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Abstract

There are many environments where knowledge of a structural relationship is required to answer

questions of interest. Also, nonseparability of a structural disturbance is a key feature of many

models. Here, we consider nonparametric identification and estimation of a model that is monotonic

in a nonseparable scalar disturbance, which disturbance is independent of instruments. This model

leads to conditional quantile restrictions. We give local identification conditions for the structural

equations from those quantile restrictions. We find that a modified completeness condition is

sufficient for local identification. We also consider estimation via a nonparametric minimum distance

estimator. The estimator minimizes the sum of squares of predicted values from a nonparametric

regression of the quantile residual on the instruments. We show consistency of this estimator.
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1. Introduction

In econometrics, there are many environments where knowledge of a structural
relationship is required to answer questions of interest. Also, nonseparability of a
structural disturbance is a key feature of many economic models. Here we consider
nonparametric identification and estimation of a model that is monotonic in a
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nonseparable scalar disturbance, which disturbance is independent of instruments. This
model leads to conditional quantile restrictions. We give local identification conditions for
the structural equations from those quantile restrictions. We find that a completeness
condition is sufficient for local identification. We give sufficient exponential family
conditions for local identification and show that with a linear, Gaussian reduced form, the
standard rank condition suffices.

The estimator we consider is a nonparametric minimum distance estimator with a
parametric approximation to the unknown function. The estimator minimizes the sum of
squares of predicted values from a nonparametric regression of the quantile residual on the
instruments. The estimator is, in effect, nonlinear two-stage least squares with residuals
that are not continuous in the parameters. We show consistency of this estimator when the
unknown function and estimator are restricted to have known uniform and Lipschitz
bounds, which are weaker conditions than the bounded derivative conditions of Newey
and Powell (2003).

The nonparametric model we consider is a special case of the model considered by
Chernozhukov and Hansen (2005). Their model allows for a nonscalar disturbance,
whereas this paper considers only the scalar disturbance case. They also give innovative
global identification conditions, whereas we give conditions for local identification. The
local identification conditions developed here extend those in Newey and Powell (2003) to
allow for residuals that are nonlinear in an unknown function. The nonparametric
minimum distance estimator falls in the class of estimators proposed by Newey and Powell
(2003).

The model can also be thought of as extending conditional quantile identification and
estimation as considered by Hendricks and Koenker (2002), Matzkin (2003), and others, to
allow for endogeneity. We do this by replacing the assumption of independence of
disturbance and regressor with independence of the disturbance and an instrument. In
relation to Blundell and Powell (2003), Chesher (2003), and Imbens and Newey (2003), the
model does not require existence of a reduced form with a single disturbance, but does
impose that the structural equation has a single disturbance.

Section 2 of the paper describes the model. Section 3 gives the identification results.
Section 4 discusses the minimum distance estimation method and gives a consistency result
for this estimator.
2. The model

The model we consider takes the following form:

Y ¼ g0ðW ;UÞ;Z and U are independent,

g0ðw; uÞ is strictly monotonic increasing in u, ð1Þ

where u and y are scalars, w ¼ ðx; z1Þ, x is a dx � 1 vector of endogenous explanatory
variables, z1 and z2 are d1 � 1 and d2 � 1 vectors of instrumental variables, z ¼ ðz1; z2Þ,
and upper and lower case represents a random vector and its realization, respectively. Also
g0ð�Þ denotes the true, unknown structural function of interest and U is continuously
distributed with positive density over its support. This model allows the structural
disturbance to enter in a fully nonseparable way.
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The structural function g0ðw; uÞ has a quantile interpretation. By monotonicity in U the
tth quantile of g0ðw;UÞ is g0ðw; qtÞ, where qt is the tth quantile of the marginal distribution
of U. Thus, for different values w̄ and ~w of W,

g0ð ~w; qtÞ � g0ðw̄; qtÞ

can be interpreted quantile treatment effect of Lehman (1974), that is the difference of the
tth quantiles of Y when W is set to w̄ and ~w. Knowledge of these quantiles also lead to
knowledge of the average structural function mðwÞ (see Blundell and Powell, 2003) through
the well-known relationship,

mðwÞ ¼
Z

g0ðw; uÞFU ðduÞ ¼

Z 1

0

g0ðw; qtÞdt.

