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Abstract

In semiparametric models estimation methods interest is often in the finite dimensional
parameter, with the nonparametric component a nuisance function. In many examples,
including Robinson’s partial linear model and the estimation of average treatment effects,
the nuisance function is a conditional expectation. For the large sample properties of the
estimators of the parameters of interest it is typically important that the estimators for these
nuisance functions satisfy certain bias and variance properties. Estimators that have been
used in these settings include series estimators and higher order kernel methods. In both
cases the smoothing parameters have to be choosen in a sample-size dependent manner.
On the other hand, nearest neighbor methods with a fixed number of neighbours do not
rely on sample size dependent smoothing parameters, but they often violate the conditions
on the rate of the bias unless the covariates in the regression are of very low dimension.
In many cases only scalar covariates are allowed. In this paper we develop an alternative
method for estimating the unknown regression functions that, like nearest neighbor methods,
does not rely on sample-size dependent smoothing parameters, but that, like the series
and higher order kernel methods, does not suffer from bias-rate problems. We do so by
combining nearest neighbor methods with local polynomial regression using a fixed number
of neighbors.
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1 Introduction

In semiparametric models estimation methods interest is often in the finite dimensional pa-
rameter, with the nonparametric component a nuisance function. The parameter of interest
can often be estimated at parametric (that is

√
N) rates even if the nonparametric component

cannot (Newey, 1994). In many examples, including Robinson’s partial linear model (Robin-
son, 1988), and the estimation of average treatment effects (e.g., Rosenbaum and Rubin, 1983;
Hahn, 1998; Heckman, Ichimura and Todd, 1998; Hirano, Imbens and Ridder, 2001), the nui-
sance function is a conditional expectation. For the large sample properties of the estimators of
the parameters of interest it is typically important that the estimators for these nuisance func-
tions satisfy certain bias and variance properties. Methods that can generally be constructed
to satisfy these conditions include series estimators and higher order kernel methods. In order
for these methods to have the desired large sample properties smoothing parameters have to be
choosen in a sample-size dependent manner. This requirement has slowed the applicability of
these methods as few results are available governing the choice of such smoothing parameters.
On the other hand, nearest neigbhour methods with a fixed number of neighbours do not rely
on sample size dependent smoothing parameters, but they often violate the conditions on the
rate of the bias when the covariates in the regression are of high enough dimension (e.g., Honoré
and Estes; Yatchew, 1999; Abadie and Imbens, 2004). In this paper we develop an alternative
method for estimating the unknown regression functions that, like nearest neighbor methods,
does not rely on sample-size dependent smoothing parameters, but that, like the series and
higher order kernel methods, does not suffer from bias-rate problems. We do so by combining
nearest neighbour methods with local polynomial regression. We show that with a fixed number
of neighbors local polynomial regression can control both the bias and the variance provided
the nearest neighbour points are choosen carefully so as satisfy specific conditions on their dis-
tribution. In the cases we consider this leads to

√
N consistent estimators for the parameters

of interest with zero asymptotic bias.
The first example of the setting we have in mind is the partial linear model and average

treatment effects. Robinson (1988) considers the model:

E[Y |X, Z] = X ′β + g(Z).

Robinson suggests estimating the parameter of interest, β, by first estimating nonparamtrically
the two conditional expectations µY (Z) = E[Y |Z] and µX(Z) = E[X |Z], followed by estimating
β by least squares regression of the residuals from those conditional expectations:

β̂ =

(
N∑

i=1

(Xi − µ̂X (Zi))(Xi − µ̂X(Zi))

)−1( N∑

i=1

(Xi − µ̂X(Zi))(Yi − µ̂Y (Zi))

)
.

The two conditional expectations µY (z) and µX(z) can be estimated using series or kernel
methods. If kernel methods are used higher order kernels are required to ensure that that the
square of the bias gets dominated by the variance in the asymptotic distribution of

√
N(β̂−β).
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In both these examples one can obtain root-N consistent estimators for the parameters
of interest, β in the partial linear model case and τ in the average treatment effect case. In
order to obtain a root-N consistent estimator one needs to estimate the unknown regression
functions. For the properties of the subsequent estimators for the finite dimensional parameters
of interest it is important that these nonparametric estimators have particular bias and variance
properties. Specifically, the bias needs to be of sufficiently low order so that it gets dominated
by the variance in the asymptotic distribution of the parameters of interest. As we shall see, the
variance of the estimators of the regression function need not shrink to zero for the estimator
of the parameter of interest to be consistent, but it is important that it does not increase too
fast with the sample size.

