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IN MOMENT CONDITION MODELS
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Once-step efticient GMM estimation has been developed in the recent papers of Back
and Brown (1990). Imbens (1993), and Qin and Lawless (1994). These papers emphasized
methods that correspond to using Owen's (1988) mcethod of empirical likelihood to
rewceight the data so that the rewceighted sample obeys all the moment restrictions at the
parameter estimates. In this paper we consider an alternative KLIC motivated weighting
and show how it and similar discrete reweightings define a class of unconstrained
optimization problems which includes GMM as @ special case. Such KLIC-motivated
rewcightings introduce M auxiliary “tilting™ parameters, where M is the number of
moments: parameter and overidentification hypotheses can be recast in terms of these
tilting parameters. Such tests are often startlingly more elfective than their conventional
counterparts, These differences are not completely explained by differences in the leading
terms of the asymptotic expansions of the test statistics.

Kryworps: Generalized method of moments. empirical likelihood, overidentification
tests. exponential tilting, Kullback-Leibler information.

1. INTRODUCTION

THE LITERATURE ON TESTING RESTRICTIONS in a generalized method of moment
context (Hansen (1982); Newey, (19854, 1985b), Tauchen (1985), Newey and
McFadden (1994)) has almost exclusively focused on a single test statistic. This
statistic, the value of the objective function for the standard generalized method
of moments (GMM) estimator. has, under standard rcgularity conditions, a
chi-squared distribution with degrees of freedom equal to thc number of
overidentifying moment restrictions. It has been reported however (Brown and
Newey (1992). Altonji and Segal (1996), Burnside and Eichenbaum (1996), Hall
and Horowitz (1996)), that the finite sample properties of this test are often very
different from the asymptotic propertics at sample sizes common in econometric
practice. Rescarchers have attempted to improve the properties of tests based
on this statistic by considering approximations to the finite sample distribution
bascd on bootstrap methods (Brown and Newey (1992), Hall and Horowitz
(1990)). In this paper we follow a complementary approach. Rather than attempt
to improve the approximation to the finite sample distribution of the standard
statistic. we focus on alternative statistics to test the overidentifying moment
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334 G. W. IMBENS, R. H. SPADY. AND P. JOHNSON

restrictions. Our proposed statistics are motivated by, but not limited to, a new
class of estimators for generalized method of moments problems that circum-
vent the need for estimating a weight matrix in a two-step procedure by directly
minimizing an information-theory bascd concept of closeness between the
cstimated distribution and the empirical distribution. Such estimators have been
proposed in various contexts and in various forms by Cosslett (1981). Habermanr
(1984), Back and Brown (1990}, Imbens (1993), Qin and Lawless (1994), Imbens
and Hellerstein (1996), Kitamura and Stutzer (1997), and Imbens (1997). We
focus on a particular member of this class of one-step estimators, the exponen-
tial tilting (ET) estimator, that we argue to be more appealing than the
empirical likelihood (EL) or pseudo maximum likelihood (PML) estimator which
has been the focus of most research.

In this paper we make four contributions. First, we suggest a new and more
attractive procedure for computing the one-step estimators. This is important
because previous methods for computing these estimators have been reported to
be slow relative to the time required for computation of the standard estimators.
We provide a characterization as the solution to a restricted optimization
program with dimension unrelated to the number of obscrvations.

Second, using cither the conventional two-step GMM estimator. one of the
new one-step estimators, or other first order cfficient estimators, we develop
three classes of test statistics to test the overidentifying restrictions. The first
class, containing the standard tests, compares the average value of the moments
at the estimated parameters to zero. The second class of tests considers the
tilting parameter that sets the weighted average of the moments evaluated at the
estimated parameters equal to zero and compares the value of this tilting
parameter to zero. The third class is based on the directed distance between the
empirical distribution function and the nearest distribution function satistying
the moment restrictions. All tests are shown to be identical up to first order.

Third. in a Monte Carlo investigation we report nominal and actual size and
present QQ plots for a number of examples and sample sizes in which standard
tests have been found to have poor performance. In these simple examples
where existing methods are seriously misleading, the improvement afforded by
this method is sufficient to allow inference to proceed with the same degree of
confidence as one typically has in situations characterized by a high degree of
normality and lincarity without resorting to resampling or simulation.

Finally. we develop higher-order asymptotic expansions for the very simplest
casc—a single moment condition with no unknown parameters. We demon-
stratc that such asymptotic expansions are unlikely to be reliable guides for
choosing amongst alternative test statistics in the semiparametric context of
GMM. because they only achieve sufficient accuracy at sample sizes such that
the indicated deviations from first-order theory are very small. At sample sizes
likely to be encountered in practice, the tests we develop here have better
properties than would be expected on the basis of the second-order approxima-
tions.
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MOMENT CONDITION MODELS 335

2. GENERALIZED METHOD OF MOMENTS ESTIMATION

Let {z,}Y, be independent realizations of a random variable Z with distribu-
tion function F(z), satisfying Pr(Z €.2) = 1 for some compact subset 7 of 2%,
We are interested in a parameter 6, € int(®), with @ a compact subset of .#*,
and #(-,-) a known function from Z'x & to #". We assume that 6, is the
unique solution to E[¢(Z, 8)] = 0. We focus on the case where the number of
moment restrictions, M, exceeds the number of unknown parameters, K.

2.1. Standard Generalized Method of Moments Estimation

The standard solution to this estimation problem (Hansen (1982), Chamber-
lain (1987), Newey and McFadden (1994)) is to estimate 6,, as the solution to

(D min Q,,.(6)
o

where
’

1 N
Qu'(e) = [V Z (//(Z[.H) 'I/V?l'

o=

1 N
— L ¥lz,0)],
N i§ l }
for some positive semidefinite matrix W. Under standard regularity conditions
the minimand of Q,(8) is consistent for 6,. It is not, typically, efficient if
dim(y) > dim(6). An efficient estimator requires that W, the inverse of the
weight matrix, in the limit equals A = E[y(Z, 0,)¢(Z, 6,)]. A feasible version
of this efficient procedure is based on an initial consistent estimatc 6 of 6,
obtained by minimizing Q,,-(8) for an arbitrary choice of W such as the dim(yr)
dimensional identity matrix. The inverse of the optimal weight matrix is then
estimated as 4 = (1/N)Zy(z, 6)4(z,, 8). Finally an efficient estimator O 18
obtained by minimizing Q {(6).