The quantile function g0ðw; qtÞ is interesting because it describes how w affects a particular
point in the distribution Y. The average structural function is also interesting, because it
summarizes the effect on the whole distribution.
For identification and estimation purposes we focus in this paper on conditional

quantile restrictions implied by the model. Independence of U and Z imply that for each t
with 0oto1, by g0ðW ; uÞ strictly monotonic in u,

t ¼ E½1ðUoqtÞ� ¼ E½1ðUoqtÞjZ� ¼ E½E½1ðUoqtÞjW ;Z�jZ�

¼ E½E½1ðg0ðW ;UÞog0ðW ; qtÞÞjW ;Z�jZ� ¼ E½1ðYog0ðW ; qtÞÞjZ�. ð2Þ

Letting ytðW Þ ¼ gðW ; qtÞ, this equation can be written as a conditional moment restriction

E½rtðY ;W ; yt0ÞjZ� ¼ 0,

rtðY ;W ; yÞ ¼ 1ðYoyðW ÞÞ � t. ð3Þ

Thus we see that the quantile structural effect g0ðw; qtÞ will satisfy this conditional moment
restriction.
The quantile conditions are not the only restrictions implied by the model. The

monotonicity of g0ðw; uÞ implies monotonicity of yt0ðwÞ in t, i.e.

yt0ðwÞoy~t0ðwÞ for all ~t4t; all w.

In general, this monotonicity restriction is not implied by the conditional quantile
restrictions except in the exogenous W case where Z ¼W , in which case yt0ðW Þ will be the
tth conditional quantile of Y given W, which is known to be monotonic in t. In general,
with endogeneity, monotonicity of yt0ðwÞ in t will be an extra condition that could be useful
for identification and estimation. It would also be interesting to know if there were other
restrictions implied by the model that could be used in estimation. We leave this topic to
future work and here focus on the conditional quantile restrictions.

3. Identification

For identification purposes we will focus on the nonparametric conditional moment
restriction in Eq. (3). This equation is of the general form considered by Newey and Powell
(2003) but their identification conditions do not apply, because rðy;w; yÞ is nonlinear in y.
This nonlinearity results from y being inside the indicator function in rðy;w; yÞ. As is well
known, conditions for identification in nonlinear models are somewhat harder to specify
than in linear models. It is possible to specify conditions for local identification analogous
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to those for nonlinear parametric models in Rothenberg (1971), and that is the approach
we adopt here. We find that these lead to certain completeness conditions for identification
that extend those of Newey and Powell (2003). Chernozhukov and Hansen (2005) give
some conditions for global identification, that only require bounded completeness, but
may be harder to check because they are nonlinear in y.

We begin by giving a sufficient condition for local identification from a nonparametric,
nonlinear conditional moment restriction. We will then obtain identification conditions for
the conditional quantile restriction by applying this result. For the moment, let rðy;w; yÞ
denote a function that need not have the form given in Eq. (3) above where y denotes a
function of a vector V that may include Y ;W ; and Z. Let kyk2 ¼ fE½yðV Þ

2
�g1=2 denote the

mean-square norm.

Theorem 3.1. If E½rðY ;W ; y0ÞjZ� ¼ 0 and there exists a function DðV Þ such that

E½DðV Þ2�o1 and (i) for every bounded aðzÞ the functional E½aðZÞrðY ;W ; yÞ� satisfies

E½aðZÞrðY ;W ; yÞ� ¼ E½aðZÞDðV ÞfyðV Þ � y0ðV Þg� þ oðky� y0k2Þ;

and (ii) E½DðV ÞDðV ÞjZ� ¼ 0 implies DðV Þ ¼ 0; then there is e40 such that the only y with

ky� y0k2pe and E½rðY ;W ; yÞjZ� ¼ 0 is y ¼ y0.