We can distinguish two approaches to the estimation of the nuisance function. First, one
can consistently estimate the regression function at each point. The estimators proposed by
Robinson (1988), Hahn (1998), and Heckman, Ichimura and Todd (1998) fall into this category.
Such estimators can be obtained in a variety of ways, for example through series estimation or
kernel methods (or local polynomial versions of this). If one uses kernel methods, one typically
needs to use higher order kernels to control the rate at which the bias goes to zero. With series
approaches one needs to increase the number of terms in the series sufficiently fast to eliminate
the bias at a high enough rate. A complication with these methods is that one needs to choose
a sample size dependent smoothing parameter (the bandwidth for the kernel estimators and the
number of terms in the series approaches). This can be difficult in practice, with few practical
guidelines towards optimal choice of bandwidth. Most of the rules of thumb that have been
suggested have optimality properties for estimating the nonparametric function which does
not necessarily lead to attractive estimators for the finite dimensional parameter of interest.
Exceptions are the papers by Ichimura and Linton (2004) and Imbens, Newey and Ridder (2004)
who suggest choices for smoothing parameters specific for average treatment effect estimators.

The second approach is to use estimators with non-vanishing variances. In both the partial
linear model and in the average treatment effect case the parameters of interest are estimated
by averaging the estimated regression functions, it is not essential that the latter be estimated
consistently, merely that the particular average is estimated consistently. Estimators of this type
include nearest-neighbor estimators with a fixed number of neighbours. The leading example
is the single nearest neighbour estimator where µ(Xj) = E[Y |Xi] is estimated as Y`(i), where
`(i) is the index of the closest neighbour for unit j:

`(i) = arg min
j=1,...,N,j 6=i

‖Xj − Xi‖.

As the sample size increases its bias will go to zero and its variance to the conditional variance
of Y given Xj, V (Y |Xi). Clearly Y`(i) is not consistent for µ(Xi). Nevertheless using the
nearest neighbor approach leads to a consistent estimator for the average treatment effect (see
Abadie and Imbens, 2002). The averaging over the estimated regression functions ensures the
consistency of τ̂ even if µ̂w(x) is not consistent. An attraction of this method is that one does
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not need to choose a bandwidth that changes with the sample size. (Although the number of
nearest neighbors can be viewed as a choice of smoothing parameters, it is a choice that need
not change with the sample size.) A problem with this nearest neighbor or matching approach
is that with high dimensional covariates the bias in the estimates of the regression functions
can be too large relative to the variance. Abadie and Imbens (2002) show that in general the
bias term is Op(N−1/K) where K is the dimension of the covariates. Hence with more than
one covariates for any root-N consistent estimator the bias will not get dominated, and in
fact with more than two continuous covariates the bias will dominate the variance. Abadie
and Imbens (2002) combine the matching with a nonparametric bias adjustment based on a
consistent estimator of the regression function.

In this paper we propose a bias adjustment to the regression function that maintains the
bandwidth free spirit of the nearest neighbor estimator while at the same time controlling
the bias up to the desired degree. It therefore combines some of the attractive features of
kernel and series estimators in terms of asymptotic properties with those of nearest neighbor
estimators in terms of ease of implementation. Our proposed estimator is based on selecting
a fixed number of neigbors and using those to reduce the bias by least squares methods. A
naive way of implementing this by choosing directly the nearest neighbors is shown not to be
valid because the variance of such an estimator explodes. Our proposed estimator controls the
variance behavior by modifying the selection of the neighbors through requiring them to be
spread around the point where we wish to approximate the regression function.

2 The Scalar Covariate Case

To fix ideas and provide some intuition for the main contributions of the paper, we discuss in
this section a special case with a scalar covariate. The substantive results in this section are
of less direct interest because in the scalar covariate case the nearest neighbor method has a
sufficiently small bias that it does not enter into the asymptotic distribution in both the partial
linear model and in the average treatment examples. Nevertheless, the approache to lowering
the stochastic order of the bias still applies, and the methods discussed here provide the key to
the general case.

