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Abstract. We consider methods for estimating causal effects of treatments when treatment assignment is

unconfounded with outcomes conditional on a possibly large set of covariates. Robins and Rotnitzky (1995)

suggested combining regression adjustment with weighting based on the propensity score (Rosenbaum and

Rubin, 1983). We adopt this approach, allowing for a flexible specification of both the propensity score and the

regression function. We apply these methods to data on the effects of right heart catheterization (RHC) studied in

Connors et al (1996), and we find that our estimator gives stable estimates over a wide range of values for the two

parameters governing the selection of variables.
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1. Introduction

A central goal of health outcomes research is to estimate the causal effect of a treatment on

an outcome of interest. If assignment to treatment is based on randomization, such

inferences are often straightforward. In many circumstances, however, random assignment

is infeasible, either for ethical or practical reasons. Even if it is feasible, the randomization

may be compromised by noncompliance and other missing data problems. Without

randomization, or if the randomization is compromised by missing data problems,

simple comparisons of treated and untreated outcomes will not generally yield valid

estimates of causal effects. However, in some observational studies, it may be reasonable to

assume that treatment assignment is unconfounded with potential outcomes conditional on

a sufficiently rich set of covariates or pretreatment variables.

Given unconfoundedness, various methods have been proposed for estimating causal

effects. Some rely on estimating the conditional regression function of the outcomes given

covariates (e.g., Robins, Rotnitzky and Zhao, 1995; Robins and Rotnitzky, 1995; Hahn,

1998; Heckman, Ichimura and Todd, 1997, 1998). Others use the propensity score

(Rosenbaum and Rubin, 1983, 1985) in matching procedures or regression adjustment.



Hirano, Imbens and Ridder (2000) propose a Horvitz-Thompson type estimator based on

weighting by the inverse of the assignment probabilities, with the assignment probabilities

estimated nonparametrically. Abadie and Imbens (2001) suggest a matching procedure that

combines pairwise matching without replacement and covariance adjustment.

Many of the existing estimators for average causal effects under unconfoundedness

require the researcher to make a large number of choices concerning which variables to

include in the specification of the propensity score and/or the specification of the

conditional mean of the outcome. In this paper we propose a specific class of estimators

of average causal effects that requires relatively few decisions to be made operational. Our

estimators use a flexible estimate of the propensity score to construct weights, and uses

these weights in a weighted regression of the outcome on treatment and covariates. It is

based on earlier work (Hirano, Imbens and Ridder, 2000) that shows that if the propensity

score is estimated in a sufficiently flexible manner, a weighting-based estimator can achieve

the semiparametric efficiency bound for estimation of average causal effects calculated by

Robins, Rotnitzky and Zhao (1995) and Hahn (1998). Robins and Rotnitzky (1995) have

suggested combining such weighting with regression adjustment, and demonstrated

consistency under the assumption that a parametric model applies to either the propensity

score or the regression function, but not necessarily to both. We use a simple criterion to

select which of a potentially large set of covariates enter into the construction of the weights

and in the regression adjustment. In particular, we propose to base these decisions on the

strength of the marginal correlation between the treatment and each of the covariates

separately, and on the conditional correlation of the outcome and each of the covariates

given the treatment. Each estimator in the class we propose is characterized by two cutoff

values; the first governs the restrictiveness of the specification of the two regression

functions, and the second governs the restrictiveness the specification of the propensity

score. This general class of estimators includes a number of standard ones, such as the

simple difference in average treatment and control outcomes, and the estimator that adjusts

for all covariates through regression, as well as estimators that rely purely on weighting to

remove bias.

We apply these estimators to data on the effect of Right Heart Catherization (RHC),

previously analyzed by Connors et al. (1996). We find that for intermediate values of the

variable selection parameters, our estimator gives more stable estimates than for values that

rely solely on regression adjustment or solely on propensity score weighting. We conclude

that in practice one may wish to combine regression adjustment and weighting rather than

rely solely on one of these methods to remove bias.

2. Efficient Estimation of Average Causal Effects under Unconfounded Treatment

Assignment

We begin by reviewing some recent work on estimation of treatment effects, and propose

an estimator that combines weighting based on the estimated propensity score, with

regression adjustment.
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2.1. Basic Setup and Weighting Estimators

Suppose we have a random sample of size N from a large population. For each unit i in the

sample, let Ti indicate whether the treatment of interest was received, with Ti ¼ 1 if unit i

received the treatment of interest, and Ti ¼ 0 if unit i received the control treatment. Using

the potential outcomes notation (e.g., Rubin, 1974), let Yið0Þ denote the outcome for unit i

under control and Yið1Þ the outcome under treatment. For unit i the treatment effect is

Yið1Þ � Yið0Þ: We are interested in the average effect of the treatment in the population,

t ¼ E½Yið1Þ � Yið0Þ�:

However we will also discuss methods of estimating the average effect on the treated,

tt ¼ E½Yið1Þ � Yið0ÞjTi ¼ 1�;

which is of interest if one wishes to evaluate the effect of the treatment on the

subpopulation that is likely to take up the treatment. The difficulty in estimating either

of these average treatment effects is that we only observe Yið0Þ or Yið1Þ; but never both.