Condition (i) of this result is Frechet differentiablity of E½aðZÞrðY ;W ; yÞ� in the norm
kyk2, with derivative aðZÞDðV Þ. When DðV Þ is positive, condition (ii) is completeness for
the conditional expectation E½DðV Þð�ÞjZ�=E½DðV ÞjZ�. This is a weighted version of the
identification condition in Newey and Powell (2003). Here DðV Þ is present because the
derivative of the residual with respect to y depends on the data.

This result can be used to derive sufficient conditions for local identification of y0 from
the moment condition of Eq. (3), as given in the following result:

Theorem 3.2. If Y is continuously distributed conditional on X and Z with density f ðyjx; zÞ
and there is C40 such that jf ðyjx; zÞ � f ð ~yjx; zÞjpCjy� ~yj and for DðV Þ ¼ f ðy0ðW ÞjW ;ZÞ,
E½DðV ÞDðV ÞjZ� ¼ 0 implies DðV Þ ¼ 0 then y0ðW Þ is locally identified.

Thus, we see that a sufficient condition for local identification is completeness with
respect to the conditional density

DðV Þ=E½DðV ÞjW � ¼ f ðy0ðW ÞjW ;ZÞf W jZðW jZÞ=

Z
f ðy0ðwÞjW ¼ w;ZÞf W jZðw;ZÞdw.

An example helps to fix ideas and relate this result to Chernozhukov and Hansen (2005).
Suppose that X i 2 f0; 1g and Z 2 f0; 1g are binary and that Z1 does not exist. Here Z is the
sole instrument and excluded from the structural equation. In this case, the object of
interest consists of the pair of numbers ðy0ð0Þ; y0ð1ÞÞ. Here the equation E½DðV ÞDðV ÞjZ� ¼
0 is a system of two equations in two unknowns Dð0Þ and Dð1Þ, given by

PðDð0Þ;Dð1ÞÞ0 ¼ 0;P ¼ ½pjk�
1
j;k¼0;pjk ¼ f Y jX ;Zðy0ðjÞjj; kÞPrðX i ¼ jjZi ¼ kÞ.

Then the condition for local identification is that the matrix P is nonsingular. This is a
local version of the global identification condition of Chernozhukov and Hansen (2005)
for this example. They show that if P remains nonsingular when y0ð0Þ and y0ð1Þ are
replaced by all values in a certain set then global identification holds. Here this
nonsingularity is only required to hold at y0ð0Þ and y0ð1Þ.
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We can use well-known exponential family results on completeness to obtain more
primitive conditions for local identification. This is done in the following result.

Theorem 3.3. If Eq. (1) is satisfied, g0ðW ; uÞ is differentiable at u ¼ qt with qg0ðX ; qtÞ=qu

bounded and bounded away from zero, and with probability one the distribution of ðX ;UÞ
conditional on Z is absolutely continuous with density satisfying f ðX ;UÞjZðx; qtjzÞ ¼ stðx; z1Þtt
ðzÞ expfmtðzÞ

0ztðx; z1Þg, stðx; z1Þ40, zðx; z1Þ is one-to-one in x, and the support of mðZÞ given

Z1 is an open set with probability one, then g0ðW ; qtÞ is locally identified.

This result imposes an exponential family hypothesis on the conditional density of
ðX ;UÞ given Z when U is set equal to it tth quantile. This is a different form of the
exponential family condition than is given in Newey and Powell (2003), here requiring that
a joint conditional density of X and U have an exponential form rather than the
conditional density of X . It is possible to give further sufficient conditions for this
hypothesis that are straightforward to interpret. The following is a result for joint
conditional normality of X and U.

Theorem 3.4. If Eq. (2.1) is satisfied, with probability one, conditional on Z ¼ z the

distribution of ðX ;UÞ is Nð Cðz1ÞþGðz1Þz2
0

� �
;Oðz1ÞÞ, Oðz1Þ is nonsingular, the last element of the

diagonal of Oðz1Þ is constant, and the support of Z2 given Z1 contains an open set, then

g0ðW ; qtÞ is locally identified if PrðrankðGðZ1ÞÞ ¼ dxÞ ¼ 1.

