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IDENTIFICATION AND INFERENCE IN NONLINEAR 
DIFFERENCE-IN-DIFFERENCES MODELS 

BY SUSAN ATHEY AND GUIDO W. IMBENS' 

This paper develops a generalization of the widely used difference-in-differences 
method for evaluating the effects of policy changes. We propose a model that allows 
the control and treatment groups to have different average benefits from the treat- 
ment. The assumptions of the proposed model are invariant to the scaling of the out- 
come. We provide conditions under which the model is nonparametrically identified 
and propose an estimator that can be applied using either repeated cross section or 
panel data. Our approach provides an estimate of the entire counterfactual distribution 
of outcomes that would have been experienced by the treatment group in the absence 
of the treatment and likewise for the untreated group in the presence of the treatment. 
Thus, it enables the evaluation of policy interventions according to criteria such as a 
mean-variance trade-off. We also propose methods for inference, showing that our 
estimator for the average treatment effect is root-N consistent and asymptotically nor- 
mal. We consider extensions to allow for covariates, discrete dependent variables, and 
multiple groups and time periods. 

KEYWORDS: Difference-in-differences, identification, nonlinear models, heteroge- 
nous treatment effects, nonparametric estimation. 

1. INTRODUCTION 

DIFFERENCE-IN-DIFFERENCES (DID) methods for estimating the effect of pol- 
icy interventions have become very popular in economics.2 These methods are 
used in problems with multiple subpopulations-some subject to a policy inter- 
vention or treatment and others not-and outcomes that are measured in each 
group before and after the policy intervention (although not necessarily for 
the same individuals).3 To account for time trends unrelated to the interven- 

'We are grateful to Alberto Abadie, Joseph Altonji, Don Andrews, Joshua Angrist, David 
Card, Esther Duflo, Austan Goolsbee, Jinyong Hahn, Caroline Hoxby, Rosa Matzkin, Costas 
Meghir, Jim Poterba, Scott Stern, Petra Todd, Edward Vytlacil, seminar audiences at the Univer- 
sity of Arizona, UC Berkeley, the University of Chicago, University of Miami, Monash Univer- 
sity, Harvard/MIT, Northwestern University, UCLA, USC, Yale University, Stanford University, 
the San Francisco Federal Reserve Bank, the Texas Econometrics conference, SITE, NBER, and 
AEA 2003 winter meetings, the 2003 Joint Statistical Meetings, and, especially, Jack Porter for 
helpful discussions. We are indebted to Bruce Meyer, who generously provided us with his data. 
Four anonymous referees and a co-editor provided insightful comments. Richard Crump, Derek 
Gurney, Lu Han, Khartik Kalyanaram, Peyron Law, Matthew Osborne, Leonardo Rezende, and 
Paul Riskind provided skillful research assistance. Financial support for this research was gener- 
ously provided through NSF grants SES-9983820 and SES-0351500 (Athey), SBR-9818644, and 
SES 0136789 (Imbens). 

2In other social sciences such methods are also widely used, often under other labels such as the 
"untreated control group design with independent pretest and posttest samples" (e.g., Shadish, 
Cook, and Campbell (2002)). 

3Examples include the evaluation of labor market programs (Ashenfelter and Card (1985), 
Blundell, Costa Dias, Meghir, and Van Reenen (2001)), civil rights (Heckman and Payner (1989), 
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tion, the change experienced by the group subject to the intervention (referred 
to as the treatment group) is adjusted by the change experienced by the group 
not subject to treatment (the control group). Several recent surveys describe 
other applications and give an overview of the methodology, including Meyer 
(1995), Angrist and Krueger (2000), and Blundell and MaCurdy (2000). 

This paper analyzes nonparametric identification, estimation, and inference 
for the average effect of the treatment for settings where repeated cross sec- 
tions of individuals are observed in a treatment group and a control group, 
before and after the treatment. Our approach differs from the standard DID 
approach in several ways. We allow the effects of both time and the treatment 
to differ systematically across individuals,4 as when inequality in the returns to 
skill increases over time or when new medical technology differentially ben- 
efits sicker patients. We propose an estimator for the entire counterfactual 
distribution of effects of the treatment on the treatment group as well as the 
distribution of effects of the treatment on the control group, where the two dis- 
tributions may differ from each other in arbitrary ways. We accommodate the 
possibility-but do not assume-that the treatment group adopted the policy 
because it expected greater benefits than the control group. (Besley and Case 
(2000) discuss this possibility as a concern for standard DID models.) In con- 
trast, standard DID methods give little guidance about what the effect of a 
policy intervention would be in the (counterfactual) event that it were applied 
to the control group except in the extreme case where the effect of the policy 
is constant across individuals. 

We develop our approach in several steps. First, we develop a new model 
that relates outcomes to an individual's group, time, and unobservable charac- 
teristics." The standard DID model is a special case of our model, which we call 
the changes-in-changes model. In the standard model, groups and time periods 
are treated symmetrically: for a particular scaling of the outcomes, the mean 
of individual outcomes in the absence of the treatment is additive in group and 

Donohue, Heckman, and Todd (2002)), the inflow of immigrants (Card (1990)), the minimum 
wage (Card and Krueger (1993)), health insurance (Gruber and Madrian (1994)), 401(k) re- 
tirement plans (Poterba, Venti, and Wise (1995)), worker's compensation (Meyer, Viscusi, and 
Durbin (1995)), tax reform (Eissa and Liebman (1996), Blundell, Duncan, and Meghir (1998)), 
911 systems (Athey and Stern (2002)), school construction (Duflo (2001)), information disclo- 
sure (Jin and Leslie (2003)), World War II internment camps (Chin (2005)), and speed limits 
(Ashenfelter and Greenstone (2004)). Time variation is sometimes replaced by another type of 
variation, as in Borenstein's (1991) study of airline pricing. 

4Treatment effect heterogeneity has been a focus of the general evaluation literature, e.g., 
Heckman and Robb (1985), Manski (1990), Imbens and Angrist (1994), Dehejia (1997), Lechner 
(1999), Abadie, Angrist, and Imbens (2002), and Chernozhukov and Hansen (2005), although it 
has received less attention in difference-in-differences settings. 

5The proposed model is related to models of wage determination proposed in the literature 
on wage decomposition where changes in the wage distribution are decomposed into changes 
in returns to (unobserved) skills and changes in relative skill distributions (Juhn, Murphy, and 
Pierce (1991), Altonji and Blank (2000)). 
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time indicators.6 In contrast, in our model, time periods and groups are treated 
asymmetrically. The defining feature of a time period is that in the absence of 
the treatment, within a period the outcomes for all individuals are determined 
by a single, monotone "production function" that maps individual-specific un- 
observables to outcomes. The defining feature of a group is that the distrib- 
ution of individual unobservable characteristics is the same within a group in 
both time periods, even though the characteristics of any particular agent can 
change over time. Groups can differ in arbitrary ways in the distribution of the 
unobserved individual characteristic and, in particular, the treatment group 
might have more individuals who experience a high return to the treatment. 

Second, we provide conditions under which the proposed model is identified 
nonparametrically and we develop a novel estimation strategy based on the 
identification result. We use the entire "before" and "after" outcome distribu- 
tions in the control group to nonparametrically estimate the change over time 
that occurred in the control group. Assuming that the distribution of outcomes 
in the treatment group would have experienced the same change in the absence 
of the intervention, we estimate the counterfactual distribution for the treat- 
ment group in the second period. We compare this counterfactual distribution 
to the actual second-period distribution for the treatment group. Thus, we can 
estimate-without changing the assumptions underlying the estimators-the 
effect of the intervention on any feature of the distribution. We use a similar 
approach to estimate the effect of the treatment on the control group. 

A third contribution is to develop the asymptotic properties of our estima- 
tor. Estimating the average and quantile treatment effects involves estimating 
the inverse of an empirical distribution function with observations from one 
group-period and applying that function to observations from a second group- 
period (and averaging this transformation for the average treatment effect). 
We establish root-N consistency and asymptotic normality of the estimator for 
the average treatment effect and quantile treatment effects. We extend the 
analysis to incorporate covariates. 

In a fourth contribution, we extend the model to allow for discrete outcomes. 
With discrete outcomes, the standard DID model can lead to predictions out- 
side the allowable range. These concerns have led researchers to consider 
nonlinear transformations of an additive single index. However, the economic 
justification for the additivity assumptions required for DID may be tenuous in 
such cases. Because we do not make functional form assumptions, this problem 
does not arise using our approach. However, without additional assumptions, 
the counterfactual distribution of outcomes may not be identified when out- 
comes are discrete. We provide bounds (in the spirit of Manski (1990, 1995)) 

6We use the term "standard DID model" to refer to a model that assumes that outcomes are 
additive in a time effect, a group effect, and an unobservable that is independent of the time and 
group (e.g., Meyer (1995), Angrist and Krueger (2000), and Blundell and MaCurdy (2000)). The 
scale-dependent additivity assumptions of this model have been criticized as unduly restrictive 
from an economic perspective (e.g., Heckman (1996)). 
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on the counterfactual distribution and show that the bounds collapse as the 
outcomes become "more continuous." We then discuss two alternative ap- 
proaches for restoring point identification. The first alternative relies on an 
additional assumption about the unobservables. It leads to an estimator that 
differs from the standard DID estimator even for the simple binary response 
model without covariates. The second alternative is based on covariates that 
are independent of the unobservable. Such covariates can tighten the bounds 
or even restore point identification. 

Fifth, we consider an alternative approach to constructing the counterfac- 
tual distribution of outcomes in the absence of treatment-the "quantile DID" 
(QDID) approach. In the QDID approach we compute the counterfactual dis- 
tribution by adding the change over time at the qth quantile of the control 
group to the qth quantile of the first-period treatment group. Meyer, Viscusi, 
and Durbin (1995) and Poterba, Venti, and Wise (1995) apply this approach 
to specific quantiles. We propose a nonlinear model for outcomes that justifies 
the quantile DID approach for every quantile simultaneously and thus vali- 
dates construction of the entire counterfactual distribution. The standard DID 
model is a special case of this model. Despite the intuitive appeal of the quan- 
tile DID approach, we show that the underlying model has several unattractive 
features. 

Sixth, we provide extensions to settings with multiple groups and multiple 
time periods. 

Finally, in the supplementary material to this article, available on the Econo- 
metrica website (Athey and Imbens (2006)), we apply the methods developed 
in this paper to study the effects of disability insurance on injury durations us- 
ing data previously analyzed by Meyer, Viscusi, and Durbin (1995). This appli- 
cation shows that the approach used to estimate the effects of a policy change 
can lead to results that differ from the standard DID results in terms of magni- 
tude and significance. Thus, the restrictive assumptions required for standard 
DID methods can have significant policy implications. We also present simula- 
tions that illustrate the small sample properties of the estimators and highlight 
the potential importance of accounting for the discrete nature of the data. 

Some of the results developed in this paper can also be applied outside of the 
DID setting. For example, our estimator for the average treatment effect for 
the treated is closely related to an estimator proposed by Juhn, Murphy, and 
Pierce (1991) and Altonji and Blank (2000) to decompose the Black-White 
wage differential into changes in the returns to skills and changes in the relative 
skill distribution.7 As we discuss below, our asymptotic results apply to the 
Altonji-Blank estimator and, furthermore, our results for discrete data extend 
their model. 

Within the literature on treatment effects, the results in this paper are most 
closely related to the literature concerning panel data. In contrast, our ap- 

7See also the work by Fortin and Lemieux (1999) on the gender gap in wage distributions. 
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proach is tailored to the case of repeated cross sections. A few recent papers 
analyze the theory of DID models, but their focus differs from ours. Abadie 
(2005) and Blundell, Costa Dias, Meghir, and Van Reenen (2001) discuss ad- 
justing for exogenous covariates using propensity score methods. Donald and 
Lang (2001) and Bertrand, Duflo, and Mullainathan (2004) address problems 
with standard methods for computing standard errors in DID models; their so- 
lutions require multiple groups and periods, and rely heavily on linearity and 
additivity. 

Finally, we note that our approach to nonparametric identification relies 
heavily on an assumption that in each time period, the "production function" 
is monotone in an unobservable. Following Matzkin (1999, 2003), Altonji and 
Matzkin (1997, 2005), and Imbens and Newey (2001), a growing literature ex- 
ploits monotonicity in the analysis of nonparametric identification of nonsepa- 
rable models; we discuss this literature in more detail below. 

2. GENERALIZING THE STANDARD DID MODEL 

The standard model for the DID design is as follows. Individual i belongs 
to a group G E {0, 11 (where group 1 is the treatment group) and is observed 
in time period Ti e {0, 1}. For i = 1,..., N, a random sample from the pop- 
ulation, individual i's group identity and time period can be treated as ran- 
dom variables. Letting the outcome be Yi, the observed data are the triple 
(Yi, G,, Ti).' Using the potential outcome notation advocated in the treatment 
effect literature by Rubin (1974, 1978), let YU denote the outcome for indi- 
vidual i if that individual does not receive the treatment, and let Y/' be the 
outcome for the same individual if he or she does receive the treatment. Thus, 
if I; is an indicator for the treatment, the realized (observed) outcome for in- 
dividual i is 

Y, = YN - (1 - I,) + I, 
- YI'. 

In the two-group-two-period setting we consider, Ii = Gi Ti. 
In the standard DID model, the outcome for individual i in the absence of 

the intervention satisfies 

(1) YU 
= 

c + p - T, + y - Gi + ei. 

The second coefficient, /3, represents the time effect. The third coefficient, y, 
represents a group-specific time-invariant effect.9 The third term, ei, repre- 
sents unobservable characteristics of the individual. This term is assumed to be 

8In Sections 4 and 5 and we discuss cases with exogenous covariates. 
9In some settings, it is more appropriate to generalize the model to allow for a time-invariant 

individual-specific fixed effect yi, potentially correlated with Gi. See, e.g., Angrist and Krueger 
(2000). This generalization of the standard model does not affect the standard DID estimand and 
it will be subsumed as a special case of the model we propose. See Section 3.4 for more discussion 
of panel data. 
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independent of the group indicator and have the same distribution over time, 
i.e., ei I (G;, T;), and is normalized to have mean zero. The standard DID es- 
timand is 

(2) TDID = [E[YIjG = 1, T, = 11] - E[YjGi 
= 1, T,= 0]] 

- [E[Y IG; = 0, T, = 1] - 
E[YIjG- 

= O, T, = 0]]. 
In other words, the population average difference over time in the control 
group (G; = 0) is subtracted from the population average difference over time 
in the treatment group (G- 

= 1) to remove biases associated with a common 
time trend unrelated to the intervention. 

Note that the full independence assumption ep I (G1, 7T) (e.g., Blundell and 
MaCurdy (2000)) is stronger than necessary for 

7"DID 
to give the average treat- 

ment effect. One can generalize this framework and allow for general forms of 
heteroskedasticity by group or time by relaxing the assumption to only mean in- 
dependence (e.g., Abadie (2005)) or zero correlation between e; and (Gi, Ti). 
Our proposed model will nest the DID model with independence (which for 
further reference will be labeled the standard DID model), but not the DID 
model with mean independence.10 

The interpretation of the standard DID estimand depends on assumptions 
about how outcomes are generated in the presence of the intervention. It is 
often assumed that the treatment effect is constant across individuals, so that 

Y/i 
- 

Y/"= 7. Combining this restriction with the standard DID model for the 
outcome without intervention leads to a model for the realized outcome: 

Yi = c +p0- Ti+ y- G +7.Ii + e. 

More generally, the effect of the intervention might differ across individuals. 
Then the standard DID estimand gives the average effect of the intervention 
on the treatment group. 

We propose to generalize the standard model in several ways. First, we as- 
sume that in the absence of the intervention, the outcomes satisfy 

(3) Y" = h(U;, T), 
with h(u, t) increasing in u. The random variable U, represents the unobserv- 
able characteristics of individual i, and (3) incorporates the idea that the out- 
come of an individual with U; = u will be the same in a given time period, 

'0The DID model with mean independence assumes that, for a given scaling of the outcome, 
changes across subpopulations in the mean of Yi have a structural interpretation and as such are 
used to predict the counterfactual outcome for the second-period treatment group in the absence 
of the treatment. In contrast, all differences across subpopulations in the other moments of the 
distribution of Y, are ignored when making predictions. In the model we propose, all changes 
in the distribution of Y, across subpopulations are given a structural interpretation and used for 
inference. Neither our model nor the DID model with mean independence imposes any testable 
restrictions on the data. 
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irrespective of the group membership. The distribution of U, is allowed to vary 
across groups, but not over time within groups, so that U, I TIGi. The stan- 
dard DID model in (1) embodies three additional assumptions, namely 

(4) (additivity) Ui, = a + y. 
G- 

+ ei with ej I (Gj, Ti), 

(5) (single index model) h(u, t) = 04(u + 8. t) 

for a strictly increasing function 4 (), and 

(6) (identity transformation) ) (.) is the identity function. 

Thus the proposed model nests the standard DID as a special case. The mean- 
independence DID model is not nested; rather, the latter model requires that 
changes over time in moments of the outcomes other than the mean are not 
relevant for predicting the mean of YiN. Note also that in contrast to the stan- 
dard DID model, our assumptions do not depend on the scaling of the out- 
come, for example, whether outcomes are measured in levels or logarithms." 

A natural extension of the standard DID model might have been to main- 
tain assumptions (4) and (5) but relax (6), to allow 4 (.) to be an unknown 
function.12 Doing so would maintain an additive single index structure within 
an unknown transformation, so that 

(7) YN = 4(ac + y - G? + 8 - 
T, + e?). 

However, this specification still imposes substantive restrictions, for example, 
ruling out some models with mean and variance shifts both across groups and 
over time.'3 

In the proposed model, the treatment group's distribution of unobservables 
may be different from that of the control group in arbitrary ways. In the ab- 
sence of treatment, all differences between the two groups can be attributed 
to differences in the conditional distribution of U given G. The model fur- 
ther requires that the changes over time in the distribution of each group's 
outcome (in the absence of treatment) arise from the fact that h(u, 0) differs 
from h(u, 1), that is, the effect of the unobservable on outcomes changes over 
time. Like the standard model, our approach does not rely on tracking individ- 
uals over time; although the distribution of U, is assumed not to change over 

"To be precise, we say that a model is invariant to the scaling of the outcome if, given the 
validity of the model for Y, the same assumptions remain valid for any strictly monotone trans- 
formation of the outcome. 

12Ashenfelter and Greenstone (2004) consider models where 4 (.) is a Box-Cox transforma- 
tion with unknown parameter. 