Formally, we observe Ti and Yi; where

Yi ¼ YiðTiÞ ¼ Ti � Yið1Þ þ ð1 � TiÞ � Yið0Þ:

In addition, we observe a K-dimensional vector of pre-treatment variables, or covariates,

denoted by Xi:
Throughout the analysis we make the unconfoundedness assumption (Rubin, 1978;

Rosenbaum and Rubin, 1983), which asserts that conditional on the pre-treatment

variables, the treatment indicator is independent of the potential outcomes:

T?ðY ð0Þ; Y ð1ÞÞjX : ð1Þ

(Here and at other points below, we suppress the i subscript for notational conveniance.)

In other words, within subpopulations defined by values of the covariates, we have

random assignment. In addition we assume that for all values of the covariates the

probability of receiving either treatment is strictly positive. Formally, defining the

propensity score as

eðxÞ ¼ PrðT ¼ 1jX ¼ xÞ;

we asssume that

0 < eðxÞ < 1;

for all x:
Both these assumptions may be controversial in applications. The first assumption

requires that all variables that affect both outcome and the likelihood of receiving the
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treatment are observed. Although this is not testable, it clearly is a very strong assumption,

and one that need not generally be applicable. We view it as a useful starting point for two

reasons. One is that in some studies, like the Connors et al. (1996) study of right heart

catherization, researchers have carefully investigated which variables are most likely to

confound any comparison between treated and control units and made attempts to observe

all such variables. Even if these attempts are not completely successful, the assumption

that all relevant variables are observed may be a reasonable approximation, especially if

much information about pre-treatment outcomes is available. Second, any alternative

assumption that does not rely on unconfoundedness while allowing for consistent

estimation of the average treatment effects must make alternative untestable assumptions.

Whereas the unconfoundedness assumption implies that the best matches are units that

differ only in their treatment status, but otherwise are identical, alternative assumptions

implicitly match units that differ in the pre-treatment characteristics. Often such assump-

tions are even more difficult to justify. The unconfoundedness assumption therefore may

be a natural starting point after comparing average outcomes for treated and control units

to adjust for observable pre-treatment differences.

The second assumption, that the propensity score is bounded away from zero and one, is

in principle testable. If there are values of the covariates for which the probability of

receiving the treatment is zero or one, we cannot compare treated and control units at such

values. In that case we have to limit comparisons to sets of values where there is sufficient

overlap in the propensity score among treated and controls. For further discussion see

Rubin (1977) and Heckman, Ichimura and Todd (1997).

2.2. Regression Adjustment

The unconfoundedness assumption (1) validates the comparison of treated and control

units with the same value of the covariates. The treatment effect for the subpopulation with

X ¼ x can be written as:

tðxÞ ¼ E½Y ð1Þ � Y ð0ÞjX ¼ x�

¼ E½Y ð1ÞjT ¼ 1;X ¼ x� � E½Y ð0ÞjT ¼ 0;X ¼ x�

¼ E½Y jT ¼ 1;X ¼ x� � E½Y jT ¼ 0;X ¼ x�;

where both terms on the right-hand side can be estimated from a random sample of

ðY ; T ;X Þ: The average treatment effect t can then be estimated using the equality

t ¼ E½tðX Þ�:

One way to implement this approach is to approximate the two conditional means by linear

functions (e.g., Rubin, 1977):

E½Y jT ¼ t;X ¼ x� ¼ bt0 þ b0t1x:
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One can then estimate the parameters of these two regression functions by least squares

methods applied separately to the subsamples of treated and control units, and estimate the

average treatment effect as

t̂t ¼ b̂b10 � b̂b00 þ ðb̂b11 � b̂b01Þ
0 �xx; ð2Þ

where �xx is the sample average of the covariates. An alternative way of writing this

estimator is as the least squares estimate of t in the expanded regression on the entire

sample

Yi ¼ a0 þ t � Ti þ a01Xi þ a02ðXi � �xxÞ � Ti þ ei:

This representation will be useful later when we combine the regression adjustment with

weighting. Note that the linearity is not really restrictive, as we can include functions of the

original covariates in the vector x.

2.3. Weighting using the Propensity Score

When the dimension of X is large, it may be difficult to include all covariates in

the regression, and thus to estimate accurately the two regression functions

mtðxÞ ¼ E½Y jT ¼ t;X ¼ x�: To address this problem, Rosenbaum and Rubin (1983)

developed the propensity score methodology. Their key insight was that given the

unconfoundedness assumption (1), treatment assignment and the potential outcomes are

independent conditional on a scalar function of the covariates, the conditional probability

of assignment:

T?ðY ð0Þ; Y ð1ÞÞjeðX Þ: ð3Þ

Thus, adjusting for the propensity score removes the bias associated with differences in the

observed covariates in the treated and control groups. One way to implement this approach

is to reweight treated and control observations to make them representative of the

population of interest (as in Horvitz-Thompson (1952) estimators for stratified sampling).

