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Generalized method of moments (GMM) estimation has become an important unifying framework for
inference in econometrics in the last 20 years. It can be thought of as encompassing almost all of
the common estimation methods, such as maximum likelihood, ordinary least squares, instrumental
variables, and two-stage least squares, and nowadays is an important part of all advanced econometrics
textbooks. The GMM approach links nicely to economic theory where orthogonality conditions that can
serve as such moment functions often arise from optimizing behavior of agents. Much work has been
done on these methods since the seminal article by Hansen, and much remains in progress. This article
discusses some of the developments since Hansen’s original work. In particular, it focuses on some of
the recent work on empirical likelihood—type estimators, which circumvent the need for a first step in
which the optimal weight matrix is estimated and have attractive information theoretic interpretations.
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1. INTRODUCTION

Generalized method of moments (GMM) estimation has
become an important unifying framework for inference in
econometrics in the last 20 years. It can be thought of as
encompassing almost all of the common estimation methods
such as maximum likelihood, ordinary least squares, instru-
mental variables, and two-stage least squares, and nowadays
is an important part of all advanced econometrics textbooks
(Gallant 1987; Davidson and McKinnon 1993; Hamilton 1994,
Hayashi 1999; Mittelhammer, Judge, and Miller 2000; Ruud
2000; Wooldridge 2002). Its formalization by Hansen (1982)
centers on the presence of known functions, labeled “moment
functions,” of observable random variables and unknown
parameters that have expectation zero when evaluated at the
true parameter values. The method generalizes the “standard”
method of moments where expectations of known functions of
observable random variables are equal to known functions of
the unknown parameters. The “standard” method of moments
can thus be thought of as a special case of the general method
with the unknown parameters and observed random variables
entering additively separable. The GMM approach links nicely
to economic theory where orthogonality conditions that can
serve as such moment functions often arise from optimizing
behavior of agents. For example, if agents make rational pre-
dictions with squared error loss, then their prediction errors
should be orthogonal to elements of the information set. In
the GMM framework, the unknown parameters are estimated
by setting the sample averages of these moment functions, the
“estimating equations,” as close to zero as possible.

The framework is sufficiently general to deal with the case
where the number of moment functions is equal to the number
of unknown parameters, the so-called “just-identified case,” as
well as the case in which the number of moments exceeds
the number of parameters to be estimated, the “overidentified
case.” The latter has special importance in economics, where
the moment functions often come from the orthogonality of
potentially many elements of the information set and predic-
tion errors. In the just-identified case, it is typically possible
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to estimate the parameter by setting the sample average of
the moments exactly equal to zero. In the overidentified case,
this is not feasible. The solution proposed by Hansen (1982)
for this case, following similar approaches in linear models,
such as two- and three-stage least squares, is to set a lin-
ear combination of the sample average of the moment func-
tions equal to zero, with the dimension of the linear com-
bination equal to the number of unknown parameters. The
optimal linear combination of the moments depends on the
unknown parameters; Hansen suggested using initial, possibly
inefficient, estimates to estimate this optimal linear combina-
tion. Chamberlain (1987) showed that this class of estima-
tors achieves the semiparametric efficient bound given the set
of moment restrictions. The Chamberlain article is not only
important for its substantive efficiency result, but also as a
precursor to the subsequent empirical likelihood literature by
the methods used: Chamberlain used a discrete approximation
to the joint distribution of all of the variables to show that
the information matrix—based variance bound for the discrete
parameterization is equal to the variance of the GMM estima-
tor if the discrete approximation is fine enough.

Much work has been done on these methods since these
seminal contributions, and much remains in progress. This
article discusses some of the developments since the work of
Hansen (1982). In particular, it focuses on some of the recent
work on empirical likelihood-type estimators, where Hansen
again made important early contributions (Hansen, Heaton,
and Yaron 1996, in a special issue of this journal on small-
sample properties of GMM estimators), and which continues
to be a area of great research activity. This literature devel-
oped partly in response to criticisms of the small-sample prop-
erties of the two-step GMM estimator. Researchers found in
a number of studies that with the degree of overidentification
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high, these estimators had substantial biases, and confidence
intervals had poor coverage rates (see, among others, Altonji
and Segal 1996; Burnside and Eichenbaum 1996; Pagan and
Robertson 1997). These findings are related to the results in
the instrumental variables literature that with many or weak
instruments, two-stage least squares can have poor properties
(e.g., Bekker 1994; Bound, Jaeger, and Baker 1995; Staiger
and Stock 1997; Stock, Wright, and Yogo 2002). Simulations,
as well as theoretical results, suggest that the new estima-
tors have limited information maximum likelihood (LIML)—
like properties and lead to improved large-sample properties,
at the expense of some computational cost. Both the advan-
tages and costs of these methods are discussed herein. Because
the research on GMM approaches has expanded so much
since 1982, not all areas can be discussed in great detail.
In particular, time series settings are not addressed. Another
area where a great deal of work has been done concerns the
case with nonsmooth moment functions. Following the work
on quantile regression by Koenker and Bassett (1978), much
research has allowed for quantile-type moment functions, in
just-identified or overidentified settings (e.g., Powell 1984;
Honoré 1992). In addition, bootstrapping is not discussed.
Here much work has been done (e.g., Brown and Newey 2002;
Horowitz 2002), suggesting that the bootstrap can be an effec-
tive tool in improving coverage rates of confidence intervals
in GMM settings.

The article is organized as follows. Section 2 emphasizes
the richness of this framework by discussing some examples.
Section 3 discusses the two-step estimators originally pro-
posed by Hansen (1982). Then, Section 4 discusses alternative
estimators for GMM settings based on empirical likelihood
ideas that have recently attracted some attention, including
the alternative proposals by Hansen et al. (1996). Section 5
explores higher-order differences between the various GMM
estimators as a way of motivating choices between and
them understanding their different large-sample properties.
Section 6 discusses computational issues. Section 7 presents
a small simulation study centered around an actual dataset
that compares some GMM estimators. The choice of model is
motivated partly by the higher-order comparisons that point to
specific elements of the models that are relevant for the dif-
ferences in finite samples. Section 8 concludes the article.

2. EXAMPLES

First, the generic form of the GMM estimation problem in a
cross-sectional context is presented. The parameter vector 6*
is a K-dimensional vector, an element of ®, which is a subset
of R¥. The random vector Z has dimension P, with its support
2 a subset of R”. The moment function, : ZX 0 — R is a
known vector-valued function such that E[((Z, 6*)] =0 and
E[¥(Z,0)] #0 for all 6 € ® with 6 # 0*. The researcher has
available an iid random sample, Z,, Z,, ..., Z,. Of interest
are the properties of estimators for 8 in large samples.

Many, if not most, models considered in econometrics fit
this framework. Some examples are given next, but this list is
by no means exhaustive.
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2.1  Maximum Likelihood

If one specifies the conditional distribution of a variable
Y given another variable X as fyx(ylx, 6), then the score
function satisfies these conditions for the moment function:

Y(Y,X,0)= %(le,e).

By standard likelihood theory, the score function has expecta-
tion zero only at the true value of the parameter. Interpreting
maximum likelihood estimators as GMM estimators suggests
a way of deriving the covariance matrix under misspecification
(e.g., White 1982), as well as an interpretation of the estimand
in that case.