'"For example, suppose that YU = aC + 1 - T + 
(y" 

Gi + i) . (1 +2 . Ti). In the second period 
there is a shift in the mean as well as an unrelated shift in the variance, meaning the model is 
incompatible with (7). 
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time within groups, we do not make any assumptions about whether a particu- 
lar individual has the same realization Ui in each period. Thus, the estimators 
we derive for our model will be the same whether we observe a panel of in- 
dividuals over time or a repeated cross section. We discuss alternative models 
for panel data in more detail in Section 3.4. 

Just as in the standard DID approach, if we wish to estimate only the effect 
of the intervention on the treatment group, no assumptions are required about 
how the intervention affects outcomes. To analyze the counterfactual effect of 
the intervention on the control group, we assume that in the presence of the 
intervention, 

Yi' = h'( Ui, Ti) 

for some function h'(u, t) that is increasing in u. That is, the effect of the 
treatment at a given time is the same for individuals with the same U, = u, ir- 
respective of the group. No further assumptions are required on the functional 
form of h', so the treatment effect, equal to h'(u, 1) - h(u, 1) for individuals 
with unobserved component u, can differ across individuals. Because the dis- 
tribution of the unobserved component U can vary across groups, the average 
return to the policy intervention can vary across groups as well. 

3. IDENTIFICATION IN MODELS WITH CONTINUOUS OUTCOMES 

3.1. The Changes-in-Changes Model 

This section considers identification of the changes-in-changes (CIC) model. 
We modify the notation by dropping the subscript i and treating (Y, G, T, U) 
as a vector of random variables. To ease the notational burden, we introduce 
the shorthand 

YN 
Y"NIG- 

=g, T=t, Y' Y'I G=g, T=t, 

Yg, 
l YIG 

= g, T = t, U UIG 
= g, 

d 
where ~ is shorthand for "is distributed as." The corresponding conditional 
distribution functions are FyN,gt, Fyigt, Fygt, and Fug, with supports YN, Y 
Yg,,, and Ug, respectively. 

We analyze sets of assumptions that identify the distribution of the coun- 
terfactual second-period outcome for the treatment group, that is, sets of as- 
sumptions that allow us to express the distribution FyN, in terms of the joint 
distribution of the observables (Y, G, T). In practice, these results allow us to 
express FYN,11 in terms of the three estimable conditional outcome distribu- 
tions in the other three subpopulations not subject to the intervention, Fyvoo, 

Fg,01, 
and 

Fy1,o. 
Consider first a model of outcomes in the absence of the inter- 

vention. 
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ASSUMPTION 3.1-Model: The outcome of an individual in the absence of 
intervention satisfies the relationship YN = h (U, T). 

The next set of assumptions restricts h and the joint distribution of 
(U, G, T). 

ASSUMPTION 3.2-Strict Monotonicity: The production function h(u, t), 
where h : U x {0, 1} --+ R, is strictly increasing in u for t e {0, 1}. 

ASSUMPTION 3.3-Time Invariance Within Groups: We have U I TIG. 

ASSUMPTION 3.4-Support: We have U, C U0. 

Assumptions 3.1-3.3 comprise the CIC model; we will invoke Assump- 
tion 3.4 selectively for some of the identification results as needed. When 
the outcomes are continuous, the assumptions of the CIC model (Assump- 
tions 3.1-3.3) do not restrict the data and thus the model is not testable. 

Assumption 3.1 requires that outcomes do not depend directly on the group 
indicator and further that all relevant unobservables can be captured in a sin- 
gle index, U. The assumption of a single index can be restrictive. If h(u, t) is 
nonlinear, this assumption rules out, for example, the presence of classical 
measurement error on the outcome. Assumption 3.2 requires that higher un- 
observables correspond to strictly higher outcomes. Such monotonicity arises 
naturally when the unobservable is interpreted as an individual characteristic 
such as health or ability. Within a single time period, monotonicity is simply a 
normalization, but requiring monotonicity in both periods places restrictions 
on the way the production function changes over time. Strict monotonicity is 
automatically satisfied in additively separable models, but it allows for a rich 
set of nonadditive structures that arise naturally in economic models. The dis- 
tinction between strict and weak monotonicity is innocuous in models where 
the outcomes Yg,, are continuous.14 However, in models where there are mass 
points in the distribution of 

Yg, 
strict monotonicity is unnecessarily restric- 

tive.'5 In Section 4, we focus specifically on discrete outcomes and relax this 
assumption; the results in this section are intended primarily for models with 
continuous outcomes. 

Assumption 3.3 requires that the population of agents within a given group 
does not change over time. This strong assumption is at the heart of both the 
DID and CIC approaches. It requires that any differences between the groups 
be stable, so that estimating the trend on one group can assist in eliminating the 

14To see this, observe that if Yg,, is continuous and h is nondecreasing in u, Yg,, and Ug must be 
one-to-one, and so Ug is continuous as well. However, then h must be strictly increasing in u. 

'"Whereas Y,, = h(Ug, t), strict monotonicity of h implies that each mass point of Ygo corre- 
sponds to a mass point of equal size in the distribution of Ygi. 
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trend in the other group. Under this assumption, any change in the variance of 
outcomes over time within a group will be attributed to changes over time in 
the production function. In contrast, the standard DID model with full inde- 
pendence rules out such changes and the DID model with mean independence 
ignores such changes. Assumption 3.4 implies that Y10o C Yoo and YU 

_ 
Y01; we 

relax this assumption in a corollary of the identification theorem. 
Our analysis makes heavy use of inverse distribution functions. We will use 

the convention that, for q E [0, 1] and for a random variable Y with compact 
support Y, 

(8) F-'(q) = inf{y E Y: Fy(y) > q}. 

This implies that the inverse distribution functions are continuous from the 
left and, for all q e [0, 1], we have Fy(F-l(q)) > q with equality at all y E Y for 
continuous Y and at discontinuity points of F l'(q) for discrete Y. In addition, 
F' (Fy(y)) < y, again with equality at all yE Y for continuous or discrete Y, 
but not necessarily if Y is mixed. 

Identification for the CIC model is established in the following theorem. 

THEOREM 3.1- Identification of the CIC Model: Suppose that Assump- 
tions 3.1-3.4 hold, and that U is either continuous or discrete. Then the distri- 
bution of YX is identified and 

(9) 
FyN, I (y) = 

Fy,1o(F,-oo(Fy,o 
y))). 

PROOF: By Assumption 3.2, h(u, t) is invertible in u; denote this inverse 
by h-'(y; t). Consider the distribution FyN,gt: 

(10) FyN,gt(y) = Pr(h(U, t) <yIG = g, T = t) 

= Pr(U < h-'(y; t)lG = g, T= t) 

= Pr(U h-l'(y; t)lG = g) 

= Pr(Ug < h-'(y; t)) = Fu,g(h-'(y; t)). 

The preceding equation is central to the proof and will be applied to all four 
combinations (g, t). First, letting (g, t) = (0, 0) and substituting y = h(u, 0), 

Fy,oo(h(u, 0)) = Fu,o(h-'(h(u, 0); 0)) = Fu,o(u). 

Then applying F-y0' to each side, we have, for all u e U0,16 

(11) h(u, -0) = Foo(Fu,0o(u)). 

'6Note that the support restriction is important here, because for u V U0, it is not necessarily 
true that F oo(Fy,oo(h(u, 0))) = h(u, 0). 



DIFFERENCE-IN-DIFFERENCES MODELS 441 

Second, applying (10) with (g, t) = (0, 1), using the fact that h-/(y; 1) E U0 for 
all y 

Yo0, 
and applying the transformation 

F,1 
(-) to both sides, 

(12) FL7o(Fy, ol(y)) = h-(y; 1) 

for all y E Yol. Combining (11) and (12) yields, for all yE Yol, 

(13) h(h-'(y; 1), 0) = F-1(F,01 (y)). 

Note that h(h-'(y; 1), 0) is the period 0 outcome for an individual with the 
realization of u that corresponds to outcome y in group 0 and period 1. Equa- 
tion (13) shows that this outcome can be determined from the observable dis- 
tributions. 

Third, apply (10) with (g, t) = (1, 0) and substitute y = h(u, 0) to get 

(14) F, to(h(u, 0)) = Fu,l(u). 

Combining (13) and (14), and substituting into (10) with (g, t) = (1, 1), we 
obtain, for all y E 

Yo1, 

FYN,11(y) = Fu,i(h-l(y; 1)) 

= Fy,~o(h(h-'(y; 1), 0)) = Fy,lo(Floo(Fyo (y))). 

By Assumption 3.4 (U1 
_c 

Uo), it follows that Y C C Y01. Thus, the di- 
rectly estimable distributions Fy,o1, Fy,oo, and Fy,ol determine 

FyNull 
for all 

yE Y I. 
Q.E.D. 

Under the assumptions of the CIC model, we can interpret the identification 
result using a transformation 

(15) kCIC(y) = 
FyI,(Fy,oo(y)). 

This transformation gives the second-period outcome for an individual with an 
unobserved component u such that h(u, 0) = y. Then the distribution of YI 
is equal to the distribution of kCIC(Yo). This transformation suggests that the 
average treatment effect can be written as 

(16) Tcic _ EE[Y(' - Y,N]= IE[Y(] - E[kcIc(Yio)] 
= IE[Y1] 

- 

E[Fy1o 
(Fy,oo(Yo))], 

and an estimator for this effect can be constructed using empirical distributions 
and sample averages. 

The transformation kcIc is illustrated in Figure 1. Start with a value of y, 
with associated quantile q in the distribution of Yio0, as illustrated in the bottom 
panel of Figure 1. Then find the quantile for the same value of y in the distrib- 
ution of Yoo, Fy,oo(y) = q'. Next, compute the change in y according to kcIc by 
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FIGURE 1.-Illustration of transformations. 

finding the value for y at that quantile q' in the distribution of Yo0 to get 

lAI = 
Fy, o (q') - Foo(q') = F,o1 (Fy, oo(y)) - y, 

as illustrated in the top panel of Figure 1. Finally, compute a counterfactual 
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value of Y," equal to y + Acic, so that 

kCiC(y) = y + AciC = 
F-1,, (Fy,oo(y)). 

In contrast, for the standard DID model, the equivalent transformation is 

kDID(y) = y + E[Y01] - E[Yo0]. 

Consider now the role of the support restriction, Assumption 3.4. Without 
it, we can only estimate the distribution function of YI on Y0,. Outside that 
range, we have no information about the distribution of YU. 

COROLLARY 3.1-Identification of the CIC Model Without Support Restric- 
tions: Suppose thatAssumptions 3.1-3.3 hold, and that U is either continuous or 
discrete. Then we can identify the distribution of YU on Y0~. For y E Y01, FyN,11 is 
given by (9). Outside of Yol, the distribution of YU, is not identified. 

To see how this result could be used, suppose that Assumption 3.4 does not 
hold and U, is not a subset of Uo. Suppose also that Y00 = [y00' Y00] so there are 
no holes in the support of Y00. Define 

(17) q = min Fy, 10(y), iq = maxFy, 1(y). 
- 

Y00 YEYoo 

Then, for any q E [q, q], we can calculate the effect of the treatment on quan- 
tile q of the distribution of Fv,10 according to 

(18) 7Tc'C - 
F-, I1(q) 

- 
F;u, I 

(q) =F1(q) - F , (FY,oo(F ) 
0())), 

Thus, even without the support Assumption 3.4, for all quantiles of Y10 that lie 
in this range, it is possible to deduce the effect of the treatment. Furthermore, 
for any bounded function g(y), it will be possible to put bounds on E[g(Y,',) - 

g(YU)], following the approach of Manski (1990, 1995). When g is the identity 
function and the supports are bounded, this approach yields bounds on the 
average treatment effect. 

The standard DID approach requires no support assumption to identify the 
average treatment effect. Corollary 3.1 highlights the fact that the standard 
DID model identifies the average treatment effect only through extrapolation: 
because the average time trend is assumed to be the same in both groups, we 
can apply the time trend estimated on the control group to all individuals in the 
initial period treatment group, even those who experience outcomes outside 
the support of the initial period control group. 

Also, observe that our analysis extends naturally to the case with covari- 
ates X; we simply require all assumptions to hold conditional on X. Then The- 
orem 3.1 extends to establish identification of YX IX for realizations of X that 
are in the support of XIG = g, T = t for each of (g, t) e {{0, 0}, {0, 1}, {1, 0}}. 
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Of course, there is no requirement about how the distribution of X varies 
across subpopulations; thus, we can relax somewhat our assumption that pop- 
ulation characteristics are stable over time within a group if all relevant factors 
that change over time are observable. 

The CIC model treats groups and time periods asymmetrically. Of course, 
there is nothing intrinsic about the labels of period and group. In some ap- 
plications, it might make more sense to reverse the roles of the two, yielding 
what we refer to as the reverse CIC (CIC-r) model. For example, CIC-r applies 
in a setting where, in each period, each member of a population is randomly 
assigned to one of two groups and these groups have different "production 
technologies." The production technology does not change over time in the ab- 
sence of the intervention; however, the composition of the population changes 
over time (e.g., the underlying health of 60-year-old males participating in a 
medical study changes year by year), so that the distribution of U varies with 
time but not across groups. To uncover the average effect of the new technol- 
ogy, we need to estimate the counterfactual distribution in the second-period 
treatment group, which combines the treatment group production function 
with the second-period distribution of unobservables. When the distribution 
of outcomes is continuous, neither the CIC nor the CIC-r model has testable 
restrictions and so the two models cannot be distinguished. However, these 
approaches yield different estimates. Thus, it will be important in practice to 
justify the role of each dimension. 

3.2. The Counterfactual Effect of the Policy for the Untreated Group 
Until now, we have specified only a model for an individual's outcome in 

the absence of the intervention. No model for the outcome in the presence of 
the intervention is required to draw inferences about the effect of the policy 
change on the treatment group, that is, the effect of "the treatment on the 
treated" (e.g., Heckman and Robb (1985)); we simply need to compare the 
actual distribution of outcomes in the treated group with the counterfactual 
distribution inferred through the model for the outcomes in the absence of the 
treatment. However, more assumptions are required to analyze the effect of 
the treatment on the control group. 

We augment the basic CIC model with an assumption about the treated out- 
comes. It seems natural to specify that these outcomes follow a model anal- 
ogous to that for untreated outcomes, so that Y' = h'(U, T). In words, at 
a given point in time, the effect of the treatment is the same across groups 
for individuals with the same value of the unobservable. However, outcomes 
can differ across individuals with different unobservables, and no further func- 
tional form assumptions are imposed on the incremental returns to treatment, 
h'(u, t) - h(u, t).17 

'7Although we require monotonicity of h(u, t) and h (u, t) in u, we do not require that the 
value of the unobserved component is identical in both regimes, merely that the distribution 
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At first, it might appear that finding the counterfactual distribution of 
Y/'i could be qualitatively different than finding the counterfactual distribution 

of YU, because three out of four subpopulations did not experience the treat- 
ment. However, it turns out that the two problems are symmetric. Whereas 
Y1, = h' (Uo, 1) and Yoo = h(Uo, 0), 

(19) Yoi0 dhi(h (Yoo; 0), 1). 

To infer the distribution of Y/o it therefore suffices to represent the transfor- 
mation k(y) = h'(h-'(y; 0), 1) in terms of estimable functions. To do so, note 
that because the distribution of U1 does not change with time, for ye Yf 0, 

(20) 
Fy,l(Fy, 

10(y)) = hI(h-'(y; 0), 1). 

This is just the transformation kClC(y) with the roles of group 0 and group 1 re- 
versed. Following this logic, to compute the counterfactual distribution of Y11, 
we simply apply the approach outlined in Section 3.1, but replace G with 
1 - G."8 Theorem 3.2 summarizes this concept: 

THEOREM 3.2-Identification of the Counterfactual Effect of the Policy in 
the CIC Model: Suppose that Assumptions 3.1-3.3 hold, and that U is either 
continuous or discrete. In addition, suppose that Y' = h'(U, T), where h'(u, t) 
is strictly increasing in u. Then the distribution function of Yo is identified on Y', 
and is given by 

(21) Fyi,ol0(y) = Fy,oo(F1'lo0 (Fy,, 11(y))) 

for all y E 
Y'I. 

If Uo C UI, then Y[, c YbI, and Fyi,o0 is identified everywhere. 

PROOF: The proof is analogous to those of Theorem 3.1 and Corollary 3.1. 
Using (20), for y e 

supp[Y1], 

Fy-,1(Fy,,II(y)) 
= h(h"-'(y; 1), 0). 

remains the same (that is, U I TIG). For example, letting UN and U' denote the unobserved 
components in the two regimes, we could have a fixed effect type error structure with U[' = e + vy 
and UI = ei + vI, where the ei is a common component (fixed effect), and the vN and v[ are 
idiosyncratic errors with the same distribution in both regimes. 

"8It might also be interesting to consider the effect that the treatment would have had in the 
first period. Our assumption that h'(u, t) can vary with t implies that 

Y0oo 
and Y[10 are not iden- 

tified, because no information is available about h'(u, 0). Only if we make a much stronger as- 

sumption, such as h' (u, 0) = h'(u, 1) for all u, can we identify the distribution of Y/, but such an 

assumption would imply that Y0 - Y0- and 
Y1o 

- Y', a fairly restrictive assumption. Comparably 
strong assumptions are required to infer the effect of the treatment on the control group in the 
CIC-r model, because the roles of group and time are reversed in that model. 
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Using this and (19), for y E supp[Yf,], 

Pr(h'(h'(Yoo; 0), 1) < y) = Pr(Yoo < 
F-lo 

(Fyr,,(y))) 

= 
Fv,00o(Fvo(Fy,,n(y)))I 

The statement about supports follows from the definition of the model. 
Q.E.D. 

Notice that in this model, not only can the policy change take place in a group 
with different distributional characteristics (e.g., "good" or "bad" groups tend 
to adopt the policy), but, furthermore, the expected benefit of the policy may 
vary across groups. Because h'(u, t) - h(u, t) varies with u, if Fu,o is different 
from Fu,1, then the expected incremental benefit to the policy differs.'19 For 
example, suppose that E[h'(U, 1) - h(U, 1)IG = 1] > E[h'(U, 1) - h(U, 1)1 
G = 0]. Then, if the costs of adopting the policy are the same for each group, 
we would expect that if policies are chosen optimally, the policy would be more 
likely to be adopted in group 1. Using the method suggested by Theorem 3.2, 
it is possible to compare the average effect of the policy in group 1 with the 
counterfactual estimate of the effect of the policy in group 0 and to assess 
whether the group with the highest average benefits is indeed the one that 
adopted the policy. It is also possible to describe the range of adoption costs 
and distributions over unobservables for which the treatment would be cost- 
effective. 

