions can have substantially lower root mean squared 
error than the standard IV estimator. 

2. IDENTIFICATION OF THE LOCAL AVERAGE TREATMENT EFFECT 
USING INSTRUMENTAL VARIABLES 

In this section we set up the framework used to analyse instrumental variables estimators. 
The "potential outcome" framework we use is based on Rubin's (1974, 1978, 1990) exten- 
sion of Neyman's (1923) model for randomized experiments to observational settings 
including possible interference between units and versions of each treatment, and allowing 
outcomes to be stochastic, specialized to instrumental variables in Angrist, Imbens and 
Rubin (1996). Following Holland (1986) we refer to this as the Rubin Causal Model 
(RCM). 

Let Zi be a binary instrument. Let the pair Di (0) and Di (1) denote the values of the 
treatment for individual i that would be obtained given the instrument Zi = 0 and Zi= I 
respectively. If Di (0) = 0 and Di (1) = 1 unit i is called a complier. For z = 0, 1 and d = 0, 1, 
let Yi(z, d) denote the outcome that would be observed given instrument Zi= z and treat- 
ment Di=d respectively. Implicit in this notation is the Stable Unit Treatment Value 
Assumption (SUTVA, Rubin (1980, 1990)), which requires that unit i is not affected by 
the treatment received and instrument assigned for other units. We also make the standard 
econometric instrument or exclusion assumption that the potential outcomes Yi (z, d) do 
not depend on z; for any unit there are, therefore, only two different potential outcomes 
Yi (d), one for each value of the treatment Di: Yi (0) is the outcome that would be observed 
if the treatment were Dj=0, and Yi(l) is the outcome that would be observed if the 
treatment were Di= 1. The third assumption is the strict monotonicity assumption which 
requires that Di (1) > Di (0) for all units i, with inequality for at least one unit. This assump- 
tion requires that changing the instrument from Zi = 0 to Zi = 1 would not lead anyone to 
shift from receiving the treatment to not receiving the treatment; that is, there are no units 
with Di (0) =1 and Di (1) = 0. (Labelled defiers by Balke and Pearl (1993).) Finally, we 
assume that the instrument Zi is randomly assigned, independent of the potential outcomes 
Di(0), Di(1), Yi(0) and Yi(1), or more generally, ignorable (Rubin (1978)). For all indi- 
viduals we observe the triple Zbs,i = Zi, D.bs,i= Di(Z0bs,i) and Yobs,i YI(DObs,i). 
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Under these assumptions (SUTVA, the exclusion restriction, strict monotonicity and 
random assignment of the instrument) one can estimate the local average treatment effect, 
the average of the unit level treatment effect, Yi (1) - Y1 (0), for the subpopulation of 
compliers characterized by Di (0) = 0 and Di (1) = 1, by taking the ratio of the average 
difference in Yi by instrument and the average difference in Di by instrument 

E[ YE ( 1- Yi (?)IDi (O) = O, D,i(l1) = 1 ] = Et Yil Zi= 1 ]-Et Yi JZ,=0] 
E[D11JZ1= 1] -E[D1 Z1= 0]' 

where E[ ] denotes population averages. In Angrist, Imbens and Rubin (1996) these 
assumptions are discussed in detail and some examples in which these assumptions may 
be justified are given. 

A more conventional econometric approach starts with the switching regression model 
(Maddala and Nelson (1975), Willis and Rosen (1979), Bjorklund and Moffitt (1987), 
Heckman (1990)), where two outcomes are postulated: 

Yi(0) = Po+ ci, (1) 

Yi (1) = Yo + i, (2) 

in combination with a latent variable describing the selection: 

D.bs,i = 1 { IfO + lt I Zobs,i + Vi > 0} , (3) 

where 1 { } is the indicator function, equal to one if its argument is true and zero otherwise, 
and with the observed outcome equal to Yobs,i = Yi (0) (1 - Dobs,i) + Yi (1) - Dobs,i . The key 
assumption is that Zi is independent of all disturbances ci, Xi and vi. These models are 
typically estimated under additional distributional assumptions using maximum likelihood 
methods because instrumental variables estimation is not consistent for the average treat- 
ment effect yo - /Bo that is typically the focus in program evaluation.' 

A special case of the switching regression model is the dummy endogenous variable- 
constant coefficient model characterized by the equation 

Yobs,i = ,Bo + jI Dobs,i + Ei, (4) 

combined with equation (3).2 In this constant treatment effect model instrumental variables 
is consistent for the treatment effect P1I. 

In another version of the dummy endogenous variable model, the participation equa- 
tion is not explicitly written down. Instead, the response equation is presented together 
with the two assumptions that (i), ci is uncorrelated with Zi and (ii), there is a non- 
zero correlation between Di and Zi. Although the set-up is weaker than assuming full 
independence of ci and Zi, with possible dependence between ei and Zi a zero correlation 
implies that a variable Zi could be a valid instrument for the effect of Di on Yi, without 
being a valid instrument for the effect of Di on a transformation of Yi such as ln Y,. 
Because part of the appeal of the natural experiment literature is in its lack of reliance on 
functional form assumptions, we do not regard this as an appealing relaxation of the 
assumptions. 

1. An exception is Heckman (1990) who presents identification results requiring the support of the 
instrument Z, to be unbounded. 

