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1 Introduction

Much of the work on propensity score analysis has focused on the case where the treatment
is binary. In this chapter we examine an extension to the propensity score method, in a set-
ting with a continuous treatment. Following Rosenbaum and Rubin (1983) and most of the
other literature on propensity score analysis, we make an unconfoundedness or ignorability
assumption, that adjusting for differences in a set of covariates removes all biases in com-
parisons by treatment status. Then, building on Imbens (2000) we define a generalization
of the binary treatment propensity score, which we label the generalized propensity score
(GPS). We demonstrate that the GPS has many of the attractive properties of the binary
treatment propensity score. Just as in the binary treatment case, adjusting for this scalar
function of the covariates removes all biases associated with differences in the covariates.
The GPS also has certain balancing properties that can be used to assess the adequacy of
particular specifications of the score. We discuss estimation and inference in a parametric
version of this procedure, although more flexible approaches are also possible.

We apply this methodology to a data set collected by Imbens, Rubin, and Sacerdote
(2001). The population consists of individuals winning the Megabucks lottery in Mas-
sachusetts in the mid-1980’s. We are interested in effect of the amount of the prize on
subsequent labor earnings. Although the assignment of the prize is obviously random, sub-
stantial item and unit nonresponse led to a selected sample where the amount of the prize
is no longer independent of background characteristics. We estimate the average effect of
the prize adjusting for differences in background characteristics using the propensity score
methodology, and compare the results to conventional regression estimates. The results
suggest that the propensity score methodology leads to credible estimates, that can be
more robust than simple regression estimates.
∗This is a draft of a chapter for Missing Data and Bayesian Methods in Practice: Contributions

by Donald Rubin’s Statistical Family, forthcoming from Wiley. Financial support for this research was
generously provided through NSF grants SES-0226164 (Hirano) and SES-0136789 (Imbens). Electronic
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2 The basic framework

We have a random sample of units, indexed by i = 1, . . . , N . For each unit i we postulate
the existence of a set of potential outcomes, Yi(t), for t ∈ T , referred to as the unit-level
dose-response function. In the binary treatment case T = {0, 1}. Here we allow T to be an
interval [t0, t1]. We are interested in the average dose-response function, µ(t) = E[Yi(t)].
For each unit i, there is also a vector of covariates Xi, and the level of the treatment
received, Ti ∈ [t0, t1]. We observe the vector Xi, the treatment received Ti, and the
potential outcome corresponding to the level of the treatment received, Yi = Yi(Ti).

To simplify the notation, we will drop the i subscript in the sequel. We assume that
{Y (t)}t∈T , T,X are defined on a common probability space, that T is continuously dis-
tributed with respect to Lebesgue measure on T , and that Y = Y (T ) is a well defined
random variable (this requires that the random function Y (·) be suitably measurable).

Our key assumption generalizes the unconfoundedness assumption for binary treat-
ments made by Rosenbaum and Rubin (1983), to the multivalued case:

Assumption 2.1 (Weak Unconfoundedness) Y (t) ⊥ T
∣∣∣ X for all t ∈ T .

We refer to this as weak unconfoundedness, as we do not require joint independence of all
potential outcomes, {Y (t)}t∈[t0,t1]. Instead, we require conditional independence to hold
for each value of the treatment.

Next, we define the generalized propensity score.

Definition 2.1 (Generalized Propensity Score) Let r(t, x) be the conditional density
of the treatment given the covariates:

r(t, x) = fT |X(t|x).

Then the generalized propensity score is R = r(T,X).

The function r is defined up to almost everywhere equivalence. By standard results on
conditional probability distributions, we can choose r such that R = r(T,X) and r(t,X)
are well-defined random variables for every t.

The GPS has a balancing property similar to that of the standard propensity score.
Within strata with the same value of r(t,X) the probability that T = t does not depend
on the value of X. Loosely speaking, the GPS has the property that

X ⊥ 1{T = t}
∣∣∣ r(t,X).