In the remainder of the paper, we focus on identification and estimation of 
the distribution of YX. However, the results that follow extend in a natural 
way to Yo'j; simply exchange the labels of the groups 0 and 1 to calculate the 
negative of the treatment effect for group 0. 

3.3. The Quantile DID Model 

A third possible approach, distinct from the DID and CIC models, applies 
DID to each quantile rather than to the mean. We refer to this approach 
as the quantile DID approach (QDID). Some of the DID literature has fol- 
lowed this approach for specific quantiles, although it has not been studied 
as a method for obtaining the entire counterfactual distribution. For example, 
Poterba, Venti, and Wise (1995) and Meyer, Viscusi, and Durbin (1995) start 
from (1) and assume that the median of YN conditional on T and G is equal 

19For example, suppose that the incremental returns to the intervention, h'(u, 1) - h(u, 1), are 
increasing in u, so that the policy is more effective for high-u individuals. If 

Fu, 
(u) < Fu,o(u) for 

all u (i.e., first-order stochastic dominance), then expected returns to adopting the intervention 
are higher in group 1. 
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to a + p 3 T + y - G. Applying this approach to each quantile q, with the coef- 
ficients aq, pq,, and ,q indexed by the quantile, we obtain the transformation 

kQDID(y) y + 

F-ol1(Fy,10(y)) 

- Fo0o(Fy,10(y)) 

with FyN,11(y) = Pr(kQDID(Y10) < y). As illustrated in Figure 1, for a fixed y, 
we determine the quantile q for y in the distribution of Y10, q = F,o10(y). 
The difference over time in the control group at that quantile, AQDID 

F,01 (q) - F 0oo(q), is added to y to get the counterfactual value, so that 

kQDID (y) y + AQDID. In this method, instead of comparing individuals across 
groups according to their outcomes and across time according to their quan- 
tiles, as in the CIC model, we compare individuals across both groups and time 
according to their quantile. 

When outcomes are continuous, one can justify the QDID estimand using 
the model for the outcomes in the absence of the intervention, 

(22) yN = h(U, G, T)= hG(U, G) + hT(U, T), 

in combination with the assumptions (i) h(u, g, t) is strictly increasing in u 
and (ii) U I (G, T). It is straightforward to see that the standard DID model 
is a special case of QDID.20 Under the assumptions of the QDID model, the 
counterfactual distribution of YN is equal to that of kQDID(Y10). Details of the 
identification proof as well as an analysis of discrete-outcome case are in Athey 
and Imbens (2002) (hereafter AI). 

Although the estimate of the counterfactual distribution under the QDID 
model differs from that under the DID model, under continuity the means 
of the two counterfactual distributions are identical: E[kDID(Y10)] 
E[kQDID(Y10)]. The QDID model has several disadvantages relative to the CIC 
model: (i) additive separability of h(u, g, t) is difficult to justify, in particu- 
lar because it implies that the assumptions are not invariant to the scaling 
of y; (ii) the underlying distribution of unobservables must be identical in all 
subpopulations, eliminating an important potential source of intrinsic hetero- 
geneity; (iii) the QDID model places some restrictions on the data.21 

3.4. Panel Data versus Repeated Cross Sections 

The discussion so far has avoided distinguishing between panel data and 
repeated cross sections. The presence of panel data creates some additional 

20As with the CIC model, the assumptions of this model are unduly restrictive if outcomes are 
discrete. The discrete version of QDID allows h(u, g, t) to be weakly increasing in u; the main 
substantive restriction implied by the QDID model is that the model should not predict outcomes 
out of bounds. For details on this case, see Athey and Imbens (2002). 

21Without any restrictions on the distributions of Yoo, Yo01, and Y10, the transformation kQDID 
is not necessarily monotone, as it should be under the assumptions of the QDID model; thus, the 
model is testable (see AI for details). 
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possibilities. To discuss these issues it is convenient to modify the notation. 
For individual i, let Y,, be the outcome in period t for t = 0, 1. We allow the 
unobserved component U1, to vary with time: 

YiU = h( Ui,, t). 

The monotonicity assumption is the same as before: h(u, t) must be increas- 
ing in u. We do not place any restrictions on the correlation between Uio 
and Uil, but we modify Assumption 3.3 to require that, conditional on Gi, 
the marginal distribution of U0o is equal to the marginal distribution of U11. 

Formally, UiojG, UjGi. Note that the CIC model (like the standard DID 
model) does not require that individuals maintain their rank over time, that 
is, it does not require Uo0 = Uil. Although Uio = Uil is an interesting special 
case, in many contexts, perfect correlation over time is not reasonable.22 Al- 
ternatively, one may have a fixed effect specification Uit = ei + vi,, with e a 
time-invariant individual-specific unobserved component (fixed effect) and vi, 
an idiosyncratic error term with the same distribution in both periods. 

The estimators proposed in this paper therefore apply to the panel setting as 
well as the cross-section setting. However, in panel settings there are additional 
methods available, including those developed for semiparametric models with 
fixed effects by Honore (1992), Kyriazidou (1997), and Altonji and Matzkin 
(1997, 2005). Another possibility in panel settings is to use the assumption 
of unconfoundedness or "selection on observables" (Rosenbaum and Rubin 
(1983), Barnow, Cain, and Goldberger (1980), Heckman and Robb (1985), 
Hirano, Imbens, and Ridder (2003)). Under such an assumption, individuals 
in the treatment group with an initial period outcome equal to y are matched 
to individuals in the control group with an identical first-period outcome, and 
their second-period outcomes are compared. Formally, let 

Fyof•0oo(.j.) 
be the 

conditional distribution function of YO, given Yoo. Then, for the "selection on 
observables" model, 

FyN,11 (Y) = E[Fyo, yYo (ylY1o)], 

which is in general different from the counterfactual distribution for the CIC 
model where FyNu11(Y) = Fy,10(Fy'oo(Fy,0o (y))). The two models are equivalent 
if and only if Uio - U1i, that is, if in the population there is perfect rank corre- 
lation between the first- and second-period unobserved components. 

3.5. Application to Wage Decompositions 
So far the focus has been on estimating the effect of interventions in settings 

with repeated cross sections and panels. A distinct but related problem arises 

22If an individual gains experience or just age over time, her unobserved skill or health is likely 
to change. 
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in the literature on wage decompositions. In a typical example, researchers 
compare wage distributions for two groups, e.g., men and women or Whites 
and Blacks, at two points in time. Juhn, Murphy, and Pierce (1991) and Altonji 
and Blank (2000) decompose changes in Black-White wage differentials, after 
taking out differences in observed characteristics, into two effects: (i) the effect 
due to changes over time in the distribution of unobserved skills among Blacks 
and (ii) the effect due to common changes over time in the market price of 
unobserved skills. 

In their survey of studies of race and gender in the labor market, Altonji 
and Blank (2000) formalize a suggestion by Juhn, Murphy, and Pierce (1991) 
to generalize the standard parametric, additive model for this problem to a 
nonparametric one, using the following assumptions: (i) the distribution of 
White skills does not change over time, whereas the distribution of Black skills 
can change in arbitrary ways; (ii) there is a single, strictly increasing func- 
tion that maps skills to wages in each period-the market equilibrium pric- 
ing function. This pricing function can change over time, but is the same for 
both groups within a time period. Under the Altonji-Blank model, if we let 
Whites be group W and Blacks be group B, and let Y be the observed wage, 
then IE[YBl] - 

E[F)y,7l(Fv,wo(YBo))] 
is interpreted as the part of the change 

in Blacks' average wages due to the change over time in unobserved Black 
skills. Interestingly, this expression is the same as the expression we derived 
for rclc, even though the interpretation is different: in our case, the distribu- 
tion of unobserved components remains the same over time and the difference 
is interpreted as the effect of an intervention. 

Note that to apply an analog of our estimator of the effect of the treatment 
on the control group in the wage decomposition setting, we would require 
additional structure to specify what it would mean for Whites to experience 
"the same" change over time in their skill distribution that Blacks did, because 
the initial skill distributions are different. More generally, the precise relation- 
ship between estimands depends on the primitive assumptions for each model, 
because the CIC, CIC-r, and QDID models all lead to distinct estimands. The 
appropriateness of the assumptions of the underlying structural models must 
be justified in each application. 

The asymptotic theory we provide for the CIC estimator can directly be ap- 
plied to the wage decomposition problem as well. In addition, as we show be- 
low, the model, estimator, and asymptotic theory must be modified when data 
are discrete. Discrete wage data are common, because they arise if wages are 
measured in intervals or if there are mass points (such as the minimum wage, 
round numbers, or union wages) in the observed wage distribution. 

3.6. Relationship to Econometric Literature that Exploits Monotonicity 

In our approach to nonparametric identification, monotonicity of the pro- 
duction function plays a central role. Here, we build on Matzkin (1999, 2003), 
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who initiated a line of research that investigated the role of monotonicity in a 
wide range of models with an analysis of the case with exogenous regressors. 
In subsequent work (e.g., Das (2001, 2004), Imbens and Newey (2001), and 
Chesher (2003)), monotonicity of the relationship between the endogenous 
regressor and the unobserved component plays a crucial role in settings with 
endogenous regressors. In all these cases, as in the current paper, monotonic- 
ity in unobserved components implies a direct one-to-one link between the 
structural function and the distribution of the unobservables, a link that can 
be exploited in various ways. Most of these papers require strict monotonicity, 
typically ruling out settings with discrete endogenous regressors. An excep- 
tion is Imbens and Angrist (1994), who used a weak monotonicity assumption 
and obtained results in the binary endogenous variable case for the subpopu- 
lation of compliers. One reason few results are available for binary or discrete 
data is that typically (as in this paper) discrete data in combination with weak 
monotonicity lead to loss of point identification of the usual estimands, e.g., 
population average effects. In the current paper, we show below that, although 
point identification is lost, one can still identify bounds on the population aver- 
age effect of the intervention in the DID setting or regain point identification 
through additional assumptions. 

Consider more specifically the relationship of our paper with the recent in- 
novative work of Altonji and Matzkin (1997, 2005) (henceforth AM). In both 
our study and in AM, there is a central role for analyzing subpopulations that 
have the same distribution of unobservables. In our work, we argue that a 
defining feature of a group in a DID setting should be that the distribution of 
unobservables is the same in the group in different time periods. Altonji and 
Matzkin focus on subsets of the support of a vector of covariates Z, where, 
conditional on Z being in such a particular subset, the unobservables are in- 
dependent of Z. In one example, Z incorporates an individual's history of ex- 
periences; permutations of that history should not affect the distribution of 
unobservables. So, an individual who completed first training program A and 
then program B would have the same unobservables as an individual who com- 
pleted program B and then A. In a cross-sectional application, if in a given 
family, one sibling was a high-school graduate and the other a college gradu- 
ate, both siblings would have the same unobservables. In both our study and 
in AM, within a subpopulation (induced by covariates) with a common distrib- 
ution of unobservables, after normalizing the distribution of unobservables to 
be uniform, it is possible to identify a strictly increasing production function as 
the inverse of the distribution of outcomes conditional on the covariate. Altonji 
and Matzkin focus on estimation and inference for the production function it- 
self, and for this they use an approach based on kernel methods. In contrast, 
we are interested in estimating the average difference of the production func- 
tion for different subpopulations. We establish uniform convergence of our im- 
plicit estimator of the production function, so as to obtain root-n consistency 
of our estimator of the average treatment effect for the treated and control 
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groups as well as for treatment effects at a given quantile. We use the em- 
pirical distribution function, which does not require the choice of smoothing 
parameters, as an estimator of the distribution function of outcomes in each 
subpopulation. Furthermore, our approach generalizes naturally to the case 
with discrete outcomes (as we argue, a commonly encountered case) and our 
continuous-outcome estimator of the average treatment effect can be inter- 
preted as a bound on the average treatment effect when outcomes are discrete. 
Thus, the researcher need not make an a priori choice about whether to use 
the discrete or the continuous model, because we provide bounds that collapse 
when outcomes are continuous. 

4. IDENTIFICATION IN MODELS WITH DISCRETE OUTCOMES 

In this section we consider the case with discrete outcomes. To simplify some 
of the subsequent arguments we assume that Y00 takes on only a finite number 
of values. 

ASSUMPTION 4.1: The random variable Yoo is discrete with a finite number of 
outcomes: Y00 = {A0,..., AL ). 

With discrete outcomes, the baseline CIC model as defined by Assump- 
tions 3.1-3.3 is extremely restrictive. We therefore weaken Assumption 3.2 by 
allowing for weak rather than strict monotonicity. We show that this model is 
not point identified without additional assumptions and we calculate bounds 
on the counterfactual distribution. We also propose two approaches to tighten 
the bounds or even restore point identification: the first uses an additional as- 
sumption on the conditional distribution of unobservables and the second is 
based on the presence of exogenous covariates.23 

4.1. Bounds in the Discrete CIC Model 

The standard DID model implicitly imputes the average outcome in the 
second period for the treated subpopulation in the absence of the treatment 
with E[YfN] = E[Y10] + (E[Y01] - E[Y00]). With binary data, the imputed av- 
erage for the second-period treatment group outcome is not guaranteed to 
lie in the interval [0, 1]. For example, suppose E[Y10] = 0.5, E[Yoo] = 0.8, and 
E[Y01] = 0.2. In the control group, the probability of success decreases from 0.8 
to 0.2. However, it is impossible that a similar percentage point decrease could 

23However, there are other possible approaches for tightening the bounds. For example, one 
may wish to consider alternative restrictions on how the distribution of the unobserved compo- 
nents varies across groups, including stochastic dominance relationships or parametric functional 
forms. Alternatively, one may wish to put more structure on (the changes over time in) the pro- 
duction functions or restrict the treatment effect as a function of the unobserved component. 
We leave these possibilities for future work. 
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have occurred in the treated group in the absence of the treatment, because 
the implied probability of success would be less than zero.24 The CIC model is 
also not very attractive, because it severely restricts the joint distribution of the 
observables.25 

We therefore weaken the strict monotonicity condition as follows: 

ASSUMPTION 4.2-Weak Monotonicity: The function h(u, t) is nondecreas- 
ing in u. 

We also assume continuity of Uo and Ul: 

ASSUMPTION 4.3-Continuity of Uo and U1: The variables Uo and U1 are 
continuously distributed. 

The monotonicity assumption allows, for example, a latent index model 

h(U, T) = 1b{h(U, T) > 01, for some h strictly increasing in U. With weak in- 
stead of strict monotonicity, we no longer obtain point identification. Instead, 
we can derive bounds on the average effect of the treatment in the spirit of 
Manski (1990, 1995). To build intuition, consider again an example with bi- 
nary outcomes, Yg, = {0, 11 for all g, t. Without loss of generality we assume 
U - U A[0, 1]. Let uo(t) = sup{u: h(u, t) = 0} so that 

(23) 
E[Yg] 

= Pr(Ug > uo(t)). 

In particular, E[YN] = Pr(U1 > u0(1)). All information regarding the distribu- 
tion of U1 is contained in the equality E[Y1o] = Pr(U1 > uo(0)). Suppose that 
E[Yol] > IE[Yol], implying uo(1) < uo(0). Then there are two extreme cases for 
the conditional distribution of U1 given U1 < uo(0). First, all of the mass might 
be concentrated in the interval [uo(1), u'(0)]. In that case, Pr(U1 > uo(1)) = 1. 
Second, there might be no mass between uo(1) and uo(0), in which case 
Pr(U1 > uo(1)) = Pr(Ul > uo(0)) = E[Y10]. Together, these two cases imply 
E[YI"] e [E[Ylo], 1]. Analogous arguments imply E[YN"] [0, E[Yo1]] when 
E[Y01] < E[Yoo]. When E[Yo0] = E[Yoo], we conclude that the production func- 
tion does not change over time and neither does the probability of success 

24One approach that has been used to deal with this problem (Blundell, Costa Dias, Meghir, 
and Van Reenen (2001)) is to specify an additive latent index model 

Yi = 1{a + -. T,+7- - Gi +f 7 - i + 0i > .0) 

Given a distributional assumption on ei (e.g., logistic), one can estimate the parameters of the la- 
tent index model and derive the implied estimated average effect for the second-period treatment 
group. 

25For example, with binary outcomes, strict monotonicity of h(u, t) in u implies that U is binary 
with h(0, t) = 0 and h(1, t) = 1, and thus Pr(Y = UIT = t) = 1 or Pr(Y = U) = 1. Independence 
of U and T then implies independence of Y and T, which is very restrictive. 
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change over time within a group, implying E[Y[u] = E[Y10]. Whereas the aver- 
age treatment effect is defined as r = 

E[Yl] 
- E[YN], it follows that 

[E[Y[E /] - 1, E[Y/1] - E[Y10]], if IE[Y01] > E[Y00], 
7 T E[Y/] - E[YI10], if E[Yo01]= E[Yoo], 

[E[YEL/] 
- E[Yi0], 

E[Y/I]], 
if E[Yol] 

< E[Yoo]. 
In this binary example the sign of the treatment effect is determined if and 
only if the observed time trends in the treatment and control groups move in 
opposite directions or if there is no time trend in the control group. 

Now consider the general finite discrete case. Our definition of the inverse 
distribution function F;l(q) = inf{y E YIFy(y) > q} implies Fy(Fll(q)) > q. 
It is useful to have an alternative inverse distribution function. Define 

(24) F7-1)(q) = sup{y E Y U {-oo} : Fy(y) < q), 

where we use the convention Fy(-oo) = 0. Define Q = {q E [0, 11 
3 y e Y s.t. Fy(y) = q}. For q e Q, the two definitions of inverse distribution 
functions agree so that F(-'1(q) = Fjl(q) and F' (Fy(y)) = Fy-1)(Fy(y)) = y. 
For q Q, F(-1)(q) < FY1(q) and Fy(F(-1)(q)) < q, so that, for all q E [0, 1], 
we have F7-1)(q) < F?'(q) and Fy(F(-1)(q)) < q < Fy(F?'(q)). 

THEOREM 4.1-Bounds in the Discrete CIC Model: Suppose that Assump- 
tions 3.1, 3.3, 3.4, 4.2, and 4.3 hold. Then 

F 
N,11 (Y)<) F,11(y) 

5 
FUB11(Y) 

where, for y < inf Y01, FL,11(y) = F 1(Y) = 0, for y > sup Y01, F11(Y) 
F• 11,(y) = 1, and for y E Y01 
(25) F 

-B, I1I 
(Y) =FY UB 

1-1(F(-1 (25) 
FN 

(y) = 

Fy,lo(F• 
0Y'0(Fy,o01 (y))), 

FyN,1 
(y) = 

Fv,1o(Foo(Fv,o,1 (y))). 

These bounds are tight. 