Consider first the problem of estimating a regression function µ(x) = E[Y |X = x] at a
particular point, say at x = 0 so that we are interested in µ(0). Let εi = Yi − µ(Xi), with
εi ⊥ Xi and V (εi|Xi) = σ2. Assume throughout that the density of X can be bounded away
from zero in a neighborhood of zero. Suppose we have an i.i.d. sample (Y1, X1), . . . , (YN , XN).
Let

`1 = arg min
i=1,...,N

|Xj |,

and more generally let `m be the index of the observation that is the mth closest to 0 in terms
of the covariate.
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First consider a simple nearest neighbor estimator for µ(0) based on a single neighbor. Begin
by finding the observation with the value of X closest to zero, that is, unit `1 with covariate
value X`1 . Then the first estimator for µ(0) is

µ̂(0) = Y`1 .

The properties of this estimator follow from the results in Abadie and Imbens (2004). As the
sample size gets large,

Next, consider a nearest neighbor estimator for µ(0) based on the two nearest neighbors.
Begin by finding the two observations with values of X closest to zero, that is, units `1 and `2,
with covariate values X`1 and X`2 . The estimator is defined by averaging the corresponding
dependent variable observations,

µ̂(0) =
1
2
· Y`1 +

1
2
· Y`2 .

By averaging only two observations, such an estimator is necessarily inconsistent. To illus-
trate the key issues with our proposed matching estimator, we focus on the properties of the
conditional bias and variance.

µ̂(0)− µ(0) =
1
2
· Y`1 +

1
2
· Y`2 − µ(0)

=
(

1
2
· [µ(X`1) + µ(X`2)]− µ(0)

)
(2.1)

+
1
2
· (ε`1 + ε`2) (2.2)

The leading term (2.1) determines the bias, while the second term (2.2) determines the condi-
tional variance of the estimator. Assuming smoothness in µ(·) we can linearize the first term
to give the order of bias, as follows

E[µ̂(0) − µ(0)|X1, . . . , XN ]

=
1
2
· [µ(X`1) + µ(X`2)]− µ(0)

=
1
2
·
[(

µ(0) + µ′(0) · X`1 + op(X`1)
)
+
(
µ(0) + µ′(0) · X`2 + op(X`2)

)]
− µ(0)

= µ′(0) · X`1 + X`2

2
+ op(X`1) + op(X`2). (2.3)

From (2.1), the bias arises from the matching discrepancy between X`1 and X`2 on the one
hand and 0 on the other hand. For any finite, fixed m, the matching discrepancy X`m is
Op(N−1). The linearization (2.3) shows more specifically that the bias in µ̂(0) is Op(X`1 +X`2)
= Op(N−1).

Under the homoskedasticity assumption maintained in this section the conditional variance
is given by

V (µ̂(0)− µ(0)|X1, . . . , XN) =
σ2

2
.
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Using only the two nearest matches the variance is fixed, not converging to zero, implying
inconsistency of this estimator.

Now consider a modification of the above estimator. Instead of simply averaging the two
nearest neighbors, consider a weighted average of the two nearest neighbors:

µ̃(0)− µ(0) = ρ1Y`1 + ρ2Y`2 − µ(0)

= [ρ1µ(X`1) + ρ2µ(X`2)] − µ(0) + ρ1ε`1 + ρ2ε`2

= ρ1[µ(0) + µ′(0)X`1 +
1
2
µ′′(0)X2

`1 + op(X2
`1)] + ρ2[µ(0) + µ′(0)X`2 +

1
2
µ′′(0)X2

`2 + op(X2
`2)] − µ(0)

+ρ1ε`1 + ρ2ε`2

= [(ρ1 + ρ2) − 1]µ(0) + µ′(0)(ρ1X`1 + ρ2X`2) +
1
2
µ′′(0)(ρ1X

2
`1

+ ρ2X
2
`2

) + op(ρ1X
2
`1

+ ρ2X
2
`2

)

+ρ1ε`1 + ρ2ε`2

With the aim of reducing bias, we choose the weights to satisfy ρ1+ρ2 = 1 and ρ1X`1+ρ2X`2 = 0,
so that

and ρ2 = −X`1/(X`2 − X`1).