2. See for example Heckman (1978). 
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3. IDENTIFICATION OF THE MARGINAL OUTCOME DISTRIBUTIONS 
FOR COMPLIERS 

A policy maker or individual decision maker may be interested in more than just average 
treatment effects. For example, a policy maker contemplating a training programme may 
be interested in the proportion of the population whose earnings will be above the poverty 
level given the training relative to the proportion with above poverty level earnings given 
no training. Alternatively, the policy maker may be interested in the effect of the training 
programme on earnings equality as measured by the variance of earnings. In all these 
cases, knowledge of the distribution of earnings given training and the distribution of 
earnings given no training would enable the policy maker to answer these questions. In 
this section we show that given the four assumptions discussed in Section 2, SUTVA, the 
exclusion restriction, strict monotonicity and randomization of the instrument, one can 
estimate for compliers the distribution of outcomes both given treatment and given no 
treatment. In order to focus on this identification issue, the discussion in this section 
assumes that the joint distribution of observables (Zobs,i, Dobs,i, Yobs,i) is estimated without 
sampling error. 

Although we can identify the two marginal outcome distributions for compliers, we 
cannot, under our assumptions, identify the joint distribution of Yi(0) and Yi(1) for 
compliers or the distribution of their individual gains Yi (1) - Yi (0). This is, of course, not 
possible in a randomized experiment either, and it can be argued in that context that in 
many cases the two marginal distributions comprise all that is of interest.3 To pursue this 
point briefly, consider an individual contemplating taking one of two treatments. In this 
decision process it may be of use to evaluate the distribution of outcomes for "comparable" 
individuals under both treatments. Specifically, suppose that in a randomized experiment 
50% of the individuals exposed to treatment A improved and 60% of the individuals 
exposed to treatment B improved. One can think of four types of individuals, depending 
on whether they would improve or not given treatment A and improve or not given 
treatment B. Knowledge of the joint distribution of outcomes amounts to knowing both 
the two marginal outcome distributions as well as the population distribution of the four 
types. One distribution of types that is consistent with the results of the randomized 
experiment is that 10% of the experimental population improve under treatment B but 
not under treatment A, and nobody improves under treatment A but not under treatment 
B. A second distribution of types consistent with the evidence is that 40% of the experi- 
mental population improve under A but not under B and 50% improve under B but not 
u;nder A. Unless the individual decision maker has at least partial knowledge about which 
df the four types she is, in which case she should only consider the experiences of similar 
type individuals and disregard experiences of different types, there appears to be no rel- 
evance to the decision maker of knowing the type distribution in the population. It can 
therefore be argued that within subpopulations of units that are exchangeable with respect 
to observable characteristics, there is no useful information (in the sense of affecting 
decisions) in the joint outcome distribution that is not contained in the two marginal 
distributions. Information about the distribution of variables that are not observed cannot 
be used for conditioning in decision making and therefore can often be regarded as 
superfluous. 

In cases where we are interested in individual outcomes the correlation between the 
two potential outcomes may be of interest. Consider the case of a person who has been 
exposed to a treatment, say a drug, and for whom we have observed an outcome, say 

3. See Clements, Heckman and Sinith (1994) for a different view. 
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death. It might be of interest, for example in a legal setting, to consider whether the person 
would have died had he not been exposed to the treatment. Answering this question would 
require knowledge about the joint distribution that cannot fully be gleaned from the two 
marginal distributions. 

To discuss the identification of the marginal outcome distributions for compliers it is 
convenient to introduce additional notation. We partition the population by the effect of 
the treatment assignment on treatment received; for never-takers (units with Di (0) = 0, 
Di (1) = O), let Ci = n; for always-.takers (units with Di (0) = 1 and Di (1) = 1), let Ci = a; 
finally for compliers (units with Di(0) = 0 and Di(1) = 1), let Ci= c. These three types 
exhaustively partition the population since by the monotonicity assumption there are no 
defiers (units with Di(0) = 1 and Di(1) = 0). 

Let On ba and 4, denote the population frequencies of the three types of individuals. 
Only compliers (units with C1 = c) are affected by the instrument; the local average treat- 
ment effect is the average causal effect for this subpopulation. We cannot directly learn 
anything about the causal effects of D on Y for always-takers because we never observe 
them without the treatment, and we cannot directly learn anything about the causal effect 
of D on Y for never-takers because we never observe them with the treatment. Although 
we might well be interested in causal effects for these groups, any estimates of average 
causal effects for them, and therefore any estimates of the population average causal 
effects, require additional information or assumptions about their responses to treatments 
to which they are never observed to be exposed.5 

If we were to observe the population type, inference would be straightforward: ignor- 
ing all noncompliers we would compare outcomes in the two treatment groups for the 
subpopulation of compliers. However, because an individual's type is not always identifi- 
able from the observed variables, inference must be indirect, based on treatment groups 
that are mixtures of compliers and non-compliers. 