PROOF: By assumption, U1 C Uo. Without loss of generality we can normal- 
ize U0 to be uniform on [0, 1].26 Then for y Yo0, 

Fv,ot(y) = Pr(h(Uo, t) < y) = supl{u: h(u, t) = y). 

26To see that there is no loss of generality, observe that, given that U is continuous, Fuo(u) = 

Pr(Fjjo(Ug) < u), where Ug is uniform on [0, 1]. Then ~(u, t) = 
h(F?l(u), t) is nondecreasing 

in u because h is, and the distribution of Yo, is unchanged. Whereas U1 
_ 

Uo, the distribution of 
Y1, is unchanged as well when we replace U1 with U* = Fu0 (U1). 
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Using the normalization on Uo, we can express FyN,11(y) as 

(26) FyNit(y) = Pr(Y "\ y) - Pr(h(U1, t) < y) 

= Pr(U1 < sup{u: h(u, t) = y}) = Pr(U1 < FyN,o,(y)). 

Using this and Fy(F(-'(q)) < q < Fy(Fl(q)), 

(27) Fy, o(F - 
Y,(Fy,o0 

(y))) = Pr(U1 < 
Fy,oo (F1'(F,o1 (y)))) 

< Pr(U1 Fo, ol(y)) = FyN,11(y), 

(28) Fy,jo(Fvoo(Fy,O l(y))) 
= 

Pr(U1 < Fy,oo(F- o(Fy,o(y)))) 
> Pr(Ul < Fy,ol(y)) = FyN11 (y), 

which shows the validity of the bounds. 
Next we show that the bounds are tight. We first construct a triple (Fu,o(u), 

FEB, 
(u), h(u, t)) that is consistent with the distributions of Yoo, Y01, and Y10, 

and that leads to F" (y) as the distribution function for YI. The choices are 

U0 - ' [0[, 1], Flj(u) = 
Fy,o,(F-oY,' O(u)), and h(u, t) = F-I(u). The choice is 

consistent with Fy,o, (y): 

Pr(Yo, < y) = Pr(h(Uo, t) < y) = Pr(Fo'(Uo) < y) 
= Pr(U0 < Fy,ot(y)) = Fy,or(y), 

where we rely on properties of inverse distribution functions stated in Lem- 
ma A.1 in the Appendix and proved in the supplement to this article. It is also 
consistent with Fy,10(y). First, 

Pr(Y1o < y) = Pr(h(U1, t) < y) = 
Pr(F'oo(U1) <_ y) 

= Pr(U1 < Fy,oo(y)) 

= F (Fyoo(y)) = 
Fy,1o(F01) (Fy,oo(y))). 

U, ELB (Fy, oY - FY, oI-Y,OO 
At y = 

At E Yoo we have Fy (Fy,0oo(y)) 
= y, so that Fy, 10o( Y, '(Fy, oo(y))) - 

Fy,10(y). If A, <y < A+,1, then Fo(-)(Fy,oo(y)) -= A and, because Y10 c Yoo, it 
follows that Fy,10(y) = 

Fy,lO(AI) 
so that again Fy,lo(F (Foo(y))) o 

Finally, this choices leads to the distribution function for yN. 

FYN,II(Y) 

= Pr(h(U1, 1) < y) = 
Pr(Fy-,1(U1) 

< y) = Pr(U1 < Fy,ol()) 

= F (F,01(y)) = 

Fy,lo(F OO(Fy,o(y))) 
= F 

, (y). 

This shows that FL (y) is a tight lower bound on FyN,11 (y) 
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The argument that the upper bound is tight is more complicated. The diffi- 
culty is that we would like to choose the compound distribution function (c.d.f.) 
of U1 to be 

Fuj,(u) 
= Fy,jo(F-'(u)). However, this is not a distribution function 

in the discrete case, because it is not right continuous. However, we can approx- 
imate the upper bound Fy11(y) arbitrarily closely by choosing Uo ~ 

U[0, 1], 
h(u, t) = 

Fy-o(U), 
and F (u) close to Fy,10(F-l(u)). Q.E.D. 

The proof of Theorem 4.1 is illustrated in Figure 2. The top left panel of the 
figure summarizes a hypothetical data set for an example with four possible 
outcomes, {A0, A1, A2, A3}. The top right panel of the figure illustrates the pro- 
duction function in each period, as inferred from the group 0 data (when Uo is 
normalized to be uniform), where uk(t) is the value of u at which h(u, t) jumps 
up to Ak. In the bottom right panel, the diamonds represent the points of the 
distribution of U1 that can be inferred from the distribution of Y10. The distri- 
bution of U1 is not identified elsewhere. This panel illustrates the infimum and 
supremum of the probability distributions that pass through the given points; 

Data To pin down uk(t), jump points of 

k F 
o00 Fyo01 Fy 01 h(u,t), note 

Fyot(Xk)=Fu,g(uk(t))=Uk(t). 

S .1 .2 .31 
.2 

- F-- h(u, 1) 
., .4 .6 .5 h(u,O) I 

X2 .7 .8 .9 

'3 1 1 1 
A,0 

1 
0 

- - - - - -u 

1 1: 

_Values 
ofFu,(u) 

Fuo(u) -..O.• inferred from 
normalized to I j Fr o(y) 
Uniform [0,1] 

1 1 0 lu 0. I u 
-- - Upper bound Lower bound 

Conditional independence assumption 

FIGURE 2.-Bounds and the conditional independence assumption in the discrete model. 
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these are bounds on Fu,. The circles indicate the highest and lowest possible 
values of FYN (y) = Fu, (uk (t)) for the support points; we will discuss the dotted 
line in the next section. 

Note that if we simply ignore the fact that the outcome is discrete and 
use the continuous CIC estimator (9) to construct FN,11, we will obtain the 
upper bound F1UB from Theorem 4.1. If we calculate E[YN] directly from 
the distribution FUk11 27 we will thus obtain the lower bound for the estimate 
of E[YN], which in turn yields the upper bound for the average treatment ef- 
fect, E[Yf1] - E[YN]. 

The bounds are still valid under a weaker support condition. Instead of re- 
quiring that U, 

_ 
Uo (Assumption 3.4), it is sufficient that {inf U1, sup U1I} c Uo, 

which allows for the possibility of values in the support of the first-period 
treated distribution that are not in the support of the first-period control dis- 
tribution, as long as these are not the boundary values. 

4.2. Point Identification in the Discrete CIC Model Through the Conditional 
Independence Assumption 

In combination with the previous assumptions, the following assumption re- 
stores point identification in the discrete CIC model. 

ASSUMPTION 4.4-Conditional Independence: We have U I GI Y, T. 

In the continuous CIC model, the level of outcomes can be compared across 
groups, and the quantile of outcomes can be compared over time. The role 
of Assumption 4.4 is to preserve that idea in the discrete model. In other 
words, to infer what would have happened to a treated unit in the first pe- 
riod with outcome y, we look at units in the first-period control group with 
the same outcome y. Using weak monotonicity, we can derive the distribution 
of their second-period outcomes (even if not their exact values as in the con- 
tinuous case) and we use that to derive the counterfactual distribution for the 
second period treated in the absence of the intervention. Note that the strict 
monotonicity assumption (Assumption 3.2) implies Assumptions 4.2 and 4.4.28 

To provide some intuition for the consequences of Assumption 4.4 for identi- 
fication, we initially focus on the binary case. Without loss of generality normal- 
ize Uo - U[0, 1] and recall the definition of uo(t) = sup{u e [0, 1]: h(u, t) = 0}, 

27 With continuous data, 
kCIC(Yi0) 

has the distribution given in (9), and so (16) can be used 
to calculate the average treatment effect. As we show subsequently, with discrete data, kclc(Y,1) 
has distribution equal to FI rather than 

FyUB1, 
and so an estimate based directly on (9) yields 

a different answer than one based on (16). 
2"If h(u, t) is strictly increasing in u, then one can write U = h-'(T, Y), so that, conditional 

on T and Y, the random variable U is degenerate and hence independent of G. 
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so that 1 - 
E[Yg] 

= Pr(Ug < uo(t)). Then we have, for u < uo(t), 

Pr(U1 < u U1 < uo(t)) = Pr(Ui < 
ulU1 

< uo(t), T = 0, Y = 0) 

= Pr(Uo < ulUo < uo(t), T = O, Y = 0) 
u 

= Pr(Uo < uIUo < uo(t)) = 
uO(t) 

Using the preceding expression together with an analogous expression for 
Pr(Ug > ul Ug > uo(t)) it is possible to derive the counterfactual E[YN]: 

E[Yo0 l[Y10] 
E[YY[Y1] E [ Yoo] 

= E[Y01] + (E[Y1o] - E[Yoo]) 
EE[Yool 

if E[Yol] < E[Yoo], 
1- 1 

- E[-IEYoIl] 1 - (1 - E[Y10]) 1 - E[Yoo] 
1 - EI[Yol] 

E= [Y0] + (E[Yo1] - E[Yool) 1 - E[Yool 
if E[Yo1] > E[Yool. 

Notice that this formula always yields a prediction for E[Y1N] between 0 and 1. 
When the time trend in the control group is negative, the counterfactual is 
the probability of successes in the treatment group initial period, adjusted by 
the proportional change over time in the probability of success in the control 
group. When the time trend is positive, the counterfactual probability of failure 
is the probability of failure in the treatment group in the initial period adjusted 
by the proportional change over time in the probability of failure in the control 
group. 

The following theorem generalizes this discussion to more than two out- 
comes. 

THEOREM 4.2-Identification of the Discrete CIC Model: Suppose that As- 
sumptions 3.1, 3.3, 3.4, and 4.1-4.4 hold. Suppose that the range of h is a discrete 
set {Ao,..., AL }. Then the distribution of Y, is identified and is given by 

(29) vDCIC 
t 

V-1) 
(29) FDN' (y) = 

Fy,10•(,F-' 
(F0vk (y))) + (F1v,1o(F4oo(F 

ol 
(y))) - Fv, o(Fool'(Fv,o(y)))) 

Fv,ol(y) 
- 

Fv,oo(F d7o 
(Fyo(y))) 

Fv,oo(Foo(Fv,ol (y))) - 
FY,OO(F oo(Fv, 

oi(y))) 
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if F F, 0oo(F 
, (Fro(y))) - Fy,oo(F(, 00(Fyo, (y))) > 0; otherwise, F (y) 

Fy,1o(FY 700(Fyo1 (y))). 

PROOF: We consider only the case with 

Fy,00(Fy,0(F,01-(y))) 

- 

F,00o(Ft~)'(Fy, o(y))) > 0, because the other case is trivial. Without loss of 
generality we assume that Uo 1- U[0, 1]. The proof exploits the fact that, for all 
u e [0, 1] such that u = Fy,oo(y) for some y e Y00, we can directly infer the value 
of Fu, 1(u) as Fy, lo(Fy, o0(u)) (or 

Fy,10o((Fyoo 
(u)), which is the same for such val- 

ues of u). The first step is to decompose the distribution function of Y, using 
the fact that 

Fy,oo(Fy o(Fy,o (y))) Fyo(y) < Fy,oo (F (F, (y))): 

FyN'l (y) = Pr(YN < y) = Pr(h(U1, 1) < y) = Pr(U 
_< 

Fy,01(Y)) 

= Pr(Ui < Fy,oo(F(-')(Fy, 
ol(y)))) 

+ Pr(UI < Fy,o0(y) 
, 

Foo(F 
(-1)(Fy,ol(y)))) 

SU, < Fy,00oo(F 0oo(Fy,o01 (y))) Pr(Fy,oo (F0' (FO y)))) 

SU1 Fy,oo(F-oo(F01(y))). 

Then we deal with the first term and the two factors in the second term sepa- 
rately. First, 

Pr(U Fy,oo (Fi (Fy, o (y)))) = Fy, 10 (Ft 
' 

(F, o y))). 

Next, 

Pr(Fy,oo F(-1) (Fy,0o(y))) < U < 
Fy,oo(Fy0(Fy,0• 

(y)))) 
= 

Fy,io(Fyoo(Fy,01 (y))) - Fy,o0(F Y, (Fy,0o(y))). 

Finally, using the conditional independence, 

Pr(U-i 
Fyo1(y) Fy,0(F 0(Fyol(y))) < U1 Fy,oo(F-,oo(Fyo1(y)))) 

= 
Pr(U0 

< Fy,ol(y)Ih(U0, 0) = F-1o0(Fyo1(y))) 

Fy,01 
(y) 

-Fy 0V,(FV1,00 (Fo1 
(y))) 

Fyo(F,1oo(Fyo1(y))) - 
Fy,o(F--o 

(Fyo(y))) 

Putting the three components together gives the desired result. Q.E.D. 

The proof of Theorem 4.2 is illustrated in Figure 2. The dotted line in the 
bottom right panel illustrates the counterfactual distribution Fu, based on the 
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conditional independence assumption. Given that U0 is uniform, the condi- 
tional independence assumption requires the distribution of U I Y = A to be 
uniform for each 1, and the point estimate of 

FN•11(y) 
lies midway between 

the bounds of Theorem 4.1. 
The average treatment effect, TDCIC, can be calculated using the distribu- 

tion (29). 

4.3. Point Identification in the Discrete CIC Model Through Covariates 

In this subsection, we show that introducing observable covariates (X) can 
tighten the bounds on FyN,11 and, with sufficient variation, can even restore 
point identification in the discrete-choice model without Assumption 4.4. The 
covariates are assumed to be independent of U conditional on the group, and 
the distribution of the covariates can vary with group and time.29 Let X be the 
support of X, with X,, the support of XIG = g, T = t. We assume that these 
supports are compact. 

Let us modify the CIC model for the case of discrete outcomes with covari- 
ates. 

ASSUMPTION 4.5-Discrete Model with Covariates: The outcome of an indi- 
vidual in the absence of intervention satisfies the relationship 

yN = h(U, T, X). 

ASSUMPTION 4.6-Weak Monotonicity: The function h(u, t, x) is nonde- 
creasing in u and continuous in x for t = 0, 1 and for all x zX. 

ASSUMPTION 4.7-Covariate Independence: We have U I X G. 

We refer to the model defined by Assumptions 4.5-4.7, together with time 
invariance (Assumption 3.3), as the discrete CIC model with covariates. Note 
that Assumption 4.7 allows the distribution of X to vary with group and time. 

To see how variation in X aids in identification, suppose that the range of h 
is the discrete set {A0, ..., AL} and define 

uk(t, x) = sup{u': h(u', t, x) < 
Ak). 

Recall that Fy,1olx(.Ix) reveals the value of Fu,l(u) at all values u e {uo(t, x), 

..., u(t, x)}, but nowhere else, as illustrated in Figure 2. Variation in X allows 
us to learn the value of Fu, j(u) for more values of u. 

29The assumption that U I XIG is very strong. It should be carefully justified in applica- 
tions using standards similar to those applied to justify instrumental variables. The analog of an 
"exclusion restriction" here is that X is excluded from Fug (.). Although the covariates can be 
time-varying, such variation can make the conditional independence of U even more restrictive. 
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More formally, define the functions IC: Y x X --* Yoo U {-oc}, L:Y x X - 
X00oo, : Yx X -- Yoo, and ?: Y x X - X0oo by 

(30) (/C(y; x), ?(y; x)) = arg sup Fyoo(y'lx'), 
(y',x')e(Y00U{-oc})xX00: 

Fy, 00 (y' x')<Fy0 1 (ylx) 

(31) (K(y; x), ?(y; x)) = arg inf Fy,00(y'lX'). 
(y',x')eY00 xX00 : 

Fy, 
oo(y' x') > Fyo1(y x) 

If either of these is set-valued, take any element from the set of solu- 
tions. Because of the continuity in x and the finiteness of Y it follows that 

Fy,oo(IC(y; x)l?(y; x)) < Fy,ol(yIx) and Fy,oo(1C(y; x)l?(y; x)) > Fy,ol(ylx). 
The following result places bounds on the counterfactual distribution of Y[. 

THEOREM 4.3-Bounds in the Discrete CIC Model with Covariates: Sup- 
pose that Assumptions 3.3, 3.4, 4.3, and 4.5-4.7 hold. Suppose that X0ot = Xl for 
t f {0, 1}. Then we can place the following bounds on the distribution of YIN: 

FN ,x,(ylx) 
= 

Fyix, o(K(y; x)IC(y; x)), 

FyN,I IX(y X) 
= FyIx, o(IC(y; x)I?(y; x)). 

PROOF: Without loss of generality we normalize Uo0 -- [0, 1]. By continuity 
of U, we can express FyN,It(y) as 

(32) FyNitIx(ylx) = Pr( Y"N < y[X 
= x) = Pr(h(U1, t, x) < y) 

= Pr(UI < sup{u: h(u, t, x) = y}) 

= Pr(Ui < FyN,orx(ylx)). 

Thus, using (30) and (32), 

FyIolx(AC(y; x)?C(y; x)) = Pr(UI < Fy,oojx(C(y; x)?L(y; x))) 

< Pr(UI < 
Fy,o• 

x(y x)) = 
FyNIjIx(y 

x), 

Fy,lox (QC(y; x)C(y; x)) = Pr(Uj < Fy,oox (k(y; x)l?2(y; x))) 

> Pr(UI < Fyoijx(yIX)) = 
FYNl1(yjx). 

Q.E.D. 

When there is no variation in X, the bounds are equivalent to those given in 
Theorem 4.1. When there is sufficient variation in X, the bounds collapse and 
point identification can be restored. 
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THEOREM 4.4-Point Identification of the Discrete CIC Model with Co- 
variates: Suppose that Assumptions 3.3, 3.4, 4.3, and 4.5-4.7 hold. Suppose that 

Xo0 = X1, for t E {0, 1}. Define 

(33) St(y) = {u: 3 x Xot s.t. u = Fy, otx(ylx)}. 

Assume that, for all y E Yol, Si(y) C UyEYo 
So(y). Then the distribution of YN IX 

is identified. 

PROOF: Normalize Uo - IA[0, 1]. For each x e X01 and each y E Yo01, let 
(qfr(y; x), X(Y; x)) be an element of the set of pairs (y', x') {Yoo, X00oo} that 
satisfy Fy,oolx(y'lx') = Fy,oijx(ylx). Whereas Si(y) c 

UYEYo 
So(y), there exist 

such a y' and x'. Then 

FyNiX,11(yIX) = Fu,1(Fy,oIlx(ylx)) = Fu,I(Fy,oox(0I(y; x)Ix(y; x))) 

= Fy1x,10o(f(y; x)Ix(y; x)). Q.E.D. 

5. INFERENCE 

In this section we consider inference for the continuous and discrete CIC 
models. 