Then the conditional bias is

E[µ̃(0) − µ(0)|X1, . . . , XN ] =
µ′′(0)

2
· (ρ1X

2
`1 + ρ2X

2
`2) + op(ρ1X

2
`1 + ρ2X

2
`2).

This choice of weights eliminates the linear bias term in the bias expansion. However, even
though X`1 and X`2 are both of stochastic order Op(N−2), we cannot immediately conclude
that the bias is Op(N−2). Such a result depends on the behavior of the weights ρ1 and ρ2.

The conditional variance of this estimator is

V (µ̃(0)− µ(0)|X1, . . . , XN) = (ρ2
1 + ρ2

2)σ
2.

With ρ1 = X`2/(X`2 − X`1) and ρ2 = −X`1/(X`2 − X`1), if the magnitude of the denominator
|X`2 − X`1 | is much smaller than the magnitude of either numerator |X`1 | or |X`2 |, then the
weights cause the bias and variance to be large.

There is a simple solution in this case. Suppose we take the two nearest neighbours
that are on opposite sides of zero. With, say, X`1 negative and X`2 positive, X`2 − X`1

≥ max{|X`1 |, |X`2|} so 0 ≤ ρ1, ρ2 ≤ 1. In this case, we can conclude that the bias is in-
deed Op(N−2) and the variance is bounded by σ2.

Next we note an alternative interpretation of the weighted average matching estimator,
µ̃(0). Given the two nearest neighbours, we fit a line through them and use that line to predict
the regression function at zero. Based on the two points (X`1 , Y`1) and (X`2 , Y`2) the estimated
line is

µ̃(x) = α̂ + x · β̂

= Y`1

(
X`2

X`2 − X`1

)
− Y`2

(
X`1

X`2 − X`1

)
+ x · Y`2 − Y`1

X`2 − X`1

,
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Figure 1: XX

where

α̂ = Y`1

(
X`2

X`2 − X`1

)
− Y`2

(
X`1

X`2 − X`1

)
and β̂ =

Y`2 − Y`1

X`2 − X`1

.

Hence at zero the estimated regression line is

µ̃(0) = α̂ = ρ1 · Y`1 + ρ2 · Y`2 ,

with weights ρ1 = X`2/(X`2 − X`1) and ρ2 = −X`1/(X`2 − X`1) as before. So the intercept of
the regression line through the two nearest neighbors produces a weighted average estimator
with weights chosen to eliminate the linear term in the bias expansion. From this derivation
it is clear that a line between two close observations on the same side of zero may produce a
poor prediction at zero, see Figure 1. One would prefer slightly further away neighbors that
are spread out enough from each other to decrease the variance in prediction.

Note that irrespective of how one chooses the points, if the two points do get closer to zero
as the sample size increases, then the estimate of the slope coefficient gets large in absolute
value with high probability. To see this, write the estimator for the slope coefficient as

β̂ =
Y`2 − Y`1

X`2 − X`1

=
µ(X`2) − µ(X`1)

X`2 − X`1

+
ε`2 − ε`1

X`2 − X`1

.

As the sample size increase, the first term converges to µ′(0). The second term has expectation
zero conditional on X1, . . . , XN , but its conditional variance is σ2/(X`2 − X`1)

2 which will
get large with probability one. From this one may surmise that adjusting for bias using this
estimated regression function need to be very effective. Nevertheless, as we will show more
formally, as long as the point at which the regression function is evaluated is not too far from
the points at which it is being estimated, this will be an effective adjustment for the bias.
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take the discussion all the way to estimator for coefficient in partial linear model
and see what the order of the bias for the single match, two averaged matches and
linear regression match cases are.

The remainder of the paper consists of formalizing and extending the results discussed
above in two ways. First, we allow the covariates to be vectors rather than scalars. Second, we
consider bias corrections involving higher order polynomials rather than only linear regressions.