If the model is correctly specified, and there is indeed a unique value 6, such
that E[¢(Z, 6,)] =0, then

—6,) S0 )

/N (6
Ve CIm

where

A=E[W(Z,68)y(Z,8,)]. and
o

IQ:E{ﬁ(Z,HU)}.
a0

In addition the normalized objective function. evaluated at the estimated
parameters, converges to a chi-squared distribution:

[V. QH:’ ( ég/n/n) 1_1)2/2( ‘M - K )'

which is used to test the overidentifying restrictions.

|
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336 G. W. IMBENS, R, H. SPADY, AND P. JOHNSON

Two modifications to the standard estimator for GMM models that are
invariant to linear transformations of the moments have recently been proposed
by Hansen. Heaton, and Yaron (1996). The first, the iterated GMM estimator,
denoted by 6, 1 based on repeatedly updating the weight matrix and
re-estimating 6 until convergence is reached. Alternatively. the estimator can be
characterized by the equation:

N

. N ' N " N -
0= - ( qumu)):| ‘i Z dl(zz' 'Jmml )dj( ’ mmuu)
i

=1

X Z w(2j~ f;gmm(i))‘

The second estimator proposed by Hansen, Heaton, and Yaron (1996), the
continuously updated GMM estimator, denoted by 0, is defined as

6

Lmneit)

gmpi(cuy®

=minimand, Qv - uyu- uy(0),

where the minimization is both over the ¢ in the average moments and over the
6 in the weight matrix.

2.2, Minimization of Cressie-Read Discrepancy Statistics

As alternatives to the above procedures we consider estimators based on
minimization of Cressie-Read power-divergence statistics (Cressie and Read
(1984), Read and Cressie (1988), Corcoran (1995), Baggerly (1995)). The defini-
tion of the power-divergence statistic for two discrete distributions with common
support p=(p,,ps.....pyYand g ={(q,.¢,..... g+ ) 1s, for a fixed scalar param-
eter A:

N A
Z/ —] —1

I(p.q) = ——
=TTy a

The estimators we consider are, for given A, defined as the distribution closest
to the empirical distribution, as measured through the Cressie-Read statistic,
within the set of distributions admitting a solution to the moment equations.
Formally, the estimator is defined as the solution to
N N

min /,(¢/N.7), subjectto Y 4(z,0) 7 =0 and Y m =1,

T i1 =1
where ¢ is an N-vector of ones.

Three special cases of this family of ¢stimators have received most attention
in the literature. First, the case with A =0, which leads to the cmpirical
likelihood cstimator H (Imbens (1993), Qin and Lawless (1994)), which can also
be defined as the solutlon to

N N N
(2) max Y. In7, subjectto Y. {(z,.6)-m,=0 and ) 7, =1.

Ty i=1 i=1
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The estimating equations for the empirical likelihood estimator are ¥ | p,(z,.
#..t.,) =0, where

M8y (=0
—(z, + 1t (z.
3 pzpn= | T

Ylz, 8 /(L +1y(z,6))

with the dimension of the tilting parameter ¢, the normalized Lagrange multi-
plier in the maximization (2), equal to M. Under regularity conditions 6, is
cfficicnt for 6,, ie. V’W(H‘),— 6,) has the same asymptotic distribution as
VN ( 0, — 05)-

The second case, and thekestimat()r we focus on in this discussion, the
exponential tilting estimator 6, (Back and Brown (1990). Imbens (1993). Qin
and Lawless (1994)), corresponding to A — — 1, can be characterized as the
solution to the minimization of the Kullback-Leibler information criterion:

N N N
(4) min Y. 7, -In7, subjectto Y #(z,0)-m=0 and Y} w7 =1.

T ey i=1 =1

The estimating equations corresponding to this estimator are L | p_,(z,, 9(,,. i)
= (. where
) e N
_ t' z,0)-exp(ry(z, 0
(5 p.z. 0,0)=1 o8 P
Yz, 0)-explty(z,6))

Although the computational methods described in the next section, and the
tests developed in a subsequent scction can be extended to the EL estimator, we
focus on the ET estimator for two reasons. The first reason concerns the
interpretation of both estimators as minimizing a (dirccted) distance between
the estimated probabilities 7, and the empirical frequencies 1/N. It seems
appealing to weight the discrepancics using an efficient cstimate of these
probabilities (i.e., ;), as in the ET procedurc, rather than by an incfficient
estimate of these probabilities (i.e., [ /N), as in the EL procedure.

The sccond reason concerns the relative robustness of the two estimators. The
influence function of estimators defined by estimating equations is proportional
to these estimating equations (Huber (1980)):

1

9
: (Z.H,I)} plz.0.1).

a(e’,t")
At the limiting values 6, and ¢ =0 the influence functions for the two estima-
tors EL and ET are identical, reflecting their first order equivalence. However. if
we evaluate the influence function for the EL estimator at 1 = &, it can become
unbounded even if ¥(z, ) is bounded. This is in contrast with the influence
function for the ET cstimator that is affected to a much lesser extent by
perturbations of t.