The hypotheses of this result are somewhat stronger than the corresponding result in
Newey and Powell (2003), involving joint conditional normality of U and X rather than
just conditional normality of X. The condition rankðGðZ1ÞÞ ¼ dx is identical to that in
Newey and Powell (2003), being the nonparametric analog of the necessary and sufficient
conditions for identification under conditional normality in a linear model. The matrix
Gðz1Þ is the analog of the coefficients of the excluded instruments in the reduced form for
the right-hand side variables. An order condition for identification in this case is that
d2Xdx, just as in a linear model.

4. Estimation and consistency

The estimators we consider are nonparametric minimum distance estimators based on
minimization of the sum of squares of the nonparametric regression of rðY ;W ; yÞ on Z.
Let Ê½�jZ� be a conditional expectation estimator and

R̂ðyÞ ¼
Xn

i¼1

fÊ½rðY ;W ; yÞjZi�g
2.

For Yn some finite dimensional set of functions, to be further specified below, the
estimator ŷ solves

R̂ðŷÞp inf
y2Yn

R̂ðyÞ þ opð1Þ.

The form of this estimator as an approximate infimum is necessitated by the discontinuity
of the objective function.
To make this estimator operational we have to specify the set Yn over

which maximization takes place and the conditional expectation estimator Ê½�jZ�.
We consider series approximations for both. For the structural function consider
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approximating y0ðwÞ as

y0ðwÞ ffi pJðwÞ0gJ ,

where pJ ðwÞ ¼ ðp1JðwÞ; . . . ; pJJ ðwÞÞ
0 is a sequence of ‘‘basis’’ functions, and gJ is a

corresponding vector of coefficients. For any vector a let jaj ¼ ða0aÞ1=2 denote the
Euclidean norm. We assume that for the support W of w,

Assumption 1. W is compact and there is a constant C such that

Yn ¼ fp
Ĵn ðwÞ0gĴn : sup

w2W
jpðwÞ0gĴn jpC; sup

w; ~w2W
j½pðwÞ � pð ~wÞ�0gĴn j=jw� ~wjpCg.

Also, there exists pĴn ð�Þ
0gĴn 2 Yn such that

sup
w2W
jy0ðwÞ � pĴn ðwÞ0ḡĴn j �!

p
0.

Thus, we impose the requirements that linear combinations of the pJ functions can
uniformly approximate any function, and certain bounds are placed on linear
combinations of the coefficients. The bounds correspond to imposing the restriction that
the functions belong to the set

Y ¼ fyðwÞ : jyðwÞjpC; jyðwÞ � yð ~wÞjpCjw� ~wj 8w; ~w 2Wg.

By the Arzela theorem, the closure of this set in the normkyk ¼ supw2WjyðwÞj is compact in
kyk; e.g. see Ibragimov and Has’minskii (1981, p. 371, Theorem 17).

We use a series estimator for Ê½�jZi�. Let qK ðzÞ ¼ ðq1K ðzÞ; . . . ; qKK ðzÞÞ
0 be a vector of

approximating functions for functions of z, such as power series or splines. We will assume
that these approximating functions satisfy the following completeness condition:

Assumption 2. For any mðzÞ such that E½mðZÞ2�o1, there exists pK such that

lim
K�!1

E½fmðZÞ � qK ðZÞ0pKg2� ¼ 0.

Let Q ¼
Pn

i¼1q
K ðZiÞq

K ðZiÞ
0=n denote the sample second moment matrix for qK ðZiÞ. The

predicted value from regressing the residuals rðY i;W i; pJð�Þ
0gJ Þ on qK ðZiÞ is given by

p̂iðgJ Þ ¼ qK ðZiÞ
0Q�

Xn

j¼1

qK ðZjÞrðY j ;W j ; p
Jð�Þ
0gJÞ=n,

where Q� is any generalized inverse.
With this conditional expectation estimator and the compactness restriction given

above, the estimator is given by

ŷðwÞ ¼ pJðwÞ0ĝJ ,Xn

i¼1

p̂iðĝ
J
Þ
2p inf

kgJkpCJ

Xn

i¼1

p̂iðgÞ
2
þ opðnÞ.