First consider the expectation

E
Y � T

eðX Þ

� �
:

Conditional on X ¼ x the expectation of this expression is

E
Y � T

eðX Þ

����X ¼ x

� �
¼ E½Y ð1ÞjX ¼ x�:
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Hence, the marginal expectation of YT=eðX Þ is equal to E½Y ð1Þ�: More generally,

E
Y � T

eðX Þ
�

Y � ð1 � T Þ

1 � eðX Þ

� �
¼ E½Y ð1Þ � Y ð0Þ� ¼ t:

This reasoning suggests the simple weighting estimator:

t̂t ¼
XN

i¼1

ti � yi

êeðxiÞ

.XN

i¼1

ti

êeðxiÞ
�
XN

i¼1

ð1 � tiÞyi

1 � êeðxiÞ

.XN

i¼1

1 � ti

1 � êeðxiÞ
; ð4Þ

where êeðxÞ is an estimate of the propensity score. Note that in this estimator we normalize

the weights so they add up to one in each treatment group. Although the above argument

shows that they do add up in expectation to one, they do not do so exactly without the

normalization. Hirano, Imbens, and Ridder (2000) show that if the propensity score is

estimated nonparametrically using a series estimator, then the resulting estimate is

asymptotically efficient. This is of interest because Robins and Rotnitzky (1995), Rubin

and Thomas (1996), and Hahn (1998) show that adjusting for the true propensity score in

general leads to inefficient estimates.

2.4. Combining Weighting with Regression Adjustment

The class of estimators we consider combine weighting and regression adjustment. As

Robins and Rotnizky (1995) point out, as long as only one of the models, either that for the

conditional mean of Y ð0Þ and Y ð1Þ given covariates, or that for the treatment indicator

given covariates, is correctly specified, the resulting estimator will be consistent. Our

estimators allow for increasingly flexible models in both dimensions, and may therefore be

relatively robust compared to estimators that rely on very parsimonious specifications of

one of the two components. Specifically, we consider estimators based on weighted least

squares estimation of the regression function

Yi ¼ a0 þ t � Ti þ a01Zi þ a02ðZi �
�ZZÞ � Ti þ ei;

where the Zi are a subset of the covariates Xi; with sample average �ZZ: Ideally the weights

we would like to use are

oðt; xÞ ¼
t

eðxÞ
þ

1 � t

1 � eðxÞ
;

but with the propensity score unknown we replace the true propensity score by the

estimated score, leading to the weights

ôoðt; xÞ ¼
t

êeðxÞ
þ

1 � t

1 � êeðxÞ
:
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Our estimates of the propensity score are based on a logistic regression model:

PrðTi ¼ 1jVi ¼ vÞ ¼
expðv0gÞ

1 þ expðv0gÞ
;

where Vi is a subset of the vector of covariates Xi:
Note that this class of estimators includes both the regression estimator given in (2) (by

not including any covariates in V in the logistic regression), and the weighting estimator

given in (4) (by not including any covariates in Z in the linear regression).

Given that we restrict the class of estimators considered to those where both the

regression functions and the propensity score are linear in a subset of the covariates, the

only remaining decisions concern the choice of the subsets. The linearity is not necessarily

restrictive, as we can include higher order terms and interactions of the original covariates

in the vector of covariates. However, we assume that any such higher order terms are

already included in Z and V ; and do not consider adding to either Z or V any functions of

the covariates not already included in X : Hence the problem is an example of the classic

subset selection problem in regression (e.g., Miller, 1990). Here we consider a very simple

pair of rules, characterized by only a single degree of freedom.

First, consider the set of variables to be included in the propensity score. With K equal

to the dimension of X ; we estimate K logistic regressions. The kth logistic regression

specifies

PrðTi ¼ 1jXik ¼ xkÞ ¼
expðgk0 þ gk1 � xkÞ

1 þ expðgk0 þ gk1 � xkÞ
:

After estimating this logistic regression by maximum likelihood we compute the t-statistic

for the test of the null hypothesis that the slope coefficient gk1 is equal to zero. If the t-

statistic is larger in absolute value than tprop; this variable will be included in V ; the vector

of covariates used in the final specification of the propensity score. After estimating all K

logistic regressions we end up with the subset of covariates whose marginal correlation

with the treatment indicator is relatively high. We orthogonalize the set of selected

covariates, and use these to estimate the propensity score.