IF(z.H,r)=E[

—
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338 G. W. IMBENS, R. H. SPADY, AND P. JOHNSON

The third estimator in the Cressie-Read family on which we focus is the log
Euclidean likelihood estimator 6,,, corresponding to A = —2, which can be
written as the solution to

N N
(6) min ) V(N - —1) subjectto Y W(z,0)-7,=0 and

N =1

To stress the link with the iterated GMM ecstimator developed by Hansen,
Heaton, and Yaron (1996), it is useful to characterize the log Euclidean
likelihood estimator H, ., by the equation

N o . ,
{Zﬁ(zwﬁm) (1+[//‘//( m)]}

i=]

0=

N Loy
Z l/’(zl'91(’/)1/1(21"9101)} Z 1/1(21,9,{,,),

i=1 (=1

where

L= — [Zdl(zu élul)lvl/(zz‘ 91(»1)’] 71211’(214 é/cl)

is the tilting parameter. The only difference between the equations characteriz-
ing the iterated GMM estimator qum(n and H,l, is in the implicit estimate of
the matrix of derivatives

r Eadj(Z(?)
=B (o0

where the LEL estimator uses the (optimal) weights proportional to 1 + r'¢(z, )
and the iterated GMM estimator uses equal weights. If d41/ 30" does not depend
on Z, this difference is immaterial, and the iterated GMM estimator is identical
to the LEL estimator.

3. COMPUTATIONAL ASPECTS

In this section we provide an alternative characterization of the ET estimator
that leads to a computationally more tractable optimization problem. The issue
is that both the constrained optimization formulation in (4) and the estimating
equation formulation in (5) are not attractive from a computational point of
view. The optimization problem has dimension N + dim(8) which is larger than
the sample size. The estimating equation formulation requires solving a system
of equation in dim(#) + dim(¢) unknown parameters, where some of the
equations are potentially unstable because the matrix of expected derivatives
does not have full rank at the limiting values of the parameters.
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MOMENT CONDITION MODELS 339

The key to our characterization is that the estimated probabilities in the ET
approach have the form

N
(7) m = exp(t(z,,0)) [ 3 exp(ryp(z,,0)).

i=1

Concentrating out , by substituting (7) into the optimization program (4) and
defining the empirical counterpart of the cumulant generating function of ,
written as a function of 6, as

1
(8) K((,H)Eln[—\; Zexp('t’d;(z,-,())),
=1
with first derivatives with respect to ¢ and ¢ denoted by K(t,6) and K,(t.8)
respectively, and analogously for the second derivatives, we can write (4) more
compactly as

(9) max K(z,6) subject to K,(£,8) =0.
(6

At the solution (7, §,,), the derivatives K,(1,6) and K,(z,8) are both equal to
Zero.

In practice we have found it convenient to solve the constrained optimization
problem (9) by solving the following unconstrained optimization problem for a
large enough scalar 4. and for an arbitrary positive definitc matrix W of
dimension M,

(10) max K(1,6) —0.5-4-K,(1,6)- WK (1,0).
o

This formulation is based on a penalty function approach. For any positive
definite W, and for finite but large enough A, the solution to (10) is numerically
identical to the solution to the constrained maximization (9). In addition, for all
values of A, the solution to (9) is a solution to the first order conditions for the
unconstrained maximization problem (10). In practice a sensible choice for W is

W(t,0)=K,(1,0) +K,(t,0)-K,(t,0)

evaluated at some initial estimates 7 and # of the tilting parameter ¢ and 6; the
computations do not appear sensitive to the choice of ¢ and 6. For the
numerical valuc of 6, the choice of the weight matrix W (other than it being
positive definite) does not matter because at the solution (7,,, 8,,) the derivative
K,(1,8) is zero and thercfore the penalty term K[(K,, + K,K!)"'K, vanishes.
Typically in pcnalty function methods the scalar A4 has to be increased to
infinity to achicve a solution that satisfies the restrictions. Because in this case
the original problem can be written as a saddlepoint problem (e,
max, min, K(r, 8)), and the restriction K({z,8)=0 is the derivative of the
objective function it suffices to choose the constant A large enough to make the
objective function (10) locally convex for (7,,6,) to be a solution to the
unconstrained optimization.

.
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4. TESTS FOR OVERIDENTIFYING MOMENT RESTRICTIONS

In this section we discuss a number of test statistics for cvaluating the
hypothesis that there is a value of 8, € @ consistent with E[y(Z.6,)]= 0. All
test statistics will share the same chi-squared distribution under the null hypoth-
esis, with the degrees of freedom equal to M — K. the number of overidentifying
restrictions. We divide the tests into three groups. The first set of tests is based
on comparisons of the average moments to zero. We refer to this class of tests
as Average Moment (AM) tests. The standard GMM test (e.g., Hansen (1982),
Newey and McFadden (1994)) and the recent alternatives proposed by Hansen,
Heaton, and Yaron (1996) fit in this category. The second set of tests is based on
the proximity of tilting parameters or Lagrange multiplicrs of the moment
restrictions to zero. We refer to these as Lagrange Multiplier (LM) tests. The
third set of tests is based on the difference between restricted and unrestricted
estimates of the distribution function. We refer to these tests as Criterion
Function (CF) tests.

4.1. Average Moment Tests

The general form of the average moment tests we consider is
TYHW)=N-0,(6),

for some estimate W of the optimal weight matrix A7" and some first order
efficient estimate #. The particular tests with which we experiment are:
1) T,’ Y- Given an initial consistent estimate 8 Lstlmdu the weight matrix as
— WA(0.9), and use the efficient GMM estimate H(,,”m based on minimization
Of Q. b).

(1) [ 1M, The second test is based on the iterated GMM cstimator: 6 = 6

Lty

and W = W0, H&,”””m)
(iii) 7,1": The third test is based on the continuously updated GMM cstima-
tor: =6 and W = W(0. f ).

garmteu) Larmien)

(iv) 7.'": The fourth test is based on the exponential tilting estimate and uses
the inverse of an efficient cstimdte of the variance of the moments as the weight
matrix: #=6,, and W= W(i_, 6,

4.2, Lagrange Multiplier Tests

The tests presented in this section are based on the proximity of the tilting
parameter or Lagrange multiplier 7 to zero. All tests are of the form N-7'-R-1.
The choices for R can be divided into two categories. First, we can choose R 1o
be an estimate of the inverse of the variance of 7. The limiting variance of VN -7
is

V=4 (r-Trary 'rah
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MOMENT CONDITION MODELS 341

which has rank M — K and is therefore not invertible. We can. however. use
generalized inverses of estimates of this variance in the quadratic form 7'+ R-1.
The second option is to use an estimate of the variance of the moments
W(Z.8,). that is. A, Because
1 al
NG = A o -y ey . N
YNL, =37 =T A 5 ) Yuz. 6, /VN +o,(1)
i=1
=V, Xz 6,0 /YN +0,(1), anc
VoAV, =1 VsV, =1

.
it follows that N7'V;"#1 = Ni" A7 + 0 (1). Using an estimate of A rather than the
generalized inverse of an estimate of the variunce of VN7, is similar to the
standard practice in parametric testing where one typically uses an estimate of
the Fisher information matrix instead of an cstimate of the variance of the
average scores at the estimated nuisance parameters. Similarly, in the standard
GMM test 7,/Y the matrix in the quadratic form Q,(#) is an estimate of
the variance of (1/VN)IZU(Z,.0,). not an estimate of the variance of
(/VNIEW(Z.. 0).