5.1. Inference in the Continuous CIC Model 

To guarantee that rCIC = IE[Y/1] - E[YN] is equal to E[Y11] - 

E[F-,41(Fr,oo(Y1o))], we maintain Assumptions 3.1-3.4 in this subsection. Al- 
ternatively, we could simply redefine the parameter of interest as E[Y11] - 

E[F,1ol(F,0oo(Yo0))], 
because those assumptions are not directly used in the 

analysis of inference. We make the following assumptions regarding the sam- 
pling process. 

ASSUMPTION 5.1-Data Generating Process: 
(i) Conditional on Ti = t and Gi = g, Y, is a random draw from the subpop- 

ulation with G; = g during period t. 
(ii) For all t, g I {0, 1}, ag, = Pr(Ti = t, Gi = g) > 0. 
(iii) The four random variables Y,, are continuous with densities fy,gt(y) that 

are continuously differentiable, bounded from above by fgt,,, and bounded from 
below by 

f- 

> 0 with support Y 
g~, 

= 
[Ygt' Ygt]. 

(iv) We have Ylo Yoo. 
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We have four random samples, one from each group-period. Let the obser- 
vations from group g and time period t be denoted by Yg,, for i= 1, ..., Ng,. 
We use the empirical distribution as an estimator for the distribution function: 

Ngt 

(34) Fygt(y) = N L {Ygt,i i Y}. 
i=1 

As an estimator for the inverse of the distribution function, we use 

(35) 
F',gt(q) 

= inf{y Ygt:Fy, gt(y) > q}, 

so that 
F,gt(O) 

= 

yg. 

As an estimator of TCIc = lE[Y1] - E[F-,'(Fyoo(Y1o))A, 
we use 

N1 

1 (36) clC Nn 
Yl Nlo(F•, o 

(Y 

oo(Ylo,i)). i=, I i= Y 

To present results on the large sample approximations to the sampling dis- 
tribution of this estimator, we need a couple of additional definitions. First, 
define 

(37) P(y, z) = ({ y < z} - Fy,oo(z)), 
fY,1 

(z))) 

p(y) = E[P(y, Y0o)], 
1 

(38) Q(y, z) (F - 
fo l(Fyo (Fy,oo(Z))) 

x 
(1I{Fy, 

o(y) < 
Fy,00oo(z)}- Fy,oo(z)), 

q(y) = E[Q(y, YIo)1, 

(39) r(y) = 
F-1O(Fy,oo(y)) 

- E[F-l1 (Fy,oo(Yo)), 
(40) s(y) = y - E[Yt ], 

with corresponding variances VP = E[p(Yoo)2], q = E[q(Yo)2], V' = 

IE[r( Y1)2], and V' = E[s( Yl)2], respectively. 

THEOREM 5.1-Consistency and Asymptotic Normality: Suppose Assump- 
tion 5.1 holds. Then (i) ?ci"c- TcIc = O,(N-1/2) and (ii) 

/N(~rc 
c- TcIC) -~I A/V(0, 

VP/aoo + 
Vg/aol 

+_ 
Vr/alo0 + VS/ali). 
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See Appendix A for the proof. 
An initial step in the proof is to linearize the estimator by showing that 

1 N00 1 N01 

S 7 + 
-oo 

L P(Yoo,i) + 
o 

E q( Yol,) 
i=N1 i=1 

+ 
1 

N10 
N11 + N r(Yio,j) + N s(Y1,j) + op(N-1. 

i=1 i=1 

The variance of the CIC estimator can be equal to the variance of the stan- 
dard DID estimator DID = Y - Y - (Yo01 - Y00) in some special cases, such 
as when the following conditions hold: (i) Assumption 5.1, (ii) Yoo d Y10, and 

(iii) for some a E R and for g = 0, 1, 
YNo 

d 
YN + a. More generally, the variance 

of 
ircIc 

can be larger or smaller than the variance of 7DID.30 
To estimate the asymptotic variance V'/aoo + Vq/ao0 + Vr/alo + V'/asl, 

we replace expectations with sample averages, using empirical distribution 
functions and their inverses for distribution functions and their inverses, 
and using any uniformly consistent nonparametric estimator for the den- 
sity functions.31 Specifically, given estimators for the conditional densities, 
we first estimate P(y, z), Q(y, z), r(y), and s(y) by substituting these esti- 
mators for fY,gt(y), Fy,gt(y), and Fy,g,(q), and sample averages for expecta- 
tions. We then estimate p(y) and q(y) by p3(y) = 

ENi_ 

P(y, 
Ylo,i)/Nlo 

and 

q(y) = 
,i=l' 

Q(y, Ylo,i)/N10, respectively. Finally, we estimate VP, 
Vq, 

Vr, 

30To see this, suppose that Yoo has mean zero, unit variance, and compact support, and that 
d d 

Yoo Y10. Now suppose that N o . Ygo for some o- > 0, and thus Ygi has mean zero and vari- 
ance -2 for each g. The assumptions of the both the CIC model and the mean-independence 
DID model are satisfied, and the probability limits of 9DID and 

rIcC 
are identical and equal 

to E[Y11] - E[Y10] - [E[Y01] - E[Y00]]. If Noo and No0 are much larger than N10 and N11, the 
variance of the standard DID estimator is essentially equal to Var(Y11) + Var(Y10). The vari- 
ance of the CIC estimator is in this case approximately equal to Var(Y11) + Var(k(Y10)) = 
Var(Y11) + a2 . Var(Y1o). Hence with o-2 < 1, the CIC estimator is more efficient, and with o.2> 1 
the standard DID estimator is more efficient. 

31For example, to ensure that the estimator is uniformly consistent, including at the boundary 
points, let Y,, be the midpoint of the support, Yg,, = (Yg - Yg,)/2. Then we can use the estimator 
for fy, gt(Y): 

-(^Fy,gt 
- 

N-1/3) _ 

Fy,gt(Y))N-l/, 
if y Y3gt, 

( (Y,gt(y) - Fy,gt(Y- N-1/3))/N-1/3, if y> Ygt. 

Other estimators for fy,gt(Y) can be used as long as they are uniformly consistent, including at 
the boundary of the support. 
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and V, as 

NN1 
NO 

V 

Uoo 

= P (Yoo,1i)2 
- N yoli) 

i=" i=l 

i=1 N i=1 

and estimate agt by ag, = i {G = g, T, = t}/N. 

THEOREM 5.2-Consistent Estimation of the Variance: Suppose Assump- 
P P Vp q 

P 
r•pr tion 5.1 holds. Then agt -- ag for all g, t, VP - VP, 4 V4, V 4 V, 

V" 4 
Vs, 

and, therefore, 

VJ/&oo + Vql•ol + 
V/rl•o 

+ Vs5/ll 
-> VP/aoo + Vr/ao + V-l/ao + 

V/alll. 

See Appendix A for the proof. 
For the quantile case we estimate 7CIc as 

-CIC = 
- F-IC 

_ ( P (fy 
,oo 

(Ff(q))). 

To establish its asymptotic properties, it is useful to define the quantile ana- 
log of the functions p(.), q(.), r(.), and s(.), denoted by 

p,(.), 
qq(-), rq(.), 

and sq(.): 

1 
pq(y) = 

fo (Fv,011 (Fv,oo (F 0-1 ()))) 

x (1{y < 
Fo10(q)} - Fy,oo(F o(q ))), 

1 
,0 ( 

, oq 
10 (q))) 

q(y)= (Y 
fqqy ol (Fyo01(Fyoo(F-10(q)))) 

S(1jFy,1 (y) < Fy,oo(F-' 0(q))} - Fy,oo (F, (q))), 

fyoo(F710 (q)) 
rq(y) = 

-f 
y,? r frY,01 (F1Fy, (Fyoo (F-10 (q))))fy, 

lo(F'o 
(q)) 

x (1i{Fy,o(y)< 9)< - q), 
1 

sq(y) = 
f,_1(F ,1 (q)) -gy 

<()F-1 
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with corresponding variances VqP = E[pq(Yoo)2], Vq = E[qq(YoI)2], V - 
E[rq(Ylo)2], and 

Vq 
= 
-E[sq(Y11)2]. 

THEOREM 5.3-Consistency and Asymptotic Normality of Quantile CIC Es- 
timator: Suppose Assumption 5.1(i)-(iii) hold. Then, defining q and q as in (17), 
for all q E (q, q): 

•-CICP _CIC 
(i) 'C 7,> 

(ii) N(TicI _ CIC) X (0, VVqP/aoo - Vqq/ao1 + Vqr/alo + VqS/all). 

See the supplement (Athey and Imbens (2006)) for the proof. 
The variance of the quantile estimators can be estimated analogously to that 

for the estimator of the average treatment effect. 
We may also wish to test the null hypothesis that the treatment has no effect 

by comparing the distributions of the second-period outcome for the treatment 
group with and without the treatment-that is, Fyi,1 (y) and FyN,11(y)-or 
test for first- or second-order stochastic dominance relationships (e.g., Abadie 
(2002)). One approach for testing the equality hypothesis is to estimate TqIc 
for a number of quantiles and jointly test their equality. For example, one may 
wish to estimate the three quartiles or the nine deciles and test whether they 
are identical in the distributions of Y,1, and YU". In AI, we provide details about 
carrying out such a test, showing that a X2 test can be used. More generally, 
it may be possible to construct a Kolmogorov-Smirnov or Cramer-Von Mises 
test on the entire distribution. Such tests could be used to test the assumptions 
that underlie the model if more than two time periods are available. 

With discrete covariates, one can estimate the average treatment effect for 
each value of the covariates by applying the estimator discussed in Theorem 5.1 
and taking the average over the distribution of the covariates. When the co- 
variates take on many values, this procedure may be infeasible and one may 
wish to smooth over different values of the covariates. One approach is to es- 
timate the distribution of each Yg,, nonparametrically conditional on covari- 
ates X (using kernel regression or series estimation) and then again average 
the average treatment effect at each X over the appropriate distribution of the 
covariates. 

As an alternative, consider a more parametric approach to adjusting for co- 
variates. Suppose 

h(u, t, x) = h(u, t) + x'1 and h'(u, t, x) = h'(u, t) + x'p 

with U independent of (T, X) given G.32 In this model the effect of the in- 

32A natural extension would consider a model of the form h(u, t) + m(x); the function m 
could be estimated using nonparametric regression techniques, such as series expansion or kernel 
regression. Alternatively, one could allow the coefficients /3 to depend on the group and/or time. 
The latter extension would be straightforward given the results in AI. 
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tervention does not vary with X (although it still varies by unobserved differ- 
ences between units). The average treatment effect is given by TCIC = E[IYI] - 

E[F-T1l(F,oo0(Ylo))], where Ygt,i = 
Ygt,,i- X,4,iP. To derive an estimator for 

TCc, we proceed as follows. First, 3 can be estimated consistently using linear 
regression of outcomes on X and the four group-time dummy variables (with- 
out an intercept). We can then apply the CIC estimator to the residuals from an 
ordinary least squares regression with the effects of the dummy variables added 
back in. To be precise, define D = ((1 - T)(1 - G), T(1 - G), (1 - T)G, TG)'. 
In the first stage, we estimate the regression 

Yi = D.5 + X P + ei. 

Then construct the residuals with the group-time effects left in: 

Y, = Y, - X;r = D•8 + i. 

Finally, apply the CIC estimator to the empirical distributions of the aug- 
mented residuals Y1. In AI we show that this covariance-adjusted estimator of 
TcIc is consistent and asymptotically normal, and we calculate the asymptotic 
variance. 

5.2. Inference in the Discrete CIC Model 

In this subsection we discuss inference for the discrete CIC model. If one 
is willing to make the conditional independence assumption, Assumption 4.4, 
the model is a fully parametric model and inference becomes standard using 
likelihood methods. We therefore focus on the discrete case without Assump- 
tion 4.4. We maintain Assumptions 3.1, 3.3, 3.4, and 4.2 (as in the continuous 
case, these assumptions are used only for the interpretation of the bounds 
TLB and TUB, and they are not used directly in the analysis of inference). 
We make one additional assumption. 

ASSUMPTION 5.2-Absence of Ties: We have that Y is a finite set and, for all 

y, y' EY, 

Fy,ol(y)0 Fy,00oo(y'). 

If, for example, Y = {0, 1}, this assumption requires Pr(Y01 = 0) 0 
Pr(Y00 = 0) and Pr(Y01 = 0), Pr(Yoo = 0) e (0, 1). When ties of this sort are 
not ruled out, the bounds on the distribution function do not converge to their 
theoretical values as the sample size increases.33 

33An analogous situation arises in estimating the median of a binary random variable Z with 
Pr(Z = 1) = p. If p -= 1/2, the sample median will converge to the true median (equal to 
Il{p > 1/2}), but if p = 1/2, then in large samples the estimated median will be equal to 1 with 
probability 1/2 and equal to 0 with probability 1/2. 
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Define 

(41) FG,oo(y) = Pr(Yoo < y), 

(42) k(y) = F,(F, 00oo(y)), and k(y) = Fr (Fy,oo(y)) 

with estimated counterparts 

(43) Fy,oo(Y)=1hY 
oo, i < ), 

(44) k(y) = 

,-1(F 

,00(y)), and k(y) 

=F, 

01(,oo(y)). 

The functions k(y) and k(y) can be interpreted as the bounds on the transfor- 
mation k(y) defined for the continuous case in (15). Note that k(y) -_ kCC(y). 
In the Appendix (Lemma A.12), we show that the c.d.f. of k(Ylo) is FU11 and 
the c.d.f. of k(Ylo) is F,B11. The bounds on 7 are then 

TLB = E[Y11] - E[k(Y1o)] and TUB = E[Y11] - E[k(Y1o)], 

with the corresponding estimators 

N11 1 N10 

Yll,-,) NoY- 

-k(Ylo,i) and 

"TLB 
= ~11 

i 

= 
=10 

1N11 
N 1 o 

TUB 11 Yi 

,10o, 
i) 

i=1 i=1 

THEOREM 5.4 -Asymptotic Distribution for Bounds: Suppose Assump- 
tions 5.1(i), (ii), (iv) and 5.2 hold. Then 

(?B - TUB) 0 nV(0, V'/a ll+ V'/alo) 

and 

N(LB - TLB) - 
d 

(O, V'/a11 + pr/a 10), 

where Vr = Var(k(Yo10)) and V = Var(k(Y1o)). 

See Appendix A for the proof. 
The asymptotic distribution for the bounds can then be used to construct 

confidence intervals for the parameters of interest, following the work of 
Imbens and Manski (2004). 
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Note the difference between the asymptotic variances for the bounds and the 
variance for the continuous CIC estimator. In the discrete case, the estimation 
error for the transformations k(.) and k(.) does not affect the variance of the 
estimates for the lower and upper bounds. This is because the estimators for 
k(.) and k(.) converge to their probability limits faster than N/N.34 

5.3. Inference with Panel Data 

In this section we modify the results to allow for panel data instead of re- 
peated cross sections. Consider first the continuous case. We make the follow- 
ing assumptions regarding the sampling process. Let (Yio, Y1l) denote the pair 
of first- and second-period outcomes for unit i. 

ASSUMPTION 5.3-Data Generating Process: 
(i) Conditional on G= = g, the pair (Yio, Yil) is a random draw from the sub- 

population with G, = g. 
(ii) For g E {0, 1}, ag _ 

Pr(G- 
= g) > 0. 

(iii) The four random variables Ygt are continuous with densities bounded and 
bounded away from zero with support Ygt that is a compact subset of R. 

We now have two random samples, one from each group, with sample sizes 
No and N1, respectively, and N = No + N1. (In terms of the previous notation, 
No = Noo = No0 and N1 = 

No- 
= N11.) For each individual we observe Yio and 

Y1j. Although we can still linearize the estimator as T = 7 + L p(Yoo,j)/Noo + 
L q(Yol,i)/Nol + • r(Ylo,i)/Nlo + E s(Yl,,-)/N11 + 

op(N-1/2), the four terms in 
this linearization are no longer independent. The following theorem formalizes 
the changes in the asymptotic distribution. 

THEOREM 5.5-Consistency and Asymptotic Normality: Suppose Assump- 
tion 5.3 holds. Then: 

(i) {Tc c 
7CCC; 

(ii) /-(rcc - 7CIc) 
d 

AV(0, V 
P/ao• 

+ Vq/aO CP /a o + Vr/a l + Vs/a i + 

Cr"Cla), where VP, Vq, Vr, and V" are as before, and 

CPq= E[p(Yoo) . q(Yoi)] and 

Crs = E[r(Ylo) 
- s(Y11)] = Covar(k(Yo0), Y11). 

See the supplement (Athey and Imbens (2006)) for the proof. 

34Again a similar situation arises when estimating the median of a discrete distribution. Sup- 
pose Z is binary with Pr(Z = 1) = p. The median is m = ll{p > 1/21 and the estimator is 

rM = 1{IFz(0) < 1/2}. If p 4 1/2, then /N(rn 
- m) - 0. 
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The variances VP, V4, Vr, and Vs can be estimated as before. For CPq and Crs 
we use the estimators 

1No 
NI 

No= 
j3o)O(00,) 

4(Y01,) and ('" 
= (Y~ 

i=1 i=1 

THEOREM 5.6-Consistent Estimation of the Variance with Panel Data: 
Suppose Assumption 5.3 holds and 'Y10 c Yoo. Then VIP -~+ V, Vq' P-- v, 

Vr P~' V, V S 
--P Vs, C pq 

P 
Cpq , and Crs > Crs. 

Now consider the discrete model with panel data. 

THEOREM 5.7-Asymptotic Distribution for Bounds: Suppose Assumptions 
5.2 and 5.3(i) and (ii) hold. Then 

d(fUB - TUB) -. (0, Vsl/al 
+ V'r/al + Crs/al) 

and 

'/I-N(LB 
- TLB) - 

-Af(0, VS/al +- Vr/ao0 + Crs/a), 

where V' = Var(k(Yo0)), r = Var(k(Yo0)), C'r = Covar(k(Yo0), Y11), and 

crs = Covar(k(Yjo), Y11). 

See the supplement (Athey and Imbens (2006)) for the proof. 