Similarly, we estimate K linear regressions of the type

Yi ¼ bk0 þ bk1 � Ti þ bk2 � Xik þ ei: ð5Þ

Again we calculate the t-statistic for the test of the null hypothesis that the slope coefficient

bk2 is equal to zero in each of these regressions, and now select for Z all the covariates with

a t-statistic larger in absolute value than treg: Thus, we include in the final regression all

covariates which have substantial correlation with the outcome conditional on the

treatment. As in the propensity score component, we orthogonalize the selected covariate

matrix to improve numerical stability.

The rules within this class are easy to implement, but they are not necessarily fully

optimal. For example, they do not take account of correlations between the different
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covariates. More complex rules, however, may require estimation of the basic models for

all subsets of regressors. In examples like ours, with over seventy covariates, this could be

prohibitively expensive. In addition, an advantage of our class of estimators is that it

includes as special cases a number of simple, commonly used estimators, so that we can

compare a number of standard approaches within one framework.

The two remaining choices are the cutoff values for the t-statistics ðtprop; tregÞ: We

consider all pairs with tprop and treg in the set f0; 1; 2; 4; 8; 16;1g: Some of the pairs

included in this set are of particular interest. Choosing ðtprop; tregÞ ¼ ð1;1Þ amounts to

estimating the average treatment effect by the difference in treatment-control averages.

Choosing ðtprop; tregÞ ¼ ð1; 0Þ amounts to estimating t by linear regression with all

covariates and no weighting. At the other extreme, ðtprop; tregÞ ¼ ð0;1Þ amounts to

estimating the propensity score with all covariates and using this for the weighting, but

without any additional covariance adjustment. More generally we consider pairs of values

that allow some variables to enter in the propensity score and some to enter in the

regression, or both, depending on their correlation with the treatment and their conditional

correlation with the outcome.

Finally, we consider estimation of standard errors for the estimators taking into account

estimation error in the propensity score and the regression adjustment. In the Appendix,

we provide expressions for the asymptotic variance of the general estimator, using standard

results on M-estimators. These standard errors are conditional on the correct specification

of both the regression model and the propensity score. However, they can also be justified

by allowing the parametrization to become more flexible as the sample size gets larger,

using, for example, the results on series estimation in Newey (1994).

2.5. The Average Treatment Effect for the Treated

The discussion so far has focused on estimation of the population average treatment effect.

If we wish to estimate the average treatment effect for the treated subpopulation, two

modifications are required. Instead of subtracting the population average of the covariates

included in the regression in the interaction term with the treatment indicator, one should

subtract the average for the treated:

Yi ¼ a0 þ t � Ti þ a01Zi þ a02ðZi �
�ZZ1Þ � Ti þ ei;

where �ZZ1 is the sample average of Z for the subsample of the treated units. The second

modification is in the weights. Instead of being equal to 1=êeðzÞ for the treated and

1=ð1 � êeðzÞ, for the controls, the weights are now unity for the treated units and

êeðxÞ=ð1 � êeðxÞÞ for the control units:

oðt; zÞ ¼ t þ ð1 � tÞ �
êeðzÞ

1 � êeðzÞ
:
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3. Re-analysis of SUPPORT data on Right Heart Catheterization

In an influential study, Connors et al. (1996) used a propensity score matching approach

(Rosenbaum and Rubin, 1983) to study the effectiveness of Right Heart Catheterization

(RHC) in an observational setting, using data from the Study to Understand Prognoses and

Preferences for Outcomes and Risks of Treatments (SUPPORT). RHC is a diagnostic

procedure used for critically ill patients. The SUPPORT study collected data on

hospitalized adult patients at 5 medical centers in the U.S. Based on information from a

panel of experts a rich set of variables relating to the decision to perform the RHC, as well

as detailed outcome data, were collected. Table 1 lists the covariates we use in our analysis.

Further information about the study can be found in Connors et al. (1996) and Murphy and

Cluff (1990).

Connors et al. found that after adjusting for ignorable treatment assignment conditional

on a range of covariates, RHC appeared to lead to lower survival than not performing

RHC. This conclusion contradicted popular perception among practitioners that RHC was

beneficial. Their primary analysis matched treated and untreated patients on the basis of

the propensity score, with each unit matched at most once. This approach is called ‘‘case

matching’’ or ‘‘pairwise matching’’ (e.g., Rosenbaum, 1985). While simple and concep-

tually appealing, it is generally less efficient than the approaches we suggest here, and

construction of confidence intervals and hypothesis tests that take into account the

estimation of the propensity score and the matching procedure can be difficult.

We have data on 5735 individuals, 2184 treated and 3551 controls. For each individual

we observe treatment status, equal to 1 if RHC was applied within 24 hours of admission,

and 0 otherwise, outcome (an indicator for survival at 30 days), and 72 covariates. Table 2

gives means of the covariates by treatment status. For each covariate, we calculate the t-

statistic for the difference in means between untreated and treated observations. It is clear

that the two treatment groups differ signficantly on many of the covariates.