This is a mechanical implication of the definition of the GPS, and does not require un-
confoundedness. In combination with unconfoundedness this implies that assignment to
treatment is unconfounded given the generalized propensity score.
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Theorem 2.1 (Weak Unconfoundedness given the Generalized Propensity Score)

Suppose that assignment to the treatment is weakly unconfounded given pre-treatment vari-
ables X. Then, for every t,

fT (t|r(t,X), Y (t)) = fT (t|r(t,X)).

Proof: Throughout the proof, equality is taken as a.e. equality. Since r(t,X) is a well-
defined random variable, for each t we can define a joint law for (Y (t), T,X, r(t,X)). We
use FX(x|·) to denote various conditional probability distributions for X, and we use fT (t|·)
to denote conditional densities of T . Note that r(t,X) is measurable with respect to the
sigma-algebra generated by X. This implies, for example, that fT (t|X, r(t,X)) = fT (t|X).

Using standard results on iterated integrals, we can write

fT (t|r(t,X)) =
∫
fT (t|x, r(t,X))dFX(x|r(t,X))

=
∫
fT (t|x)dFX(x|r(t,X))

=
∫
r(t, x)dFX(x|r(t,X)) = r(t,X).

The left hand side of the equation can be written as:

fT (t|r(t,X), Y (t)) =
∫
fT (t|x, r(t,X), Y (t))dFX(x|Y (t), r(t,X)).

By weak unconfoundedness, fT (t|x, r(t,X), Y (t)) = fT (t|x), so

fT (t|r(t,X), Y (t)) =
∫
r(t, x)dFX(x|Y (t), r(t,X))

= r(t,X).

Therefore, for each t, fT (t|r(t,X), Y (t)) = fT (t|r(t,X)). �
Note that when we consider the conditional density of the treatment level at t, we eval-

uate the generalized propensity score at the corresponding level of the treatment. In that
sense we use as many propensity scores as there are levels of the treatment. Nevertheless,
we never use more than a single score at one time.

3 Bias removal using the GPS

In this section we show that the GPS can be used to eliminate any biases associated with
differences in the covariates. The approach consists of two steps. First we estimate the
conditional expectation of the outcome as a function of two scalar variables, the treatment
level T and the GPS R, β(t, r) = E[Y |T = t, R = r]. Second, to estimate the dose-response
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function at a particular level of the treatment we average this conditional expectation over
the GPS at that particular level of the treatment, µ(t) = E[β(t, r(t,X))]. It is important
to note that we do not average over the GPS R = r(T,X); rather we average over the score
evaluated at the treatment level of interest, r(t,X).

Theorem 3.1 (Bias Removal with Generalized Propensity Score)

Suppose that assignment to the treatment is weakly unconfounded given pre-treatment vari-
ables X. Then
(i) β(t, r) = E[Y (t)|r(t,X) = r] = E[Y |T = t, R = r].
(ii) µ(t) = E[β(t, r(t,X)].

Proof: Let fY (t)|T,r(t,X)(·|t, r) denote the conditional density (with respect to some mea-
sure) of Y (t) given T = t and r(t,X) = r. Then, using Bayes rule and Theorem 2.1,

fY (t)|T,r(t,X)(y|t, r) =
fT (t|Y (t) = y, r(t,X) = r)fY (t)|r(t,X)(y|r)

fT (t|r(t,X) = r)
= fY (t)|r(t,X)(y|r)

Hence
E[Y (t)|T = t, r(t,X) = r] = E[Y (t)|r(t,X) = r].

But we also have

E[Y (t)|T = t, R = r] = E[Y (t)|T = t, r(T,X) = r]

= E[Y (t)|T = t, r(t,X) = r]

= E[Y (t)|r(t,X) = r] = β(t, r)

Hence E[Yi(t)|r(t,Xi) = r] = β(t, r), which proves part (i). For the second part, by iterated
expectations, E[β(t, r(t,X))] = E[E[Y (t)|r(t,X)]] = E[Y (t)]. �

It should be stressed that the regression function β(t, r) does not have a causal interpre-
tation. In particular, the derivative with respect to the treatment level t does not represent
an average effect of changing the level of the treatment for any particular subpopulation.

