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ABSTRACT

In this paper we analyze estimation of coefficients in regression models under moment
restrictions where the moment restrictions are derived from auxiliary data. Our approach is similar
to those that have been used in statistics for analyzing contingency tables with known marginals.
These techniques are useful in cases where data from a small, potentially non-representative data set
can be supplemented with auxiliary information from another data set which may be much larger
and/or more representative of the target population of interest. The moment restrictions yield
weights for each observation that can subsequently be used in weighted regression analysis. We
discuss the interpretation of these weights both under the assumption that the target population (from
which the moments are constructed} and the sampled population (from which the sample is drawn)
are the same, as well as under the assumption that these populations differ.

We present an application based on omitted ability bias in estimation of wage regressions.
The National Longitudinal Survey Young Men’s Cohort (NLS), in addition to containing information
for each observation on earnings, education, and experience, records data on two test scores that may
be considered proxies for ability. The NLS is a small data set, however, with a high attrition rate.
We investigate how to mitigate these problems in the NLS by forming moments from the joint
distribution of education, experience, and earnings in the 1% sample of the 1980 U.S. Census and
using these moments to construct weights for weighted regression analysis of the NLS. We analyze
the impacts of our weighted regression techniques on the estimated coefficients and standard errors
on returns to education and experience in the NLS controlling for ability, with and without the
assumption that the NLS and the Census samples are random samples from the same population.
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1. INTRODUCTION

Economists seldom make use of weighted estimators.! This is due, in part, to the fact that
consistency of the estimated coefficients of a “correctly” specified model is often achieved
without weighting. But it is also due to difficulties in determining which weights are appro-
priate and how to interpret the differences between the results of various weighting schemes.

While sampling weights that accompany longitudinal datasets in principle, at least ini-
tially, represent carefully documented stratification schemes, typically they are adjusted in
complex ways to mitigate nonresponse and attrition, making it difficult to interpret these
weights or to adjust standard errors appropriately. In this paper, we construct weights that
are derived from auxiliary data and we propose a weighted estimation methodology that is
easy to interpret and that is neither difficult to implement nor computationally burdensome.

We investigate estimation of wage regressions using the National Longitudinal Survey
Young Men’s Cohort (NLS) with weights derived from readily available Census records.
These weights serve two purposes. First, the weights can increase precision. Second, in
cases where the primary sample data (in our case the NLS} are not representative of the
underlying Census distribution, the weights change the estimand. Rather than estimating
population values for the primary sample, the weights shift the sample distribution towards
the Census distribution. If the population values corresponding to the Census distribution
are of greater interest than those corresponding to the distribution of the primary sample,
such a shift may be desirable.

The key idea is to construct weights for the observations from the first dataset to force
some moments in the weighted sample to equal the corresponding moments from a second

dataset. The weights are constructed optimally in an empirical likelihood sense to minimize

1¥or example, in a sample of twenty papers which utilize data from the NLS, we found only one reference
to the use of the NLS sample weights. Keane, Moffitt and Runkle (1988) report “we employ survey weights
in all our analyses,” and then in a footnote they add, “...it turned out that unweighted estimates are almost
identical to the weighted ones.” It is not clear whether or not this conclusion is based on a formal test of
the difference between the estimates.



the large sample variance of the estimators of the parameters of interest under the assump-
tion of equality of the two distributions. Given the weights, the functionals of interest are
estimated using the same estimating equations as would have been used if the moments from
the second dataset were unknown, but with the contribution of each observation in the first
dataset multiplied by its corresponding weight. In the case of simple wage regressions, we
estimate returns to education, experience, and ability using weighted least squares.

There are important links between the weighting methods employed in this paper and
various strands of the econometrics and statistics literature. First, our methods are most
closely related to recent alternatives to GMM estimation based on empirical likelihood meth-
ods (Back and Brown, 1990; Imbens, 1993; Qin and Lawless, 1994; Imbens, Johnson, and
Spady, 1995). The estimators used in this paper are, in fact, a special case of empirical
likelihood estimators for GMM models with the overidentifying moments not depending on
unknown parameters. Second, our methods are related to the statistical literature on missing
data (Rubin, 1977; Little and Rubin, 1987). A key difference with this literature is that we do
not use the unit level Census data, only averages of a particular set of functions of the Census
variables. Third, our methods can be viewed as an extension of the work on estimation of
cell probabilities in contingency tables with known marginals (Deming and Stephan, 1942;
Ireland and Kullback, 1968; Little and Wu, 1991), where we relax the multinomial nature
of the contingency table problem and do not assume the marginal distributions are known
without sampling error. Finally, our work complements that of Imbens and Lancaster (1994)
who analyze estimation of parameters of a conditional distribution under moment restric-
tions constructed from aggregate data. In contrast to their work we do not make parametric
assumptions. While we therefore do not achieve some of the efficiency gains they report from
the using auxiliary information, it aids in the interpretation of the results when target and

sampled population differ.



2. BACKGROUND

In this section we discuss two simple examples in order to motivate the dual purposes
of weighting. In the first example, we focus on the manner in which incorporating weights
into estimation can increase the precision of the estimates beyond that of a consistent but
inefficient estimator. The second example highlights how weighting can shift the estimand
from the estimand that would obtain for a large sample from the sampled population to the

estimand that would obtain for a large sample from a different, target population.