Although we cannot generally identify the compliers from the observed data (Zobs,i, 

Dobs,i, Yobs,i), we can identify some of the non-compliers; if Zob,,i= 0 and Dobs,i= 1, then 
individual i must be an always-taker with Ci=a, and if Zobs,i = 1, and Dobs,i =0, then 
individual i must be a never-taker with Ci = n. Because of randomization, the instrument 
Zobs,i is independent of (Di(0), Di(1)) and therefore of Ci. Hence, in large samples we 
know the distribution of Yi(1) for always-takers; this distribution will be denoted by 
ga(y). Analogously, in large samples, we know the distribution of Yi(O) for never-takers; 
this distribution will be denoted by gn(y). Note that because we assume full independence 
rather than mean independence of the instrument Zi and the potential outcomes Yi(O) 
and Y,(l), these distributions are not indexed by the value of the instrument. By the 
independence of instrument Zi and type Ci, in large samples we also know the population 
proportions of the types: 0, = Pr (Dob,J 

= 
Z1Zobs,i= 1), ka = Pr (Dobs,i = 1 Zbs,i = 0) and thus 

we can deduce = 1 - On- qOa 

4. In terms of the selection equation (3) these three types can be defined as 

Vn if v?< -TrO- 7r1 
C=< c if -7o--rl < v<-7ro 

(a if - ro < v,. 

This illustrates that the monotonicity assumption which asserts that there are no defiers with Dj(l)=O and 
D,(0) = 1, is made implicitly rather than explicitly in the equation-based model despite its critical importance 
for causal inference. 

5. This information can be in the form of bounds on the range of outcomes. See Robins (1989), Manski 
(1990), and Balke and Pearl (1993) for calculations of bounds on treatment effects in the presence of such 
information. 
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It remains to find the two critical outcome distributions, the distributions of Yi(0) 
and Yi(l) among compliers; call these go(y) and g1(y). These are more complicated to 
find from observed data than the distributions for the non-compliers because among those 
assigned Zobs,=0, both never-takers and compliers will be observed to have DobsJ ==0. 
Analogously, in the subsample with Zobs,i- 1, compliers and always-takers will be observed 
to have Dob,ji = 1. 

At this point some additional notation is useful. Let fd(y) denote the directly estim- 
able distribution of Yobs,i in the subsample defined by Zobs = z and DobsI= d. We will write 
the distributions of interest in terms of these directly estimable distributions. As already 
noted, gn(y) =fio(y) and ga(y) =foi(y). Individuals assigned to Zobs,i=0 and exposed to 
Dobsi=0 are a mixture of compliers and never-takers. By independence of instrument Z1 
and type C;, the sampling distributionfoo(y) is a mixture of the distribution of Yi(0) for 
never-takers, gn(y), and for compliers, go(y), with the mixing probability equal to the 
relative probability of these subpopulations in the entire population 

foo(y) +qg5 gn(Y). 

Analogously, for individuals assigned to Zobs,i= I and exposed to Dobs,I =1, we can rule 
out that such individuals are never-takers, but we cannot infer whether these individuals 
are always-takers or compliers. The distribution of the outcome in this subsample is 
therefore a mixture of the population distribution of Yi(l) for compliers, gc1(y), and for 
always-takers, ga(y), with the mixing probability equal to the relative population propor- 
tions of these two subpopulations 

f, 1 (y) = o 
+ gcl (y) + 

Oa 
ga(Y)v 

4Oc+ Oa Obc +Oa 

The four directly estimable distributionsfd(y) have now been expressed in terms of 
the two complier distributions of interest, gco(y) and gc1 (y), and the two directly estimable 
nuisance distributions gn(y) =fi o(y) and ga(y) =foi(y) for never-takers and always-takers, 
respectively. We can invert these relations and express the two potential outcome distribu- 
tions of interest in terms of the observable distributions 

gco(y) - +bfoo(y) fo(y), (5) 
Xc Xc 

and, 

g l(y) _ fa cfI (y) _ ' ofoI(y). (6) 

Thus, from the four directly estimable distributions, we can derive the entire complier 
distribution of outcomes under each value of the treatment, g.( ) and gJ ( ), rather than 
just the difference in their means, which is the instrumental variables estimand. 

4 THE ANATOMY OF CONVENTIONAL INSTRUMENTAL 
VARIABLES ESTIMATES 

In this section we show that standard instrumental variables estimates are implicitly based 
on estimates of the two complier outcome distributions that are not restricted to be 
nonnegative. We then show that this point can have important implications for inference 
because restricting these estimates to be nonnegative, even in a naive way, can change 
inference considerably, as we illustrate in an example where we estimate earnings returns 
to high school using quarter of birth as an instrument. 
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To further investigate the conventional instrumental variables estimator, define YZd 

to be the average of the observed outcome Yobs,i for the subsample with observed instru- 
ment Zobs,i= z and observed treatment Dobs,i= d 

Yzd =j Yobs,il {Zobs,i= z} l {Dobs,J= dj} /Z I {Zobs,i = z} l {Dobs,i= d}. 

In addition define 

Dz = , lDobs,i 1 {Zobs,i = Z}/Z_ 1 {Zobs,i = Z} , 

Yd=j= I Yobs,il {Dobs,i=d}/Z= 1 {Dobsji=d}, 

and 

YZ*=E.=I Yobs,il{Zobs,i=Z}/Z= l{Zobs,i=Z} = YZIDz+ Yzo(l -Dz). 

Then we can write the conventional IV estimator as 

yI.- yo. 
Iv = = Yc, Y Yco= (7) 

where Ycl (Di Y1, -Do Yo1)/(D1-Do) and Y,0 = (( 1-Do) Yo0-( 1-DI) Y1o)/(D1-Do). To 
interpret Yc1 and Yco, consider the probability limits of the components of expression (7), 
Y00, Y01, Y0, Y,l I Do, and D1 . As argued before, the fraction of individuals with Dobs', = 

1- in the subsample with Zobsj, = 0, Do, estimates the population share of the always-takers, 
(a. Similarly, the fraction of individuals with D.bsj = 1 in the subsample with Zobs,i = 1, 
Di, estimates the combined population share of the always-takers and compliers, (Pa + (c . 
The denominator in (7), D, - D0, is therefore an unbiased estimate of (c. 