2.2 Instrumental Variables

Suppose that one has a linear model,
Y=X6"+e,

with a vector of instruments, Z. In that case the moment func-
tion is
y(Y,X,Z,0)=Z-(Y—X'0).

The validity of Z as an instrument, together with a rank con-
dition, implies that 6" is the unique solution to E[Y (Y, X,
Z,0)] = 0. This is a case in which the fact that the meth-
ods allow for more moments than unknown parameters is of
great importance, because instruments are often independent
of structural error terms, implying that any function of the
basic instruments is orthogonal to the errors.

2.3 A Dynamic Panel Data Model

Consider the following panel data model with fixed effects:
Y, =m+0Y,_ te&,,

where ¢g;, has mean 0 given {Y,_,,Y;_,,...}. Observations
Y, are available for t=1,...,T andi=1,...,N, with N
large relative to 7. This is a stylized version of the type of
panel data models studied by Chamberlain (1992), Keane and
Runkle (1992), and Blundell and Bond (1998). This specific
model was previously studied by Bond, Bowsher, and Wind-
meijer (2001). Moment functions can be constructed by differ-
encing and using lags as instruments, following Arellano and
Bond (1991) and Ahn and Schmidt (1995):

wlt(Yil’---’YiT’a): . '((Y'Z_Yit—l

1

_G(Yit—l - Yit—Z))'

This leads to # —2 moment functions for each value of ¢ =
3,...,T, leading to a total of (T —1)-(T —2)/2 moments
with only a single parameter. One would typically expect the
long lags to not necessarily contain much information, but
they are often used to improve efficiency. In addition, under
the assumption that the initial condition is drawn from the
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stationary long-run distribution, the following additional 7 — 2
moments are valid:

th(Yil’ M

Despite the different nature of the two sets of moment func-
tions, which makes them potentially very useful in the case in
which the autoregressive parameter is close to unity, they can
be combined in the GMM framework.

s Yirs 0) = (Yit—l - Yit—Z) ) (Ytt - GYit—l)'

2.4 Combining Data Sets

Suppose that one has an econometric model that fits in the
GMM framework with moment function ¢, (Z, 6). Now sup-
pose that one also has direct information about the expectation
or quantiles of functions of Z. This situation may arise if one
combines data from a sample survey that comprises a random
sample from some population and aggregate statistics from the
same population. In this setting one can efficiently exploit this
information by adding moment functions, as shown by Imbens
and Lancaster (1994) and Hellerstein and Imbens (1999). For
example, if the expectation of Z is known to be w,, then one
can add a moment function

U (Z)=Z—p,.

Note that in this case the second moment function does not
depend on any unknown parameters. Nevertheless, through its
correlation with the other moment functions, its presence can
improve efficiency. A specific example is choice-based sam-
pling (e.g., Manski and Lerman 1977; Cosslett 1981; Imbens
1992; Wooldridge 1999) or, more generally, stratified sam-
pling, in which often it is assumed that population shares of
choices or strata are known, as are possibly other character-
istics of the population. This knowledge can be incorporated
efficiently by adding moment functions describing this knowl-
edge to the estimating equations that would used for estima-
tion in the absence of such knowledge.

3. TWO-STEP GENERALIZED
METHOD-OF-MOMENTS ESTIMATION

3.1 Estimation and Inference

In the just-identified case where M, the dimension of i,
and K, the dimension of 6, are identical, one can generally
estimate 6* by solving

N ~

1
0= ﬁzlp(z,, 0gmm)' (])

i=1

If the sample average is replaced by the expectation, then the
unique solution is equal to 6%, and under regularity conditions
(e.g., Hansen 1982; Newey and McFadden 1994), solutions to
(1) will be unique in large samples and consistent for 6*. If
M > K, the situation is more complicated, because there will
be no solution to (1).

Hansen’s (1982) solution was to generalize the optimization
problem to the minimization of the quadratic form

0cn(®) =~ 0G0 | - | SuEo | @
N | = 4
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for some positive definite M X M symmetric matrix C. Under
the regularity conditions given by Hansen (1982) and Newey
and McFadden (1994), the minimand 6 of (2) has the fol-
lowing large-sample properties:

gmm

A P .
6 gmm 6

and
VN (B, —07) = N (0, (I'CT) ' T'CACT(I'CT) ™).
In the just-identified case with the number of parameters K
equal to the number of moments M, the choice of weight
matrix C is immaterial, because 6,,, (at least in large sam-
ples) will be equal to the value of 6 that sets the average
moments exactly equal to 0. In that case I' is a square matrix,
and because it is full rank by assumption, I' is invertible, and
the asymptotic covariance matrix reduces to (I"A™'T")™! irre-
spective of the choice of C. In the overidentified case with
M > K, however, the choice of the weight matrix C is impor-
tant. In this case the optimal choice for C in terms of min-
imizing the asymptotic variance is the inverse of the covari-
ance of the moments, A™'. Using the optimal weight matrix,
the asymptotic distribution is
N d R

VN By — 07) = N(0, (I'AT'T) 7). 3)
This estimator is generally not feasible, because typically A™!
is not known to the researcher. The feasible solution proposed
by Hansen (1982) is to obtain an initial consistent but gener-
ally inefficient estimate of 6" by minimizing Q. ,(0) using an
arbitrary positive definite M X M matrix C, for example, the
identity matrix of dimension M. Given this initial estimate, 6,
one can estimate the optimal weight matrix as

~, |1 N ~ - o
AT = [NEW(Z,:G)WZ”@)} .

In the second step one estimates 6" by minimizing Qz-1 ,(6).
The resulting estimator, 6,,,,,, has the same first-order asymp-
totic distribution as the minimand of the quadratic form with
the true, rather than the estimated, optimal weight matrix,
Qs1.4(0).

Hansen (1982) also suggested a specification test for this
model. If the number of moments exceeds the number of free
parameters, then not all average moments can be set equal to
0, and their deviation from 0 forms the basis of Hansen’s test,
similar to tests developed by Sargan (1958) (see also Newey
19854, b). Formally, the test statistic is

T= Q&*lyN(egmm)'

Under the null hypothesis that all moments have expectation
equal to O at the true value of the parameter, 6*, the distribu-
tion of the test statistic converges to a chi-squared distribution
with degrees of freedom equal to the number of overidentify-
ing restrictions, M — K.