EXAMPLE 1

We are interested in the expected value o* of a random variable Z. We have a random
sample of size N from a large population. Population averages will be denoted by E[-]. With
no information about the shape of the distribution, the efficient estimator for a* = E{Z],

the population average of Z, is

. 1 ¥
=z=ﬁr§zn1

with normalized variance V(Z).

ol

(1)

Now consider estimation of o* given prior knowledge of p* = Pr(Z > 0). While & is
still a consistent estimator of o*, it is no longer efficient. The efficient estimator for o™ 1s a

weighted average of the averages in the subsamples indexed by Z > 0 and Z < 0:
(2) &=p-a+(1-p) %

where z; = (£ 6(2,) 2.)/ T 8(2,) and 2o = (T(1-8(2a))- z.)/ $(1 —6(2,)). In this notation
6(z) is the indicator function for the event z > 0. This estimator can also be written as a

weighted average of the z,:

1 N
(3) éz:——-an-zn,
Nﬂ:l

with weights



(4) w=(%)‘ ( ) s(en)

In this representation p = z = 3 6(2,)/N is the fraction of observations with z,

0. The normalized variance of the limiting distribution of & is in large samples equal to
E[V(Z2)8(Z))). In large samples the difference between the normalized variances of & and &
is V(2) - EIV(ZI8(2)] = V(EZI8(2)]) > 0 |

It is the last representation of &, the weighted average of z, with the weights depending
on the marginal information, that is the focus of this paper. Intuitively the weighting makes
the sample more representative of the population by correcting the relative weights of the
positive Z and negative Z sub—populations from p to p* and 1 — p to 1 — p* respectively, and
in the process leads to a more precise estimator.

An alternative interpretation of this example, discussed in Lancaster (1991), is that in
large samples, conditional on the ancillary statistic 3_ 6(z,,) (and hence conditional on p),
& and & have the same normalized variance E[V(Z}6(Z))] but & is unbiased while & has
expectation E[&|Y 6(z.)] = o+ (p—p")-(E[Z|6(Z) = 1)— E{Z|6(Z) = 0]) which in general

differs from o*. O

EXAMPLE 2

The second example concerns the Weighted Exogenous Sampling Maximum Likelihood
(WESML) estimator for discrete choice models with choice based sampling proposed by
Manski and Lerman {1977) and discussed in Cosslett (1981) and Imbens (1992). Let Y be a
binary outcome whose distribution we wish to express in terms of the distribution of some
regressor vector X. In the target population the conditional probability of the event Y =1

given X = z is assumed to have a probit form:

Pr{Y =1|X =z) = ®(28) = '/:’: \/12_1

with unknown parameter 6, and the {unknown) marginal probability density function of X

exp ’—22/2] dz,

1s p(z). With a random sample from the target population, the researcher could estimate 8

4



by maximum likelihood methods, which would essentially amount to solving the likelihood

equations

N 8ln
0= z_:l Bgf(ynlzn; 9)’

where the conditional density f(y|z; &) equals
flylz:0) = B(='0) - (1 - @(='8)) .

Instead, the researcher is assumed to have a choice-based sample, where with (known) prob-
ability r an observation is drawn randomly from the stratum, or subpopulation, with y = 1
and with probability 1 —r an observation is drawn from the stratum with y = 0. We can view
such a sample as a random sample from a different population, which we call the sampled
population. We are interested in the parameter & that would solve, in the limit, the likeli-
hood equations in a random sample from the target population, but where what is available
instead is a random sample from the sampled population. In addition, it is assumed that
the probability in the target population of the event y = 1, denoted by ¢ = [ ®(2'8)dP(z),
is known. Manski and Lerman proposed estimating § given a choice-based sample by max-

imizing the weighted likelihood, or by solving the weighted likelihood equations:

N dln f
0= Wy - _"(ynlxn; 9)?
2 un g

where

g\? (1—g\'™¥
5 w= () (=)
(8) w r l—r
The WESML estimator is consistent for the parameter of interest, i.e., for the 8 that solves
the limiting likelihood equations given a random sample from the target population, where

solving the unweighted likelihood equations would, in general, not lead to a consistent esti-

mator. O

In this paper we present an approach that formally unifies the roles of weights in affecting

precision and in changing the estimand. We also extend the examples by (i) focusing on
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more general estimands, (ii) allowing the marginal information to be anything that can be
represented as the expectation of a known function of the variables in the first dataset, (iii)
allowing for more general differences between the target and sampled populations, and (iv)

allowing for sampling error in the moments constructed from the second dataset.

3. LINEAR REGRESSION WITH MOMENT RESTRICTIONS

We have N independent realizations {z1,22,...,2zn} of a random variable Z = (¥, X)
with unknown probability density function f(y,z). Y is a scalar random variable, X a vector
of dimension K. The population quantity of interest, 8, is the vector of linear regression

coefficients E{X X']"'E[XY]. The least squares estimator is
R N -1¢ N
fors = [Z znzi.] > rnyn]-
n=1 =1
As N gets large, the distribution of N (s — 8°) converges to a normal distribution with
mean zero and variance

V.. = E[XX'|TE[(Y - X0 )X X'|E[X X!

= E[X X' E[* X X'|E|X X'

We do not assume that the errors, ¢ = ¥ — X’6*, are homoskedastic, and therefore the
variance is the Huber (1980) and White (1980) heteroskedasticity consistent variance.

Now consider estimating 6* when in addition to a random sample of Z, we have exact
knowledge of the expectation k*, in the same population of an R dimensional function of
Y and X, denoted by A(Y,X). Formally, »* = E[R(Y, X)] = [ h(y,z)dF(y,z). Examples
include A(Y, X} = Y, where the researcher knows the mean of Y, or Y, X)=1{(Y,X) €
C} where the researcher knows the probability that (Y, X) is in a particular subset C of
the sample space. This implies the moment restriction E[A(Y,X)] = 0 where A(Y, X) =

h(Y,X) — k*. For example, if we know the mean of Y, the corresponding restriction would
be E[h(Y, X)] = 0 with A(Y, X) = h(Y,X)~ k" =Y — E[Y].

We propose estimating 8” in this framework by weighted least squares:

6



R N —1¢ N
6) dws= % darazy] |2 iozntn),
n=1

n=1
where the scalar weights w0, solve
N N N
(7) max ) lnw, subjectto Y w.=1 and Y wn - h(ya,za) = 0.
v n=1 n=1 n=1
If there are no restrictions of the form Y w,A(¥n,zs) = 0 the weights b, equal 1/N and
consequently fwis = dous.