We consider three test statistics:

() T!\": First we usc the cxponential tilting estimate of the Lagrange
multipliers 7 =7, and an estimate of the (singular) variance of 7:

£

R=(j*(f~ﬁu*j'ﬁ)'fj‘”
where
. N .
I'= ,2,:1 gy (z,.8.,) 7 and
-~ \ - ~ 7
A= 2 (0. )0(z.0,) 7.
-1

with weights

N
7 =expli p(z.60,)) [ X explil,wlz.6,]).
=1 '
We use the gencralized (Moore-Penrose) inverse for the inverse of a singular
matrix.
(i) T4} Again we use =1, now combined with a robust estimate of
variance of the moments:
N N

R= Zl/J(Z(-.f)(,,)l/l(:i.f;',])lﬂl N Zi,l/(zj,f;‘,i)d/(z,.(;,,)ﬂpr,
P=1 i

N
: Z dj(zi‘Hw/)i{’(:w{d)u) L

i=1

—
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342 G. W. IMBENS, R. H. SPADY, AND P. JOHNSON

Note that we use the robust estimate of the variance, rather than exploiting the
fact that in large samples N7, and (N,)” both converge to one.

(iii) Tg’;,;,m,) As a second alternatlve we use the tilting parameter associated
with the GMM estimator

gmnr’

N

= minimand, K(f 9,,,,,,,J

t gmm

and the same choice for R as for T}, with the one modification that we now
estimate the probabilities as

T = CXp( gmmw(zi‘ Hgmrn/') Z e‘(p(tqmm /’ me))

j=1

4.3. Criterion Function Tests.

The final pair of tests are based on the empirical likelihood function and the
Kullback-Leibler information criterion. These tests are based on the proximity
of the estimated probabilitics that satisfy the moment restrictions Y- & (z,, 0)
=0,

. o N - R
= exp(.f:,, W(z,0)) ] 2 exp(\t(’,, ¥z 0) )

j=1
ael = 1/(N-(1+E0(2,.0))).

to the unrestricted estimates 7, with 7, = 1 /N.
The empirical log likelihood function is

N
L(w)= Y log(m)
i=1
and the KLIC function is
N
KLIC(m,7) =Y 7 (log(m,;) — log(7,)).

i=1

The two tests based on these functions we consider are:

(i) TSL,: First we use the empirical likelihood weights and the empirical
likelihood function, 7,5f,, = 2-[L(7*') — L(i)]. This is the test proposed by Qin
and Lawless (1994).

(i) TSE ., Second, we use the exponential tilting weights and the KLIC
function, TS/, ., = 2-N-KLIC(7*', 7).

5. MONTE CARLO INVESTIGATION

In this section we compare the finite sample properties of the tests presented
in the previous sections in a number of models. We report for cach model, for

-]
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MOMENT CONDITION MODELS 343

two different sample sizes, the actual and nominal size of each test at different
levels of significance. In the tables we underline the actual size for the test with
actual size closest to nominal size. The initial weight matrix for the first step in
the two-step GMM estimator is estimated as the average of the outer product of
the moments evaluated at the true parameter values. This is not feasible in
practice but if anything should lead us to overestimate the performance of
GMM based test statistics relative to the other, feasible, tests.

5.1. Model 1. Chi-squared Moments

The first Monte Carlo experiment focuses on a two moment, one parameter

problem. The moment vector is
Z-0

Z'—6°-2-0)
The distribution of Z is chi-square with one degree of freedom, and 6, = 1.

Table I reports some of the Monte Carlo results. The two LM tests outper-
form all other tests at all levels and both sample sizes. The standard GMM test
T, is inferior not only to all LM tests but also to the other AM and CF tests.
Note that in this case the iterated GMM estimator proposed by Hansen,
Heaton, and Yaron (1996) is identical to the LEL estimate 6,,,.

L//(Z.(J)=(

\

TABLE 1

Size OF TESTS: MODEL 1 (CHI-SQUARED MOMENTS), M = 2, K =1, 5.000 REPLICATIONS

500 Observations

Criterion
Average Moment Tests Tilting Parameter Tests Function Tests
7N el Y TV T T A7 4 CF TF
Size I s TS 1 Ty Toin T imry Tivieiy T{iieien

0.200 0.252 0.252 0.252 0.260 0.249 0.237 0.239 0.254 0.255
0.100 0.161 0.161 0.161 0.158 0.159 0.125 0.127 0.149 0.155
0.050 0.116 0.116 0.116 0.097 0.114 0.068 0.073 0.090 0.104
0.025 0.087 0.087 0.087 0.062 0.087 0.038 0.041 0.058 0.071
0.010 0.063 0.063 0.063 0.038 0.062 0.019 0.021 0.033 0.047
0.005 0.051 0.051 0.051 0.026 0.050 0.010 0.013 0.023 0.035
0.001 0.031 0.031 0.031 0.012 0.031 (.003 0.005 0.010 0.020

1000 Observations

Criterion
Average Moment Tests Tilting Parameter Tests Function Tests
e A Y Y [l Y Y PR Ok CF
Size I'a s T 1. [ T Timmirs Tilen Tltieeen