We estimate the propensity score, using the logistic model outlined above. Figure 1

shows the distribution of estimated propensity scores, where all the covariates have been

used in the specification of the propensity score. Separate histograms are generated for the

control and treated groups. Our main concern here is to make sure that there is sufficient

overlap between the two groups. We see that while the two groups obviously differ, in both

groups the support of the estimated propensity scores is nearly the entire unit interval.

Figure 2 shows the distribution of estimated propensity scores, where the variable selection

rule has been applied to select the regressors in the logistic regression. The variable

selection rule applied here selects all covariates that have a t-statistic at least equal to two.

This rule led us to include 56 of the 72 covariates. Qualitatively, the estimates of the

propensity score based on this selection of covariates leads to a figure similar to Figure 1.

The last two columns of Table 2 give the means of the control and treated groups, after

weighting based on the estimated propensity score with variable selection (leading to the

inclusion of 56 out of the 72 covariates). The weighting brings most of the means much

closer together, although a few variables become slightly less balanced after the weighting.

For most of the covariates, however, weighting by the propensity score appears to balance

the control and treatment groups extremely well.
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Table 1. SUPPORT Covariates

age Age (years)

sex Female

raceblack Black

raceother Other

edu Education (years)

income1 Income $11–$25k

income2 Income $25–$50k

income3 Income > $50k

ins_care Medicare

ins_pcare Private & Medicare

ins_caid Medicaid

ins_no No Insurance

ins_carecaid Medicare & Medicaid

cat1_copd COPD

cat1_mosfsep MOSF w=Sepsis

cat1_mosfmal MOSF w=Malignancy

cat1_chf CHF

cat1_coma Coma

cat1_cirr Cirrhosis

cat1_lung Lung Cancer

cat1_colon Colon Cancer

cat2_mosfsep MOSF w=Sepsis

cat2_coma Coma

cat2_mosfmal MOSF w=Malignancy

cat2_lung Lung Cancer

cat2_cirr Cirrhosis

cat2_colon Colon Cancer

resp Respiratory diagnosis

card Cardiovascular diagnosis

neuro Neurological diagnosis

gastr Gastrointestinal diagnosis

renal Renal diagnosis

meta Metabolic diagnosis

hema Hematological diagnosis

seps Sepsis diagnosis

trauma Trauma diagnosis

ortho Orthopedic diagnosis

das2d3pc DASI — Duke Activity Status Index

dnr1 Do Not Resuscitate status on day 1

ca_yes Cancer — localized

ca_meta Cancer — metastatic

surv2md1 Estimate of prob. of surviving 2 months

aps1 APACHE score

scoma1 Glasgow coma score

wtkilo1 Weight

temp1 Temperature

meanbp1 Mean Blood Pressure

resp1 Respiratory Rate

hrt1 Heart Rate

pafi1 PaO2=FI02 ratio
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We also calculate two matching estimators suggested by Abadie and Imbens (2001). In

standard matching estimators (e.g., Rosenbaum, 1985), including the estimators used by

Connors et al. (1996), each treated unit is matched to a single control, with each control

being used at most once. If no adequate control unit can be found for a particular treated

unit, it is discarded. This method implies that the numerical answers can actually depend

on the order in which the treated units are matched. In contrast, the estimator proposed by

Abadie and Imbens (2001) matches each treated unit to the closest control, and then each

control to the closest treated unit, in each case with replacement. This implies that pairs are

not necessarily independent, and the standard errors have to account for this. We report

both a simple matching estimate based on this algorithm and a bias-adjusted estimate

where, given the matched pairs, regression analysis is used to eliminate remaining bias.

The simple matching estimate is �0.081 (standard error 0.017) and the bias-adjusted

matching estimate is �0.063 (standard error 0.016).

Next, we turn to the estimates of the average causal effects under different choices for

tprop and treg as reported in Table 3. Standard errors are given in parentheses below the

point estimates. Without any adjustment, either through the propensity score weighting or

through regression, the estimated effect of the treatment is �0.074, based on the difference

in average treatment and control outcomes. The last column presents the estimates that rely

only on propensity score adjustment. There is a fairly wide range of estimates, as low as

�0.074 and as high as �0.014. The bottom row presents estimates based on unweighted

linear regression. Here the estimates range from �0.074 to �0.048. For comparison,

Table 1. continued

paco21 PaCO2

ph1 PH

wblc1 WBC

hema1 Hematocrit

sod1 Sodium

pot1 Potassium

crea1 Creatinine

bili1 Bilirubin

alb1 Albumin

cardiohx Cardiovascular symptoms

chfhx Congestive Heart Failure

dementhx Dementia, stroke or cerebral infarct, Parkinson’s disease

psychhx Psychiatric history, active psychosis or severe depression

chrpulhx Chronic pulmonary disease, severe pulmonary disease

renalhx Chronic renal disease, chronic hemodialysis or peritoneal dialysis

liverhx Cirrhosis, hepatic failure

gibledhx Upper GI bleeding

malighx Solid tumor, metastatic disease, chronic leukemia=myeloma, acute leukemia, lymphoma

immunhx Immunosuppression, organ transplant, HIV, Diabetes Mellitus, Connective Tissue