The large sample properties of this estimator are given in the following theorem.

Theorem 1 Given regularity conditions, the estimator Bwis for 0° has the following asymp-

totic properties:
fwrs 2 6°
VN {(Bwis — 6°) -2+ N(0, E[X X'| " (E[e?X X'] — E[eXK|E[RR]) ' E[ch X' E[X X']™).

PROOF: See Appendix.
We could have written the estimation problem in a more standard GMM form as esti-

mating ¢ under the moment restrictions E{¢(y, =, 6*)] = 0 where

(8) ¥(v,z,0)= ( I(I:’(;;’)G) )

Given these moment functions, the standard GMM approach (Hansen, 1982; Newey and
McFadden, 1994) estimates 6* by minimizing the quadratic form
N p N
Qo(t) = [ iy, 20,0)] O [ $lmr20,0)]
Let éGMM be the minimand of Qc(f). The optimal choice for the weight matrix C is
C* = Ely(y,z,0*)%(y, z,87)]™?, or a consistent estimate thereof. With the optimal weight
matrix C*, the large sample distribution of \/N(éGMM — 6*) is the same as the large sample
distribution of v/N(fwrs — 07) given in Theorem 1. This analogy implies that the same

7



efficiency argument that has been made for conventional GMM estimators (Chamberlain,
1987) can be used to prove efficiency of the estimator proposed in this section. Underlining
the link with GMM estimation is the fact that fwLs can be viewed as a special case of the
Empirical Likelihood (EL) estimator, which is discussed in the context of GMM problems as
an alternative to the conventional two—step estimators by Back and Brown (1990), Imbens
(1993), and Qin and Lawless (1994).

We have not made any assumptions on the distribution of ¢ = ¥ — X‘8*. By construction
it is uncorrelated with X, but it need not be independent of X, nor does it have to have a
normal distribution. If, however, it is known to have a normal distribution, one can improve
considerably upon the estimators discussed here. This is perhaps surprising because in the
absence of auxiliary information knowledge of normality of ¢ does not affect inference or
increase precision. Combined with auxiliary information, knowledge of the parametric form
of the density of € does, however, affect inference, and efficient estimators no longer have the

simple form described above. This case has been analyzed by Imbens and Lancaster (1994).

4. ESTIMATION WHEN THE TARGET AND SAMPLED POPULATION DIFFER

In the preceding section we analyzed the proposed estimator s under the assump-
tion that the moment restrictions are correctly specified, i.e., under.the assumption that
E{h(y,z)] = [ h{y,z)dF(y,z) = 0. This need not be the case, and in fact weighted estima-
tion is typically motivated by the presumption that the population from which the sample
was drawn differs from the population of interest, as in Example 2. In addition, the weights
provided in the NLS are explicitly motivated by the original sampling scheme and by sub-
sequent changes in the sample (due to attrition) over time, and are intended to make the
weighted sample representative of the corresponding age cohort of the entire US population.

The case where target and sampled population differ requires additional notation. Let
(¥n,Za)X, be a random sample from a population which we label the sampled population,

with common density function f,(y,z). Let fi(y,z) be the probability density function of



the target population, borrowing the terminclogy from Little and Wu (1991). We do not
actually have a random sample from this target population, but we know the expectation of

a vector valued function (Y, X) of Y and X over its distribution:
EMY,X)] = [ h(y,2)dFily, ) = b

The subscript t of the expectations operator indicates the distribution over which the expec-
tation is taken. We can also capture this information as knowledge of a function A(Y, X) =
h(Y, X)—h* which is known to have expectation zero in the target population, or E[h(Y, X)] =
0. The function k(Y, X) need not have expectation zero when the expectation is taken over
the sampled population. In this case we have to take extra care in defining the parameters
of interest. Let & be the population value corresponding to the solution to the estimating
equations 3", Tn(yn — 2,6} = 0 given a sample drawn randomly from the population with
probability density function fy(y,z). The following theorem gives the large sample results

for this case.

Theorem 2 If the target distribution fi(y,z) and the sampled distribution f,(y,z) differ,

then, under regularity conditions,
A d .
fwLs — 0,

where

f.(y,:r)

falv:2) = T ek 2)"

with X}, the solution to
max E, [m(: + Xh(Y, X))
In addition,

VN(bwis — 67) 2 N(0, E,[X X EJEX X' - EJeXRE[RE T E,[ERX)E[X X)),



where X = X/y/1 + Anh(Y, X), é = (Y=X"02)/+/1 + Ah(Y, X) and h(Y, X) = h(Y, X)/(1+
Ash(Y, X))

ProoOF: See Appendix.

Theorem 2 show that in the general case where E,{h(Y, X)) differs from zero, the tar-
get of estimation 83, is the probability limit of the estimator based on unweighted estima-
tion using a random sample from an artificial population with probability density function
f;,(y,:). This distribution can be interpreted as the distribution closest to the sampled
distribution (i.e., fi{y,z)) in an empirical likelihood sense, subject to the restrictions that
it has the expectation of A(y,r) in common with the target distribution, that is, subject
to Ey[h(Y,X)] = Ei[A{Y,X)] = 0. Under some conditions this artificial population has
the same distribution as the target population. Formally, if the distribution in the sample,

fs{y,z) can be written as

fs(y,z) = fely,z) - (1 + +'A(y, z)),

for some vector 7, then matching on the moments E[(Y, X)] will lead to an artificial distri-
bution f,(y, ) that is identical to the target distribution f;(y,z). This follows because the
probability limit A%, of A will in this case be equal to .