6. MULTIPLE GROUPS AND MULTIPLE TIME PERIODS: IDENTIFICATION, 
ESTIMATION, AND TESTING 

So far we have focused on the simplest setting for DID methods, namely the 
two-group and two time-period case (from hereon, the 2 x 2 case). In many ap- 
plications, however, researchers have data from multiple groups and multiple 
time periods with different groups receiving the treatment at different times. In 
this section we discuss the extension of our proposed methods to these cases.35 
We provide large sample results based on a fixed number of groups and time 
periods. We generalize the assumptions of the CIC model by applying them to 
all pairs of groups and pairs of time periods. An important feature of the gen- 
eralized model is that the estimands of interest, e.g., the average effect of the 

35To avoid repetition, we focus in this section mainly on the average effects of the intervention 
for the continuous case for the group that received the treatment in the case of repeated cross 
sections. We can deal with quantile effects, discrete outcomes, effects for the control group, and 
panel data by generalizing the 2 x 2 case in an analogous way. 
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treatment, will differ by group and time period. One reason is that an intrinsic 
property of our model is that the production function h(u, t) is not restricted 
as a function of time. Hence even holding the group (the distribution of the 
unobserved component U) fixed and even if the production function under 
treatment h' (u, t) does not vary over time, the average effect of the treatment 
may vary by time period. Similarly, because the groups differ in their distribu- 
tion of unobservables, they will differ in the average or quantile effects of the 
intervention.36 Initially we therefore focus on estimation of the average treat- 
ment effects separately by group and time period. 

To estimate the average effect of the intervention for group g in time pe- 
riod t, we require a control group g' and a baseline time period t' < t such 
that the control group g' is not exposed to the treatment in either of the time 
periods t and t', and the treatment group g is not exposed to the treatment in 
the initial time period t'. Under the assumptions of the CIC model, any pair 
(g', t') that satisfies these conditions will estimate the same average treatment 
effect. More efficient estimators can be obtained by combining estimators from 
different control groups and baseline time periods. 

The different control groups and different baseline time periods can also 
be used to test the maintained assumptions of the CIC model. For example, 
such tests can be used to assess the presence of additive group-period ef- 
fects. The presence of multiple groups and/or multiple time periods has pre- 
viously been exploited to construct confidence intervals that are robust to the 
presence of additive random group-period effects (e.g., Bertrand, Duflo, and 
Mullainathan (2004), Donald and Lang (2001)). Those results rely critically on 
the linearity of the estimators to ensure that the presence of such effects does 
not introduce any bias. As a result, in the current setting the presence of ad- 
ditive group-period effects would in general lead to bias. Moreover, outside 
of fully parametric models with distributional assumptions, inference in such 
settings requires large numbers of groups and/or periods even in the linear 
case. 

6.1. Identification in the Multiple Group and Multiple Time-Period Case 

As before, let g and T be the set of group and time indices, where now 
g = {1, 2, ..., NG} and - = {1, 2, ..., NT}. Let I be the set of pairs (t, g) such 
that units in period t and group g receive the treatment, with the cardinality 
of this set equal to Nz.37 For unit i the group indicator is G, E g and the time 
indicator is T; e T. Let Ii be a binary indicator for the treatment received, so 
that I; = 1 if (T;, G;) e I. We assume that no group receives the treatment in 
the initial period: (1, g) ? 1. In addition, we assume that after receiving the 

36This issue of differential effects by group arose already in the discussion of the average effect 
of the treatment on the treated versus the average effect of the treatment on the control group. 

"7In the 2 x 2 case, g = (0, 11, T- = 0, 1}, and I = {(1, 1)} with Nz = 1. 
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treatment, a group continues receiving the treatment in all remaining periods, 
so that if t, t + 1 E T and (t, g) E I, then (t + 1, g) E . Let Fy,g,,(y) be the dis- 
tribution function of the outcome in group g and time period t, and let ag,t be 
the population proportions of each subsample, for ge ! and t E T. As before, 
YN = h(U, t) is the production function in the absence of the intervention. 

For each "target" pair (g, t) e I, define the average effect of the interven- 
tion: 

g,t t , , Tcigct= Et[Yg Yt]-= E[Y 1 ]-E[h(Ut)IG = g]. 

This average treatment effect potentially differs by target group-period (g, t) 
because we restrict neither the distribution of Y' by group and time nor the 
production function h(u, t) beyond monotonicity in the unobserved compo- 
nent. 

In the 2 x 2 case there was a single control group and a single baseline time 
period. Here rcitc can be estimated in a number of different ways, using a range 
of control groups and baseline time periods. Formally, we can use any control 
group go - g in time period to < t as long as (go, to), (go, t), (g, to) I. It is 
useful to introduce a separate notation for these objects. For each (g, t), which 
defines the target group g and time period t, and for each control group and 
baseline time period (go, to), define 

Kgo,g,to,t = E[Yg,t] - 

E[Ffg'o,t(Fygo,to(Y),to)]. 
As before, the identification question concerns conditions under which 

E[F,'go,,(Fy,go,to(Yg,to))] 
= 

E[yN,], implying Kgo,g,to,t = 
tC. 

Here we present 
a generalization of Theorem 3.1. For ease of exposition, we strengthen the 
support assumption, although this can be relaxed as in the 2 x 2 case. 

ASSUMPTION 6.1--Support in the Multiple Group and Multiple Time-Period 
Case: The support of UIG = g, denoted by Ug, is the same for all g e . 

THEOREM 6.1-Identification in the Multiple Group and Multiple Time- 
Period Case: Suppose Assumptions 3.1-3.3 and 6.1 hold. Then for any (gl, tl) 
with (gl, t1) E such that there is a pair (go, to) that satisfies (go, to), (go, tl), 
(gl, to) ZI, the distribution of Y',U is identified and, for any such (go, to), 

(45) 
FyN,g,,~ (y) = 

FY,g•,to 
(F0 oto(Fy go ,t (Y))) 

The proof of Theorem 6.1 is similar to that of Theorem 3.1 and is omitted. 
The implication of this theorem is that for all control groups and base- 

line time periods (go, to) that satisfy the conditions in Theorem 6.1, we have 
CIC 
g K,t Kgo,g1,to,t1. 
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6.2. Inference in the Multiple Group and Multiple Time-Period Case 

The focus of this section is estimation of and inference for rCc. As a first 
step, we consider inference for Kgo0,g,tO,t1. 

For each quadruple (go, gi, to, ti), we 
can estimate the corresponding Kgo0,g,to,ti 

as 

1 Ng1 1 Ngl,to 
(46) Kg0,g1,to, N__~ Yg,t, Ng Y,t •go,t(Fyo,o(Yg1,to,i)) t 

1,t1 i=1 gi,t' i=1 

By Theorem 6.1, if to < t1, (gi, tl) E , and (go, to), (go, ti), (g1, to) t -1, it fol- 
lows that Kgo0,1,to,t1 

= 

7C`_. 

Hence we have potentially many consistent estima- 
tors for each 7c'c. Here we first analyze the properties of each 

kg0,g,to 
as an 

estimator for 
Kg0,g,,t,,, 

and then consider combining the different estimators 
into a single estimator #9g,, for 7,-,. 

For inference concerning Kg0,g,,t0,to, we exploit the asymptotic linearity of the 
estimators 

Kgo,g,,t,to,. 
To do so it is useful to index the previously defined func- 

tions p(-), q(-), r(-), and s(.) by groups and time periods. First, define38 

1 

Pgo,gl,to,,, 
(Y, z) 

got(FIot(Fygoto Z))) 
(.l{y < z} - FY,go,to(Z)), 

Qg0o,g,,to, 
(y, z) = - 

f Ygo,t, (F ,tlgo,l, (Fy,go,to(z))) 

x (1{FY,go,,, (y) < FY,go,to(z)} - Fy,go,to(z)), 

Pgo,g,toti (Y) = E[Pgo,g1,to,t,, (y, Ygl,to)], 

qgo,glt,to, (Y) = t E[Qgo,g1,to,t (y, Ygl,to)l, 

rgo,g1,to,t, (y) = FY- (Fy,oto(y)) - 
[F,o (Fy, oto 

,to 
and 

Sgo,g1, to,t] (y) = y - IE[ Yg,tl ]. 
Also define the four averages 

Ngo',to 

' 
g 

to 

i= 1 

g0,g1,t0,g1 
=0o,= 

1,to,t ( go,toi), 

= Ng0, tl 
gogito gi 

Ng 
L 

qgo'glt'tOtl( Yg?'t'i)' gg 
gtl 

i=I 

38Although we index the function 
sgo,g1,to,t, 

(y) by go, g1, to, and tl only to make it comparable 
to the others, it does not actually depend on group or time. 
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1 UNg ,to 

,g = tOgl N Yrgo,g ,to,t (Ygl,t0,i), 
1Ng,to i=1 

1 Ngl ,t1 

A 
go,gl,to,g 

Si 

Sg 
1og 

l ,to 1 
,tlY,i ). = ,t, i=1 

Define the normalized variances of the A's: 

V o = Ngo,to 
Var(^'o,gl,to,i 

) 

go,gl,to,ti go,to A 
Vq = Ngoi 

? 
Var(q 

r 
0go,81, to, t i , ,gl, to,gl 

Vs = Ngl, . 
Var(g? 

)' 
go ,gto,ttl '1 

4 
tg,g9 ,to,g10 " 

Finally, define 

gP 
"q 

r 
S 0 1tt= K0,g1,4to,t1 + L go,goI f o,gl ,to,g go,gi,tog1 + go,gz,togl 

LEMMA 6.1--Asymptotic Linearity: Suppose Assumptions 5.1 and 6.1 hold. 
Then 

go,g,t,to,,, 
is asymptotically linear: 

Kgo,g1,to,ti 
= kgo,,to,t1 + 

op(N-1/2). 

The proof of Lemma 6.1 follows directly from that of Theorem 5.1. 
The implication of this lemma is that the normalized asymptotic variance 

of 
.Kio'lc, 

is equal to the normalized variance of ,go,,which is equal to 
Vgggl,t0,tlg90,9 

to, y 

VP Vq Vr Vs 

NggVar( 
k,,, )= ,,to,t g+o,glto,tl go,g,to,tl go,gl ,to,tl gogo, gt0 o, 0,t1 g1,t + xg1,t 

N-ago, to 
+ 

ago, ti+ agl, to agrtl 

In addition to the variance, we also need the normalized large sample covari- 
ance between 

Kgo,gl,to,, 
and 

kgo,g ,t4,t1. There are 25 cases (including the case 
with go = g', g1 = g', to = to, and t1 = t', where the covariance is equal to the 
variance). For example, if go = g, g1 = g', to = to, and 

t• - 
t, then the normal- 

ized covariance is 

~ 

CIC N . 
Cov(Kc•cKo0,tt, 

Kg, ,tOt) 

80,81, 
to , t l01 

, 
tto, 

]NI E 
go, gtot l ] 

= N -E[~0o, ,tio " gogtot + N E[ oitoti 0,gitotj 

The details of the full set of 25 cases are given in Appendix B. 
Let J be the set of quadruples (go, gl, to, t1) such that (go, to), (go, t1), 

(gx, 
to) ( X and (g1, t1) E I, and let N5 be the cardinality of this set. Stack 
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all 
kgo,g4,to,,, 

such that (go, g1, to, ti) ? J into the Nj-dimensional vector k ,; 
similarly stack the Kg0,9g,to,t, into the Nj-dimensional vector Kj. Let Vj be the 

asymptotic covariance matrix of -N. k j. 

THEOREM 6.2: Suppose Assumptions 5.1 and 6.1 hold. Then 

(k•j - 
Kj)--Af(O, 

V7). 

For the proof, see Appendix A. 
Next, we wish to combine the different estimates of 7CIC. To do so efficiently, 

we need to estimate the covariance matrix of the estimators 
kgo,gl,t1o,t, 

V 
.- As shown in Appendix A, all the covariance terms involve expectations of prod- 

ucts of the functions 
Pgo,gl,to,t, (y), qgo,g1,t,t, (y), rgo,glt,t, (y), and 

sgo,gt,to,t (y), 
evaluated over the distribution of Yg,,. These expectations can be estimated 
by averaging over the sample. Let the resulting estimator for Vj be denoted 
by Vj. The following lemma, implied by Theorem 5.2, states its consistency. 

LEMMA 6.2: Suppose Assumption 5.1 holds. Then V, -4> Vj. 

It is important to note that the covariance matrix Vj is not necessarily of full 
rank.39 In that case we denote the (Moore-Penrose) generalized inverse of the 
matrix Vj by Vr7-. We wish to combine the estimators for 

Kgo,g1,to,tI 
into estimators for 

~gc'c. 
Let 

1fc denote the vector of length N, that consists of all 7TC'C stacked. In addition, 
let A denote the Nj x Nz matrix of 0-1 indicators such that Kj = A. CIC 
under the assumptions of Theorem 6.1. Specifically, under the assumptions of 
Theorem 6.1, if the jth element of 

K• 
is equal to the ith element of rcc, then 

(i, ])th element of A is equal to 1. Then we estimate r cc as 

CIC = 
(AI(-)A)-`(At, j(-) ̂ ClC 71 -( ?K j ). 

39To see how this may arise, consider a simple example with four groups (g = {1, 2, 3, 41) and 
two time periods (T = {1, 2}). Suppose only the last two groups (groups 3 and 4) receive the 
treatment in the second period, so that (3, 2), (4, 2) c I and all other combinations of (g, t) 0 I. 
There are two treatment effects-rTIC and r~C-and four comparisons that estimate these two 
treatment effects-K1,3,1,2 and K2,3,1,2, which are both equal to 

I3,2, 
and K1,4,1,2 and K2,4,1,2, which 

are both equal to rc. Suppose also that Fyg,t(y) = y for all g, t. In that case, simple calculations 
show IE[pgo,g,to,,, (y)] = 

E[qgo,g,to,t, (y)] = rgo,g,,to,,, (y) = Sgo,g,t,to, (y) = y - 1/2, so that 
K1,3,1,2 

= 

Y3,2 - r3,1 - - Y1, 1,4,1,2 Y4,2 - Y4,1 - Y1,2 - Y1,1, 2,3,1,2 = Y3,2 - Y3,1 - Y2,2- Y2,1, and 

k2,4,1,2 
= 

-4,2- 

- 

Y4,1 
2- 2,2 - 2,1. Then 

k2,4,1,2 
- K2,3,1,2 - 1 ,4,1,2 ? 

<1.,3,1,2= 
0, which shows that 

the covariance matrix of the four estimators is asymptotically singular. In general, the covariance 
matrix will have full rank, but we need to allow for special cases such as these. 
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THEOREM 6.3: Suppose Assumptions 3.1-3.3, 5.1, and 6.1 hold. Then 

Z- (CIC _ Cic) (0, (A'V-)A) 

PROOF: A linear combination of a jointly normal random vector is nor- 
mally distributed. The mean and variance then follow directly from those 
for k3. Q.E.D. 

In some cases we may wish to combine these estimates further. For exam- 
ple, suppose we may wish to estimate a single effect for a particular group, 
combining estimates for all periods in which this group was exposed to the in- 
tervention. Alternatively, we may be interested in estimating a single effect for 
each time period, combining all estimates from groups exposed to the interven- 
tion during that period. We may even wish to combine estimates for different 
groups and periods into a single average estimate of the effect of the interven- 
tion. In general, we can consider estimands of the form rc7c = AI'7Ic, where 
A is an Nz x L matrix of weights with each column adding up to 1. If we are 
interested in a single average, L = 1; more generally, we may be interested in a 
vector of effects, e.g., one for each group or each time period. The weights may 
be choosen to reflect relative sample sizes or to depend on the variances of the 
^CC. The natural estimator for 7Tcc is •CIC 1 A'-"c . For fixed A it satisfies 

S(ic- C) #A A(O, A'(A'V A)-'A). 
As an example, suppose one wishes to estimate a single average effect, so 
A is an Nz vector and (with some abuse of notation) 

TIC- 

= 
(gt)EIZ g,t . ,tCIC 

One natural choice is to weight by the sample sizes of the group-time periods, 
SO Ag,t = Ng,t/l (g,t)eZ Ng,t. Alternatively, one can weight using the variances, 
leading to A = 

(t'A'zV(-)A )-1'A'V(-)A. This latter choice is particularly ap- 
propriate under the (strong) assumption that the treatment effect does not 
vary by group or time period, although the above large sample results do not 
require this assumption. 

6.3. Testing 
In addition to combining the vector of estimators to obtain a more efficient 

estimator for TCIc, we can also use it to test the assumptions of the CIC model. 
Under the maintained assumptions, all estimates of the form 

Kgo,g1,to,t, 
will esti- 

mate 
t 

C . If the model is misspecified, the separate estimators may converge 
to different limiting values. We can implement this test as follows. 

THEOREM 6.4: Suppose thatAssumptions 3.1-3.3, 5.1, and 6.1 hold. Then 

N. (k - A ) CIc -(k - A CIC) X2(rank(V,) - Nz). 
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PROOF: By joint normality of k j and the definition of icfC, it follows that 
kj - A ? TrcC 

is jointly normal with mean zero and covariance matrix with 
rank(Vj) - Nz. Q.E.D. 

This test will have power against a number of violations of the assump- 
tions. In particular, it will have power against violations of the assumption 
that the unobserved component is independent of the time period condi- 
tional on the group or U I TIG. One form such violations could take is 
through additive random group-time effects. In additive linear DID models 
such random group-time effects do not introduce bias, although, for infer- 
ence, the researcher relies either on distributional assumptions or on asymp- 
totics based on large numbers of groups or time periods (e.g., Bertrand, Duflo, 
and Mullainathan (2004), Donald and Lang (2001)). In the current setting, 
the presence of such effects can introduce bias because of the nonadditivity 
and nonlinearity of h(u, t). There appears to be no simple adjustment to re- 
move this bias. Fortunately, the presence of such effects is testable using The- 
orem 6.4. 

We may wish to further test equality of cITc for different g and t. Such tests 
can be based on the same approach as used in Theorem 6.4. As an example, 
consider testing the null hypothesis that rcic = rcic for all (g, t) e I. In that 
case, we first estimate {cic as Tcic = ATCIc with A = 

(t'A'zV9(-)A)-l tA'Vj-)A. 
Then the test statistic is N. (5fIc 

- 
-cc l)'A'V(_A(cIrc - cIc - ). In large 

.C1 

N 
?(-)A(•C ^CI I 

d>X2 samples, N- (rIc- ~c L)IA' V )A(c- 
c C L) 2(N - 1) under 

the null hypothesis of 7,-cc I .cc for all groups and time periods. 

7. CONCLUSION 

In this paper, we develop a new approach to difference-in-differences mod- 
els that highlights the role of changes in entire distribution functions over time. 
Using our methods, it is possible to evaluate a range of economic questions 
suggested by policy analysis, such as questions about mean-variance trade-offs 
or which parts of the distribution benefit most from a policy, while maintaining 
a single, internally consistent economic model of outcomes. 

The model we focus on, the changes-in-changes model, has several advan- 
tages. It is considerably more general than the standard DID model. Its as- 
sumptions are invariant to monotone transformations of the outcome. It allows 
the distribution of unobservables to vary across groups in arbitrary ways. For 
example, it allows for the possibility that the distribution of outcomes in the 
absence of the policy intervention would change over time in both mean and 
variance. Our method could evaluate the effects of a policy on the mean and 
variance of the treatment group's distribution relative to the underlying time 
trend in these moments. 