Disease

transhx transfer (> 24 hours) from another hospital

amihx Definite myocardial infarction

wt0 weight = 0
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Table 2. Characteristics of untreated and treated groups

Variable Untreated Treated t-stat Untreated

(weighted)

Treated

(weighted)

t-stat

(weighted)

age 61.76 60.74 �2.28 61.25 61.15 �0.19

sex 0.46 0.41 �3.42 0.44 0.43 �0.85

raceblack 0.16 0.15 �1.14 0.15 0.16 1.09

raceother 0.06 0.06 0.76 0.05 0.05 0.16

edu 11.56 11.85 3.35 11.68 11.71 0.39

income1 0.20 0.20 0.56 0.20 0.19 �1.19

income2 0.14 0.17 3.88 0.14 0.16 1.05

income3 0.07 0.08 2.19 0.07 0.07 0.12

ins_care 0.26 0.23 �2.79 0.25 0.23 �1.06

ins_pcare 0.21 0.22 1.26 0.22 0.21 �0.45

ins_caid 0.12 0.08 �4.77 0.11 0.11 0.01

ins_no 0.05 0.06 1.54 0.05 0.05 1.03

ins_carecaid 0.07 0.05 �2.19 0.06 0.06 0.30

cat1_copd 0.11 0.02 �13.57 0.07 0.06 �1.10

cat1_mosfsep 0.14 0.32 14.79 0.21 0.22 0.35

cat1_mosfmal 0.06 0.07 0.64 0.07 0.06 �1.09

cat1_chf 0.06 0.09 3.43 0.08 0.08 0.20

cat1_coma 0.09 0.04 �7.96 0.07 0.07 �0.02

cat1_cirr 0.04 0.02 �5.56 0.03 0.03 �0.10

cat1_lung 0.00 0.00 �3.77 0.00 0.00 �1.55

cat1_colon 0.00 0.00 �1.48 0.00 0.00 �0.65

cat2_mosfsep 0.11 0.19 7.81 0.15 0.15 0.34

cat2_coma 0.01 0.00 �3.40 0.01 0.01 �0.46

cat2_mosfmal 0.04 0.02 �4.34 0.03 0.04 0.57

cat2_lung 0.00 0.00 �2.28 0.00 0.00 �1.38

cat2_cirr 0.00 0.00 �1.22 0.00 0.00 �1.48

cat2_colon 0.00 0.00 0.32 0.00 0.00 0.73

resp 0.41 0.28 �10.01 0.37 0.36 �0.49

card 0.28 0.42 10.72 0.35 0.35 0.04

neuro 0.16 0.05 �13.74 0.11 0.10 �0.71

gastr 0.14 0.19 4.39 0.17 0.16 �0.20

renal 0.04 0.06 4.16 0.05 0.05 0.13

meta 0.04 0.04 �1.04 0.04 0.04 �0.43

hema 0.06 0.05 �2.30 0.06 0.06 0.55

seps 0.14 0.23 8.41 0.17 0.18 0.74

trauma 0.00 0.01 3.61 0.00 0.00 0.52

ortho 0.00 0.00 0.95 0.00 0.00 0.95

das2d3pc 20.37 20.70 2.32 20.37 20.64 1.42

dnr1 0.14 0.07 �8.67 0.11 0.10 �0.88

ca_yes 0.17 0.15 �2.66 0.16 0.17 0.61

ca_meta 0.07 0.05 �2.60 0.06 0.06 �0.13

surv2md1 0.60 0.56 �7.27 0.58 0.58 �0.01

aps1 50.93 60.73 18.27 55.67 56.15 0.51

scoma1 22.25 18.97 �4.09 20.87 20.65 �0.21

wtkilo1 65.04 72.36 9.47 68.69 69.10 0.31

temp1 37.63 37.59 �0.78 37.59 37.55 �0.57

meanbp1 84.86 68.19 �16.99 77.10 77.38 0.15

resp1 28.97 26.65 �6.07 28.09 28.64 0.99
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consider the third row and column. In the third row, where the propensity score includes all

covariates with a t-statistic of at least 2, for varying cutoff points for the regression

adjustment, the range of estimates is ð�0:062;�0:053Þ. Similarly in the third column,

where all estimates are based on regression adjustment with covariates included with a t-

statistic of 2, for varying specifications of the propensity score, the range is

ð�0:068;�0:061Þ. It is clear that by using a flexible specification of the propensity

score the sensitivity to the specification of the regression function is dramatically reduced,

and vice versa. We also note that these estimates agree closely with the bias-adjusted

matching estimate of �0.063.