As an example of this, consider the choice-based sampling example (Example 2) intro-

duced in Section 2. In this case the distribution in the target population is
1—
fily,z) = @(='8) - (1 - 2(='6)) - p(a).

The distribution in the sampled population is

fily,z) = [g a0 [; — (- 2(=)] " pla)

We match on the marginal probability of the event ¥ =1, or h(y,z} = y — q, implying that
the probability limit A7, of } is the solution to the equation

10



o~ £l - Al el

l1—-r

R (=R

The solution is

- _ 79
g(1—q)’
implying that the “intermediate” distribution, fu{y, ) equals fi(y,z):
fs(y, z)
fﬁf(yﬁ ) 1+ A h(y, )

i r , V‘ l—7r _ ®(g’ 1—#' .
:1+(y—q)(r-q)/(q<1—q>)[6"I’(“’)] [ (- eE=)]
= 3(z'0) - (1-®(='9)) " p(z) = fily,2).

In this example the Lagrange multiplier A7, that forces the weighted sample moment 3~ wayn/N
to match the target moment ¢ reweighs the sample in the limit exactly back to the target
distribution.

In practice it is unlikely that matching on a few moments will lead to an artificial pop-
ulation with exactly the same distribution as the target population. However, as more and
more moments are matched, the artificial distribution will get close to the target distri-
bution. In particular, it may be possible to obtain enough of a resemblance between the
artificial distribution and the target distribution with only a few matched moments so that
plim(dwis) = 83, = 8; even though f,(y,z) # fs(y,z). The extreme example of this occurs
when @ depends only on a finite number of moments of the joint distribution of ¥ and X.
Matching exactly on those moments leads to an artificial distribution f,.(y,z) that can be
different from fi(y, ) even though it will be the case that 8}, = 6;.

An interesting connection with the missing data literature emerges here. See Little and

Rubin (1987) for a survey. Suppose that the first dataset consists of observations on {z1, z2),
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and the second dataset consists of observations on z; alone. If we match on a large number
of expectations of functions of z,, and if the sequence of these functions spans a large enough

space, the intermediate distribution will converge to

fa(2) = fu(a1lza) - fi(za).

This will equal the target distribution if the conditional distribution of the “missing vari-
able” z; conditional on the “observed variable” z; is the same in the target and sampled
distribution, i.e. if fi(z1|z2) = fs(z1|22). This condition implies that if we consider the two
datasets together with z; missing for some of the observations, the missing data are missing

at random according to the definition of Rubin (1977).

5. ACCCUNTING FOR SAMPLING ERRCR IN THE MOMENT RESTRICTIONS

In the previous sections we assumed that the extra information was in the form of a vector
h*, which is exactly equal to the expectation in the target population of a known function
h{-) of the random variables Y and X. We imposed the restriction 0 = E[A(Y,X)] =
Ey{h(Y, X)—h*), taking A" as fixed even though h* was actually estimated using a sample from
the target population. This may be an adequate procedure when the second dataset is much
larger than the first dataset and the sampled and target distribution are not too different.
When the techniques developed in this paper are applied to combinations of similarly sized
datasets, or to datasets with very different distributions, however, the sampling error in
the estimation of the moments of the second dataset should be taken into account. In this
section we generalize the results to the case where we do not know h* = E,[R(Y, X)] with
certainty. Suppose we have an estimate k of h*, based on an average of h(yi,z:) over a
random sample of size M from the target population. Based on such a random sample the

estimate b = L T, h(y;,z;) for h* would satisfy
VM(k - k%) =5 N(0,Ay)
with
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Ay = EJR(Y, X) — b - [R(Y, X) — k7).

We therefore assume that the extra information is in the form of the estimate £ and its
approximate variance A/M. In addition we assume that h — h* is independent of the first
sample {(yn,2x) 151

We estimate & by treating h(y,z) = h{y,z) — h as the moment to be restricted to have
expectation zero. We investigate the behavior of the estimator as N and M, the number
of observations in both datasets, go to infinity with their ratio converging to a constant
k = M/N. This is the only interesting case because if N and M converge at different rates,
then in large samples the sampling variation in the smaller dataset can be ignored.

To facilitate comparison with the exposition in the previous sections, we assume that
M/N is exactly equal to some integer k. We can therefore think of having N observa-
tions z where z, consists of (Yn,Zpn,Anis.- -+ hnk), i-6. the pair (ya,z,} and k observations
(Ruti,-- - hnk)- In this setup, the estimating equations for 6, ) and h are:

v [z = 02/ 4 N Ry, za) = B)
0=g(8,Ah)= N Z (h(ymIn) - h)/(l '{_' ’\'(h(_ymmn) —h))
LTy — B)
Solving this leads to b = Y3, 55 haj/(N - k), and 8 and } solving the same equations

as before, given in Theorem 2, with h{y, z) replaced by a(y,z) — k. The following theorem

describes the large sample properties of the estimator under these conditions.

Theorem 3 When N and M go to infinity, with M/{N = k, we have, under regularity

conditions,
0 g2,
PN IR D
h h

The variance/covariance matriz has the standard form for generulized method of moments

estimators:

13



b — 8, 0
VN |- |2 N( ( 0 ) ,L-1A(T)! ) :
h—h 0

where, as before, X = X/\/l + A(R(Y, X) — k=),
E= (Y—X’B;,)/\/l + AU(R(Y, X) — h*) and in addition h = A(Y, X)—h* and h = (R(Y, X)—
B*)/(1 4 Au(A(Y, X) — k")), we have

0 —E R —IrE,\1J(1 + A h)?

~EXX' —E,Xék' E,XEX!/(1+ Anh)
T =
0 0 ~Ir

and

E&*XX' EEXK 0
A=| EgehX' EhRE 0
0 0 Ak
In particular, the large sample variance of VN(§ — 6%,) equals

Ay

(9) EJXX') ME,[XX'] - EJeEXN|BE[MA P EJERXDE[X X' + V== =V

where

A‘l
n-1 ! n-1 I -1
V = E|X X E[Xeh B[R] E[——————1+A_,h)}+E[XX E[l h}

PROOF: See Appendix.