With d-dimensional covariates the simple matching estimator for the regression function at
µ(0) has a bias term of order Op(N−1/d). A local linear regression of the type we discussed
above, can lower the bias term to the order Op(N−). This is in general not sufficient to obtain
root-N consistent estimators for the parameters of interest in the partial linear model and
average treatment effect cases. A local polynomial regression of order p can further reduce the
order of the bias to Op(N−). With p >, this is sufficient to obtain root-N consistency.

To ensure the appropriate stochastic order for the bias term, one needs to restrict the
manner in which the nearest neighbours are selected for use in the estimator. The notion of
nearest neigbhours on either side of the point where one is interested in estimating the regression
function does not extend naturally to higher dimensions, but one can restrict attention to sets
of neighbours that are sufficiently spread out around the point of interest by restricting the
implicit weights with these points. As a result we will be able to specify a selection rule for
the allowable nearest neighbours in such a way that with a fixed number of neighbours we can
obtain estimators for the nuisance function with low enough bias and non-increasing variance,
and thus a root-N consistent estimator for the parameter of interest that does not require the
choice of a sample-size dependent smoothing parameter.

3 Nearest Neighbor Estimators for Regression Functions with

Uniformaly Low Order Bias

3.1 Definitions

Suppose we have a random sample (X1, Y1), (X2, Y2), . . . , (XN , YN) of size N . Let X ⊂ RK be
the compact support of X . Define

µ(x) ≡ E[Y |X = x],

and

σ2(x) ≡ V(Y |X = x).

In this section we develop an estimator for µ(x) with a bias of order less than N−1/2, and a
bounded variance:

sup
x∈X

|E [µ̂(x)|X]− µ(x)| = op

(
N−1/2

)
, (3.4)

[7]



sup
x∈X

V (µ̂(x)|X) = Op(1). (3.5)

The estimator of µ(·) at x is a least squares predictor based on x and higher order moments,
estimated on a fixed number of points. These points are choosen from the observations close
to x, with the restriction that they are sufficiently spread out to guarantee that the variance
remains bounded with high probability. First we describe the restrictions that the points need
to satisfy in order to control the variance. Next we show that there will exist, with probability
one in large samples, a sufficient number of points nearby every observed value of x that satisfy
these restrictions. Then we show that these points are sufficiently close to remove the bias to
a sufficiently high degree.

First we introduce some additional notation. Let λ = (λ1, . . . , λK)′ be a K-dimensional
vector of non-negative integers with norm |λ| =

∑K
k=1 λj , and let, for x ∈ RK , the function xλ

be equal to
∏K

k=1 xλk
k . Let ΛP be the set of λ with |λ| ≤ P . The number of distinct elements in

ΛP is M(P, K) = (K +P )!/(K!P !).1 Furthermore, let hP (x) a vector of dimension M(P, K) of
functions of K-dimensional vectors x, with each function hP,m(x) equal to a different function
xλ for λ ∈ ΛP . So, with P = K = 2, M(P, K) = 6, and the vector hP (x) is

hP (x) =




1
x1

x2

x2
1

x2
2

x1 · x2




,

or some reordering thereof.
For each nonnegative integer L let ML be a subset of RK with L elements: ML = {x1, . . . , xL}.

Then for a given set MM(P,K) let H(MM(P,K)) be the M(P, K)× M(P, K) matrix

H
(
MM(P,K)

)
=

1
M(P, K)

∑

x∈MM(P,K)

hP (x)hP (x)′.

Let µP,MM(P,K)
(x) be the approximation to µ(x) based on a P th order polynomial fitted on the

M(P, K) points (z, µ(z)), for z ∈ MM(P,K). The approximation to the regression function at x

can be written as a weighted average of the value of the function at these M(P, K) points:

µP,MM(P,K)
(x) =

∑

z∈MM(P,K)

ωz(x) · µ(z),

with the weight for z ∈ MM(P,K) equal to

ωz(x) = hP (x)′H(MM(P,K))
−1hP (z).

1Choose P out of a set of K + 1 with replacement without ordering.
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If we were to fit the regression function using M(P, K) pairs {(Xm, Ym)}M(P,K)
m=1 , the bias is the

same, and the conditional variance would be

V =
M∑

m=1

ω2
Xm

(x) · σ2(Xm).

Hence by bounding the weights, the fact that the conditional variance is bounded will guarantee
that the conditional variance of the estimator is bounded.