The standard errors for the estimates in Table 3 do not vary much with the specification.

Most are between 0.012 and 0.016, in many cases slightly lower than for the matching

estimates.

We can also examine how many of the covariates are included in the propensity score for

the various cutoff points. With the cutoff point for inclusion in the propensity score equal

to tprop ¼ 0 all 72 covariates are included. With tprop ¼ 1 we still include 66 of the

covariates. With tprop ¼ 2 this goes down to 56. With tprop ¼ 4 only 32 of the covariates are

included, and with tprop ¼ 8 and tprop ¼ 16 this goes down further to 15 and 1 respectively.

Similarly, we consider the number of variables included in the regression function

according to the various criteria. For treg ¼ 0 again all 72 covariates are included. With

treg ¼ 1 58 of the covariates are included, with treg ¼ 2 we include 47 covariates, with

Table 2. continued

hrt1 112.87 118.92 5.39 113.79 115.99 1.22

pafi1 240.62 192.43 �16.12 219.35 219.88 0.11

paco21 39.95 36.79 �9.43 38.90 38.50 �0.72

ph1 7.39 7.38 �4.37 7.38 7.38 0.77

wblc1 15.26 16.26 3.03 15.82 16.73 1.14

hema1 32.69 30.50 �10.10 31.59 31.42 �0.56

sod1 137.03 136.33 �3.39 136.78 136.72 �0.26

pot1 4.07 4.04 �0.99 4.15 3.97 �4.10

crea1 1.92 2.47 9.89 2.13 2.22 1.03

bili1 1.99 2.70 5.20 2.38 2.34 �0.23

alb1 3.16 2.97 �8.15 3.08 3.15 0.69

cardiohx 0.15 0.20 4.20 0.19 0.18 �0.50

chfhx 0.16 0.19 2.53 0.18 0.18 �0.08

dementhx 0.11 0.06 �6.17 0.09 0.08 �1.30

psychhx 0.08 0.04 �5.43 0.06 0.06 �0.38

chrpulhx 0.21 0.14 �7.21 0.18 0.17 �0.76

renalhx 0.04 0.04 1.15 0.05 0.04 �0.97

liverhx 0.07 0.06 �1.81 0.06 0.06 0.17

gibledhx 0.03 0.02 �2.65 0.03 0.02 �0.41

malighx 0.24 0.20 �3.75 0.22 0.23 0.45

immunhx 0.25 0.29 2.94 0.27 0.27 �0.32

transhx 0.09 0.14 6.10 0.11 0.11 0.71

amihx 0.02 0.04 2.67 0.03 0.03 0.07

wt0 0.10 0.06 �4.48 0.08 0.07 �0.59
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Figure 1. Propensity scores estimated using all covariates.

Figure 2. Propensity scores estimated using selected covariates.

272 HIRANO AND IMBENS



treg ¼ 4 this goes down to 29, with treg ¼ 8 it is 10, and with treg ¼ 16 only 4 of the

covariates are included.

Figure 3 presents a scatterplot of the 72 pairs of absolute values of the t-statistics used in

the variable selection rules ðjtregj; jtpropjÞ: To illustrate in another way the effect of our

decision rule, we also calculated for each of the covariates the estimated effect of its

inclusion on the bias of the average treatment effect, ignoring all the other covariates. This

bias is calculated as the product of two regression coefficients. The first is the coefficient

on the covariate in the regression of the outcome on the covariate and the treatment

indicator, b̂bk2 in equation 5. The second is the estimated coefficient on the treatment

indicator in the regression

Xki ¼ dk0 þ dk1 � Ti þ ni:

The univariate bias associated with covariate k; defined as the difference between the

estimated effect of the treatment in a regression where we include covariate k; b̂bk1 and the

estimated effect in a regression where we do not include covariate k; �YY1 �
�YY0; is b̂bk2 � d̂dk1:

For the covariates for which this bias is larger than 0.001 in absolute value the symbol ‘‘*’’

is used in Figure 3, and for the others the symbol ‘‘o’’ is used. One can see that our t-statistic

criterion is picking up those covariates which potentially have a large effect on the bias.

4. Conclusion

Estimation of causal effects under the unconfoundedness assumption can be challenging

when the number of covariates is large and their functional relationship to the treatment

Table 3. Estimates of effect of RHC (standard errors in parentheses)

treg

0 1 2 4 8 16 1 # of Cov.