If M is very large relative to NV, i.e. if A,/k is very small, the variance is dominated by
the first term in (9) which is the variance given in Theorem 2 for the case where A* is known
without sampling error. If, in addition, we substitute A}, = 0 we obtain the variance for the
case where f,(y,z) = fi(y,z) given in Theorem 1. The second term in the variance of § can
be substantial, however, even with relatively large k, if the target and sampled distribution
are very different. In that case the weights will have a high variance, leading to an increase
in the variance of § because of the presence of a factor involving squares of the weights in

the variance formula in Theorem 3.
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6. THE COMPOSITION OF THE NLS

The NLS (that is, the NLS Young Men’s Cohort) sample of 5,225 young men was drawn
in 1966 to represent the civilian noninstitutionalized population of men ages 14-24. Even
at its inception, the NLS was a relatively small sample, but the benefits of the survey are
that it is longitudinal and contains detailed information about each individual in the sample.
The individuals selected into the sample were interviewed almost annually until 1981, after
which the survey was discontinued.

The NLS suffers from a very high attrition rate. By 1980, the year of the data we use
below, only 3438 (65.8%) of the men remained in the sample. Some of the attrition in early
years was due to the fact that a number of the men entered the military and were thus
excluded from the sample, but attrition rates remained high even after the Vietnam war.
(Rhoton, 1984).

There are three issues to consider when addressing the “representativeness” of data from
the 1980 NLS. The first issue is the representativeness of the original NLS sample as drawn
in 1966. According to Rhoton (1984), the original NLS sample in 1966 differed from the
1966 CPS. This suggests that the NLS need never have been representative of the U.S.
population. The second is the issue of missing data for certain individuals in the NLS.
Almost 2,000 observations in the original NLS cohort do not have information on IQ scores.
Griliches et al. (1978) show that 1Q is not missing completely at random; the probability of
reported IQ for a given observation is correlated with variables such as age and education.
Given that we are interested in using the data on IQ in our empirical analysis below, this
is a concern. Finally, there is the issue of attrition. If attrition from the NLS were entirely
random or were a function solely of factors uncorrelated with any variables of interest, one
would worry about attrition only to the extent that it further reduced the NLS sample size.
Attrition in the NLS was not random, however, and it was correlated with factors such as

income (Rothon and Nagi, 1991), age, and education (Griliches et al., 1978} which are all
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relevant to human capital regressions.

The NLS does contain sampling weights that were updated each year of the survey in
an attempt to continue to keep the NLS representative of the U.S. population for that
age cohort (with the exception that no attempt was made to account for immigration).
The original sample weights in 1966 were constructed to reflect the original multi-stage
clustered sample design and to adjust for differential response rates across segments of the
population and oversampling of blacks. This adjustment process was bound to be somewhat
imperfect since the U.S. population used as the base comparison group was the 1960 Census
extrapolated forward to 1966. In subsequent years further adjustments were made to the
sampling weights to try to account for the nonrandom nature of attrition. This was done
by dividing the original sample into cells defined by race, education of father, and years
in place of residence at the first interview, calculating the response rate within a cell, and
adjusting by cell the sampling weights of remaining respondents. If the original (weighted)
1966 sample was not representative of the U.S. population, this adjustment of sampling
weights would not make later years of the survey representative. Moreover, it is not clear
that the cell adjustments adequately capture the non-random nature of the attrition. Details

on the weighting procedures are given in NLS Users’ Guide (1995).

7. RETURNS TO SCHOOLING AND CENSUS INFORMATION

In this section we apply the above analysis to the estimation of wage equations. Economists
have traditionally estimated returns to education using least squares regressions of the fol-

lowing type:
(10) In(earnings;) = B + S - education; + f; - experience; + f3 - experience? + ¢;.

Mincer (1974) estimates these and other equations on a large sample from the CPS. We use
usual weekly earnings, and interpret education as highest grade completed. Experience here
is the typical “potential experience” measure, calculated as age minus six minus years of

education. The NLS (sub)sample we use consists of 815 observations of white men between
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the ages of 28 and 38. Details of the sample we use are available in Blackburn and Neumark
(1991). The first two sets of results in Table 1 gives the least squares estimates of the
coefficients for our NLS sample. We report both unweighted “unit weight” estimates and
estimates using the weights provided with the NLS.

A large literature (see Griliches [1977] for an overview) has considered the biases resulting
from the possibility that there is variation in ability across individuals that makes them more
likely to get schooling, and which has also an independent effect on earnings. The NLS is
one of only a handful of datasets that contain measures of ability and years of schooling. In
particular, the NLS reports data on an IQ test score as well as the results of another ability

test, KWW (Knowledge of the World of Work). An alternative to (10} is then
(11) In(earnings;) = B + B - education; + B, - experience; + B3 - experience}
+84-1Q; + Bs - KWW, + ¢,

The first two sets of results in Table 2 give least squares estimates of (11) based on our NLS
sample, again unweighted and weighted with the NLS provided weights. However, the NLS
is a relatively small dataset, and estimates based on (11) using the NLS will not be nearly
as precise as those based on the larger datasets such as the CPS or the Census.