For each (z, d), the expectation of Yzd is equal to E[ Yobs, I Zobs= z, Dobsi = d]. We 
can use the relation between the directly estimable distributionsf( ) and the distributions 
of interest g( ) to express these expectations of observed Yobs,i conditional on observed 
instrument Zobs,i and observed treatment Dobsj in terms of the expectations of the potential 
outcomes Yi (1) and Y1(0) conditional on type Ci 

E [ Y00] = E [ Yobs,i I Zobs,i = 0, Dobs, = 0] 

= (PP E[ Yi(0)1Ci= c]+ ( P E[ Y1(O)IC,= n], 
?Oc + O5n Oct+ On 

E[Yo0] =E[ Yobs,iZobs,j=O, Dobsj,= 1] =E[ Y1(l)1 Ci= a], 

E[ Yo0] =E[ Yobs,IZobs,i= 1, Dobsj,= 0] = E[ Yi(0)I Ci= n], 

E Y I] =E Yobsj I Zobsj = 1, Dobsj = I1] 

= (Pc?(Pa E[Yi(l)ICi=c]+ (PY(Pa E[Yi(l)CiC= a]. 
Ogc. + O)a ot. + OaX 

Inverting these relations we have 

FE=E[DE[Y] - E[Do]E[Y01] 
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and 

E[ Y, (1)1 Cj = c] = E[ -D0]E[YO0]-E[1-D,]E[Ylo] (9) 
E[D1] - E[Do] 

The first term on the right-hand side of (7), Yc1, is therefore an estimate of the expectation 
of the potential outcome given the treatment for the compliers and the second term, 
YeO, an estimate of the expectation of the potential outcome without treatment for the 
compliers. 

The first point, exemplifying the discussion in Section 3, is that we can directly obtain 
estimates of E[Yi(l)JCi=c] and E[Yi(0)JCi=c] separately, not just of their difference 
E[ Yi (1) - Yi (0)1 Ci = c]. Such estimates might be informative about the plausibility of the 
assumptions underlying the instrumental variables estimates, and lead to a better under- 
standing of the selection process, as will be demonstrated in the next section. The second 
point is that these estimates do not take into account the underlying mixture structure 
implied by the model. More precisely, these moment estimates do not take into account 
the fact that the two distributions foo( ) and fIl () are mixtures of gn( * ) and g,o. ( ) and 
of g.(. ) and g I (), respectively, and densities must be nonnegative. In the next section 
we look at an empirical example and show that these restrictions are indeed important 
and can lead to substantially different inferences. 

5. INSTRUMENTAL VARIABLES ESTIMATES OF THE 
RETURNS TO HIGH SCHOOL 

As an illustration of the issues raised in this paper, we examine instrumental variables 
estimates of the returns to education. In an influential paper Angrist and Krueger (1991) 
(AK henceforth) investigated the causal effect of education on earnings. They noted that 
achieved education levels differed by date of birth for people born in a given year. They 
attributed this to compulsory schooling laws, which affect people born in different months 
of the same year in different ways: children start school at different ages but since they 
are all required to stay in school only until their sixteenth birthday, people are effectively 
faced with different amounts of compulsory schooling. AK then used the assigned amount 
of compulsory schooling as the instrument for achieved education levels. Since this is 
perfectly correlated (within each state) with season of birth, this strategy is referred to by 
AK as using "quarter of birth" as an instrument. AK discuss in detail why they believe 
this leads to a valid instrument. 

We simplify the data AK investigated by making both treatment and instrument 
binary. The treatment of interest is defined as the indicator whether an individual has 
twelve or more years of education or less than twelve years of education, loosely corre- 
sponding to having a high school degree vs. not having a high school degree. This redefini- 
tion of the treatment raises an issue about the validity of the instrument. If quarter of 
birth is a valid instrument for years of education, it is not necessarily a valid instrument 
for a treatment defined as a function of years of education such as the indicator function 
we are using. This issue is also relevant for the AK study: if quarter of birth is a valid 
instrument for education measured in months, it is not necessarily a valid instrument for 
the level of education rounded off to the nearest year. Although the approach is still 
straightforward with a multivalued treatment, the number of types increases rapidly with 
the number of distinct levels of the treatment, leading to a mixture structure with the 
number of mixture components g( ) exceeding the number of directly estimable distribu- 
tions f * ). Modelling decisions will necessarily be more important in that case. 
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TABLE 1 

Average outcome (Yi is log weekly earning) by instrument (Z, is indicator for born in 
fourth quarter) and treatment status (Di is indicator for twelve years of schooling) 

D.b.i= 0 D.bs = 1 Total Di 

Z.br,i=O Yoo= 5595 Yo = 5-984 Yo.=5-892 Bo= 0-762 
(N= 19,454) (N = 62,217) (N=81,671) (N=81,671) 

Zob,,,=l YI0= 5 597 Yi I = 5 991 Y,.= 5 905 D1, = 0782 
(N= 17,632) (N= 63,212) (N= 80,844) (N= 80,844) 

Total Y.0=5*596 Y.,=5-988 Y=5 898 D=0-772 
(N = 37,086) (N = 125,429) (N= 162,515) (N= 162,515) 

We only consider people born in the first or fourth quarters, thereby reducing the 
instrument to a binary one. The extension to multivalued instruments is straightforward: 
the monotonicity assumption is required to hold for any pair of values of the instrument 
thereby leading to a more complicated mixture structure with the number of types equal 
to the number of distinct values of the instrument plus one. All distributions of interest 
can be recovered from the joint distribution of the observed variables. 