Theorem 4.1. If Assumptions 1 and 2 are satisfied, E½rðY ;W ; yÞjZ� ¼ 0 if and only if y ¼ y0,
and f ðyjX ;ZÞpBðX ;ZÞ with E½BðX ;ZÞ�o1, then supw2WjĝðwÞ � g0ðwÞj �!

p
0.

It would also be interesting to have convergence rates and asymptotic normality results.
Because identification and estimation is based on conditional moment restrictions we
expect that estimation will suffer from an ill-posed inverse problem analogous to that
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pointed out by Newey and Powell (2003). Consequently, as in Severini and Tripathi (2003),
when X and Z have a joint normal distribution and weak restrictions are placed on y0ðW Þ
the convergence rate should only be some power of 1= lnðnÞ. As in Darolles et al. (2000) or
Hall and Horowitz (2003), the convergence rate may be faster with other distributions or
further restrictions on y0ðW Þ.
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Appendix. Proofs

Throughout this Appendix, C will denote a generic constant that may be different in
different uses.

Proof of Theorem 3.1. Suppose that the conclusion does not hold. Then there exists a
sequence yk; ðk ¼ 1; 2; . . .Þ such that kyk � y0k2! 0, E½rðY ;W ; ykÞjZ� ¼ 0, and

0 ¼ E½aðZÞrðY ;W ; ykÞ� ¼ E½aðZÞrðY ;W ; y0Þ� þ E½aðZÞDðV ÞfykðV Þ � y0ðV Þg� þ oðkyk � y0k2Þ

¼ E½aðZÞDðV ÞfykðV Þ � y0ðV Þg� þ oðkyk � y0k2Þ.

Dividing through by kyk � y0k, it follows that for DkðV Þ ¼ fykðV Þ � y0ðV Þg=kyk � y0k2,

E½aðZÞDðV ÞDkðV Þ� ! 0.

Also, by compactness of the unit ball in the weak topology in the Hilbert space
fyðV Þ : kyk2o1g, there exists DðV Þ such that for any bðV Þ with kbk2o1,
E½bðV ÞDkðV Þ� ! E½bðV ÞDðV Þ�. Then, for bðV Þ ¼ E½aðZÞjV �DðV Þ, it follows that

0 ¼ E½bðV ÞDðV Þ� ¼ E½aðZÞDðV ÞDðV Þ� ¼ E½aðZÞE½DðV ÞDðV ÞjZ��.

Since this equation holds for all bounded aðZÞ it follows that E½DðV ÞDðV ÞjZ� ¼ 0,
contradicting condition (ii). &

Proof of Theorem 3.2. Note that for yk with kyk � yk�!0 and V ¼ ðY ;W ;ZÞ

E½aðZÞrðY ;W ; ykÞ� � E½aðZÞrðY ;W ; y0Þ�

¼ E aðZÞ

Z ykðW Þ

�1

f ðyjW ;ZÞdy�

Z y0ðW Þ

�1

f ðyjW ;ZÞdy

� �� �
¼ E½aðZÞf ðȳkðW ÞjW ;ZÞfykðW Þ � y0ðW Þg� ¼ E½aðZÞDðV ÞfykðW Þ � y0ðW Þg� þ Rk,

Rk ¼ E½aðZÞff ðȳkðW ÞjW ;ZÞ � f ðy0ðW ÞjW ;ZÞgfgkðW Þ � g0ðW Þg�.

By the Lipschitz condition on f, we have

jRkjpCE½jȳkðW Þ � y0ðW ÞjjykðW Þ � y0ðW Þj�

pCkyk � y0k2 ¼ oðkyk � y0kÞ.