0200 0225 0225 0225 0235 0223 0216 0.216 0.228 0.231
0.100  0.134 0.134 0.134  0.131 0.132 0.107 0.108 0.126 0.132
0050 0.087 0087 0087 0077 0087 0.056 0.057 0.072 0.078
0.025 0059 0059 0059 0048 0058 0.030 0.031 0.042 0.050
0010 0039 0039 0039 0027 0039 0012 0.013 0.021 0.030
0.005  0.031 0.031 0.031 0017 0.031 0.006 0.007 0.014 0.020
0.001 0016 0016 0016 0007 (016 0.001 0.002 0.005 0.009

——
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Figure 1.—QQplot of overidentifving tests, Chi-squared model. n = 300,

Figure 1 presents a QQplot= of the GMM (the “continuously updated™
version. though all three versions of the GMM test statistic are virtually
identical) overidentifying statistic and 7% for the N = 500 simulation. The plot
clearly shows the radical departure of the GMM statistics from their nominal
distribution, particularly in the upper tail; for example, a value exceeding 16.5,
which should only occur with a probability of about .00005, actually occurs
roughly one percent of the time (i.c. in 144 of 10,000 simulations versus 6 such
events for T2Y).

Robertson and Pagan (1997) report sizes for bootstrapped versions of the
standard version of the GMM test at sample size 500. At the nominal 0.1, 0.0.5,
and 0.01 levels they report sizes of 0.140, 0.094. and 0.041, clcarly inferior to the
robust LM test reported in the table which for these nominal sizes has size
{0.125,0.068,0.019}.

5.2. Model 2: Hall-Horowitz
The second Monte Carlo experiment is based on a design investigated by Hall
and Horowitz (1996). The moment vector ¢ has the form
exp( =072 —=0-(Z, +Z-)+3-Z) — 1
y(Z,0)= ’ ) .
Z,-lexp(=0.72—-0(Z, +Z,)+3-Z,) — 1]

\ 2

“+Quantile-Quantile plot,” that is. a plot of the quantiles of the Monte-Carlo valucs against the
corresponding quantiles of the reference x° distribution. The vertical bars are at the nominal 93
and .99 levels, and the 43¢ line that would represent perfect agreement is shown.
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The (Z,.Z,) have a bivariate normal distribution with correlation coefficient
zero, both means equal to zero and both variances equal to 0.16. The true value
of 8 is 4, =3.

Table II reports some of the Monte Carlo results. The two LM tests, T2 and
7Y .. arc again superior to most of the other forms of the test, either based
on the ET estimator or on the GMM estimators, with only the continuously
updated GMM test having similar size. It should be noted however that the
estimator on which this test is based. HU”,,W“. has a sampling distribution with
occasionally huge outliers. as has been found in other models by Hansen.
Heaton, and Yaron (1996). The 0.025 and 0.975 quI’tllkS of the sampling
distribution of H”,m”““, are 2.55 and 6.92, comparced to 2.35 and 3.73 for 6,,, and

2.54 and 3.66 for H .- More than one percent of the 10,000 simulations ]Ld to
estimates based on the continuously updated cstimator larger than 30. There
were in fact some problems in getting the continuously updated cstimator to
converge in cascs where the estimated parameters were far away from the
population values. Inspection revealed that typically the objective function for
this estimator has multiple modes, with occasionally the mode far away from the
pnpulation value of 6 higher than the mode close to the population valuc.
Figure 2 shows the QQplot of the overidentification test statistic for the best
conventional variant, namely 7,1 (GMM continuously updated), and 7.7)%, for
= 100. As one might expect from Table 1. there is not much difference in the

TABLE 11
Size or TesTs: MoDEL 2 (HALL-HorROwITZ MoDpEL). M = 2. K =1, 10.000 REPLICATIONS

100 Obscrvations
Criterion
Average Moment Tests Tilting Parameter Tests Function Tests

Size riY B r v I i i i e r&t

e Sty

ey

0200 0269 0271 0250 0310 0268 0.277 0.262 0.28% 0.280
0.100 0177 0179 0.128  0.203 0.172 0.152 0.143 0,181 0.177
0.050 0121 0125 0070 0043 0117 0.085 0.086 0.112 0.117
0.025 0.086 ().093 ).043 0.103 ().084 0.046 0.054 0072 0.080
0010 0058 0066 0022 00690 0056  0.023 0.034 0.042 0.051
().005 ().044 0.051 0.015 0.0055 0.042 0.013 0.026 0,029 (1L.037
0.001 0023 0030 0006 0034 0022 0004 0.012 0.014 0.019

200 Observations
Criterion
Average Moment Tests Tilting Parameter Tests Function Tests

. N T . Y Py ey T
Size ]‘Y i [;‘j\l ,y‘?‘l ]”1 A ]wlw.l» [(l‘,[,," ]-l s / IUVIKV‘“

iy irel)

0.200 0.243 0.241 .228 0.264 0.237 ).242 0.239 0.254 .248
0.100 0.145 0.144 0.125 0.167 0.143 0.127 0.128 0.148 0.146
0.050 (1.09S 0.099 0.074 (0.107 0.092 0.065 0.070 0.088 0.092
0.025 (.068 0.067 0.045 (1L.074 0.062 1.035 0.042 0.052 0.058
0.010 0.044 0.046 0.025 0.048 0.042 0.016 0.024 0.026 0.033
0.005 0.032 0.033 0.015 0.037 0.029 0.008 0.019 0.017 0.023
(1.001 0017 0.017 0.005 0.019 0.014 0.002 0.012 0.007 0.012

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



346 G. W. IMBENS, R. H. SPADY, AND P. JOHNSON

l2 -
8 -
m 7 0
17 ——  GMM(CU)
// .......... ET(R)
% ——- LR(EL)
O —
| | T T
0 5 10 15

FiGure 2.—QQplot of overidentifying tests, Hall-Horowitz model, #n = 100.