One can also interpret the two-step estimator for overiden-
tified GMM models as a just-identified GMM estimator with
an augmented parameter vector (e.g., Newey and McFadden
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1994; Chamberlain and Imbens 2003). Define the following
moment function:

A=55(x.B)

a0
N C(x,B)
A=(x,B)(x,B)
r— j—g’,(x, 0)

A"y (x, 0)

h(x,8)=h(x,0,T,A,B,A)= &)

Because the dimension of the moment function h(-), M X K+
K+M+1)XM/2+MxK+K=(M+1)x(2K+M/2), is
equal to the combined dimensions of its parameter arguments,
the estimator for 6 = (6, I", A, B, A) obtained by setting the
sample average of A(-) equal to O is a just-identified GMM
estimator. The first two components of 4(x, 8) depend only
on B and A and have the same dimension as these parameters.
Hence B* and A* are implicitly defined by the equations

(20
NCY(X, B)
Given B* and A, A* is defined through the third component
of h(x,d), and given B*, A*, and A*, the final parameters 6*
and I'* are defined through the last two moment functions.
This interpretation of the overidentified two-step GMM esti-
mator as a just-identifitd GMM estimator in an augmented
model is interesting, because it also emphasizes that results
for just-identified GMM estimators, such as the validity of the
bootstrap, can be directly translated into results for overidenti-
fied GMM estimators. In another example, using the standard
approach to finding the large-sample covariance matrix for
just-identified GMM estimators, one can use the just-identified
representation to find the covariance matrix for the overiden-
tified GMM estimator that is robust against misspecification:
the appropriate submatrix of

ah * - * *\/ oh * -
(E {ﬁ(x,a )D E[h(Z,5%)h(Z,8 )](E {5(2,5 )D ,

estimated by averaging at the estimated values. This is the
GMM analog of the White (1982) covariance matrix for the
maximum likelihood estimator under misspecification.

3.2 Efficiency

Chamberlain (1987) demonstrated that Hansen’s (1982)
estimator is efficient, not just in the class of estimators based
on minimizing the quadratic form Q. y(6), but also in the
larger class of semiparametric estimators exploiting the full set
of moment conditions. What is particularly interesting about
this argument is the relation to the subsequent empirical like-
lihood literature. Many semiparametric efficiency bound argu-
ments (e.g., Newey 1990; Hahn 1998) implicitly build fully
parametric models that include the semiparametric one and
then search for the least favorable parameterization. Cham-
berlain’s argument is qualitatively different. He proposed a
specific parametric model that can be made arbitrarily flexi-
ble, and thus arbitrarily close to the model that generated the
data, but does not typically include that model. The advan-
tage of Chamberlain’s proposed model is that in some cases
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it is very convenient to work with, in the sense that its vari-
ance bound can be calculated in a straightforward manner. The
specific model assumes that the data are discrete with finite
support {A,, ..., A, } and unknown probabilities 7, . . ., 7.
The parameters of interest are then implicitly defined as func-
tions of these points of support and probabilities. With only
the probabilities unknown, calculation of the variance bound
on the parameters of the approximating model is conceptually
straightforward. It then sufficies to translate that into a vari-
ance bound on the parameters of interest. If the original model
is overidentified, then one has restrictions on the probabilities.
These are again easy to evaluate in terms of their effect on the
variance bound.

Given the discrete model, it is straightforward to obtain the
variance bound for the probabilities, and thus for any function
of them. The remarkable point is that one can rewrite these
bounds in a way that does not involve the support points. This
variance turns out to be identical to the variance of the two-
step GMM estimator, thus proving its efficiency.

4. EMPIRICAL LIKELIHOOD

41 Background

A number of alternative estimators have been proposed
in various forms and for various special cases. The moti-
vation for these estimators and associated inference proce-
dures is often the bias of the two-step GMM estimator, or
the lack of accuracy of confidence intervals. For example,
Altonji and Segal (1996) found large biases in a specific
model with nonnormal moments. Pagan and Robertson (1997)
listed a number of problems associated with finite-sample
properties of GMM procedures, and discussed some potential
solutions. Some of these alternative estimators have appeal-
ing information-theoretic interpretations in addition to being
invariant to linear transformations of the moment functions.
Specifically, Back and Brown (1990), Qin and Lawless (1994),
Hansen et al. (1996), Imbens (1997), Smith (1997), and Kita-
mura and Stutzer (1997) have proposed estimators for the gen-
eral overidentificd GMM case that extends the empirical like-
lihood literature in statistics (Owen 1988; DiCiccio, Hall, and
Romano 1991). (See Owen 2001 for a recent monograph on
empirical likelihood.) A major advantage shared by all of these
methods is that they have invariance properties. The two-step
GMM estimator requires that the researcher make an initial
choice about the weight matrix used in the first step. This
choice affects the numerical values of the final estimates, even
if this difference is of sufficiently low order that it does not
affect the large-sample asymptotic distribution. Nevertheless,
it introduces an ambiguity in the estimation procedure that can
be avoided using the empirical likelihood methods.

To focus ideas, consider a random sample Z,, Z,, ..., Zy
of size N from some unknown distribution. If one wishes to
estimate the common distribution of these random variables,
then the natural choice is the empirical distribution, which puts
weight 1/N on each of the N sample points. However, this
is not necessarily an appropriate estimate in a GMM setting.
Suppose that the moment function is

P(z,0) =z,
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implying that the expected value of Z is 0. Note that in this
simple example, this moment function does not depend on
any unknown parameter. The empirical distribution function
with weights 1/N does not satisfy the restriction E.[Z] =0,
because Ey, [Z] =} z;/N # 0. The idea behind empirical
likelihood s to modify the weights to ensure that the estimated
distribution F does satisfy the restriction. In other words, the
proper approach is to look for the distribution function clos-
est to F,,, within the set of distribution functions satisfying
E.[Z] = 0. Empirical likelihood provides an operationaliza-
tion of the concept of closeness here. The empirical likelihood
is N
L(m,...,Ty)= l_[ﬂ',-
i=1

for 0 <, <1, YW = 1. This is not a likelihood function
in the standard sense and thus does not have all the properties
of likelihood functions. The empirical likelihood estimator for
the distribution function is

N
and ZW,‘Z,‘ =0.

i=1

N N
max Z m; subject to Z m =1
T o= i=1

Without the second restriction, the 7’s would be estimated to
be 1/N, but the second restriction forces them slightly away
from 1/N in a way that ensures the restriction is satisfied. In
this example, the solution for the Lagrange multiplier is the
solution to the equation

N

L
Zl—i—t-z- 0

i=1 !

and the solution for ; is
m=1/(1+1-z).

More generally, in the overidentified case a major focus is
on obtaining point estimates through the following estimator
for 0:

N N N
max ) In7, subjectto Y m=1, Y m-(z,0)=0. (5)

0,7 * . .
i=1 i=1 i=1

Qin and Lawless (1994) and Imbens (1997) showed that if
the moment conditions are correctly specified, this estimator
is equivalent, to order O,(N~'?), to the two-step GMM esti-
mator. This simple discussion illustrates that for some (and,
in fact, many) purposes, the empirical likelihood function has
the same properties as a parametric likelihood function. This
idea, first proposed by Owen (1988), turns out to be very pow-
erful with many applications. Owen (1988) showed how one
can construct confidence intervals and hypothesis tests based
on this notion. DiCiccio et al. (1991) showed that empirical
likelihood is Bartlett correctable.

Related ideas have appeared in a number of places.
Cosslett’s (1981) work on choice-based sampling can be inter-
preted as maximizing a likelihood function that is the prod-
uct of a parametric part coming from the specification of the
conditional choice probabilities and an empirical likelihood
function coming from the distribution of the covariates. (See
Imbens 1992 for a connection between Cosslett’s work and
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two-step GMM estimation.) As mentioned before, Chamber-
lain’s (1987) efficiency proof essentially consists of calculat-
ing the distribution of the empirical likelihood estimator and
showing its equivalence to the distribution of the two-step
GMM estimator. (See Back and Brown 1990 and Kitamura
and Stutzer 1997 for a discussion of the dependent case, and
Mittelhammer et al. 2000 for a general discussion.)