It follows that assumption (i) of Theorem 3.1 are satisfied with DðV Þ ¼ f ðy0ðW ÞjW ;ZÞ, so
the conclusion follows by the conclusion of Theorem 3.1. &
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Proof of Theorem 3.3. Let f ðujx; zÞ ¼ f U jX ;Zðujx; zÞ denote the conditional density of U

given X and Z: Then f Y jX ;Zðyjx; zÞ ¼ jqg0ðx; g
�1
0 ðx; yÞÞ=quj�1f ðg�10 ðx; yÞjx; zÞ. Therefore,

f Y jX ;Zðg0ðx; qtÞjx; zÞ ¼ jqg0ðx; qtÞ=quj�1f ðqtjx; zÞ ¼ Dðx; zÞ,

for Dðx; zÞ in Theorem 3.2. Note that f ðqtjx; zÞf ðxjzÞ ¼ f ðX ;UÞjZðx; qtjzÞ, and that for
~sðx; z1Þ ¼ jqg0ðx; qtÞ=quj�1sðx; z1Þ and ~tðzÞ ¼ tðzÞ=E½Dðx; zÞjz�, it follows from the hypoth-
eses that

~f ðxjzÞ ¼ Dðx; zÞf ðxjzÞ=E½Dðx; zÞjz� ¼ ~sðx; z1Þ~tðzÞ expfmðzÞ
0zðx; z1Þg

is a conditional density satisfying the exponential family hypotheses of Newey and Powell
(2003). Let ~E½�jZ� denote the conditional expectation for this conditional density. Note
that for V ¼ ðX ;ZÞ

E½DðV ÞDðV ÞjZ� ¼ ~E½DðV ÞjZ�E½DðV ÞjZ�,

so by E½DðV ÞjZ�40 with probability one, E½DðV ÞDðV ÞjZ� ¼ 0 if and only if
~E½DðV ÞjZ� ¼ 0. Then local identification follows by completeness of ~f ðxjzÞ, which is
shown in the proof of Theorem 2.2 of Newey and Powell (2003). &

Proof of Theorem 3.4. For simplicity we suppress the z1 argument, let z ¼ z2; and let
x ¼ x�C. Also partition O�1 ¼ ½Oij�ij¼1;2 conformably with x; u. Then

f ðX ;UÞjZðx; qtjzÞ ¼ C detðOÞ�1=2 expð�ðx� Gz; qtÞO
�1ðx� Gz; qtÞ

0=2Þ,

which has the form given in Theorem 3.3 with

tðzÞ ¼ C detðOÞ�1=2 expf�½ðGzÞ0O11Gzþ q2
tO

22 � 2qtO
21Gz�=2g

sðxÞ ¼ expf�½x0O11xþ 2qtO
21x�=2g; tðxÞ ¼ O11x; mðzÞ ¼ Gz.

Not that when rankðGÞ ¼ dx, then mðzÞ maps open z sets into open sets, so that the
conclusion follows by Theorem 3.3. &

The following results are used in the consistency proofs.

Lemma A1. Suppose (i) LðyÞ has a unique minimum on Y at y0; (ii) LðyÞ is continuous, Y is

compact, and supy2YjL̂ðyÞ � LðyÞj!
p
0; (iii) Ŷ are subsets of Y and there exists ~y 2 Ŷ such

that ~y�!
p

y. Then if L̂ðŷÞpinfy2ŶL̂ðyÞ þ opð1Þ, it follows that ŷ�!
p

y0.

Proof. Consider any neighborhood N of y0. By compactness of Y, continuity of LðyÞ, and
LðyÞ having a unique minimum at y0

D ¼ ½ min
y2Y\Nc

LðyÞ� � Lðy0Þ40.

For ~y satisfying condition (iii), L̂ðŷÞpL̂ð~yÞ þ D=3 with probability approaching one
(w.p.a.1). Then by the uniform convergence hypothesis in condition (ii), LðŷÞoLð~yÞ þ
2D=3 w.p.a.1. By ~y�!

p
y and continuity of LðyÞ, Lð~yÞoLðy0Þ þ D=3 w.p.a.1. Then

summing up and subtracting Lð~yÞ from both sides gives Lð~yÞoLðy0Þ þ D w.p.a.1. By the
definition of D, this even can only happen when ŷ 2N, which thus occurs w.p.a.1. The
conclusion follows by the N being any neighborhood of y0. &

Let riðyÞ ¼ rðY i;W i; yÞ; Dið
~y; yÞ ¼ jrið

~yÞ � riðyÞj, kyk ¼ sup
w2W
jyðwÞj, and diðy; dÞ ¼

sup
~y:k~y�ykod

Dið
~y; yÞ.
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Lemma A2. If the hypotheses of Theorem 4.1 are satisfied then there is a constant C such

that for all y 2 Y and d40,

E½diðy; dÞ�pCd.