The data we use are taken from the AK study and comprise observations from the 
1980 census on weekly earnings, years of education and quarter of birth for 162,515 white 
men born between 1 January 1930 and 31 December 1939 during the first or fourth quarter 
of each year. In Table 1 we present the averages and sample sizes for the different values 
of treatment and instrument (D.bs,i =0 implies less than twelve years of education, Dobsi = 

1 implies at least twelve years of education. Zobs,i = 0 implies birth in first quarter, and 
Zobs,i= 1 implies birth in fourth quarter). 

The treatment-control average difference, which is identical to the ordinary least 
squares estimate of the returns to high school, is Y.1- .F=5-988-5-596=00391. The 
conventional instrumental variables estimate, which is the ratio of differences of average 
outcome by instrument status to the difference in average treatment probability by instru- 
ment, is (Y1.- Yo.)/(D1 -Do)=(5 905-5.892)/(0.782-0 762)=0-651. 

It is interesting to note that, similar to what has been found in a number of studies 
where returns to education have been estimated using instrumental variables (Angrist and 
Krueger (1991), Butcher and Case (1993), Card (1993)), we find that this instrumental 
variables estimate of the returns to education is considerably larger than the corresponding 
ordinary least squares estimate-the difference in averages by treatment status. In contrast, 
in the earlier literature on returns to education (see Griliches (1977) for a discussion), it 
was often hypothesized that ordinary least squares estimates of the return to education 
over-estimated the causal effect of education on earnings because of the so-called "ability 
bias". This bias was hypothesized to reflect a propensity of people with high ability and 
high earnings potential to have levels of education higher on average than those of people 
with low ability and low earnings potential. Card (1993) and others have pointed to these 
recent instrumental variables results as an indication that if anything, least squares 
estimates underestimate the returns to education. 

To shed further light on this issue, we consider the additional information we can 
learn from the data about the outcome distributions for the compliers, g&(y) and g,1(y). 
Their estimated means, based on the implicit estimates YC0 and YK.1 in the standard instru- 
mental variables approach, are 5 57 and 6 23 for Yi (0) and Yi (1) respectively. Comparing 
these to the estimated means of Yi (0) for never-takers (5.57) and of Yi (l) for always-takers 
(5 99), we see that the difference between the treatment-control difference (or ordinary least 
squares estimate) of 0 39 and instrumental variables estimate of 0 65 is entirely due to the 
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large difference between the estimated mean of Y1(1) for compliers and always-takers, 
6 23 - 5 99 = 0 24, with the difference between the estimated mean of Yi (0) for compliers 
and never-takers equal to zero. 

In Figures 1-4 we give histogram estimates of the distribution of observed outcome 
by instrument and treatment status, fzd (y) for z = 0, 1 and d= 0, 1, with the binwidth fixed 
at 0 1. The differences between the directly estimablefoo(y) andf1o(y) and betweenfoi(y) 
andf11 (y) are barely noticeable. This reflects the fact that the instrument Zi is a very weak 
one, in the sense that Zi is only very weakly correlated with Di, the treatment of interest: 
the estimate of the average causal effect of quarter of birth on receiving at least twelve 
years of education, which is an unbiased estimate of the population proportion of compliers 
b, is only two percent. 

2 5 , . . . . 
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Histogram for foo 

In Figure 5-6 we present simple unrestricted histogram-type estimates of the two 
complier distributions 'co(Y), and 'cl(y) based on equations (5)-(6) using the histogram 
estimates for the four sampling distributions f( ), and estimates for the proportions of 
the different types of 'C/ = 020, 40, = 218 and '0- 762 respectively 

A An O - An 

g O(y) = )nA c xfoo(y) - xfio(y) I1 [90 xfoo(y) - 10 90 xfio(Y) 
oc oc 

A A' oOA 

9cl(Y) = I ^ xfil(y)- Xfo i(y) = 39 10 xfil(y) -38 10 xfoi(y). 
oc oc 

The bins for the histograms are (v1_, v1), foi 1=1,... ,L where vo=3, v,-v-1=01, 
VL = 8- 5, and L = 55. The instrumental variables estimand is the difference in means of the 



IMBENS & RUBIN ESTIMATING OUTCOME DISTRIBUTIONS 565 

2 5 

2 

1*5 

FIGURE 2 

Histogram for flo 

2- 

1 5 

0-5 

-0.5- 

-1 ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~ I , 

4 4-5 5 5- 5 6 6-5 7 7-5 

FIGURE 3 
Histogram for fi' 



566 REVIEW OF ECONOMIC STUDIES 

2-5 I I I I I 

2 

1-5 

0 5- 

-0.5- 

4 4-5 5 5-5 6 6-5 7 7-5 

FIGURE 4 

Histogram for f, 

two distributions gcl(y) and gco(y) where the standard IV estimate is essentially a unre- 
stricted estimate of the difference in the two means. If we integrate the two histogram 
estimates 'cl(Y) and g o(y) of the density functions, we obtain 0 66 for the difference. The 
slight difference between this and the standard IV estimate of 0 65 is due to the smoothing 
implicit in the histogram estimates with non-negligible binwidth of the density functions. 