In addition, two other estimators have been proposed.
Altonji and Segal (1996) found in a setting with highly non-
normal moments that the correlation between the estimator
for the weight matrix and the average moments leads to sub-
stantial bias. They found that splitting the sample and esti-
mating the weight matrix on a separate part of the sample
improves the bias considerably. Another estimator suggested
by Hansen et al. (1996) consists of iterating between estimat-
ing the weight matrix and minimizing the quadratic form in
the two-step GMM estimator. This is not to be confused with
minimizing the quadratic form over the parameter in the aver-
age moments and the weight matrix simultaneously, as in the
continuously updating estimator, which was also proposed by
Hansen et al. (1996) and fits into the generalized empirical
likelihood class, as shown by Newey and Smith (2001). The
iterated GMM estimator does not appear to have the same
higher-order bias properties as the continuously updating esti-
mator although, like the continuously updating estimator but
unlike the two-step estimator, it is invariant to starting values,
provided that it converges.

4.2 Cressie-Read Discrepancy Statistics
and Generalized Empirical Likelihood

In this section we consider a generalization of the empiri-
cal likelihood estimators based on modifications of the objec-
tive function. Corcoran (1998) (see also Imbens, Spady, and
Johnson 1998), focused on the Cressie-Read discrepancy
statistic, for fixed A, as a function of two vectors p and g of
dimension N (Cressie and Read 1984):

_ 1 N p\'
IA(P,Q)—mZP{<;> 1i|-

i=1 !

The Cressie-Read minimum discrepancy estimators are based
on minimizing this difference between the empirical distri-
bution, that is, the N-dimensional vector with all elements
equal to 1/N, and the estimated probabilities, subject to all
the restrictions being satisfied.

N
in/ N,m), j =1
min A(t/N,m), subject to ;:77,

N
and > -z, 0) =0.

i=1

If there are no binding restrictions, because the dimension of
¥ () and 0 agree (the just-identified case), then the solution
for 7 is the empirical distribution it self, and 7; = 1/N. More
generally, if there are overidentifying restrictions, then there
is no solution for 6 to >, ¥(z;, 8)/N =0, and so the solution
for mr, is as close as possible to 1/N in a way that ensures an
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exact solution to ), m;i(z;, ) = 0. The precise way in which
the notion “as close as possible” is implemented is reflected
in the choice of metric through A.

Three special cases of this class have received the most
attention. One case is the empirical likelihood estimator itself,
which can be interpreted as the case with A — 0. This has
the nice interpretation that it is the exact maximum likelihood
estimator if Z has a discrete distribution. It does not rely on
the discreteness for its general properties, but this interpre-
tation does suggest that it may have attractive large-sample
properties.

The second case is the exponential tilting estimator with
A — —1 (Imbens et al. 1998), whose objective function is
equal to the empirical likelihood objective function with the
roles of 7 and ¢/N reversed. It can also be written as

N N
mi;]Zﬂ'i Inm;, subject to ZW,- =1

™= i=1

N

> mib(z;,0) =0.

i=1

and

The third case is the case with A = —2, which was originally
proposed by Hansen et al. (1996) as the solution to

1Y Ty ,
memﬁ|:§l//(zn 0)i| |:N ;W(an)l//(zn 0)i|

. [Zl[/(zi’ 0)i|’

i=1

where the GMM objective function is minimized over the 6
in the weight matrix as well as the 0 in the average moments.
Hansen et al. (1996) called this the “continuously updating
estimator.” Newey and Smith (2001) pointed out that this esti-
mator fits in the Cressie—Read class.

Smith (1997) considered a more general class of estima-
tors, which he called “generalized empirical likelihood (GEL)
estimators,” starting from a different perspective. For a given
function g(+), normalized so that it satisfied g(0) =1 and
g'(0) =1, consider the saddlepoint problem

N
max mtin Zg(t’l//(z,-, 0)).

This representation is more attractive from a computational
perspective, because it reduces the dimension of the optimiza-
tion problem to M + K rather than to a constrained optimiza-
tion problem of dimension K + N with M + 1 restrictions.
There is a direct link between the ¢ parameter in the GEL
representation and the Lagrange multipliers in the Cressie—
Read representation. Newey and Smith (2001) discussed how
to choose g(-) for a given A so that the corresponding GEL
and Cressie—Read estimators agree.

In general, the differences between the estimators within
this class are relatively small compared to the differences
between them and the two-step GMM estimators. In prac-
tice, the choice between them is driven largely by computa-
tional issues, which are discussed in more detail in Section 5.
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The empirical likelihood estimator does have the advantage
of its exact likelihood interpretation and the resulting optimal-
ity properties for its bias-corrected version (Newey and Smith
2001). On the other hand, Imbens et al. (1998) argued in favor
of the exponential tilting estimator as its influence function
stays bounded where as denominator in the probabilities in
the empirical likelihood estimator can get large. In simulations
researcher have encountered more convergence problems with
the continuously updating estimator (e.g., Hansen et al. 1996;
Imbens et al. 1998).

4.3 Testing

Associated with the empirical likelihood estimators are
three tests for overidentiyfing restrictions that are similar to
the classical trinity of the likelihood ratio, these Wald, and
Lagrange multiplier tests. Here we briefly review the imple-
mentation of the three tests in the empirical likelihood context.
The leading terms of all three tests are identical to the lead-
ing term of the test developed by Hansen (1982) based on the
quadratic form in the average moments.

The first test is based on the value of the empirical like-
lihood function. The test statistic compares the value of the
empirical likelihood function at the restricted estimates, the 7,
with that at the unrestricted values, 7; = 1/N,

LR=2-(L(t/N)— L(7)),

where N
L(m) = Zln ;.
i=1

As in the parametric case, the difference between the restricted
and unrestricted likelihood functions is multiplied by 2 to
obtain, under regularity conditions (e.g., Newey and Smith
2001), a chi-squared distribution with degrees of freedom
equal to the number of overidentifying restrictions for the test
statistic under the null hypothesis.

The second test, similar to the Wald test, is based on the
difference between the average moments and their probability
limit under the null hypothesis zero. As in the standard GMM
test for overidentifying restrictions (Hansen 1982), the aver-
age moments are weighted by the inverse of their covariance
matrix,

Wald = Q5.1 (6) = %{Zw(zi, é)} A [sz,-, é)},

where E is an estimate of the covariance matrix
A=E[Y(Z,0M)9(Z,0)],

typically based on a sample average at some consistent esti-
mator for 6%,

1

:ﬁ l,[/(Z,'y 0)1,//(Z,-,0),,

1M =

or sometimes a fully efficient estimator for the covariance
matrix,

—~ 1. A A
A:ﬁzﬂ',‘l[/(ziye)w(ziig),'
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The standard GMM test uses an initial estimate of 6 in the
estimation of A, but with the empirical likelihood estimators, it
is more natural to substitute the empirical likelihood estimator
itself. The precise properties of the estimator for A do not
affect the large-sample properties of the test, and, like the
likelihood ratio test, the test statistic has in large samples a
chi-squared distribution with degrees of freedom equal to the
number of overidentifying restrictions.