The information from the Census consists of the means and variances of earnings, educa-
tion, experience, and the covariances of earnings with education, experience and experience
squared. They are calculated from a subsample of 127,345 observations from the 1% Public
Use Microdata Sample (PUMS) of the 1980 Census data that was constructed to mimic as
closely as possible the selection process that was used to obtain the NLS sample. We ex-
tracted data for non-self-employed working white men between the ages of 28-38, earning at
least half of the minumum wage (to remove outliers), and working in non-farm occupations.
In addition, since the NLS obtained test scores from high schools attended by the sample

respondents, we selected only those men in the Census with 9 or more years of education.
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Since the NLS topcodes education at 18, we did the same for our Census sample. The Census
data were used to estimate moments of the joint wage, years of education, and age distri-
butions of the relevant target population of the U.S. population in 1980. In the third set of
results in Table 1 the results from the regression without ability based on the Census data
are given. This regression can also be interpreted as based on the NLS data with weights
derived from the Census, because when we match on all first, second and cross moments, we
exactly recover the regression based on Census data alone.

In Table 2 we report the main results, from the regression with ability measures, for
the NLS alone, for the NLS with NLS sampling weights and for the NLS combined with
moments from the Census. We match on thirteen moments consisting of all first, second and
cross moments of the common variables log{earnings), education, experience and experience-
squared. Standard errors are given in parentheses. The standard errors for the weighted NLS
with published weights are calculated using standard weighted least squares methods, which
do not take into account the manner in which the weights are constructed, because properly
accounting for effects of the weights is not possible on the basis of the available information.
The first set of standard errors for the Census weighted estimates, reported in the second
column of the Census weighted results in Table 2 is estimated based on Theorem 1 under
the assumption that the NLS sample is drawn randomly from the same population as the
Census. The second set of standard errors in second to last column of Table 2 are estimated
without this assumption, based on the results in Theorem 2. The third set of standard
errors, in the last column of Table 2, account for the sampling variation in the Census-based
moment estimates. They are based on the results in Theorem 3.

The first thing to note is that the NLS results do not change much when the regression
is weighted by the sampling weights published with the NLS. The estimates are virtually
unchanged from the unweighted ones. This is not surprising given that the NLS weights
are all relatively close to one. The second point is that the results are quite different when

the regression is weighted by the weights constructed using the Census data. As Figure
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Table 1: RETURNS TO SCHOOLING WITHOUT ABILITY MEASURES FOR NLS SAMPLE

Unit Weights | NLS Weights | Census Weights
Var coeff. s.e. coeff. s.e. coeff. s.e.
const 4.020 (0.226) | 4.022 (0.223) | 3.880 (0.019)
educ 0.087 (0 008) | 0.087 (0.008) | 0.085 (0.001)
exper 0.094 (0.026) | 0.092 (0.027) | 0.088 (0.002)
exper? -0.003 (0.001) | -0.002 (0.001) | -0.002 (0.000)
sample size 815 815 127,345

‘Table 2: RETURNS TO SCHOOLING WITH ABILITY MEASURES FOR NLS SAMPLE

Unit Weights | NLS Weights Census Weights

Var | coeff. s.e. coeff.  s.e. coeff. s.e. (1) se. (2) s.e (3)
comst | 3.945 (0.241) | 3.982 (0.247) | 3.618 (0.188) (0.096) (0.104)
educ | 0.056 (0.011)| 0.055 (0.009) | 0.071 (0.007) (0.007) (0.007)
exper | 0.073 (0.026) | 0.069 (0.027) | 0.080 (0.025) (0.008) (0.009)
exper? | -0.002 (0.001) | -0.002 (0.001)|-0.002 (0.001) (0.000) (0.000)
iq 0.003 (0.001) | 0.003 ( )| 0.004 (0.001) (0.001) (0.001)
kww | 0.009 ( )| 0.000 ( )| 0.001 (0.003) (0.003) (0.003)

I illustrates, the NLS weights are very different from the Census weights, and the Census
weights are much more skewed toward large values. In fact, the rank correlation between
the NLS sampling weights and the weights constructed from the Census data is negative at
-0.092 and significantly different from zero at standard levels of significance. These results
show that the NLS sample is different from the Census even after we used selection criteria
in the Census (using only white males between 28 and 38 years old with at least 9 years of
education and education topcoded at 18) to try to make the samples as close as possible.
Moreover, the sampling weights in the NLS do not reweight the sample to reflect the Census.

A third point is that using the Census moments leads to an increase in precision where
the estimated returns to education are equivalent to having a primary dataset more than

twice the size of the NLS sample. Taking into account the sampling error in the Census
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moments does not substantially change this.

Not surprisingly, the sampling variation in the Census moments does not contribute
significantly to the sampling variation in the parameter estimates. This is attributable to
the fact that that the Census is 165 times larger than the NLS sample, and to the fact that
the match between the distributions of the Census and the NLS is close enough that no NLS
observation has a weight that dominates the last term in the variance formula in Theorem
3.

The significance of the differences between estimates based solely on the NLS and those
incorporating Census information is investigated directly in Tables 3-5. There are a number
of ways of testing the restrictions implied by the Census information. The results of two of
these methods are given in Table 3; the results of a third method are in Table 4. Imbens,
Johnson and Spady (1995) discuss a number of alternative testing procedures. The first
method simply compares directly the Census moments used in the restrictions to the corre-
sponding NLS moments. This is done in the first set of columns in Table 3 which reports the
difference between the NLS and Census moments, the corresponding standard errors, and
the t-statistics. The second way to examine the impact of the restrictions is to consider the
estimates of the Lagrange multipliers formed when constructing the weights for the weighted
regression. The second set of columns in Table 3 reports the estimates of the Lagrange mul-
tipliers A and the corresponding standard errors and t-statistics. The last row of the table
gives the statistics for the tests of the hypotheses that all NLS moments are equal to Census
moments, and, that all Lagrange multipliers are equal to zero. For all tests the variances are
calculated under the null hypothesis that the target and sampled distribution are equal.