These estimates of the entire distribution of the potential outcomes for the compliers 
allow the further interpretation of the difference between the ordinary least squares esti- 
mate, that is, the treatment-control difference, and the instrumental variables estimate. 
Inspecting the distributions, presented in Figures 5 and 6, that underlie these estimates 
reveals the fact that the last two histogram estimates of the two compliers distributions 
are not everywhere nonnegative. The estimate of the distribution of Y,(0) for compliers, 
gCO(y), in Figure 5, does not suffer much from this, and the estimate is comparable to the 
estimate of the distribution of Yi (0) for never-takers, g,(y) =fio(y), in Figure 2. In con- 
trast, the estimate of the distribution of Yi (1) for compliers, gcl(y), in Figure 6, does seem 
quite different from the estimate of the distribution of Y,(l) for always-takers, g,,(y)= 
fol(Y) in Figure 3, and is negative over a large range of values. This negativity can be due 
to sampling variation or to violations of the assumptions. In particular, it can point to 
violations of the exclusion assumption. If the exclusion assumption is violated, and there 
is a direct effect of the instrument on the outcome, there is no reason to expect this 
particular linear combination of the sampling distributions to be nonnegative. It is also 
possible that negativity points to violations of the monotonicity assumption or the ran- 
domization of Z, although these assumptions seem plausible in this context. See AK for 
a discussion of the plausability of the ignorability assumption in this application, and 
Angrist and Imbens (1995) for a discussion of the monotonicity condition. 
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6. ALTERNATIVE ESTIMATES OF THE RETURNS TO HIGH SCHOOL 

In this section we present three new alternatives to the standard IV estimates of the returns 
to high school with quarter of birth as an instrument, each of which keeps distributional 
estimates in the proper parameter space, that is, ensure that the estimates of the two 
complier density functions g,1 (y) and gco(Y) are nonnegative. The first two estimators are, 
in spirit, nonparametric estimators, where we model each of the four density functions in 
a flexible way as piece-wise constant with 55 pieces for a total of 282 parameters. The 
third estimator assumes normality for the four outcome distributions with a total of eight 
parameters. More generally we view this third estimator as an example of the type of 
parametric estimator one may wish to use in practice. Although the identification results 
in Section 3 ensure that in principle nonparametric estimation is possible, in small samples 
more parsimonously parametrized models based on the normal distribution or generaliza- 
tions, e.g. the t-distribution or a mixture of normal distributions, may do a better job of 
smoothing the data and lead to a smaller root-mean-squared-error at the expense of some 
bias as we shall show in Section 7. The role of the parametric model is solely to provide 
a good fit to the four underlying outcome distributions. The estimand of interest, the 
difference in means of the two complier distributions, is well defined irrespective of the 
specific parametric model used. 

The first estimator, which we refer to as the "nonnegative" IV estimator, is a slight 
modification of the histogram estimates discussed in the previous section. Let 'poS(y) and 

Pl S(y) denote the estimates 

fcjos(y) 
=max (0, 

'cj 
(y))LTmax (0, 'c (y))dy , 

for j= 0, 1, where 'cO(Y) and cl (y) are the implicit IV distribution estimates discussed in 
the previous section. The estimates for the two noncomplier distributions are the same as 
before: RPoS(y) = g (y) and kPoS(y) = g (y) 

The second estimator is the maximum likelihood estimator based on four multinomial 
models with constant density on intervals v,-1 to v, for 1= 1, .. , L, where v0 = 3, vI - =- 

0 1, VL= 8 5, and L = 55, thereby forcing the nonnegativity restrictions to be satisfied by 
choosing "'(y), a l(y), and gn (y) to maximize the likelihood function rather than adjust- 
ing only the complier distributions as the nonnegative IV estimator does. Note that, in 
order to maintain comparability, the bins (vl, vl 1) are the same for both the nonnegative 
IV and the multinomial ML estimators. Within the framework of this discrete approxima- 
tion to the four outcome distributions, the restrictions are inequality restrictions in a 
parametric model. 

The third estimator is the maximum likelihood estimator with the four outcome 
distributions normal with unknown means and variances. We impose the restriction that 
the variance of Yi(0) for compliers equals that for never-takers and the variance of Yi (1) 
for compliers equals that for always-takers. Calculation of the maximum likelihood 
estimates is based on the EM algorithm (Dempster, Laird and Rubin (1977)). 

Table 2 presents estimates of the mean and variance of the four outcome distributions 
as well as estimates of the average effect for compliers for the standard IV model (using 
the implicit estimates for E[ Yi(0)ICi = c] and E[ Yi(1)ICi = c] given in (7)) and for the 
three alternatives just introduced, with standard errors based on large-sample normal 
approximations. All three new alternatives lead to estimates of the local average treatment 
effect substantially smaller than the standard IV estimate. 
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TABLE 2 

Estimates of mean and variance of potential outcomes 

Never-takers Always-takers Compliers 
Yi(0) Yi(1) YM(O) Yi(l) Yi(1)- Y,(0) 

mean var mean var mean var mean var mean s.e. 