plots. However, at N =200, 7,5, has a decided advantage, as shown in Figure 3.
Moreover, in accord with the sampling distribution of tests of the
and its corresponding

hypothesis 6 = 6, are very badly oversized when 6,,,,,.,, nd its
estimated standard error are used in the Wald test. This is shown in Figure 4,
where the corresponding “exponential tilting” statistic® based on 6,, is also
shown; this statistic shows very close agreement with the reference distribution.
Also shown in Figure 4 is the QQplot of the best conventional GMM test, that

based on ég,,,,,l(i). This is better than the apparently disastrous test based on
6

hemm(cuys DUL it is still much worse than the test based on (;i,,; and, of course, as
Table II shows, tests of overidentification based on §,,,,,;, are clearly inferior to
TEM for both N =100 and N = 200.

et(r)
Again a comparison can be made with the bootstrap corrected version of the

GMM test. For the current sample size the bootstrapped version of the
GMM1-based test T,}™ reported in Hall and Horowitz (1996, Table 1) is a clear

gl
improvement on Tg’,‘n‘t,’,, with tests of nominal sizes .1, .05, and .01 having actual

sizes .164, .113, and .063. However, it still is much further away from the limiting
distribution than either Tt or TL  (which have sizes {.152, .085, .023} and

er(r) gmm(r)

{.143, .086, .034}, respectively).

* Briefly, compute TEY at 6= 6, ie. with no unknown parameters; this is distributed as x3(s)

under the null. Subtract from this the x*(m — k) distributed T,5} (calculated at § = 6). The result
is a y (k) test of =6,

- |
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Figure 3.—QQplot of overidentifying tests, Hall-Horowitz model, n = 200.

o
D —
——  GMM(CU)
---------- ET(R)
----  GMM(IT)
O —
T I T
0 10 15

FIGURE 4.—QQplot of theta tests, Hall-Horowitz model, 7 = 200.
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5.3. Model 3: Burnside-Eichenbauin

The design of the third Monte Carlo experiment is identical to onc of the
models considered by Burnside and Eichenbaum (1996). Altonji and Segal
(1996) consider similar models. The moment vector  has the form

=1

Zi—1
w(Z) = B

VA

The M elements of the vector Z arc independent normally distributed random
variables with known mean zero and known variance onc. Burnside and Eichen-
baum motivate this model with reference to real business cvele models where
tests are often carried out to investigate whether a specific model estimated on
first moments can explain second moments of the variables. Because there are
no unknown parameters, some of the test statistics are identical in this casce:
TI\I TI\] TI\I and TI M T[\I

g3 efir) gHIr)
Table 11 reports some of the Monte Carlo results. Again the tilting parame-
ter tests 75" and 'I",,’m‘,f”,, outperform all other test statistics in the agreement

of nominal and actual size.

TABLE 111

Stz oF Tests: Moper 3 (Burysipe-Eicnensaum Mopin), M = 10, K = 0. 10,000 REPLICATIONS

L0 Observations
Criterion
Average Moment Tests Tilting Parumeter Tests Function Tests

Size I U I“::\; Igl‘” A g I"‘,‘f’, /vf’u;‘rlv. B [}("l'! I

e

0.200 0.396 0.396 1.396 0.409 (.341 0.217 0.217 0.34Y 0.383
0.100 0.283 0.283 0.283 0.285 0.236 0.110 0.110 0.225 0.261
0.050 0.203 0.203 0.203 0.200 0.168 0.057 0.057 0. 143 0.184
0.023 0.151 0.151 0.151 0.146 0.123 0.030 0.030 0.095 0.127

0.010 0.102 0.102 0.102 0.096 0.081 0.013 0.013 0.038 0.081
0.005 0.076 0.076 0.076 0.072 0.060 0.007 0.007 0.040 0.062
0.001 0.041 0.041 0.041 0.038 0.031 0.001 0.001 (0.01K 0.028

2000 Ghbscervations
Criterion

Average Moment Tests Tilting Parameter Tests Function Tests
Sie T T [ r 15N, L Ui Iih N
0.200 0.295 0.295 0.295 0.282 0.232 0.182 0.182 0.253 (1.282

(.100 0.182 0.182 0.182 0.174 0.135 0.087 0.087 0.143 0.166
0.050 0.113 0.115 0115 0.105 0.083 0.040 0.040 (0.082 0.100

0.025 0.077 0.077 0.077 0.066 0.053 0.018 (.018 1.040 0.063
0.010 0.046 (1.046 0.046 0.035 0.030 0.007 0.007 0.023 0.035
0.005 0.030 0.030 0.030 0.022 0.017 0.002 0.002 0.014 0.022

0.001 0.012 0.012 0.012 0.008 0.007 0.001 0.001 0.003 0.008

- ____________________________________________________________________________________________________|
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FiGure 5.--QOplot of overidentifving tests, Burnside-Eichenbaum model. i = 100,

Figures 5 and 6 present the QQplots for 7' and 7,[} at N =100 and
N =200 respectively. In both cases the superiority of the latter is evident
throughout the whole range of the distribution. Rather peculiarly. the N = 200
case shows a greater deviation of 7)Y from the reference distribution than
does N = 100. At N =400 (not shown), the agrcement is again as closc as in
N = 100 and still markedly superior to that of 7.

In all three experiments the same pattern is observed. The robust tilting
paramecter tests arce superior, whether based on the ET or GMM estimator.
Given the ease of caleulation for the GMM-based test T, that given an
efficient estimator 6,, . only requires solving the globally concave maximization

program max, X explii(z,. 6,,,)), this test appears a simple and powertul
alternative to standard tests.

6. ASYMPTOTIC EXPANSIONS

To interpret the Monte Carlo results in the previous section we investigate a
simpler example in more depth. We modify the third (Burnside-Eichenbaum)
example by reducing the number of moments to one. For a sample sizes of 100
and 1000 we present QQ plots for the statisties 7.2, T, and 7Y in Figures
7 and 8. Again we find that the tilting parameter test with the robust cstimate of
the variance is superior for the smaller sample size. with the performance for all
three statistics very similar for the larger size.
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FiGURE 6.—QQplot of overidentifving tests. Burnside-Eichenbaum model, 7 = 200.
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Figure 7.—QQplot of moment tests, no unknown parameters, # = 100.
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FiGuRE 8.—QQplot of moment tests, no unknown parameters, n = 1000.