Robins (1998, 1999) and Robins, Hernán, and Brumback (2000), use a related approach.
They parametrize or restrict the form of the Y (t) process (and hence the form of µ(t)), and
call this a marginal structural model (MSM). The parameters of the MSM are estimated
using a weighting scheme based on the GPS. When the treatment is continuous these
weights must be “stabilized” by the marginal probabilities of treatment. In the approach
we take here, we would typically employ parametric assumptions about the form of β(t, r)
instead of µ(t), and do not need to reweight the observations.
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Two artificial examples

Example 1: Suppose that the conditional distribution of Y (t) given X is

Y (t)|X ∼ N(t+X · exp(−X · t), 1).

The conditional mean of Y (t) given X is t+X ·exp(−X ·t). Suppose also that the marginal
distribution of X is unit exponential. The marginal mean of Y (t) is obtained by integrating
out the covariate to get

µ(t) = E[t+X · exp(−X · t)] = t+
1

(t+ 1)2
.

Now consider estimating the dose-response function using the GPS approach. We
assume that the assignment to treatment is weakly unconfounded. For illustrative purposes
we also assume that the conditional distribution of the treatment T given X is exponential
with hazard rate X. This implies that the conditional density of T given X is

fT |X(t, x) = x · exp(−t · x).

Hence the generalized propensity score is R = X · exp(−T ·X).
Next, we consider the conditional expectation of Y given the treatment T and the score

R. By weak unconfoundedness the conditional expectation of Y given T and X is

E[Y |T = t,X = x] = E[Y (t)|X = x].

Then by iterated expectations

E[Y |T = t, R = r] = E [E[Y |T = t,X]|T = t, R = r]

= E[E[Y (t)|X]|T = t, R = r]

= E[t+X · exp(−t ·X)|T = t, R = r] = t+ r.

Note that, as stressed before, this conditional expectation does not have a causal interpre-
tation as a function of t. For the final step we average this conditional expectation over
the marginal distribution of r(t,X):

E[Y (t)] = E[t+ r(t,X)] = t+
1

(1 + t)2
= µ(t).

This gives us the dose-response function at treatment level t.

Example 2: Suppose that the dose-response function is E[Y (t)] = µ(t). Also suppose that
X is independent of the level of the treatment so that we do not actually need to adjust
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for the covariates. Independence of the covariates and the treatment implies that the GPS
r(t, x) = fT |X(t|x) = fT (t) is a function only of t. This creates a lack of uniqueness in the
regression of the outcome on the level of the treatment and the GPS. Formally, there is no
unique function β(t, r) such that E[Y |T = t, R = r] = β(t, r) for all (t, r) in the support
of (T, r(T )). In practice this means that the GPS will not be a statistically significant
determinant of the average value of the outcome, and in the limit we will have perfect
collinearity in the regression of the outcome on the treatment level and the GPS. However,
this does not create problems for estimating the dose-response function. To see this, note
that any solution β(t, r) must satisfy

β(t, r(t)) = E[Y |T = t, r(T ) = r(t)] = E[Y |T = t] = µ(t).

Hence the implied estimate of the dose-response function is∫
x
β(t, r(t, x))fX(x)dx = β(t, r(t)) = µ(t),

equal to the dose-response function.

4 Estimation and inference

In this section we consider the practical implementation of the generalized propensity score
methodology outlined in the previous section. We use a flexible parametric approach. In
the first stage we use a normal distribution for the treatment given the covariates:

Ti|Xi ∼ N(β0 + β′1Xi, σ
2).

We may consider more general models such as mixtures of normals, or heteroskedastic
normal distributions with the variance a parametric function of the covariates. In the simple
normal model we can estimate β0, β1, and σ2 by maximum likelihood. The estimated GPS
is

R̂i =
1√

2πσ̂2
exp

(
− 1

2σ̂2
(Ti − β̂0 − β̂′1Xi)2

)
.

In the second stage we model the conditional expectation of Yi given Ti and Ri as a flexible
function of its two arguments. In the application in the next section we use a quadratic
approximation:

E[Yi|Ti, Ri] = α0 + α1 · Ti + α2 · T 2
i + α3 ·Ri + α4 ·R2

i + α5 · Ti ·Ri.