A third way to investigate the difference between the Census and NLS sample is to
consider directly the difference in parameter estimates. In Table 4 we present the differences
in the unit weight and census weighted estimates, with associated standard errors. These
standard errors do not assume that target and sampled distribution are equal, and take into

account the sampling error in the Census moments. For comparison purposes we also report
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Table 3: TeEsTs OF EQUALITY OF NLS AND CENSUS DATA

NLS - Census moments Lagrange multipliers

moment est. s.€. t-stat | est. s.e. t-stat
educ -0.35 (0.08)} -4.5 | 1.20 (0.51) 23
log(earn) 0.18 (0.02) 12.0 [ 042 (1.79) 0.3
exper 0.86 (0.13) 6.5 | 573 (1.70) 34
educ? -10.65 (2.21) -4.8 |-0.01 (0.01) -0.6
log(earn)’ 2.04 (0.18) 114 | 0.05 (0.12) 0.4
exper? 21.17 (3.74) 57 |-0.44 (0.14) -3.1
educ x log{earn) 0.43 (0.57) 0.7 1-0.02 (0.05) -0.4
exper X log(earn) 7.33 (0.81) 9.0 |-0.02 (0.17) -0.1
exper? x log(earn) 155.60 (22.36) 7.0 [ 0.00 (0.01) 0.3
educ x exper 8.47 (1.46) 58 [-0.16 (0.06) -2.7
educ x exper? 246.67 (41.98) 59 | 0.01 (0.00) 28
exper’ 429.69 (83.98) 51 | 0.01 (0.01) 21
exper! 834x10° (1.77x10®) 5.0 |-0.00 (0.00) -1.6

chi-square tests (d.o.f.) 325.9 (13) 164.6 (13)

the raw estimates from Table 2 again. The last row presents a test statistic for the null-
hypothesis that the unit weight and Census weighted estimates are equal. The test statistic
has, under the null, a Chi-squared distribution with six degrees of freedom.

Even though the t-statistics themselves in the last column of Table 3 and in Table 4 are not
particularly large, they are highly correlated in each case and all of the chi-squared statistics
in Tables 3 and 4 clearly reject the hypothesis that the NLS and Census distributions are
equal. The fact that the Census and NLS samples differ significantly in the distributions of
earnings, education and experience was also reported in by Gottschalk and Moffitt (1992)
in a comparison of the NLS and the CPS. The methodology presented here provides a clear
interpretation of the differences between the samples. While the raw differences in moments
suggest that in particular average earnings differ considerably between NLS and Census, the
Lagrange multiplier estimates reported in Table 3 suggest that the binding restrictions arise

when forcing the first, second and cross moments of experience in the two samples to be
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Table 4: TESTS OF EQUALITY OF UNIT WEIGHT AND CENSUS WEIGHTED ESTIMATES

Unit Weights Census Weighted Difference
est. est dif s.e.  t-stat

const. 3.945 3.618 0.327 (0.284) 1.1

educ. 0.056 0.071 -0.015 (0.013) -1.2

exper. 0.073 0.080 -0.007 (0.027) -0.3

exper.? -0.002 -0.002 0.000 (0.000) -0.3

iq 0.003 0.004 -0.001 (0.002) -0.3

kww 0.009 0.001 0.008 (0.005) 1.5
chi-square test (d.o.f.) 142.6 (6)

equal.

The regression results in Table 2 illustrate that the effect of ability bias on estimates of the
return to education is quite sensitive to the datasets employed. Just using the NLS sample
suggests that the effect of omitting ability measures on estimates of returns to education is
0.087-0.056=0.031, or that three percentage points of the estimated return of 8.7% is due
to ability bias. If we change the distribution of earnings, education and experience to be
closer to that of the Census, the estimate of the effect of ability bias is 0.085-0.071=0014,
less than half the decrease found using only the NLS data.

The weighted interpretation of the new estimator makes it clear that the key difference
between the No Weight and Census weighted estimates is the difference across the two
samples in the distribution of earnings, experience, and education. Since the ability measures
are not independent of these three variables, the regression estimates differ considerably
depending on which earnings, education and experience distribution we use.

If we do not make the assumption that the two populations, the sampled population
from which the sample is drawn and the target population from which the moments are
constructed, are the same, the weighted estimator corresponds to an artificial population
with probability density function f,(y,z) defined in Section 4. It is of interest to investigate

some aspects of this distribution. In Figures 2-4 we present estimates of the distribution
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function of education and the logarithm of weekly earnings for the Census distribution, the
NLS distribution and the Census-weighted NLS distribution. For all of the distributions,
it clear that by forcing the Census-weighted NLS distribution to have the same mean and
variance of log earnings as the Census distribution, the Census—weighted NLS and the Census
are much closer than the unweighted NLS and Census. These figures also show that the men
with low earnings are clearly under—represented in the NLS relative to the Census, as are,
to a lesser extent, men with high levels of education.

We can also see these effects by inspecting the weights directly. In Table § we present
the values of all variables for the observations with the highest and lowest weights. It is
apparent from this table that segment of the Census population under-represented in the
NLS consists of men with relatively high earnings, somewhat low education and higher than
average experience. Their average IQ is approximately equal to the NLS average of 103, but
their KWW is considerably higher than the NLS average of 37. Because the weights do not
directly depend on IQ and KWW this assocation between the weights and KWW stems from

the association between KWW and the variables used in the construction of the weights.

Table 5: OBSERVATIONS WITH FI1VE HIGHEST AND LOWEST CONSTRUCTED WEIGHTS

weights | educ log(earn) exper age iq KWW

26.3 18 5.56 5 29 107 30
15.4 17 4.84 13 36 106 34
13.7 12 4.06 11 29 108 46
7.75 10 4.70 16 32 103 38
7.11 16 5.52 6 28 125 34

0.42 12 6.48 20 28 95 48
0.40 11 6.62 21 38 115 40
0.39 13 7.60 i3 32 108 41
0.37 13 7.60 16 35 120 50
0.30 12 7.31 20 38 82 41
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The conclusion from this empirical aﬁalysis is twofold. First, the effect on returns to
education (and experience) of omitting ability from wage regressions using NLS data is not
well determined. While including ability in wage regressions from the NLS has a significant
effect on the estimated returns to education, this effect gets cut in half when we reweight the
sample to make the distribution of earnings, education and experience resemble more closely
that in the Census. Second, there are important differences between the Census and NLS
samples, and generalizations of estimates based solely on NLS data to the U.5. population

are therefore difficult to justify.