To investigate this behavior further, we compute the expectation of the next
term in the large sample expansion of the two test statistics in this scalar case.
Using the notation m; to denote the ith sample moment (so, e.g., m;=
n 'Lz, 6,)), the GMM statistic T4 can be expressed exactly as
n(m}/m,). For the other statistics, we develop approximations in terms of
sample moments by expanding the expressions for the test statistics in Taylor
series in f around 7 = 0, and then substituting for { the expansion derived from a
Taylor series of the estimating equations. This results in

2 3 4.2 4 \
Y my  mym; 9 mim5; 4 mim, i
Iy =n 3 1 ) 4 +Op(" )
m, my 4 m 3 m3
2 3 1 4
. mi  2mim, mim; 1 mim,
CF : : 32
T M =n Tt~ — |+ O0,(n"?)
m, 3 ny 2 m3

Neither 7.5™ nor 75" have finite moments: both statistics take on the value
infinity if every observation is of the same sign. However, the first terms on the
right-hand side of the above expressions do have moments provided the underly-
ing random variable has a sufficient number of moments; so too do the
O,(n*/?) terms which are expressions involving ms, m,. etc; and so on.

Writing 75 = TLY + 0,(n~/?), etc., and taking the expectations using, e.g.,
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the techniques in Kendall and Stuart (Vol. 1, Chapter 12), we obtain

N

Vo2

E(TMy=1+ -8 +0n 7).
n

— 3¢ k
E(T(,[I,'W) =1+ i — — +0(n""),
4n n

5

LIPS
+ — +0(n "),
3n 2n

where g and k are the standardized third and fourth moments of Y(Z, 6,), i.e.
wo/ Y7 and w,/u3, so that in the y (1) example at hand ¢ =8 and k = 15}
For the purposes of distributional approximation W and TSF characterize the
asymptotically dominant part of the behavior of their corrcsponding ‘full’
statistics: cmpirical likelihood (T7) is, for example, Bartlett-correctable with
the Bartlett factor taken as E(TST); see DiCiccio et. al. (1988, 1991) for a

discussion of this point. Certainly. if E(T,/)") were of lower order or even

E(TTF) -1 -

typically of smaller size than E(7.") one would regard this as a sufficient
explanation or indeed demonstration of the superior properties it has in prac-
tice.

Table TV presents means obtained from 100,000 simulations of 7', TEY,
TEM TS and TE for no= 350, 100, 200, 500, and 1000. together with corre-
sponding asymptotic approximations. In the case of 7" the asymptotic approx-
imations are obtained from evaluating in succession the terms from E(TY) =1
+16/n — 208 /0% + 10496 /n* — 2272064 /n* + O(n~3).*

The following points are notable. First, the mean of the very simple statistic
7" is not approximated terribly well by its O(n ~') approximation until at least
n = 200: the O(n~ ") approximation is quite credible even at i = 50, but further
terms are not uscful as the series diverges at low powers of n~' for moderate n.
Consequently. higher order approximations are unlikely to be truly useful at
such sample sizes, though they may offer guidance as to the accuracy of
lower-order approximations, which are liable to be accurate provided the
higher-order terms that succeed them arc small.

Second, this pattern of only moderately rcliable O(n~") approximation of

expectations for n < 200 holds truc also for the more complicated statistics 7,1,"

and T, In fact, if anything, the approximations seem slightly more reliable.

Third, between n =200 and n =300 the expectations 7,-" and T." do
become reliable guides to the expectations of T,-Y and Tt " respectively. Below
n = 200 the discrepancies are quite apparent.

" The expectations of 7Y and T£" can be confirmed from Hall ((1992. p. 73). where the =37
disappears because the mean is here known to be zero) and DiCiccio, Hall, and Romano (1991),
respectively. Related and more detailed caleulations are carried out in Corcoran. Davison. and
Spady (1995) and Spady (1996).

* We are grateful to Andrew Chesher who designed the algorithm implemented in Mathematica
that was used to compute this expression.
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¥
n
(93]

TABLE IV

COMPARISON OF ACTUAL AND ASYMPTOTIC MEANS OF TEST STATISTICS
MODEL 3: v~ MOMENTs. A7 = 1. K = 0. 100,000 REPLICATIONS

=3 o= 100 =200 =S 2= 1000

7Y Gmulated 1.2549 1.1331 1.0693 1.0430 1.0103
T (0068) (0059 (.0053) (.0049) (0047
7Y owm 1.3200 1600 10800 10320 1.0160
T ot ) 1.2368 1.1392 1.0748 1.0312 10158
T o 1.3208 1.1497 10761 1.0313 1.0158
T Ot .9572 1.1270) 1.0747 1.0312 1.0158
7LV Gmulated [.0588 1.0044 ().9898 1.0008 (.9883

h) ale
o ¢ (.0047) (0044) (0044 (004) 004
777 simulated 0.9478 0.9183 1.9563 0.9932 0.9864
(.0060) (L0043) (.0042) (.0043) (.0044)
7Y ot h 0.8200 0.9100 0.9550 0.9820 0.9910
FOF mulated 1.1966 1.1275 1.0323 1.0227 10016
e are (.0060) (.0057) (.0047) (.0046) (.0045)
, 1.1613 1.0494 1.0219 10207 1.9997

756 simulated
o M (0062) CO048) (0046) (0043) 0045)
TS O h 1.0967 1.0483 10242 1.0097 1.0048

Fourth. as in our other examples 75" displays behavior at # =350 that
requires 71 =500 for 7" and n almost 200 for TS". This cannot be explained
by the O{n ") approximations, but neither can most of the relevant behavior of
these statistics at moderate sample sizes.