We estimate these parameters by ordinary least squares using the estimated GPS R̂i.
Given the estimated parameter in the second stage, we estimate the average potential
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outcome at treatment level t as

̂E[Y (t)] =
1
N

N∑
i=1

(
α̂0 + α̂1 · t+ α̂2 · t2 + α̂3 · r̂(t,Xi) + α̂4 · r̂(t,Xi)2 + α̂5 · t · r̂(t,Xi)

)
.

We do this for each level of the treatment we are interested in, to obtain an estimate of
the entire dose-response function.

Given the parametric model we use for the GPS and the regression function one can
demonstrate root-N consistency and asymptotic normality for the estimator. Asymptotic
standard errors can be calculated using expansions based on the estimating equations; these
should take into account estimation of the GPS as well as the α parameters. In practice,
however, it is convenient to use bootstrap methods to form standard errors and confidence
intervals.

5 Application: the Imbens-Rubin-Sacerdote lottery sample

The data

The data we use to illustrate the methods discussed in the previous section come from the
survey of Massachusetts lottery winners, which is described in further detail in the chapter
by Sacerdote in this volume, and in Imbens, Rubin, and Sacerdote (2001). Here we analyze
the effect of the prize amount on subsequent labor earnings (from social security records),
without discretizing the prize variable.

Although the lottery prize is obviously randomly assigned, there is substantial cor-
relation between some of the background variables and the lottery prize in our sample.
The main source of potential bias is the unit and item nonresponse. In the survey unit
nonresponse was about 50%. In fact it was possible to directly demonstrate that this non-
response was nonrandom, since for all units the lottery prize was observed. It was shown
that the higher the lottery prize, the lower the probability of responding to the survey.
The missing data imply that the amount of the prize is potentially correlated with back-
ground characteristics and potential outcomes. In order to remove such biases we make the
weak unconfoundedness assumption, that conditional on the covariates the lottery prize is
independent of the potential outcomes.

The sample we use in this analysis is the “winners” sample of 237 individuals who
won a major prize in the lottery. In Table 1 we present means and standard deviations
for this sample. To demonstrate the effects of nonresponse we also report the correlation
coefficients between each of the covariates and the prize, with the t-statistic for the test
that the correlation is equal to zero. We see that many of the covariates have substantial
and significant correlations with the prize.
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Variable Mean S.D. Corr. t-stat GPS Est. GPS SE
w/Prize

Intercept 2.32 (0.48)
Age 47.0 13.8 0.2 2.4 0.02 (0.01)
Years high school 3.6 1.1 -0.1 -1.4 0.02 (0.06)
Years college 1.4 1.6 0.0 0.5 0.04 (0.04)
Male 0.6 0.5 0.3 4.1 0.44 (0.14)
Tickets bought 4.6 3.3 0.1 1.6 0.00 (0.02)
Working then 0.8 0.4 0.1 1.4 0.13 (0.17)
Year won 1986.1 1.3 -0.0 -0.4 -0.00 (0.05)
Earnings year -1 14.5 13.6 0.1 1.7 0.01 (0.01)
Earnings year -2 13.5 13.0 0.1 2.1 -0.01 (0.02)
Earnings year -3 12.8 12.7 0.2 2.3 0.01 (0.02)
Earnings year -4 12.0 12.1 0.1 2.0 0.02 (0.02)
Earnings year -5 12.2 12.4 0.1 1.1 -0.02 (0.02)
Earnings year -6 12.1 12.4 0.1 1.1 -0.01 (0.01)

Table 1: Summary statistics and parameter estimates of generalized propensity score.

Modelling the conditional distribution of the prize given covariates

The first step is to estimate the conditional distribution of the prize given the covariates.
The distribution of the prize is highly skewed, with a skewness of 2.9 and a kurtosis of
15.0. We therefore first transform the prize by taking logarithms. The logarithm of the
prize has a skewness of -0.02 and a kurtosis of 3.4. We then use a normal linear model for
the logarithm of the prize:

log Ti|Xi ∼ N(β0 + β′1Xi, σ
2).