The third test is based on the Lagrange multipliers ¢. In
large samples, their variance is

V,=AT—AT'T(I"AT'T) ' TAT

This matrix is singular, with rank equal to M — K. Thus one
option is to compare the Lagrange multipliers to zero using a
generalized inverse of their covariance matrix,

LM, =¢ (A" —AT'T(I'A™'D) 7' T'A™") o

This is not very attractive, because it requires the choice of a
generalized inverse. An alternative is to use the inverse of A™!
itself, leading to the test statistic

LM, =1'At.

Because
N Ly
N-t=V— 7;,0")+o0,(1
tﬁgw( )t+o,(1)

and V,AV, =V,V, #V, =V, it follows that
LM, = LM, +0,(1).

Imbens et al. (1998) found in their simulations that tests based
on LM, perform better than those based on LM,. In large
samples, both have a chi-squared distribution with degrees of
freedom equal to the number of overidentifying restrictions.
Again this test can be used with any efficient estimator for ?,
and with the Lagrange multipliers based on any of the dis-
crepancy measures.

Imbens et al. (1998) and Bond et al. (2001) investigate
through simulations the small-sample properties of various
of these tests. It appears that the Lagrange multiplier tests
are often more attractive than the tests based on the average
moments, although so far there is only limited evidence in
specific models. One can use the same ideas for construct-
ing confidence intervals that do not directly use the normal
approximation to the sampling distribution of the estimator
(see Smith 1997; Imbens and Spady 2002).

5. HIGHER-ORDER PROPERTIES OF GENERALIZED
METHOD OF MOMENTS ESTIMATORS

The two-step GMM estimator and the various members
of the Cressie—Read discrepancy statistic and GEL classes
are all first-order efficient. To distinguish between them, it
is necessary to calculate alternative approximations to their
finite-sample distributions. These alternative asymptotics can
be based on sequences involving adding moment conditions
as the sample size increases, letting parameter values converge
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to limiting values as the sample size increases, or considering
higher-order asymptotic approximations.

This section covers some recent results on higher-order
approximations of the two-step and GEL estimators. Newey
and Smith (2001) calculated the mean squared error for the
general case up to order 1/N2. This reveals that the two-
step GMM estimator has a number of additional terms that
are absent in all GEL estimators (including the continu-
ously updating GMM estimator). Some of these additional
terms depend on the correlation between the derivatives and
the moments, and increase in magnitude as the number of
moments increase. In addition, they found that if the third
moments of ¢ are zero, then the various GEL estimators are
the same up to order 1/N2.

Imbens and Spady (2001) considered the properties of bias
and mean squared error of various estimators as the number
of moments increases. These results are by necessity limited
to the specific sequence chosen, but may offer some insight
in the properties of the various estimators, because relatively
few parameters are involved. Consider a sequence of inde-
pendent and identically distributed pairs of random vectors
{(v;, w;)}Y,. The dimension of v; and w; is M > 1. Of interest
is a scalar parameter, 6, satisfying

E[f(v;, w;, 0)]=0
fori=1,...,N, where

(v 1) -6 —w,
Vi 0 —wy,

(v, w, 0) = (v, +e) 0—w =
Vi - 0~ wyy

and e, is an M-vector with the first element equal to 1 and the
other elements equal to 0. To explore the properties of various
estimators for 6 as the degree of overidentification, (M — 1),
increases, following Donald and Newey (2001), who examined
the behavior of various instrumental variables estimators as
the number of instruments increases, and Newey and Smith
(2001), who looked at bias of GEL and GMM estimators,
consider the leading terms in the asymptotic expansion of the
estimators and the rate at which the moments of these terms
increase with M.

Make the following simplifying assumptions. The pairs
(V> w;,) and (v;,, w;,) are independent if either i # j or
n # m (or both) and have the same distribution. Let My =
E[v,-w},] denote the moments of this distribution. Moments
up to order p+r <6 are assumed to be finite. Without essen-
tial loss of generality, let u,, = u,; = 0, implying that the true
value of 8 is 8* =0, let p,, = ty, = 1, and let w,, = p be the
correlation coefficient of v, and w,,. This is clearly a lim-
ited setup, although it may represent the essence of some of
the poor small-sample behavior of some of the GMM estima-
tors. Note that the fact that all of the first-order information
about 0 is in the first moment is without loss of generality.
One can always reorganize the moments to ensure that only
the derivative of the first moment differs from 0 in expec-
tation, and that the other moments are uncorrelated with the
first moment. Specifically, given a general moment function
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¥ (z, ) with the derivative matrix of the first K moments non-
singular in expectation, the moment vector can be rewritten as

(TA™'T)~'~T7A™!
p(z,0) = A A e A
(A —L,("ATTD) ') (0 1, )~ L,(IVAT'D) ' TVA™!
x Y(z, 0),
where
— AII A12 and F — 1 )
A2] A22 FZ

are partitioned into the first K moments and the last M — K
moments. This rearranging makes the expected derivatives of
moments other than the first K equal to 0, and ensures that all
moments are uncorrelated,

8p % * *\/

E{a—g,(zﬁ )} = and  E[p(Z,07)-p(Z.07) =Ty,
where J,, is the identity matrix of dimension K. Premulti-
plying the moment vector by a nonsingular matrix does not
affect the numerical values of the empirical likelihood esti-
mators. It does, however, affect the numerical values of the
two-step GMM estimators, which are not invariant to lin-
ear transformations of the moments. Of course, the assump-
tions here are stronger than merely assuming that the first-
order information is in the first moment; all of the moments
are assumed to be independent, not merely uncorrelated.
In addition, all moments are assumed to be linear in the
parameters.

Given this setup, interest focuses on the bias and mean
squared error of the various estimators; in particular, how these
change as a function of the number of moments M. Consider
three estimators. The first estimator uses only the first infor-
mative moment and ignores the other moments, redundant in
the terminology of Breusch, Qian, Schmidt, and Wyhowski
(1999). In practice, of course, this estimator is not feasible—
the researcher does not know which moments are relevant.
Note that although it is possible to use selection criteria that in
large samples select the informative set of moments and dis-
card the others, such selection procedures generally affect the
higher-order statistical properties of the estimators (see, e.g.,
Andrews 1999; Hall and Peixe 2001; Hall and Inoue 2001).
Formally, the optimal GMM estimator is

~

Gopt = u_)l/(l—i_l_)l)

The second estimator is the two-step GMM estimator, in
which the weight matrix is estimated at the true value of the
parameter,

4

R N
0gl11m = argmin0 le(vi’ w;, 0)

i=1

N N
x Zl//(vi: w;, ) (v, wy;, 07) Zl/’(vi:wi:e) -

i=1 i=1

Journal of Business & Economic Statistics, October 2002
The third estimator is the exponential tilting estimator,

N N
min » 7 In,, subject to
nin} m; Inm,, ]

i=1 i=1

and

N
> m(v;, w;, 0) = 0.

i=1

Determining the bias requires the expansions of these esti-
mators up to order O(N~"). Using the results of Imbens and
Spady (2001) leads to

0, = w, — w,v, +0P(N_'),
0, =0, — 20,00, + (@WW,, — 1) -0, — &} (W — 7, )
+vw+o,(N"),

and

~

6, =w, +ww, — Dw, —¢ (ww — J,,)w
+w'v—2w,v, — pw'w+pw;+o,(N7").