Standard IVE 5 59 0 52 5 99 0-42 5-57 0-43 6-23 0-17 0-66 (0-17) 
Nonnegative IVE 5 59 0-52 5-98 0 41 5-48 0 97 5 94 1 23 0 45 (0.17) 
Multinomial MLE 5 60 0 49 5 99 0 40 5-49 0 97 5 92 1-23 0 42 (0-17) 
Normal MLE 5-60 0-51 5-99 0-41 5 53 0-51 603 0-41 0 50 (0 15) 

We can also compare the estimates of the entire density functions to those obtained 
for the standard IV estimator. In Figures 7 and 8 we present the ML estimates of the 
density functions of gco(y) and gcl(y) respectively under the multinomial and normal 
models. The nonnegative IV estimates are essentially identical to the multinomial maxi- 
mum likelihood estimates and therefore not separately displayed. 

The estimates of the first two moments in Table 2 for the alternative procedures and 
the density estimates in Figures 7 and 8 tell a markedly different story from the conven- 
tional IV estimates. They suggest that the distribution of Y,(1) for compliers is not as 
different from the distribution of Y,(1) for always-takers as suggested by the standard IV 
estimates. For example, the mean for Y(1) for compliers, implicitly estimated by the 
standard IV procedure as 6-23, is estimated by the other three procedures to be between 
5 92 and 6-03, much closer to the estimate of the average of Y(1) for always-takers (5 99). 
The compliers are very similar to the noncompliers with the same level of education. 
Although one many argue with the choice of the three alternative estimators, the fact that 
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they all lead to similar estimates of the local average treatment effect supports their cred- 
ibility given the monotonicity and exclusion restrictions. The variance estimates, however, 
suggest that even in such a large sample it is difficult to obtain precise estimates of the 
higher order moments of the mixture components with weak instruments. This result 
agrees with the common wisdom that unless mixture models are appropriately restricted, 
their estimates can be unreliable. A further illustration of this point is that when we relax 
the restriction under the normal model the variances of Y,(0) and Yi(l) for compliers 
equal the variances of Y,(0) and Yi(l) for never-takers and always-takers, respectively, 
the estimates are outside the believable range: the variance of Y(1) for compliers is 
estimated to be 0 02 and its mean 6 07-the distribution is concentrated around one of 
the minor modes of the sample distribution off,I (y). 

7. A SMALL SIMULATION STUDY 

In the previous section we presented new estimates for the local average treatment effect 
that differed considerably from the standard IV estimates with the AK data. To interpret 
these differences it is useful to see how these estimators perform in cases where we know 
the data generating distribution, and so we now present the results of a small simulation 
study. This is particularly important for the two estimators that can be viewed as based 
on parametrizations with many components, the nonnegative IV and the multinomial ML 
estimator where one might expect the small sample distributions to deviate considerably 
from the asymptotic distributions. 

First we discuss the theoretical properties of the nonnegative IV and the multinomial 
ML estimators. Figure 9 displays the existence of a small sample bias towards ordinary 
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least squares regression estimates that may result from imposing the nonnegativity of the 
implicit density estimates. Suppose the outcomes Y,(0) and Yi(l) are binary. For ease of 
exposition assume that the probabilities of being a complier, never-taker or always-taker, 

, 4n, and 4a respectively, are positive and known. The figure plots the never-taker mean 
outcome Yi (0) vs. the directly estimable mean outcome for those assigned and receiving 
control, a group which is a mixture of compliers and never-takers with mixture proportion 
4,/(4, + ?n). The region inside the parallelogram {(0, 0), (?J/(?J + Jn), 0), (?,/ 
(?c + Jn), 1), (1, 1)}, corresponds to the set of (E[Yi Zi= 0, Di= 0], E[ Yi ,Zi1 Di= O]) 
consistent with a value of E [ Yi (0)1 Ci = c)] between zero and one. 

1 
____>n 

/(O+( q,n) 

E[YI Z= 1, D=O] 

0 1c ( (Oc + On) 

E[YI Z=O, D=O] 
FIGURE 9 

The dot and circle in Figure 9 denote the centre and contour of the sampling distribu- 
tion of the unbiased moment estimates Yoo and Ylo of E[Y(0)IZ=0, D=0] and 
E[ Y(O)I Z = 1, D = 0] respectively. As depicted, there is some probability mass of this dis- 
tribution in the region where the implicit estimate of E[ Yi (0)1 Ci = c] = ((4c + 4n)/ 

4c)E[ Yobs,i I Zobs,i = 0, Dobs,i = 0] - (nl/4c)E[ Yobs,i I Zobs,i = 1, Dobs,i = 0] is negative: the area 
to the top/left of the line going through the origin and the point (nA/('+n+ n) 1). Both 
the nonnegative IV estimates and the multinomial and normal ML estimates of 
E [ Yobs,i I Zobs,i = 0, Dobs,i = 0] and E [ Yobs,i I Zobs,i = 1, Dobs,i = 0] by definition lie in the interior 
of the parallelogram { (0, 0), (cl/(4c+ 4+,), 0), (40/(4)c + 4n), 1), ( 1, 1 ) }, thereby biasing 
these estimates away from the unbiased moment estimates and towards the forty-five 
degree line where the mean of Yi (0) for compliers is the same as the mean of Yi (0) for 
never-takers. Combined with a similar bias in the estimates of Yi (1) for compliers towards 
equality of E[Yi (1)] for compliers and always-takers, this leads to a small sample bias of 
the estimates of the local average treatment effect towards the difference in outcomes by 
treatment, or the ordinary least squares estimates of the average treatment effect. At the 
same time, however, imposing these restrictions should lead to a reduction in the dispersion 
of the estimates. This is very similar to estimation in variance components models where 
unbiased estimators for the variances can lead to negative estimates: restricting the variance 
estimates in such models to be nonnegative leads to a reduction in mean squared error 
but also an increase in bias. 