Proof. For any ~y with k~y� ykod it follows that

Dið
~y; yÞp1ðyðW iÞ � dpY ipyðW iÞ þ dÞ.

Therefore,

E½diðy; dÞ�pE½1ðyðW iÞ � dpY ipyðW iÞ þ dÞ�

¼ E

Z yðWiÞþd

yðWiÞ�d
f ðyjX i;ZiÞdy

" #
p2dE½BðX i;ZiÞ�: &

Lemma A3. If the hypotheses of Theorem 4.1 are satisfied then

sup
ð~y;yÞ2Y�Y

Xn

i¼1

Dið
~y; yÞ=n� E½Dið

~y; yÞ�

�����
������!p 0.

Proof. Let

Dið
~y; y; dÞ ¼ sup

k~g�ykpd;kg�ykpd
jDið~g; gÞ � Dið

~y; yÞj.

By the triangle inequality and Lemma A2 there is a constant C such that for all
ð~y; yÞ 2 Y�Y,

E½Dið
~y; y; dÞ�pE½dið

~y; dÞ þ diðy; dÞ�pCd.

Consider any e40. Choose d such that for Cd from Lemma A2, Cdoe=3: Let
N~y;y ¼ fð~g; gÞ : k~g� ~ykod; kg� ykodg. Then _

ð~y;yÞ2Y�YN~y;y is an open cover of Y�Y,
so by compactness of Y�Y in the product topology, there exists a finite sub cover
_J

j¼1N~yj ;yj
. Then,

sup
ð~y;yÞ2Y�Y

X
i¼1

Dið
~y; yÞ=n� E½Dið

~y; yÞ�

�����
�����

p max
j¼1;...;J

Xn

i¼1

Dið
~yj ; yjÞ=n� E½Dið

~yj; yjÞ�

�����
�����þ max

j¼1;...;J

Xn

i¼1

Dið
~yj; yj ; dÞ=nþ E½Dið

~yj ; yj ; dÞ�

( )

popð1Þ þ max
j¼1;...;J

Xn

i¼1

Dið
~yj ; yj ; dÞ=n� E½Dið

~yj ; yj ; dÞ�

�����
�����þ 2Cdpopð1Þ þ 2e=3,

where the second inequality follows by the law of large numbers and the triangle
inequality. Therefore, with probability approaching one,

sup
ð~y;yÞ2Y�Y

X
i¼1

Dið
~y; yÞ=n� E½Dið

~y; yÞ�

�����
�����oe: &

Proof of Theorem 4.1. Define p̂iðyÞ ¼ qK ðZiÞ
0Q�

Pn
j¼1q

K ðZjÞrjðyÞ=n, piðyÞ ¼ E½riðyÞjZi�,
and L̂ðyÞ ¼

Pn
i¼1p̂iðyÞ

2=n. It follows by Newey (1991, Proof of Corollary 4.2) that
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for each y,

L̂ðyÞ �!
p

E½piðyÞ
2
�.

Now, note that since Dið
~y; yÞ can take on only the values 0 and 1, so that

Dið
~y; yÞ ¼ jrið

~yÞ � riðyÞj
2. Then for any y; ~y 2 Y, it follows by p̂iðyÞ being a least squares

projection that

Xn

i¼1

jp̂ið
~yÞ � p̂iðyÞj2p

Xn

i¼1

Dið
~y; yÞ;

Xn

i¼1

p̂iðyÞ
2p
Xn

i¼1

riðyÞ
2pCn.