The estimated coefficients from this model are presented in Table 1.
To see whether this specification of the propensity score is adequate, we investigate how

it affects the balance of the covariates. This idea is again borrowed from the analysis of
binary treatment cases, where Rosenbaum and Rubin (1983) stress the balancing properties
of the propensity score. We divide the range of prizes into three treatment intervals, [0, 23],
[23, 80], and [80, 485], with 79 observations in the first group, 106 in the second, and 52 in
the last treatment group. For each of the thirteen covariates, we investigate the balance by
testing whether the mean in one of the three treatment groups was different from the mean
in the other two treatment groups combined. (Alternatively, we could carry out various
joint tests to assess the covariate balance.) In Table 2, we report the t-tests for each of the
thirteen covariates and each of the three groups. The results show a clear lack of balance,
with 14 (17) of 39 t-statistics greater than 1.96 (1.645) in absolute value.

Next, we report GPS-adjusted versions of these statistics. Take the first covariate (age),
and the test whether the adjusted mean in the first group (with prizes less than 23K) is
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Unadjusted Adjusted for the GPS
Variable [0, 23] [23, 80] [80, 485] [0, 23] [23, 80] [80, 485]
Age -1.7 -0.1 2.0 0.1 0.3 1.7
Years high school -0.9 1.7 -0.7 -0.5 0.8 -1.0
Years college -1.2 0.7 0.5 -0.5 0.7 -0.7
Male -3.6 0.5 4.0 -0.4 0.2 0.1
Tickets bought -1.1 0.5 0.6 -0.7 0.7 -0.2
Working then -1.1 -0.3 2.0 -0.0 -0.2 0.3
Year won -0.6 2.0 -1.6 -0.1 1.1 -1.0
Earnings year -1 -1.8 -0.5 2.3 -0.3 -0.7 0.5
Earnings year -2 -2.3 -0.4 2.6 -1.0 -0.4 0.5
Earnings year -3 -2.7 -0.6 3.1 -1.4 -0.6 1.2
Earnings year -4 -2.7 -0.7 3.1 -0.9 -0.6 1.7
Earnings year -5 -2.2 -0.3 2.4 -1.1 -0.0 2.1
Earnings year -6 -2.1 -0.1 2.3 -1.5 0.4 2.2

Table 2: Balance given the generalized propensity score: t-statistics for equality of means.

different from the mean in the other two groups. Recall that we should have

Xi ⊥ 1{Ti = t}
∣∣∣ r(t,Xi).

We implement this discretizing both the level of the treatment and the GPS. First we
check independence of Xi and the indicator that 0 ≤ Ti ≤ 23, conditional on r(t,Xi). To
implement this we approximate r(t,Xi) by evaluating the GPS at the median of the prize
in this group, which is 14. Thus, we test

Xi ⊥ 1{0 ≤ Ti ≤ 23}
∣∣∣ r(14, Xi).

We test this by blocking on the score r(14, Xi). We use five blocks, defined by quintiles
of r(14, Xi) in the group with 1{0 ≤ Ti ≤ 23}. The three groups are defined by the GPS
values for r(14, Xi) in the intervals [0.06, 0.21], [0.21, 0.28], [0.28, 0.34], [0.34, 0.39], and
[0.39, 0.45]. (The full range of values for the GPS r(T,X) evaluated at received treatment
and covariates is [0.00, 0.45], but the range of r(14, X) is [0.06, 0.45].) For example, the
first of these five groups, with r(14, Xi) ∈ [0.06, 0.21] has a total of 84 observations (16
with Ti ∈ [0, 23] and 68 with T /∈ [0, 23]). Testing for equality of the average age in the first
versus the other two prize groups in this GPS group gives a mean difference of -5.5 with a
standard error of 2.2. In the second GPS group with r(14, Xi) ∈ [0.21, 0.28] there are 39
observations (16 with Ti ∈ [0, 23] and 23 with T /∈ [0, 23]), leading to a mean difference of
-3.2 (SE 5.3). In the third GPS group with r(14, Xi) ∈ [0.28, 0.34] there are 53 observations
(21 with Ti ∈ [0, 23] and 38 with T /∈ [0, 23]), leading to a mean difference of 8.2 (SE 4.4).
In the fourth GPS group with r(14, Xi) ∈ [0.34, 0.39] there are 36 observations (16 with
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Variable Est. SE
Intercept 9.68 3.34
Prize -0.03 0.03
Prize-squared/1000 0.40 0.20
Log(score) -3.33 3.41
Log(score)-squared -0.28 0.46
Log(score)×prize 0.05 0.02