8. CONCLUSION

In this paper we show how moment restrictions derived from auxiliary data can be taken
into account when estimating regression coeflicients on a primary dataset. We show that
efficient estimators can be characterized as weighted versions of the estimators that would
apply in the absence of moment restrictions. We investigate the interpretation of these
estimators with and without making the assumption that the primary data and the aggregate
data reflect the same distribution.

An application of this to a wage regression controlling for ability measures, using Census
estimates of moments of the earnings, education and experience distribution yields some
interesting results. Tests of the equality of moments from the NLS and 1% Census samples
indicate that the two samples do not reflect the same underlying population. In addition,
imposing the restrictions implied by the Census moments changes the wage regression results
considerably. This implies that estimates based solely on NLS data may not be very robust,
and need not generalize to the population at large. By imposing the moment restrictions
from the Census, the weighted regression results come closer than the unweighted results to
those that would obtain if ability measures were availablein the Census. The sense in which
this occurs is that some moments from the weighted NLS are set equal to the corresponding

Census moments.
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The methodological implications of our study are relevant for many empirical studies in
the social sciences. In many of these studies, there are doubts about whether the dataset
used is truly representative of the population of interest, and consequently there should be
hesitation in generalizing results based on the data. The methods developed here can be
used to alleviate some of these doubts by weighting the data towards a more representative
sample. This may be particularly useful for studies based on longitudinal datasets, where
our approach can be used to counter the effects of attrition. An example where this ap-
proach would be relevant is the comparisons between NLS, PSID and CPS in Gottschalk
and Moffitt (1992). The weighting approach developed in this paper may in such cases be an
alternative to the model-based approach for attrition in, for example, Hausman and Wise
(1979), especially when refreshment samples are available (Ridder, 1992).

A number of questions are not answered in this paper. First, we use just one of several
different weighting schemes possible to impose the moment restrictions. Alternatives, such
as the exponential tilting estimator suggested in Haberman (1983) and Imbens (1993), may
have different properties in small samples and with few moment restrictions even if the
populations are the same, and these differences are likely to be larger. A second issue is
determining the number of moment restrictions to impose in the case, as in our application,
where unit level observations are availablein the second dataset. Using too many restrictions
may compromise the large sample results which are used for inference, while too few may
leave the estimand too far from the target distribution. We could also have relaxed some
of the restrictions by imposing only equality of functions of the moments. For example,
one might wish to impose equality of the correlation coefficients, while allowing means and
variances to differ. While that would introduce additional parameters into the model, it

would fit easily into our framework. We intend to address these issues in further research.
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APPENDIX
Proof of Theorem 1:

The weights satisfy
N -t = 1/(1+ Xh{yn,7n))

where ), the Lagrange multiplier for the restriction T wnh(ya, za) = 0, is the solution to

N h(yn)-'rn)
0= ,;Zz:l 1+ )‘,h(ymxn)'

This implies that the vector {fwrs, 1) can be written as the solution to the system of equa-
tions

N
(12) >~ p(yn, 20, 0,3) =0

n=1

where

. P1(y,$»9,)\) I'(y—B’I)/(lJr)\'h(y,I))
ply;2,0,2) = ( o2y, 2, )) ) ( Ky, 2)/(1 + ¥h(y,=)) ) '

First note that E{p,(Y, X, \)] = 0 at A = 0. This solution is unique because Edp;(Y, X, A)/9) <
0. Therefore, under regularity conditions (Hansen, 1982; Newey and McFadden, 1994),

X 2 0 and consequently fwLs > 6. Second, using a second order Taylor series expansion of
ply,z,8,)) around @ = 6 and A = 0, and a centrallimit theorem for (1/VNYEN, p(yn, 20, 67,0)

leads in a straightforward manner to the results in the theorem. O

Proof of Theorem 2:
We estimate w, by maximizing ¥ In w, subject to the restrictions 3" w, = 1 and 3 wnh(yn, Ta) =

0. The solution can be written as
w, = 1/(1 4 NA(yn, z,)).
The solution for A solves
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N
mf.xngl In(1 + XN h{yn, za))-

Assuming there is an interior solution A%, to maxy E[in(1+4 XNA(Y, X)), A will converge to Az,
which therefore must satisfy

h(Y, X)

) =

We can still characterize the vector (éWLs, }) as the solution to the system of equations

N
Z P(yn,In,B, ’\) =9

n=1

where

_ pl(y,z,0, )‘) — - (y - H'x)/(l + ,\'h(y,I))
f’(y'x"“)“( paly, 2, A) )‘( h(y,2)/(1 + Ah(y, z)) )

Now expanding these equations around the probability limits of X and fwis, which are A%
and #;, respectively, we get the desired result.

It follows that f,(y,z) is a valid probability density function because:

1= [dF(,2) = [(1+Aih(y,))dFuly, )

= [dFuly,2)+ [ Nih(y,2)aFuly,7) = [ dFuly,2)

The last equality follows from the fact that

h(y,z)
1+ A3h(y, z)

Since W, > 0, it is also true that fy(y,z)} 2 0 and therefore it follows that f,(y,z) is a valid

[ Xiih(y, 2)dFo(y,2) = X3 dF,(y,z) = 0.

probability density function. O

Proof of Theorem 3:
The consistency part follows directly from the consistency of k for h* combined with Theorem

2. The variance/covariance matrix follows from standard GMM arguments. O
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Figure 1: NLS and Census Weights
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Figure 2: Wage Distributions
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