0 �0.062 �0.062 �0.063 �0.062 �0.061 �0.061 �0.060 72

(0.015) (0.015) (0.015) (0.016) (0.016) (0.016) (0.018)

1 �0.060 �0.060 �0.061 �0.059 �0.057 �0.055 �0.054 66

(0.015) (0.015) (0.015) (0.016) (0.016) (0.016) (0.018)

2 �0.060 �0.061 �0.062 �0.059 �0.057 �0.055 �0.053 56

(0.015) (0.015) (0.015) (0.016) (0.016) (0.016) (0.018)

tprop 4 �0.061 �0.063 �0.063 �0.060 �0.054 �0.054 �0.053 32

(0.015) (0.015) (0.015) (0.015) (0.015) (0.015) (0.017)

8 �0.063 �0.064 �0.067 �0.066 �0.058 �0.059 �0.031 15

(0.014) (0.015) (0.015) (0.015) (0.015) (0.014) (0.016)

16 �0.065 �0.067 �0.068 �0.065 �0.053 �0.048 �0.014 1

(0.014) (0.014) (0.014) (0.013) (0.013) (0.012) (0.013)

1 �0.065 �0.067 �0.068 �0.066 �0.054 �0.048 �0.074 0

(0.014) (0.014) (0.014) (0.013) (0.012) (0.012) (0.013)

# of Cov. 72 58 47 29 10 4 0
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and outcome are not known precisely. By flexibly estimating both the propensity score and

the conditional mean of the outcome given the treatment and the covariates, one can

potentially guard against misspecification in a relatively general way. Here we propose a

simple rule for deciding on the specification of the propensity score and the regression

function. This rule only requires the specification of two readily interpretable cutoff values

for variable selection, and is therefore relatively easy to implement and interpret. However,

more work needs to be done to understand its properties, and also to investigate alternative

approaches to variable selection in similar problems.

In our application to the SUPPORT study data, the estimator remained stable over a

range of values for the two cutoffs, as long as some variables are included in both

propensity score and regression adjustment. If no covariates are used in the regression

adjustment, or no covariates are included in the propensity score, the estimates are more

sensitive to the inclusion in the other component. It would be interesting to see if this

robustness given both propensity score weighting and regression adjustment, compared to

the sensitivity if only one method is used, extends to other applications.

Calculation of Standard Errors

Let a ¼ ða0; a
0
1; a

0
2Þ

0; y ¼ ðg0; a0Þ0; and z ¼ ð y; t; xÞ: Recall that v are the variables in the

logistic regression, and let w denote the regressors in the weighted regression.

Figure 3. T-statistics for variable selection rules.
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Define the moment functions

c1ðz; yÞ ¼ v t �
expðg0vÞ

1 þ expðg0vÞ

� �
;

and

c2ðz; yÞ ¼ oðt; xÞwð y � w0aÞ

¼
t

e
þ

ð1 � tÞ

ð1 � eÞ

� �
wð y � w0aÞ

¼ ½1 þ expðg0vÞ�
t

expðg0vÞ
þ ð1 � tÞ

� �
wð y � w0aÞ:

The estimator can be defined as the solution to the sample moment equation

1

n

Xn

i¼1

cðzi; yÞ ¼ 0

where

cðz; yÞ ¼
c1ðz; yÞ
c2ðz; yÞ

� �
:

By standard results on M-estimators, under y

ffiffiffi
n

p
ðŷy� yÞ !d N ð0;DFD0

Þ;

where

F ¼ E½cðz; yÞcðz; yÞ0�;

D ¼ D�1;

D ¼ E
@c
@y0

� �
:

ESTIMATION OF CAUSAL EFFECTS USING PROPENSITY SCORE WEIGHTING 275



To estimate the asymptotic variance use:

F̂F ¼
1

n

X
i

cðzi; ŷyÞcðzi; ŷyÞ
0:

D̂D ¼
1

n

X
i

@cðzi; ŷyÞ
@y0

;

where the derivative of c can be calculated as

@cðz; yÞ
@y0

¼

@c1ðz; yÞ
@g0

@c1ðz; yÞ
@a0

@c2ðz; yÞ
@g0

@c2ðz; yÞ
@a0

0
BB@

1
CCA:

where

@c1ðz; yÞ
@g0

¼
expðg0vÞ

ð1 þ expðg0vÞÞ2
vv0;

@c1ðz; yÞ
@a0

¼ 0;

@c2ðz; yÞ
@g0

¼
�t

expðg0vÞ
þ ð1 � tÞ expðg0vÞ

� �
ðy � w0dÞwv0;

and

@c2ðz; yÞ
@a0

¼ �½1 þ expðg0vÞ�
t

expðg0vÞ
þ ð1 � tÞ

� �
ww0:

For estimating the effect of the treatment on the treated we need to redefine wi

appropriately, and modify c2 to be

c2ðz; yÞ ¼ o1ðt; xÞwð y � w0aÞ

¼ t þ
ð1 � tÞe

1 � e

� �
wðy � w0aÞ

¼ ½t þ ð1 � tÞ expðg0vÞ�wðy � w0aÞ:
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Then we have

@cðz; yÞ
@y0

¼
ðexpðg0vÞ=ð1 þ expðg0vÞÞ2Þvv0 0

ð1 � tÞ expðg0vÞð y � w0aÞw � v0 �½t þ ð1 � tÞ expðg0vÞ�ww0

� �
:
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