Table 3: Parameter estimates of conditional distribution of prize given covariates.

Ti ∈ [0, 23] and 20 with T /∈ [0, 23]), leading to a mean difference of 4.7 (SE 3.0). In the
fifth GPS group with r(14, Xi) ∈ [0.39, 0.45] there are 25 observations (16 with Ti ∈ [0, 23]
and 9 with T /∈ [0, 23]), leading to a mean difference of 0.4 (SE 4.0). Combining these five
differences in means, weighted by the number of observations in each GPS group, leads to
a mean difference of 0.1 (SE 0.9), and thus a t-statistic of 0.1, compared to an unadjusted
mean of -3.1 (SE 1.8) and t-statistic of -1.7.

The adjustment for the GPS improves the balance. After the adjustment for the GPS,
only 2 t-statistics are larger than 1.96 (compared to 16 prior to adjustment) and 4 out of
39 are larger than 1.645 (compared to 17 prior to adjustment). These lower t-statistics
are not merely the result of increased variances. For example, for earnings in year −1, the
mean difference between treatment group [0, 23] and the other two is -3.1 (SE 1.7). After
adjusting for the GPS this is reduced to -0.3 (SE 0.9).

Estimating the conditional expectation of outcome given prize and gen-

eralized propensity score

Next, we regress the outcome, earnings six years after winning the lottery, on the prize Ti
and the score Ri. We again use the logarithm of the score function rather than the level.
We include all second order moments of prize and log score. The estimated coefficients are
presented in Table 3. Again it should be stressed that there is no direct meaning to the
estimated coefficients in this model, except that testing whether all coefficients involving
the GPS are equal to zero can be interpreted as a test whether it the covariates introduce
any bias.

Estimating the dose-response function

The last step consists of averaging the estimated regression function over the score function
evaluated at the desired level of the prize. Rather than report the dose-response function,
we report the derivative of the dose-response function. In economic terminology, this is the
marginal propensity to earn out of unearned income. (The yearly prize money is viewed
as unearned income, and the derivative of average labor income with respect to this is the
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Figure 1: Estimated derivatives and 95% confidence bands.

marginal propensity to earn out of unearned income.) We report the value of the derivative
at $10,000 increments for all values between $10,000 and $100,000. The results are shown
in Figure 5, along with pointwise 95% confidence bands. The bands are based on 1,000
bootstrap replications, taking into account estimation of the GPS.

The GPS-based estimates are compared to linear regression estimates based on a re-
gression function that is quadratic in the prize, either without additional covariates (“un-
adjusted”) or with the additional covariates included linearly (“LS adjusted”).

The GPS estimates imply that the propensity to earn out of unearned income goes
down sharply with the level of unearned income, from -0.10 at $10,000 to -0.02 at $100,000,
suggesting that those with lower earnings are much more sensitive to income changes than
those with higher earnings. The linear regression estimates suggest a much smaller change,
with the derivative at a prize of $100,000 equal to -0.04, compared to -0.05 at $10,000.

6 Conclusion

Propensity score methods have become one of the most important tools for analyzing causal
effects in observational studies. Although the original work of Rosenbaum and Rubin
(1983) considered applications with binary treatments, many of the ideas readily extend
to multivalued and continuous treatments. We have discussed some of the issues involved
in handling continuous treatments, and emphasized how the propensity score methodology
can be extended to this case. We applied these ideas to a data set previously studied by
Imbens, Rubin, and Sacerdote (2001). We expect that coming years will see further work
applying the Rubin Causal Model approach to a range of settings.
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