In the simulations each sample is of size 1000; 500 are randomly assigned Zi= 0 and 
500 are randomly assigned Zi= 1. The population probability of being a complier is 0- 1, 
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the probability of being a never-taker is 0 45 and the probability of being an always-taker 
is 0 45. The distributions of Yi(I) for always-takers and Yi(0) for never-takers are normal 
with mean zero and unit variance. The distribution of Yi(0) for compliers is normal with 
mean -0 5 and unit variance, and finally the distribution of Yi (1) for compliers is normal 
with mean 0 5 and unit variance. The local average treatment effect is E[ Yi (1) - Yi (0)1 Ci - 
c] = I0, and the population average treatment-control difference is E[ Yi Zi=1- 
E[ Yi Zi = 0] = O 1. For the estimators based on histograms and multinomial distributions 
we use bins of width 0 6. For the normal ML estimates we impose, as with the actual 
data, equality of the variance of Y(0) for compliers and never-takers and of the variance 
of Y(1) for compliers and always-takers. 

TABLE 3 

Estimates of the local average treatment effect (true value is 1) 

Bin Mean Median 5th 95th 
width bias rmse bias mae percentile percentile 

OLS -0 90 0-90 -0 90 0 90 0.00 0-21 
Standard IVE 0 17 0-92 0 05 0 47 0 05 2 05 
Normal MLE -0 01 0-62 -0 00 0 39 -0 04 2-05 
Nonnegative IVE 0 6 -0-31 0 53 -0 31 0 37 0-01 1-42 
Multinomial MLE 0 6 -0 33 0-52 -0 34 0 37 0-01 1-33 

In Table 3 we present summary statistics (mean bias, root-mean-squared-error, med- 
ian bias and median-absolute-error) over 500 replications for the four estimators described 
above and the OLS estimates, i.e. the treatment-control average difference. As expected, 
the nonnegative IV and multinomial ML estimator are biased towards the average treat- 
ment-control difference, but all three alternatives proposed in this paper have substantially 
lower rmse and somewhat lower median absolute error than the standard IV estimator. 
This partially reflects the thick tails of the standard IV estimator that are absent in the 
other estimators. The intuition for the thick tails of the standard instrumental variables 
estimator is clear: occasionally the moment estimate of denominator in the IV represen- 
tation (9) is close to zero, suggesting the presence of few compliers. In that case the 
restrictions imply that the numerator has to be relatively small because few compliers can 
only lead to a relatively small average effect of Z on Y. The standard IV estimator ignores 
this restriction and so can occasionally be very large. 

Given the substantial bias of the multinomial maximum likelihood estimator, in prac- 
tice it may be advisable to consider low dimensional parametrizations. Although the 
normal distribution used in the application and Monte Carlo investigation may be too 
limiting, generalizations to t-distributions or mixtures of normal distributions may be 
flexible enough to get close approximations to the four underlying outcome distributions 
while maintaining the advantages of low-dimensional parameterizations. These parametric 
models have the additional advantage that they are relatively easily extended to allow for 
covariates. If there is concern that the normal approximation to the maximum likelihood 
estimator is poor, Bayesian methods as described in Imbens and Rubin (1997) should be 
used. 

8. CONCLUSION 

In this paper we first show that with instrumental variables we can learn more from the 
data than just the average causal effect for those who are potentially affected by the 
instrument, the compliers: we can in fact estimate their entire outcome distributions under 
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both values of the treatment. These distributions may contribute to an understanding of 
the difference between simple treatment-control difference estimates of average causal 
effects and instrumental variables estimates, and can be helpful for policy purposes when 
there is concern about the distributional effects of programs. 

Our second point is that conventional instrumental variables estimates are based on 
implicit estimates of density functions that are not restricted to be nonnegative. Because 
the assumptions underlying IV estimation, as explicated in AIR, restrict the distribution 
of the observable variables, they can be used to test the validity of the instrument even in 
the binary instrument, binary treatment case. Here we focused on the implications of the 
restrictions for estimation. 

We also discussed three new methods for imposing nonnegativity on the density 
estimates. All three lead to similar inferences that are substantially different from that 
based on standard IV estimates in an example where we estimate the causal effect of 
education on earnings using quarter of birth as an instrument. This conclusion should be 
of concern to economists who routinely use these instrumental variables estimates, typically 
appealing to the lack of distributional and functional form assumptions as reasons to 
believe in their robustness. Two of the new methods are based on multinomial approxima- 
tions to the four outcome distributions and the third relies on a normal approximation. 
The multinomial approximations show in simulations some bias towards the difference in 
average outcomes by treatment status estimates. The normal distribution based estimator 
performs very well in the simulations, outperforming the standard IV estimator, and giving 
credible answers with the actual AK data. Since this approach can easily be extended to 
allow for covariates and more general parametric models as well as for small sample 
Bayesian adjustments, we view it as the most attractive of the methods developed here. 
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