Using these expansions to calculate the bias of the leading
terms yields

bias,,, = —p/N to(1/N),
bias,,,,, = —p/N+p(M—1)/N+o(1/N),

gmm

and
bias,, = —p/N +o(1/N).

The key result is that the bias of the GMM estimator increases
linearly with the number of moments. In contrast, the bias of
the exponential tilting estimator is not affected by the number
of irrelevant moments up to the order considered here. The
GMM bias is linear in the number of overidentifying restric-
tions, with the coefficient equal to the correlation between the
moments and their derivatives. This bias arises from the term
w'v. This term is also present in the exponential tilting esti-
mator, but the bias it induces is offset by the presence of an
additional term, —pw'w. The same holds for the other mem-
bers of the generalized empirical likelihood class.

Note that the correlation between the moments and the
derivatives is not the only potential source of bias. Altonji and
Segal (1996) considered an example with significant biases,
although in their case there is no correlation between the
moments and their derivatives. In their case the bias arises
from the estimation of the weight matrix. In general, how-
ever, if the derivatives are stochastic and correlated with the
moments, then the bias will be dominated by the term that
increases linearly in the number of moments.

6. COMPUTATIONAL ISSUES

The two-step GMM estimator requires two minimizations
over a K-dimensional space. The empirical likelihood estima-
tor in its original likelihood form (5) requires maximization
over a space of dimension K (for the parameter 6) plus N
(for the N probabilities), subject to M + 1 restrictions (on the
M moments and the adding-up restriction for the probabili-
ties). This is in general a much more formidable computational



Downloaded by [Harvard College] at 10:45 06 July 2012

Imbens: Empirical Likelihood and GMM

problem than two optimizations in a K-dimensional space. A
number of approaches to simplifying this problem have been
attempted. This section discusses three of them in the con-
text of the exponential tilting estimator, although most of them
directly carry over to other members of the Cressie—Read or
GEL classes.

6.1 Solving the First-Order Conditions

The first approach discussed here focuses on the first-order
conditions and then concentrates out the probabilities 7. This
reduces the problem to one of dimension, K +M, K for the
parameters of interest and M for the Lagrange multipliers for
the restrictions. This is clearly a huge improvement, because
the dimension of the problem no longer increases with the
sample size. Let w and ¢ be the Lagrange multipliers for the
restrictions Y 7, = 1 and ) m,i(z;, ) = 0. The first-order
conditions for the 7’s and 6 and the Lagrange multipliers are

O=Inm—1—p+1tP(z,0),

N
J
0= Ym0 (2, 6),
i=1

0=exp(n— 1) exp(r'9)(z;. 0)),

i=1

and

0=exp(n—1) D ¥(z;, 0) -exp(t'¥h(z;, 0)).

i=1

The solution for 7 is

m =exp(p —1+1¢(z;, 0)).

To determine the Lagrange multipliers ¢ and the parameter of
interest 6, one only needs 7; up to a constant of proportion-
ality, so

N
0=> ¢z, 0)exp(t'§(z, 0) (©6)
and
N /al)[I /
0=> 1 =g (@ ) exp(1'd(z;, ) 7

i=1

can be solved. Solving the system of (6) and (7) is not straight-
forward. Because the probability limit of the solution for ¢
is 0, the derivative with respect to 6 of both first-order con-
ditions converges at 0. Hence the matrix of derivatives of
the first-order conditions converges to a singular matrix. As
a result, standard approaches to solving systems of equations
can behave erratically, and this approach to calculating 6 has
been found to have poor operating characteristics.

6.2 Penalty Functions

Imbens et al. (1998) characterized the solution for 6 and ¢
as

max K(t,0) subject to  K,(t,0) =0, ®)
N
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where K (t, 0) is the empirical analog of the cumulant gener-
ating function:

K(t,0) =In |:% Zexp(t’l/l(z,-, 0))i|

They suggested solving this optimization problem by max-
imizing the unconstrained objective function with a penalty
term that consists of a quadratic form in the restriction,

max K(t,0)—05-A-K,(t,0) W 'K (t, 6), )
N

for some positive definite M X M matrix W and a positive
constant A. The first-order conditions for this problem are

0=K,(t,0)— A-K,,(t,)W 'K,(t, )

and
0=K,(t,0)—A-K, (t, )W 'K,(t, 6).

For A large enough, the solution to this unconstrained maxi-
mization problem is identical to the solution to the constrained
maximization problem (8). This follows from the fact that the
constraint is in fact the first-order condition for K (¢, 6). Thus,
in contrast to many penalty function approaches, one does not
have to let the penalty term go to infinity to obtain the solu-
tion to the constrained optimization problem; one need only
let the penalty term increase sufficiently to make the problem
locally convex. Imbens et al. (1998) suggested choosing

W=K,(t,0)+K,(t,0)K,(t,0)

for some initial values for ¢ and 6 as the weight matrix,
and reported that estimates are generally not sensitive to the
choices of ¢ and 6.

6.3 Concentrating out the Lagrange Multipliers

Mittelhammer, Judge, and Schoenberg (2001) suggested
concentrating out both probabilities and Lagrange multipliers
and then maximizing over § without any constraints. As shown
earlier, concentrating out the probabilities 7r; can be done ana-
lytically. Although in general it is not possible to solve for the
Lagrange multipliers ¢ analytically, other than in the continu-
ously updating case, for given 6, it is easy to numerically solve
for t. This involves solving, in the exponential tilting case,

N
mtin Zexp(t’l//(z,-, 0)).

This function is strictly convex as a function of ¢, with the
easy-to-calculate first and second derivatives equal to

D (z;. 0) exp(f'(z;. 0))

and
Zl!/(z,-, 0)i(z;, 0) exp(t'P(z;, 0)).

Therefore, concentrating out the Lagrange multipliers is com-
putationally fast using a Newton—Raphson algorithm. The
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resulting function #(6) has derivatives with respect to 6
equal to

ot 1Y , , -
0=~ (5 L 00, 0 explt (00, 0) )

1 X oy ,
) (ﬁ Za_g’(zi’ 0) exp(t(6)'Y(z;, 0)

i=1

U 010 (2, 0)explr(0) 0, 0)))

After solving for #(6), one can solve

mngexp(r(G)’w(z,-, 9)). (10)

Mittelhammer et al. (2001) used methods that do not require
first derivatives to solve (10). This is not essential. Calculating
first derivatives of the concentrated objective function only
requires first derivatives of the moment functions, both directly
and indirectly through the derivatives of 7(6) with respect to
0. In general, these are straightforward to calculate and likely
to improve the performance of the algorithm.