Finally. it should be noted that the usefulness of this sort of asymptotic
analysis for the semiparametric contexts that are of interest here stands in very
stark contrast to the fully parametric casc. Testing the moment restriction with
an exponential tilt of the parametric density in this example gives rise to a
Bartlett factor of 1/3n. The corresponding Bartlett-corrected likelihood ratio
test has the indicated mean and correct coverage and cumulants as determined
by 100.000 simulations even for # =5 or 10. Chesher and Smith (1997) consider
the corresponding case with regressors and find that the exact distribution of the
Bartlett adjusted test statistic is very nearly y; with # =8 and two regressors.

We conclude that the O(n ") expectations of the semiparametric test statis-
tics considered here—expresscd in Bartlett correction form they are 16, —9,
and 29,6, for 7Y, T./Y and T,{" respectively—are too large (as compared to
a parametric benchmark of 1/3) to be reliable guides to the relative perfor-
mance of the corresponding tests except at levels of 7 that are liable to be of no
interest. Since realistic applications are more complicated, involving nuisance
parameters and more nonlinear moment functions as in our other examples, we
expect this to be even more true in practice. Nonetheless, effective semipara-

metric inference with 7,/Y appears to be a real possibility.

I
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7. CONCLUSION

In this paper we discuss aspects of inference in moment condition models,
focusing on tests for overidentifying restrictions. We introduce a number of
alternatives to the standard tests based on the value of the objective function.
Our proposed tests are motivated by information-theoretic alternatives to the
standard GMM estimators that as a by-product calculate Lagrange multipliers
for the overidentifying restrictions. Tests based directly on these Lagrange
multipliers perform much better than the standard tests, and better even than
bootstrapped versions of the standard test. Since these Lagrange multipliers are
easily calculated given any efficient estimator for the primary parameters (this
only requires solving a maximization problem with a globally concave objective
function), these tests should be easy to implement in many cases where the
standard test performs poorly.
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Nuffield College, Oxford OXI INF, U.K., and Northwestern University,
and
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Manuscript received July, 1995: final revision received March, 1997.

APPENDIX

In this appendix we give formal proofs for the limiting distributions of the test statistics. For
proofs of the consistency and asymptotic normality of the conventional GMM and empirical
likelihood estimator the reader is referred to Hansen (1982) and Newey and McFadden (1994). and
Qin and Lawless (1994) and Imbens (1993) respectively. For the cxponential tilting estimator
consistency and asymptotic normality can be proven along the same lines.

The following theorem gives the asymptotic distributions for the new test statistics.

THEOREM 1: Let § be an efficient estimator for 0y that satisfies

1 N
= Y w(z,.8,) +o (1),
VN =1

(11) VN (6-6))=—(I"2 )"
Let f be equal to T + (),,(1/\/}\7). where
- . 1
12) YN i=A" s =T (Ira~r) F’.\")*—*Zd/(z 8,),
\U .

and assume

X . .
— 3wz, a',)—»;(o 4, F=T~o, (). and 3=1+0,1.

VIV =
Then:
- . d N
(i) Ty=N-T A1 x*(M=K).
(ii) T =N-7-3:i=T,+o0,(1).
N Dt TP N
(iii) T,,’,"”=N~?’(A"(f—I'(["A“F) rn-l) f=T,+0,(1).
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where the superscript —g denotes the generalized ( Moore-Penrose) inverse.

N

(iv) TSP =23 (In(1/N) = In(#)] = T}y +0,(1),
i=1

where

N

7 =expliu(Z, ) | Y exp(iw(Z,.8)).
i=1
N

v) GE=2-N Z (In(#r) = In(1/N)) = Ty +0,(1),

using the same definition for ;.

PrOOF: (i) Under the assumptions in Theorem 1 E¢(Z,0y)/ VN has a limiting normal
distribution with mean zero and variance A. Use the Cholesky factorization of thc positive definite,
symmetric matrix A as A'/2(4"72)_ Then, the limiting distribution of £= A4~ AT Z,. 6y)/ VN is
an M-variate normal distribution with an identity matrix as the variance-covariance matrix. We can
write 7, as

T,= (Zw(z,,e(,)/m)(_r Loatirerat iy m-l)(zw(z,.e“)/m}
o i

=g (F- ATV ATy T ra Ve

Becausc the matrix in this quadratic form is idempotent its distribution is in the limit £° with
degrees of freedom cqual to the rank of this matrix, i.c. M — K.

(i) This follows directly from the assumptions that 7 =17+ 0,1/ VNdand d=d+o0 L)

(iii) It follows from the assumptions that

. -5
TEM (A" M= T A=) T i+ 0,0,

Substituting for 7, and using for the shorthand A = (4 1= I'(I'"47 )7 '747 1), the leading
term equals

} B 1 N N
rAT = Y u(z,6))A4A%A4 == Z #(Z,.8,)
VIV =) =
1 N N

= - (Z,8,) A —= ) W(Z;,6))=T
V/NV ,;dl 1] V,l’\_’ 1=Z| [} 0

which completes the proof of (ii).
(iv) Consider for fixed i the function n(t,8)=N-m(1.6) - 1.
Nexp(rp(z;, 8)) — TV exp(r'y(z,,6))

n(t.6)= V"\.,exp(t/d;(z ) =t (glz,8) =z, 0) 0))+o(r ).

where ¢ = Ly /N. Next, expand In(1/N) — In 7. 0):
In(1/N)~Inm(r,8) =In(1/N) = In((n, + D/N)=—-InN+In N -7+ int +0,(nH)
= —(§lz,.0) = §(2,6))
+ 30z, 0) — wlz. Gz NPz, 6) — 4z, 8) 6))t+o (r2).

I —
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Summing up over all observations. we get

N
= Y =Gz, 8y — Bz A))

i=1

+r Gz ) — G (zoe DGz, 00 — WE.H)),I +u/}(lz)].

~ . . . 5 - . » s
Evaluating this expression at ¢ and ¢ the first term sums up to zero and because 1= O, (1 /YN ) we

getl
N —_— ————
T =0 Y Lz 6) = oo (2 0) = (= 0 ] +0,(D)
=1
=N At o, =T, 40,00
(+) This result can be proven along the same lines as (iv), Q.E.D.
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