It follows that

njL̂ð~yÞ � L̂ðyÞjp
Xn

i¼1

jp̂ið
~yÞ � p̂iðyÞj2 þ 2

Xn

i¼1

jp̂iðyÞjjp̂ið
~yÞ � p̂iðyÞj2=n

p
Xn

i¼1

Dið
~y; yÞ þ 2ðCnÞ1=2

Xn

i¼1

Dið
~y; yÞ

 !1=2

.

By the triangle inequality and Lemma A3, for any dn�!0,

sup
k~y�ykpdn

Xn

i¼1

Dið
~y; yÞ=np sup

~y;y2Y

Xn

i¼1

Dið
~y; yÞ=n� E½Dið

~y; yÞ�

�����
�����þ sup

k~y�ykpdn

E½Dið
~y; yÞ�

popð1Þ þ sup
y

E½diðy; dnÞ�popð1Þ þ Cdn�!
p

0.

Therefore, it follows that sup
k~y�ykpdn

jL̂ð~yÞ � L̂ðyÞj �!
p

0. It then follows that Assumption 3
of Newey (1991) is satisfied, with Dnðe; ZÞ ¼ sup

k~y�ykpdjL̂ð
~yÞ � L̂ðyÞj for d small enough, so

that supy2YjL̂ðyÞ � LðyÞj �!
p

0 by Theorem 2.1 of Newey (1991). The conclusion now
follows by Lemma A1. &

References

Blundell, R., Powell, J.L., 2003. Endogeneity in semiparametric and nonparametric regression models. in:

Dewatripont, M., Hansen, L.P., Turnovsky, S.J. (Eds.), Advances in Economics and Econometrics: Theory

and Applications, Eighth World Congress, vol. II, Cambridge University Press, Cambridge, pp. 312–357.

Chernozhukov, V., Hansen, C., 2005. An IV model of quantile treatment effects. Econometrica 73, 245–261.

Chesher, A., 2003. Identification in nonseparable models. Econometrica 71, 1405–1441.

Darolles, S., Florens, J.-P., Renault, E., 2000. Nonparametric instrumental regression. Manuscript, GREMAQ,

University of Toulouse l.

Hall, P., Horowitz, J., 2003. Nonparametric methods for inference in the presence of instrumental variables.

Working Paper, Northwestern University.

Hendricks, W., Koenker, R., 2002. Hierarchical spline models for conditional quantiles and the demand for

electricity. Journal of the American Statistical Association 87, 58–69.

Ibragimov, I.A., Has’minskii, R.Z., 1981. Statistical Estimation: Asymptotic Theory. Springer, New York.

Imbens, G.W., Newey, W.K., 2003. Identification and estimation of triangular simultaneous equations models

without additivity. Working paper, MIT.

Lehman, E.L., 1974. Nonparametrics: Statistical Methods Based on Ranks. Holden-Day, San Francisco.

Matzkin, R.L., 2003. Nonparametric estimation of nonadditive random functions. Econometrica 71, 1339–1375.

Newey, W.K., 1991. Uniform convergence in probability and stochastic equicontinuity. Econometrica 59,

1161–1167.



ARTICLE IN PRESS
V. Chernozhukov et al. / Journal of Econometrics 139 (2007) 4–1414
Newey, W.K., Powell, J.L., 2003. Instrumental variables estimation for nonparametric models. Econometrica 71,

1565–1578.

Rothenberg, T.J., 1971. Identification in parametric models. Econometrica 39, 577–591.

Severini, T., Tripathi, G., 2003. Some identification issues in nonparametric linear models with endogenous

regressors. Working Paper, Department of Economics, University of Wisconsin.
Further Reading

Lehman, E.L., 1959. Testing Statistical Hypotheses. Wiley, New York.

Newey, W.K., Powell, J.L., Vella, F., 1999. Nonparametric estimation of triangular simultaneous equations

models. Econometrica 67, 565–603.


	Instrumental variable estimation of nonseparable models
	Introduction
	The model
	Identification
	Estimation and consistency
	Acknowledgment
	Appendix. Proofs
	References

	bm_fur