In this method, in the end the researcher only must solve
one optimization in a K-dimensional space, with the provision
that for each evaluation of the objective function, he or she
needs to numerically evaluate the function #(6) by solving a
convex maximization problem. The latter is fast, especially in
the exponential tilting case, so that although the resulting opti-
mization problem is arguably still more difficult than the stan-
dard two-step GMM problem, in practice it is not much slower.
The simulations that follow use this method for calculating
the estimates. After concentrating out the Lagrange multipliers
are concentrated out using a Newton—Rahpson algorithm that
uses both first and second derivatives, a Davidon—Fletcher—
Powell algorithm is used to maximize over 6, using analytic
first derivatives. Given a direction, a line search algoritm based
on repeated quadratic approximations is used.

7. A DYNAMIC PANEL DATA MODEL

This section compares some of the GMM methods in the
context of a panel data model discussed briefly in Section 2,

)/ll = ni+0Y'

ir—1

+e,,

where €, has mean 0 given {Y,_,,Y,_,,...}. These are
observations Y;, for t=1,...,T andi=1,...,N, with N
large relative to 7. This is a stylized version of the type of
panel data model studied extensively in the literature. Bond
et al. (2001) studied this and similar models to evaluate the
performance of test statistics based on different GMM and
GEL estimators. Using the moments

Yy
)

wlt(Yil’---’YiT’g): '((Yit_yit—l_g(yit—l_yiz—z))
Y,

leads to t+ —2 moment functions for each value of t =

3,...,T, and then to a total of (T —1) (T —2)/2 moments.

Journal of Business & Economic Statistics, October 2002

In addition, under the assumption that the initial condition is
drawn from the stationary long-run distribution, the following
additional 7 —2 moments are valid:

(Yoo Y, ) = (Yo — Y, 0) - (Y, — 0, ).

It is important to note, given the results discussed in Section 4,
that the derivatives of these moments are stochastic and poten-
tially correlated with the moments themselves. As a result,
there is potentially a substantial difference between the differ-
ent estimators, especially when the degree of overidentifica-
tion is high.

The data used are from Abowd and Card (1989), taken from
the PSID (see also Card 1994). This dataset comprises earn-
ings data for 1,434 individuals for 11 years. The individuals
are selected on having positive earnings in each of the 11
years, and their earnings are modeled in logarithms. Table 1
gives summary statistics for the data. There is much persis-
tence in these earnings data, with the correlation coefficient
after 10 years still .44, down from around .80 after 1 year. A
key question is how much of that is due to permanent com-
ponents (captured in the fixed effect) versus transitory compo-
nents (captured in the autoregressive coefficient 6).

First, the model is estimated using only data from year 1 to
t, for t =3,4,...,11. For each of these nine datasets, 6 and
its standard error are estimated using the two-step GMM esti-
mators, the Exponential Tilting (ET) estimator, and the iterated
GMM (IGMM) estimator. These results are reported in Table 2.

Next, artificial datasets are generated to investigate the
repeated sampling properties of these estimators. Two ques-
tions are of most interest. First, how do the median bias and
median absolute error deteriorate as a function of the degree
of overidentification? Here, unlike in the theoretical discus-
sion in Section 4, as the number of years in the panel are
increased, the additional moments do contain information, so
they may in fact increase precision. At the same time, how-
ever, based on the theoretical calculations, the accuracy of the
asymptotic approximations for a fixed sample size would be
expected to deteriorate with the number of years. The second

Table 1. Summary Statistics for the Abowd-Card Log Earnings Data

Year

1 2 3 4 5 6 7 8 9 10 11

Average 8.79 8.83 8.86 8.92 8.97 8.92 8.89 8.92 8.95 8.95 8.90
Standard 71 64 63 62 H9 62 63 68 66 .64 .71
deviation

Correlations

1 100 82 .71 68 .67 61 57 .53 55 50 .44
2 100 80 .76 .74 69 65 .61 62 .57 .51
3 100 .78 .75 .70 .66 .61 .62 .58 .53
4 100 82 .76 .72 .66 .70 .65 .59
5 1.00 82 .73 .69 .71 .67 .60
6 100 .79 .73 73 .70 .62
7 1.00 .75 .73 .68 .62
8 1.00 .78 .71 .64
9 100 .79 .71
10 1.00 .83
11 1.00

NOTE: Summary statistics are based on a sample of 1,434 individuals. The basic data are
log earnings.
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Table 2. Estimation Results for the Abowd—-Card Log Earnings Data

Number of time periods

3 4 5 6 7 8 9 10 11

GMM Estimate 43 33 32 .29 .30 .29 .30 .29 .29

(Standard error)  (.12) (.05) (.04) (.03) (.03) (.03) (.02) (.02) (.02)
IGMM Estimate 43 33 32 .28 .28 27 .28 25 24

(Standard error)  (.12) (.05) (.04) (.03) (.03) (.03) (.02) (.02) (.02)
ET Estimate 43 33 .33 .28 .29 27 27 25 24

(Standard error)  (.12) (.05) (.04) (.03) (.03) (.03) (.02) (.02) (.02)
NOTE: Estimates of autoregressive coefficient for three estimators and samples with different numbers of waves.

question of interest is the performance of the confidence inter-
vals for the parameter of interest. In two-stage least squares
settings, it was found that with many weak instruments, the
performance of standard confidence intervals varied widely
between LIML and two-stage least squares estimators. Given
the analogy drawn by Hansen et al. (1996) between the con-
tinuously updating estimator and LIML, the question arises of
how the confidence intervals differ between two-step GMM
and the various Cressie—Read and GEL estimators.

Using the Abowd—Card data, 6 and the variance of the fixed
effect and the idiosyncratic error term are estimated. The lat-
ter two are estimated to be around .3. Then data-generating
processes are considered where the fixed effect has mean 0
and standard deviation equal to .3, and the error term has
mean 0 and standard deviation .3. Two values for 6, .5 and
.9, are explored. The value .5 is close to the value estimated

from the Abowd—Card data. The second value is chosen closer
to unity to make the instruments weaker, and thus to poten-
tially worsen the performance of all estimators. In the 6 = .9
case, inference would be expected to be less reliable. It is of
interest to assess the relative performance of the estimators
in both cases. Also compare are results for the case where
all moments are included and the case where only the first
set of (T —1)-(T —2)/2 moments is included, because often
researchers do not wish to rely on stationarity of the initial
conditions. For each dataset, 6 is estimated using the first ¢
years of data, for t =3, ..., 11 using both the two-step GMM
and the ET estimators.