A number of issues concerning DID methods have been debated in the liter- 
ature. One common concern (e.g., Besley and Case (2000)) is that the effects 
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identified by DID may not have a causal interpretation if the policy change 
occurred in a jurisdiction that derives unusual benefits from the policy change. 
That is, the treatment group may differ from the control group in the effects of 
the treatment, not just in terms of the distribution of outcomes in the absence 
of the treatment. Our approach allows for both of these types of differences 
across groups because we allow the effect of the treatment to vary by unob- 
servable characteristics whose distribution may vary across groups. As long as 
there are no differences across groups in the underlying treatment and non- 
treatment "production functions" that map unobservables to outcomes at a 
point in time, our approach can provide consistent estimates of the effect of 
the policy on both the treatment and the control group. 

In the supplement for this paper (Athey and Imbens (2006)), we present an 
application to the problem of disability insurance (Meyer, Viscusi, and Dubin 
(1995)) that illustrates that our approach to estimate the effects of a policy 
change can lead to results that differ from those obtained through the standard 
DID approach in magnitude and significance. Thus, the restrictive assumptions 
required for standard DID methods can have significant policy implications. 
Even when one applies the more general classes of models proposed in this 
paper, however, it will be important to justify such assumptions carefully. 
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APPENDIX A: PROOFS 

Before presenting a proof of Theorem 5.1, we give a couple of preliminary 
results. These results will be used in the construction of an asymptotically lin- 
ear representation of Tcic, following the general structure of such proofs for 
asymptotic normality of semiparametric estimators in Newey (1994). The tech- 
nical issues involve checking that the asymptotic linearization of F17'1 (Fv,oo(z)) 
is uniform in z at the appropriate rate, because 

#rCic 
involves the average 

(1/N10o) E o-1 (Fv,00(Y10,i)). This in turn will hinge on an asymptotically lin- 
ear representation of (q) that is uniform in q [0, 1] at the appropriate 
rate (Lemma A.6). The key result uses a result by Stute (1982), restated here 
as Lemma A.4, that bounds the supremum of the difference in empirical dis- 
tribution functions evaluated at points close together. In the Appendix, the ab- 
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breviations TI and MVT will be used as shorthand for the triangle inequality 
and the mean value theorem, respectively. 

Because Ng,/N 
- 

agt, with ag, positive, any term that is O,(Ng-") is also 

O,(N-8); similarly, terms that are op(N,,;) are op(N-8). In the following dis- 
cussion for notational convenience we drop the subscript gt when the results 
are valid for Ygt for all (g, t) E {(0, 0), (0, 1), (1, 0)}. 

Recall that as an estimator for the distribution function, we use the empirical 
distribution function 

N1 

Fy-(y) 
= L 

Yj<y i=1 

N 

= F, + < y} - F(y)) 
i=1 

and as an estimator of its inverse, we use 

(A.1) P-1 (q) = Y[N.q) = inf{y E 
Y":Fy(y) > q} 

for q e [0, 1], where Y(k) is the kth order statistic of Y1,..., YN and [a] is the 
smallest integer greater than or equal to a, so that F1 (0) = y. Note that 

(A.2) q < Fy(F-'(q)) < q + 1/N, 

with 
Fy(F• 

(q)) = q if q = j/N for some integer j E {0, 1, ..., N}. Also 

y - max (Y(), - 
Y(i-1)) 

< F-1(Fy(y))i y, 
i=1,...,N 

where Y(o) = y, with F '(Fy(y)) = y at all sample values Y1,..., YN. 

LEMMA A.1: Let U = [u, i-], let Y = [y, y] with -oc < u, u, y, y < oc, and let 

g(.) :Y -+ U be a nondecreasing, right continuous function with its inverse defined 
as 

g-1(u) = inf{y E Y:g(y) > u}. 

Then: 
(i) For all u E U, g(g-'(u)) > u. 

(ii) For all y E Y, g-l(g(y)) < y. 
(iii) For all y e Y, g(g-1(g(y))) = g(y). 
(iv) For all u e U, g-l(g(g-l(u))) - g-l(u). 
(v) We have {(u,y)lu e U,y y Y, u < g(y)} = {(u,y)lu e U,y e Y, 

g-1'(u) y}. 
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See the supplement (Athey and Imbens (2006)) for the proof. Note that this 
lemma applies to the case where g(y) is an (estimated) cumulative distribution 
function and g-l'(u) is the inverse distribution function defined in (A.1). 

Next we state a general result regarding the uniform convergence of the em- 
pirical distribution function. 

LEMMA A.2: For any 8 < 1/2, 

sup N. ? Fy (y) - Fy(y)I 0. 
yeY 

PROOF: Billingsley (1968) and Shorack and Wellner (1986) show that with 
X1, X2, ... independent and identically distributed, and uniform on [0, 1], 

supo0<x< 
N1/2 IFx(x) - xI = Op(1). Hence for all 8 < 1/2, we have supo0<,< 

N? IFx(x) - xI40. Consider the one-to-one transformation from X to Y, 
Y = F17 (X), so that the distribution function for Y is Fy(y). Then 

sup N. IFy(y) - 
Fy(y)- 

= sup N' - 
IFy(F'l(x)) - 

Fy(Fy'(x))[ yeY O<x<l 

= sup N . IFx(x) - x 0, 
0<x<1 

because 

Fx(x) = (1/N) 1{Fy(Y;) < x} 

= (1/N) n 
Yi 

-< 
F;'(x)} = Fy(F?1(x)). Q.E.D. 

Next, we show that the inverse of the empirical distribution converges at the 
same rate: 

LEMMA A.3: For any 8 < 1/2, 

sup N'. /F "?(q) - F71'(q)I 0. 
qe[0,1] 

Before proving Lemma A.3 we prove some other results. 
Next we state a result concerning uniform convergence of the difference be- 

tween the difference of the empirical distribution function and its population 
counterpart and the same difference at a nearby point. The following lemma is 
for uniform distributions on [0, 1]. 

LEMMA A.4-Stute (1982): Let 

w(a) = sup N1/2 Fy(y + x) - y(x) 
O<yl1,O<x<a,Osx+y 1 

- (Fy(y + x) - Fy(y)) . 
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Suppose that (i) aN - 0, (ii) N - aN -+ oo, (iii) log(l/aN)/log logN - 0o, and 
(iv) log(1/aN)/(N - aN) -+ 0. Then 

o 
w(au) lim = 1 w.p.1. 

N--*c V2aNlog(1/aN) 

For the proof, see Stute (1982, Theorem 0.2) or Shorack and Wellner (1986, 
Chapter 14.2, Theorem 1). 

Using the same argument as in Lemma A.2, one can show that the rate at 
which w (a) converges to zero as a function of a does not change if one relaxes 
the uniform distribution assumption to allow for a distribution with compact 
support and continuous density bounded and bounded away from zero. Here 
we state this in a slightly different way. 

LEMMA A.5-Uniform Convergence: Suppose Assumption 5.1 holds. Then, 
for 0 < r < 3/4 and 8 > max(2ir - 1, 7r/2), 

sup N - 
IFy(y + x) - Fy(y) - (Fy(y + x) - Fy(y))I 

yeY,x<N-8,x+yeY 

- 0. 

The proof is given in the supplement. 
Next we state a result regarding asymptotic linearity of quantile estimators 

and we provide a rate on the error of this approximation. 

LEMMA A.6: For all 0 < 7< <5/7, 

1 
sup N 

-. 
FY1(q) - Fy'(q) + (F (Fy (q)) 

-qq) 

_-> 0. 
q[0,1] fY(F (q)) 

The proof is given in the supplement. 

PROOF OF LEMMA A.3: By the TI, 

sup Ns. 
•7l(q) 

- F7'(q)I 
q{[O,1] 

(A.3) 
< 

sup N. Ff(q) -F (q) + f(F(q))Fy(F(q 
- 

qE0,] (q)) 

(A.4) + sup 
NX 

. 
(v(F;L(q)) _ q) 

qe[~0,1 fY(Fy71(q)) 



DIFFERENCE-IN-DIFFERENCES MODELS 481 

By Lemma A.6, (A.3) converges to zero. Next, consider (A.4): 

sup N8. 1 ((Fr1F(q)) 
- q) 

q[0,1] 

fy(F, 
(q)) 

1 
< - sup N5 Fy(FI(q)) - Fy(F71(q)) 

f qE[0,1] 

1 
< - sup N Fy(y) - Fy(y)l, f yEY 

which converges to zero by Lemma A.2. Q.E.D. 

Using the definitions for p(.), P(., .), q(.), Q(., .), r(.), and s(.) given in Sec- 
tion 5.1, define the following averages, which will be useful for the asymptotic 
linear representation of ScLC: 

- 

1 N1 1 N Noo 
= N LP(Yooi), 

=Noo Nlo 
P(Yoo,i, 

Ylo,1), i=l 0 i=1 j=1 

N01 1 1 N01 N10 

iNol 

NloE Q(Y 

=.1r10 

1 

NON1i 
A 

Nl 

Lr(Ylo,i), 
, 

N No s(Y 
o,l 

Y)o, 
i=l t =l Aj 1 

i= 1i==1 

LEMMA A.7: Suppose Assumption 5.1 holds. Then 

Lp - P = o,(N-1/2) and 
•4q~o 

= 
op(N-1/2). 

PROOF: Given P' is a two-sample V-statistic, define P (y) = E[P(y, Y10)] 
and P2(y) = E[P(Yoo, y)]. Standard theory for V-statistics implies that, under 
the smoothness and support conditions implied by Assumption 5.1, 

1 N00 1 N10 

N'= 
EP,(Y00,i)) + 

N10 P2(Yl,i) + (N1/2 
i=1 i=1 

Because Pi(y) = p(y) and P2(y) = 0, the result follows. The argument for ̂ Q is 
analogous. Q.E.D. 

LEMMA A.8 -Consistency and Asymptotic Linearity: Suppose Assump- 
tion 5.1 holds. Then 

N10 
1 N 

Nlo.F 

, f < ,oio) -+ E 
[FYol (Fvoo(Ylo))] 
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and 
N10 

N 
o 

L 

F. 

o 
(Fy,oo(Yjo,i)) 

- 
E[F 

y-,ol(FY,oo(Y 

o))] 
- 

ft 
- - 

r i=l 

= o,(N-1/2). 

PROOF: Because Fy,00(z) converges to Fy,oo(z) uniformly in z and be- 
cause 

Fy, ol(q) 
converges to Fbo (q) uniformly in q, it follows that 

,01(Fy,oo(z)) converges to 
F'o,(Fy,oo(z)) uniformly in z. Hence (1/Nlo) x 

N1U0o -1 (Ely, 
(Yloi)) 

converges to 
/N10)•Ulo -N10 SFY,0 

(F,00o(Yyo,o)) 
converges to (1/No) j F?,(Fy,oo(Ylo,i)), which by 

Assumption 5.1 and the law of large numbers converges to E[F -1(F,0oo(Yo))], 
which proves the first statement. 

To prove the second statements, we will show that (A.5)-(A.7), 

N12 Noi= 

- E [F (F,oo(Yio,)) - - - 

=N10 

- 

E[Fy(Fy,oo( 

FV))] - 
oo(Yoi)) - 

N1/2 N10 
I 

(A.56) N1 
-•1 lF,O1 

(Fy,oo(Ylo,i)) 

]V 
10i=1 

SN10 

N- 
FL-11(Fy,oo(Ylo,i)) 

- A) 

(A.7) + N12 10 FY'o01(Fy,oo(Yio,i)) 

- 
E[F-1o(Fy,oo(Y0o))] 

- Ar) 

are o,(1). First, (A.7) is equal to zero. Next, because Ap = A + o,(N-1/2) and 

L9 = 
-gQ 

+ op(N-1/2), it is sufficient to show that (A.5) and (A.6) with AP and Aq 
replaced by A0 and AP are o,(1). 
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First, consider (A.5). By the TI, 

i N1 0 1 0 

1 
O11 

(AN2 10 LF,(Fy,oo(Yio,i)) - No F ,,(Yo,i))- 

i= 1 i=F1 
S1 

N10 
N011N 

S(A.8)NNi= =l fyo( o, (F, oo(Ylo,i (,))) 

i=x ({F (Y) F (,o,11i)} l 

1(A.9) 
1 

1o 
0 i=1 j=l f Y, 0(F y, ( 

,oo(Y oi))) 

N10 NN1 

(A.9) + N1/2 _ 1 1 

1: E 
N10 N0, 

i=1 j=1 Yf,01 (F,(01 ,oo(Y1o,))) 

x 
(3{FFy,0o(Yol,j) < Fy,oo(YOi)}- Fy,oo(Yloi)) 

- 
Q- 

Equation (A.8) can be bounded by 

2 

10 i l 0? 

( 

Y',00(Y 

0,i)) - 

Fy,'I 

( ,oo(YIo,i)) 
i=1 

1 No' 1 

-01 j 
fY,01 

(F,10I 

( vY,oo( 
Y0o,i))) 

x (1{Fy,ol(Yol,j) I 
Fy,oo(Ylo,i)j 

- Fy,oo(Yoi)) 

SN1/2 sup OF 1(q) - F,, (q) 
q 

1 No0 1 
+ N0 f 1q 

(1I{Fo,01(Yol,j) 

< q} 
- q) 01 

j=1 fY,01(Fv,o (q)) 

- 

N1/2 
sup 1(q) -F,(q) 
q 

1 + (Fy 

,1 
(Fyo l(q)) 

- q), 
fyo (Fy, ol(q)) 
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which is op(1) by Lemma A.6. Next, consider (A.9): 

N1/2 

1 1 

N0 N01 

1 

N1o No/l 
_ 

f l- 

NIO No, 01 

(F0 
(1FY,oo( 

oi))) 
N =l jN 1 __ _ 

x 
(i{FFy, (Yoj) < FY,oo(Yo,,)} 

- 
FY,oo(Y)o,i)) 

NIo Nol 1 1 1 

NNO1, j =fy'O(F4j(y,OO (Foo(Yo,j))) 

x 
({Fy,o, (F,j) < Fy, oo(Yo,i)}))- Fy,0oo(Y1o,i)) 

N 
1 

N/0 
1 

=N10 1 
N1o fy• f, 

(Fy-11,(Fv,oo(Yjo,i))) x (F vol(F? 
o(Fyv,oo(Ylo,i))) 

- 
Fy,oo(Yio,i)) 

NIO fyo (Fy', (Fy,oo(Ylo,))) 

x 

(FYO0 
(F'o1 (Fy, oo( Y1o,))) 

- 

Fy,oo( 
Yo,i) 

By the TI, this can be bounded by 

(A.10) N1/2 1 NY, 1 
Nlo 

=1fY01 

N1o 
fo(Fy,, 

(Fy,oo(Yo,i))) 

1 No 1 
(A.11) + N1/2 No 1 

x (Fyo 
(F~x((Fyoo(Ylo,i))) 

- 
Fy,oo(Ylo,i)) 
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1 0 1 NUo 1 
N N _ fo(Fy,11, 0(Fy,oo( Ylo,i))) 

x ( vol (Fio, (Fy,o0 ( Y1o, ))) - Fy,00 ( Y1o, )) 

Equation (A.10) can be bounded by 

N1/2 sup 1 sup frOy,o(F 
F,11 

(Fy,oo(y))) - 
F, 

oo(y) 
q fY,o01(Fyo01(q)) y 

- (F,01 (F-o1 (F,00oo(y))) 
- 

Fr, 
oo(y)) 

< N1/2- C-. sup Iyol (FF4,(yv,oo(y))) 
- 

FY,ol 
(F?'lm 

(Fv,oo(y))) 
y 

- 

(Fy,O1 
(F1lo1 

(Fy,oo(y))) 

- Fv, oo(y)) 
. 

To see that this is o,(l), we apply Lemma A.5. Take 8 = 1/3 and ri = 1/2. 
Then Fy,oo(y) - F,0oo(y) = 

op(N- ), and thus the conditions for Lemma A.5 
are satisfied and so (A.11) is o,(1). Equation (A.11) can be bounded by 

1 1 
N1/4 sup 

F Y,01Y, 1 (Fy,00(Y10,i))) fY,01l(Fv-,o1 (Fv,oo(VYo, 
i))) 

x N1/4 Sup Fy,01o(F-, o(Fy,oo(Yio,j))) - Fy,oo(Y1o,i) . q 

Both factors are op(l1), so (A.11) is o,(1). 
Second, consider (A.6): 

1/2 
N10 N10 

F'-,11 YF,0010,) 
- 

Fy,10(ooF(Ylo, i)) 

- ' 

i=1 i=1 

- 

N1/2 Y1 
Y,0(Fy, 

0(y)) - 
Fy,01(Fv,oo(Ylo,i)) 

1 

fr, 0(Fy,0o (Fy,oo (YYo,i))) 

x 
({1 Yoo,j < Y0o,i }- FL, oo(Y(Yl, i)) 

0j=1 
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SN1/2 sup 
Fyo1l 

(Fi,oo0(y)) - F,01(Fy,oo(y)) 

1 1 Noo 

-(1U 
Yoo,i < y}- F,oo(y)) fy,oI(F,1,1(Fy,oo(y))) Noo y 

= N1/2 sup Fy- (/v,oo(y)) 
- F10 (Fr,oo(y)) 

Y 

ol 
- 

(Fr, 
oo(y) - Fy,oo(y)) 

fY,o (Fo,01(Fv,oo(Y))) 

Expanding Fy- (v,0oo(y)) around F,0oo(y) implies that this can be bounded by 

N1/2 supf (y) sup IFy,oo0(y) 
- Fy,oo(y)2, 

y fy,Ol(Y)3 dy y 

which is op(1) by Lemma A.2. 
Finally, the third term (A.7) is equal to zero. Q.E.D. 

LEMMA A.9-Asymptotic Normality: Suppose Assumption 5.1 holds. Then 

N 

. 
FY-Fo,( y,?o(Yjo,j)) 

- 
E[Fy-, (Fv,oo(Yjo)) ( A N10 

i=t 

d Vp q r 

O00 ao l a ,10 

PROOF: Because of Lemma A.8, it is sufficient to show that 

/-(P + +q + 1+r) -A K(O, VP/aoo + Vq/ao1 + Vr/alo). 

Conditional on Ng,, all three components fP, ^q, and f' are sample averages of 
independent and identically distributed random variables. Given the assump- 
tions on the distributions of Yg,, all the moments of these functions exist, and, 
therefore, central limit theorems apply and the result follows directly. Q.E.D. 

PROOF OF THEOREM 5.1: Apply Lemmas A.8 and A.9, which give us 
the asymptotic distribution of 

F,- 
(Fy,00oo(Yloi))/Nlo. We are interested in 

the large sample behavior of E Y,,l/NI, 
- E F4,(Fv,00(Y,0~))/N,0. Whereas 

Ei 
Y11i/Nl, 

= ^s is asymptotically independent of FF (' 

-(Foo(Y~0i))/No0, this just leads to the extra variance term V.,/ar,. Q.E.D. 

Before proving Theorem 5.2, we state two preliminary lemmas. Proofs are 
provided in the supplement. 
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LEMMA A.10: Suppose that for hi, h:Y1 --+ R, and h2, h2Y2 - -I, 

supyE,1 1hi(y) - hi(y)l --0,, SUpYEY2 h2(y) - h2(y)1 ->- 0, 
supy,~, Ihl(y) < 

hi < oc, and SUPYEY2 Ih2(y) < h2 < oo. Then 

sup hil(yl)h2(Y2) - 
hi(ya)h2(Y2)I 

--+ 0. 
Y 1 EjyI2, Y2 

LEMMA A.11: Suppose that for hi, h:IY1 -j Y2 c R and 
h2:"Y2 

--* R, 

supyp1 ihi (y) - hi(y)I - >+ 0 and SUpyE2 h12(y) - h2(y)l -A- 0, and suppose that 
h2(y) is continuously differentiable with its derivative bounded in absolute value 

by h'2 < o. Then 

(A.12) supIh2(hi(y)) - h2(hi(y)) -- 0. 
yEY1 

PROOF OF THEOREM 5.2: Let f = infy,g,, fy,gt(Y), f = SUpy,g,t fy,gt(Y), and 

f' = sUPyg,(afy,gt/dy)(y). Also let 
Cp 

= 
supooylo P(yoo, o10), Cq = 

supy01o,y1 q(Y01, Y0o), and C, = 
supyo 

r(ylo). By Assumption 5.1, f > 0, f < 00, 

f' < ~, and C,, Cq, C < 00. 

It suffices to show g,, -4- agt for all g, t = 0, 1, and VP P-A VP, IqJ -PP V1q 

Vr 
P - Vr, and Vs 

Ap_ 
Vs. Consistency of agt and Vs is immediate. Next con- 

sider consistency of VP. The proof is broken up into three steps: the first step 
is to prove uniform consistency of fy,oo(y), the second step is to prove uniform 

consistency of P(yoo, y1o) in both its arguments, and the third step is to prove 
consistency of VP given uniform consistency of P(yoo, y1o). 

For uniform consistency of fy,oo(y), first note that, for all 0 < 5 < 1/2, we 
have, by Lemmas A.2 and A.3, 

sup Ng, IFy,g,,(y) - Fy,gt(y)i A 0 and 
yEYgt 

sup 
Ng 

. 

I~,jgt(q) 
- 

F-Y,(q) 

A 0. 
qE[0,1] 

Now consider first the case with y < Ygt: 

sup fy,gt(y) - fy,gt(Y)l 
y< Ygt 

= sup Fy,g,(Y + N-1/3) - 

Fyg,(y)_ 

f(y) 
y<Ygt 



488 S. ATHEY AND G. W. IMBENS 

FFyg,(Y 
+ N-1!3) - 

Fygt(Y) Fy,gt(y + N-1/3) - Fy,gt(y) 
< sup 

yN-1/3 N-11/3 

+ 
sup 

Fy,gt(y + N-1/3) 
- 

Fy,gt(y) _ fgt(Y) _+ supN-l/3 

s Fy,gt(y + N-1/3) - FY,gt(Y + N-1/3) _FY,gt(y) - Fy,gt(y) < sup 
N-1/3 N-1/3 

113j dfY19t ~ 

< 2N'/ sup IFy,gt (y) - Fy,gt(y) I + N-1/3 Sup fgt (y) 
YEYgt yGYgtr y 

----+0, 

where j is some value in the support Yg,,. The same argument shows that 

sup,>, fy.g,(Y) - fygt(Y)I -+ 0, which, combined with the earlier part, shows 
that supyg, If,,gt(y) - 

fy,g,(y)i --I 0. 

The second step is to show uniform consistency of P(yoo, Yio). By bound- 
edness of the derivative of FY'1 (q), and uniform convergence of P1,0 (q) 
and F,0oo(y), Lemma A.11 implies uniform convergence of 

Fr, (Fy,oo(y)) 
to F-11 (Fy,0oo(y)). This in turn, combined with uniform convergence of fy,01 (y) 
and another application of Lemma A.11, implies uniform convergence of 

Y,0o (Fo,01 (Fyv,O(ylo))) to fy,0 (F--1 (F, oo(Ylo))). Because fy,o 
o(y) 

is bounded 

away from zero, this implies uniform convergence of 
1/fy,o1(F,01 

(Fyo(ylo))) 
to 

1/fyo01(F,01 
(FY,oo(ylo))). Finally, using Lemma A.10 then gives uniform con- 

vergence of P(yoo, YIo) to P(yoo, ylo), completing the second step of the proof. 
The third step is to show consistency of VP given uniform convergence 

of P(yoo, y1o). For any 8 > 0, let 77 = min( vE/2, E/(4Cp)) (where, as defined 

before, Cp 
= supy, P(y, z)). Then for N large enough so that 

sup0ooyo 
P 

(y00, 
ylo) - P(yoo, Y1o)l < rt, it follows that 

sup P o(YO. Y, 10j1) -P 10 

Y jO o 

' 

1 
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and thus, using A2 - B2 = (A - B)2 + 2B(A - B), 

1 N10 2 N10 12 

supo [1 ~ (y0, Y0o,1) - ) N10 P(yoo, Y0o,j) 

< 
"12 

+ 
2Cp" < e. 

Hence 

Thus it remains to prove that 

N00 P ( Yoo, i, Y10o,j) 
. 

i=1 j= 1 

VP V- 
NIPP((YooYiYYlo,)) -[0. 

By boundedness of P(yoo, Y1o), it follows that 
(1/Nxo) EN..P(yYoYl) 

- E[P(y, 
)] = (1/No) 

1N•[ 
P(y, Y1o,j) - p(y) 

-4-0 
uniformly in y. Hence, 

1 

1 P1 

EP ( Yoo,i, Yo,) Noo P ( Y, i) 
2 0. 

i= 1 j= 1 i=1 

Finally, by the law of large numbers, 
U 

p(Yo,)2/N00 - VP-A 0, implying 
consistency of VP. Consistency of Vq and V• follows the same pattern of first 

establishing uniform consistency of Q(yo1, ylo) and ?(y), respectively, followed 
by using the law of large numbers. The proofs are therefore omitted. Q.E.D. 

Next we establish an alternative representation of the bounds on the distrib- 
ution function, as well as an analytic representation of bounds on the average 
treatment effect. 

LEMMA A.12-Bounds on the Average Treatment Effect: Suppose Assump- 
tions 3.1, 3.3, 3.4, 4.2, 4.3, and 5.2 hold. Suppose that the support of Y is a finite 
set. Then: 

(i) 
FN,1(y) 

= Pr(k(Y0) < y) and 

F,1(y) 

= Pr(k(Y10) y). 
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(ii) The average treatment effect, 7, satisfies 

7 E [IE[Y] - EF (Foo(o))], E[Y1]- E[F 
(Fy,(Y)) 

PROOF: Let Yoo = { A, ..., AL} and Yo, = {(Y, ..., YM be the supports of 
Yoo and Yol, respectively.40 By Assumption 3.4 the supports of Yio and Y•, are 
subsets of these. 

Fix y. Let 1(y) = max{/ = 1,...,L : k(A1) < y}. Consider two cases: 
(i) 1(y) < L and (ii) 1(y) = L. Start with case (i). Then, k(Al(y)+?) > y. Also, 
since k(y) is nondecreasing in y, 

FUB,11(y) - Pr(k(Ylo) < y) = Pr(Yio A(y)) = Fy,lo(Al(y)). 

Define y(y) - k(Al(y)) and y'(y) - k(Al(y,,l) so that y(y) < y < y'(y). 
Also define for j E {1, ..., L}, qj = 

FYoo(Aj) 
and note that by definition 

of Foo, F,oo(Aj) = 
qj-1. 

Define p(y) Fy,01(y). Because y > k(Al(y)) = 

Fy,'o(Fy,oo(Al(y))) (the inequality follows from the definition of 1(y); the 
equality follows from the definition of k(y)), applying the nondecreasing 
function Fy,o (-) to both sides of the inequality yields p(y) = Fy,ol(y) > 
Fy,o1(Fyop (Fy00o(Al(y)))). By the definition of the inverse distribution func- 

tion, Fy(F~'(q)) > q, so that p(y) > Fy,oo(Al(y)) = ql(y)-l. Because 1(y) < L, 
Assumption 5.2 rules out equality of Fy,o0(ym) and Fy,oo(Aj) and, therefore 
p(y) > ql(y)-l. Also, F-yo1(p(y))=- 

F-l,(Fy,o0(y)) 
<y < y'(y) and, substitut- 

ing in definitions, y'(y) = F- I(Fyoo(Al(y)+1)) = F 1(ql(y)). Putting the latter 
two conclusions together, we conclude that 

Fy_'o1 
(p(y)) < FY'ol(ql(y)), which 

implies p(y) < ql(y). Whereas we have now established 
ql(y•l1 

< p(y) < ql(y), it 
follows by the definition of the inverse function that F-o0o(p(y)) = Al(y). Hence, 

F(y) = 
F1o(Foo(Fy,o01(y))) 

= Fy,to(F-0oo(p(y))) 
= Fy,to(A = (y)) -11 

This proves the first part of the lemma for the upper bound for case (i). 
In case (ii), k(AL) < y, implying that F11U Pr(k(Yio) y) = Pr(Yo B 

AL) = 1. Applying the same argument as before, one can show that p(y) 
Fy,o1(y)> Fy oo(AL), implying F-1(p(y)) = AL and, hence, F (y) 
Fy,to(AL) = 1= 

FUB,11 (y). 
The result for the lower bound follows the same pattern and is omitted here. 

The second part of the lemma follows because we have established that k(Y10) 
has distribution F,11(.) and k(Y10) has distribution 

FVIN(-). 
Q.E.D. 

40These supports can be the same. 
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Before proving Theorem 5.4 we need a preliminary result. 

LEMMA A.13: For all 1 = 1, ..., L, N(k(Ah) - k(A,)) • 0 and H- x 

(k(At) 
- k(Al)) -L 0. 

PROOF: Define v = minl,m:min(1,m)<L IFoo(Ah) - Fol(Am)l. By Assumption 5.2 
and the finite support assumption, v > 0. By uniform convergence of the em- 
pirical distribution function, there is for all e > 0 an N8,~ such that for N > N,~, 
we have 

Pr(sup Fy,oo(y) - Fv,oo(y)I 
> v/3) < /4, 

y 

Pr(sup IFy,o0 (y)- 
Fy,ol(y)I 

> v/3) < e/4 
Y 

and 

Pr(sup IF, oo(y)- F-,oo(y)l > v/3) < e/4, 
y 

Pr(sup 
•-,o01(y) 

- 
EY,01 (Y)I> v/3)< e/4. 

Y 

Now consider the case where 

(A.13) sup Fy,oo(y) - Fy,oo(y) v/3, 
y 

sup IFy,ol(y) - Fy,oI(y)I (< /3, 
y 

sup Jr,00(y) - Fr,00(y)l < v/3, and 
y 

sup Ify,o1(y) - Ey,01(y)I < v/3. 
y 

By the above argument the probability of (A.13) is larger than 1 - e for 
N > N,,N. Hence, it can be made arbitrarily close to 1 by choosing N large 
enough. 

Let Am = Fy1o1 (qoo,t). By Assumption 5.2, it follows that Fy,o01(Am-l) < q00oo, = 

F,o00(Ah) < Fy,ol(Am), with Fy,ol(Am) - qoo,l > v and qoo,j - Fy,o0(Am-1) > v by 
the definition of v. Conditional on (A.13), we therefore have FY,01(Am-1) < 

Fy,00(Ah) < •Y,o0(Am). This implies F-,1 (Fy,00(A,))= Am = 
F- 

01(F,0oo(A,)), and 

thus k(A,) = k(AI). Hence, for any nr, e > 0, for N > N~,_, we have 

_< 1 - (1 - e)-=e, 
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which can be choosen arbitrarily small. The same argument applies to 

?JN(k(At) - 
k(A/)), 

so it is therefore omitted. Q.E.D. 

PROOF OF THEOREM 5.4: We prove only the first assertion; the second fol- 
lows the same argument. Consider 

1 N11 
N 

_UB 

- TUB 
. 

,i - E[Y,1]) 
(TUB TUB) /atN11 iI 

1 
N10 

N/a_,0N10"L 

E(k•(Yoi) 

- 

IE[k(Y10)1) i=1 

Nil 

- 

•0ai10"op 

EL(k(Yioi) - E k(Yio)]) i=1 

N10 
1 NIO + v o L((Y0o) - 

k(Y-i)). i=1 

1A 
a IN 

L 
i 

(YI,i - E[Y1I) - 1 

-on_(Yi 
o 

.1 
- E[k(Y Yo)]) 

i= ll l= 1 

Hence all we need to prove is that (1/ a10N10 ) . ENO(k(Yi10 ,) 
- k(Y10)) 0. 

This expression can be bounded in absolute value by -N 
? 
maxt=1,...,L Ik(AI) - 

k(Ai)I. Because N. 
-k(A/) 

- 
k(A/)I 

converges to zero for each 1 by Lem- 
ma A.13, this converges to zero. Q.E.D. 

PROOF OF THEOREM 6.2: The result in Corollary 6.1 implies that it is suf- 
ficient to show that NI(k, - Kj) - nA(0, /V,). To show joint normality, we 
need to show that any arbitrary linear combinations of terms of the form the 

-N. (kggogltoti 
- 

Kg0,81,to,t1) 
are normally distributed. This follows from the as- 

ymptotic normality and independence of the 4,,, p 
,,, ,,, 

and 
gt,, 

combined 
with their independence across groups and time periods. Q.E.D. 



DIFFERENCE-IN-DIFFERENCES MODELS 493 

APPENDIX B: COVARIANCES OF 
/-Nkgo,g1,to,t1 

Here we list, for all combinations of (go, gl, to, 
tx) 

and (g', g', to, t'), the 
covariance of 

A•Nkgo,gl,tO,t1 
and 

v1NTkgo,g,t;, t. 
Note that tl > to and t' > to. 

To avoid duplication, we also consider only the cases with gi > go and g' > go. 
1. go = 

go, 
gl = g, to = to, and tl = t: C = N E[(^,,t,t)2 + N 

E[( 
go,g,to,t 

)2] + N E[(or )2] + N -E[(s 
o,g,to,)2]. . /(0go,g9,to140 + E 0,94041 

2. go = 
go, 

gl = 
gl, 

to = to, and tl /t: C = N 
-E[^o,gt,toYgg,to) 

P, Et r 
^r 

]. 
Sgog,to,t4 (Ygo,to)]/ago,to + N - 

E[Agoglto,1 
' tL 

,to,0 3. go = 

go, 

gl = 
g'l 

to # t6, and tl = t: C = N 
qE[ At 

0 i + 
N - E[A 

gogltoot, gogl014,t 

4. go = g0, g1 = g', to to, t1 : tK, and to = tj: C = 
NE[0 q 

5. go = g0, g1 = g , to I t(, t1 Z ti, and to = t;: C = N E o,g1,to, 

6. go = g0, g1 g, to = t, and t = t: C = N . E[ tt, tot1 N iE[ 
g0,g1,to,t " 'go,gx ,to,t 

7.g- oglg, 
g1 t gj, to = t t t and tC - 

N C = N. Etf 
go,gl,tO,, 5. go = g', gl g=', to = 

t,• 
and 

to t' 
t: C= N E[t 

9o g1g11A9 
t~,' 

ad = t1 C= 
"[ 

1E 
go,tol" 

8. go = g, g g, to 
r 

t, and t = tS: 
NE C 

11.gogt 
g 

[= 
gl,to 

A = tatoogogltgtto0, l 

6. go = g0, gl : 
gl, 

to t, t, and 

tl 

t = C t: C = N + 
]E -,-,to 

13. go=g, =0 g , to to ttto 
' t, and t t: C = N 

.E[^goggto t 

Aq 

1. g 

o, 
gl 

= g, to 
to 

, and t = tC: C= N 
p 

E[ No 
p ,Etot 15. go g, gl 

= 
g', to 0 to, t : tt, and to = t: C = NE[ 11 t 

og1 A 40, 
an 

an = C- N. 

I.. g t .gl•,tt]l +tg 1. go = 
o g, gl g ', to t, t t, and to = t': C = N . E[o,gtot 1['tLgo, g ,tol 

,t1 

18. go =g, gi = #g, to= , to, and and t=t: C N [A 

g1. go 1 10 g, = 
t, to 

= 

t1, 
and t 

- t: C = g 'g 
[Lgol ,tot1 

NE , 
, __ ,t,,."r "ro]+ 

12. go 
- 

g 
g,g 

= 
gl, 

to 
= 

t to, and 
tI 

= tt: C = N E[ 
E[ro,g,to,1 

^I 
S 

[1 
g1, to,gti 

1 " 
gog t 

15. go 
g/: go 

l g', 
to t , 

" C 
t', and to t: 

? 
At 

1,o 
t to"/t" [ 

gg ,t 
o,go, to, 
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19. go 0 g;, gl - 
g', g to = go, to 

- 
t, t t, and to = ti: C = 

N. E[? ogl,to, 
^p 

/I!,go,tl,t 
t 

22. go :*g', g =g', g0 = gj, to = t , and t = t(: C= N . E[ tt 

2 
gl,g 

o, 
to ,Eto 

23. go 0 g', g = g', go = g , to - to, and t1 = t{ C= N- E[ 
"0,gtor 24. 

goto , go g , ,to , t t, and = t C = NE[o 

25. go g, gi g', go= g', to to, t tand to t': C= N 
PE[o 

to 

g, go, to,t] 23. go -' g, g g, go = g', to to, and tl - t: C-N.CE[q 
"^r 0] 

24. go 9 
go, 

gl = gl, go = g9, to = to, tl 0-t', 
and to - t: C- N-.E[Aqoo 

-go 
8, 

g 
ti 

l 
, 
t1 ]" 25. go 

- go, gl -? 

g', go 

=gl, 

to 
=: tol ti 

=A 

t1, 

and to= tl: C-N E^ p S0 1 1 1 
.[ ,lg0,g1,to,tl 

2go go, t' , to " 

26. go 
:Ago, 

gl : g', go =A g', and g' 
- 

gl: C = 0. 
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