Tables 3-5 report for the four data-generating processes the
results for the three estimators, for each of the nine different
panel lengths, the median bias, the median absolute error, both
in levels and relative to the asymptotic standard error, and also

Table 3. Simulations for the Two-Step GMM Estimator

Number of time periods

3 4 5 6 7 8 9 10 11
¥,(§ only
0=.9
Median bias .03 -1 -09 -.07 -.05 -05 -.04 -.03 -.03
Relative median bias .04 —.33 —.43 —.52 —-.57 —.62 —.61 —-.71 —.68
Median absolute error 46 .21 14 .10 .07 .06 .05 .04 .04
Coverage rate 90% ClI 92 .86 .85 .84 .81 82 .79 .76 .78
Coverage rate 95% ClI .94 91 92 .90 .88 .88 .88 .86 86
All moments
0=.9
Median bias -.00 .00 .00 .00 .00 .00 .00 .00 .00
Relative median bias —.02 .08 .03 .08 .03 A1 .08 13 A1
Median absolute error .04 .03 .02 .02 .02 .01 .01 .01 .01
Coverage rate 90% ClI .88 .85 82 .80 .80 79 .78 .79 .76
Coverage rate 95% ClI 92 91 .89 .87 .85 .86 .86 .88 84
(G only
0=.5
Median bias .01 -.00 -00 -.00 -.00 -00 -.00 -.00 —.00
Relative median bias .09 —-.07 —-.10 —.06 -.12 —-.12 -.15 -.19 —.11
Median absolute error .08 .04 .03 .02 .02 .02 .01 .01 .01
Coverage rate 90% ClI .93 .89 91 91 .90 .89 .87 .88 .88
Coverage rate 95% ClI .97 .94 95 .95 .94 94 .94 .93 94
All moments
0=.5
Median bias -.00 .00 00 -.00 -—-.00 -.00 .00 .00 .00
Relative median bias —-.07 .01 .03 —.06 —.08 —.00 .09 a1 14
Median absolute error .05 .03 .02 .01 .01 .01 .01 .01 .01
Coverage rate 90% ClI 91 .88 .88 91 91 90 .89 .90 90
Coverage rate 95% ClI .95 .94 94 .95 .96 96 .95 .94 94

NOTE: The relative median bias reports the median bias divided by the large-sample standard errors. All results are based on 10,000

replications.
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Table 4. Simulations for the lterated GMM Estimator

Number of time periods

3 4 5 6 7 8 9 10 11
iy (qgonly
Median bias -.00 -1 -.09 -.07 -.05 —.04 -.04 -03 -.03
Relative median bias —.00 —.34 —.49 —-.57 —.59 —.63 —.66 —-.75 —.69
Median absolute error 46 .21 14 .10 .07 .06 .05 .04 .04
Coverage rate 90% ClI 91 .86 .85 .83 .82 .83 .79 .78 .79
Coverage rate 95% ClI .94 .90 91 .90 .88 .89 .88 .87 .87
All moments
0=.9
Median bias -.00 .00 .00 .00 .00 .00 .00 .00 .00
Relative median bias —.04 .00 .02 .09 .05 13 a1 13 14
Median absolute error .04 .03 .02 .02 .02 .02 .01 .01 .01
Coverage rate 90% ClI .89 .84 .80 .79 .78 77 .76 .76 74
Coverage rate 95% ClI .93 .89 .87 .85 .83 .83 .83 .84 .83
¥,(§ only
0=.5
Median bias .01 -.00 -.01 -.00 -.00 -.00 -.00 -.00 -.00
Relative median bias .06 —-.07 -12 —-.07 —-.12 —.11 -.15 —.18 —-.12
Median absolute error .08 .04 .03 .02 .02 .01 .01 .01 .01
Coverage rate 90% ClI .93 .90 91 .90 91 .89 .88 .88 .88
Coverage rate 95% ClI .96 .95 .95 .95 .95 .95 .94 .93 .94
All moments
0=0.5
Median bias -.00 .00 .00 -.00 .00 .00 .00 .00 .00
Relative median bias —.03 .01 .03 —.01 .01 .10 12 13 14
Median absolute error .05 .02 .02 .01 .01 .01 .01 .01 .01
Coverage rate 90% ClI 91 .89 .89 .90 .90 .89 .88 .88 .88
Coverage rate 95% ClI .95 .94 .94 .95 .94 .94 .94 .94 .94

NOTE: The relative median bias reports the bias divided by the large-sample standard error. All results are based on 10,000 replica-
tions.

Table 5. Simulations for Exponential Tilting Estimator

Number of time periods

3 4 5 6 7 8 9 10 11
¥,(§ only
0=.9
Median bias .03 -—.01 -.00 .00 .00 .00 0.01 .00 .00
Relative median bias .04 —.03 —.01 .04 .04 .05 a1 .02 .08
Median absolute error 46 24 14 .10 .07 .05 .05 .04 .03
Coverage rate 90% ClI 92 91 92 .89 .88 .88 .85 .88 .85
Coverage rate 95% ClI .94 .94 .96 .95 .95 .93 .93 .93 .92
All moments
0=.9
Median bias .00 .00 .00 -.00 .00 .00 -.00 .00 .00
Relative median bias .04 .09 .02 —.00 .01 .01 —.02 .08 13
Median absolute error .05 .03 .03 .02 .02 .01 .01 .01 .01
Coverage rate 90% ClI .87 .86 .84 .86 .88 .86 .87 .88 .87
Coverage rate 95% ClI 91 .90 .90 91 .93 .92 91 .93 .93
¥,(§ only
0=.5
Median bias .01 -.00 -.00 .00 .00 .00 .00 -.00 .00
Relative median bias .09 —.02 —.04 .04 .00 .02 .02 —.03 .08
Median absolute error .08 .05 .03 .02 .02 .02 .01 .01 .01
Coverage rate 90% ClI .93 .89 91 91 .90 .88 .87 .88 .90
Coverage rate 95% ClI .97 .94 .95 .95 .95 .95 .94 .94 .94
All moments
0=.5
Median bias -.00 -.00 -.00 -.00 -.00 -.00 .00 .00 .00
Relative median bias —.04 —.02 —.01 —.09 —-.07 —.01 .02 12 .10
Median absolute error .05 .03 .02 .01 .01 .01 .01 .01 .01
Coverage rate 90% ClI .90 .87 .89 .90 .92 91 .90 .90 91
Coverage rate 95% ClI .95 .94 .94 .96 .95 .96 .95 .94 .95

NOTE: The relative median bias reports the bias divided by the large sample standard error. All results are based on 10,000 replica-
tions.
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the coverage rate of the 90% and 95% confidence intervals.
Table 3 presents the results for the two-step GMM estimator;
Table 4, results for the iterated GMM estimator, and Table 5,
results for the exponential tilting estimator. With the high
autoregressive coefficient, § = .9, and using only the moments
based on lagged values as instruments for the difference, the
two-step and iterated GMM estimators have substantial bias
and poor coverage rates. Relative to the asymptotic standard
error, the bias is on the order of 50%—-60%. With the larger set
of moments, the bias goes down, but the coverage rate still is
poor. With the lower value for the autoregressive coefficient,
the bias and coverage rate are much better. The exponential
tilting estimator does much better with the high autoregressive
coefficient. The bias is small, on the order of 10% of the stan-
dard error, and the coverage rate is much closer to the nominal
rate. This does not change if the autoregressive coefficient is
.5, or if the larger set of moments is used. In this setting, the
exponential tilting estimator is clearly superior.

8. CONCLUSION

Much work has been done since Hansen’s (1982) seminal
article formalizing a set of methods now known as GMM.
This has become a crucial organizing principle for much of
point estimation and inference in modern econometrics and
is now a important part of any current graduate textbook or
education. This article has attempted to describe some recent
developments in this area that build on Hansen’s work, and in
particular some of the recent empirical likelihood estimators.
The estimators use the same set of moments but remove some
of the ambiguity stemming from the weight matrix estimation.
In doing so, they address some of the problems associated with
GMM estimation. These and other developments demonstrate
that 20 years after Hansen’s original contribution, work on
GMM remains is a vibrant area of research. It is likely to
remain so for the next 20 years.
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