For a given set B ⊂ RK and for a set MM(P,K), let ω(B, MM(P,K)) be the maximum weight for
predicting µ(x), with x choosen in the set B and using the M(P, K) points in M to approximate
µ(x):

ω(B, MM(P,K)) = max
z∈MM(P,K)

sup
x∈B

hP (x)′H(MM(P,K))
−1hP (z).

The key to ensuring that the variance restriction (3.5) is met is controlling these maximum
weights. We shall show that with the volume of B shrinking to zero as a function of the sample
size sufficiently fast to satisfy the bias condition (3.4), there will with probability one be a set
MM(P,K) that is a subset of the intersection of B and the sample {X1, . . . , XN}, with all the
weights bounded.

In the next subsection we show that such a set MM(P,K) exists with probability one, and
give a bound on the rate at which it is shrinking to zero. In Subsection 3.3 we show that this
rate is fast enough to make the bias go to zero faster than

√
N .

3.2 Feasibility

First define the unit ball BK = {x ∈ RK |‖x‖ ≤ 1}, where ‖x‖ = (x′x)1/2 is the Euclidean
distance. Next, consider for each P and K the function δ(P, K):

δ(P, K) = inf
MM(P,K)⊂BK

ω(BK , MM(P,K)).

The function δ(P, K) is equal to the maximum weight for any point in the unit ball, when the
set M is choosen optimally from elements from the unit ball to minimize this maximum weight.
This function δ(P, K) can be tabulated as a function of the non-negative integer P and the
positive integer K. For example, with P = 0 and K = 1, the maximum weight is δ(0, 1) = 1.
More generally, with P = 0 the function is δ(P, K) = 1/K. For P = 1 we have δ(1, 1) = 1.
There appears to be no general analytic representation for this function.

The following lemma shows that the set M can always be choosen so that the maximum
weight is finite.

Lemma 3.1 (finite weights)

For all positive integers P and K, δ(P, K) is finite.

[9]



Proof: See Appendix.
Next, define for all α > 0 the ball

BN,α(z) = {x ∈ X| ‖x− z‖ ≤ N−α}.

Now define for each x ∈ X, given a sample X1, . . . , XN of size N , and given α > 0, the best
achievable set of weights within the neighbourhood BN,α(x):

δα(x; X1, . . . , XN) = min
MM(P,K)⊂({X1,...,XN}∩BN,α(x))

ω(BN,α(x), MM(P,K)).

If there are fewer than M(P, K) elements in the set {X1, . . . , XN}∩BN,α, the function δα(x; X1, . . . , XN)
is defined to be infinite. Again, let us look at the interpretation of this function in more de-
tail. In a shrinking neighbourhood of x, and for a given sample X1, . . . , XN we consider the
maximum weight for each point in this neighbourhood given an optimal choice for the set of
M(P, K) sample points in this neighbourhood.

Finally, define the set of x ∈ X where the weights are arbitrarily close to optimal given the
sample.

X∗(ε, α; X1, . . . , XN) = {x ∈ X|δα(x; X1, . . . , XN) < δ(P, K) + ε}.

The next result states that in large samples the weights will satisfy the necessary restrictions
for all x ∈ X.

Theorem 3.1 (Uniformity)

If α < 1/K, then for all ε, ν > 0, there is an N such that for N > N ,

Pr
(

X ⊂ X∗(ε, α; X1, . . . , XN)
)

> 1 − ν.

Proof: See Appendix.
This theorem states that with probability approaching one as the sample size increases, there

will be for each element x of X a set of points MM(P,K) ⊂ {X1, . . . , XN} that is increasingly
close to x, (all elements of MM(P,K) are less than N−α away from x), and with maximum weight
for the prediction of µ(·) at x using the M(P, K) elements of MM(P,K) bounded by δ(P, K)+ ε.
The fact that the maximum weight is bounded means that we can control the variance of the
prediction.

3.3 Bias Reduction

Consider predicting the regression function µ(x) at a specific value x, using a P th order poly-
nomial estimated on the M(P, K) points {(x1, µ(x1)), . . . , (xM(P,K), µ(xM(P,K))}. Let M =

[10]



{x1, . . . , xM(P,K)} be the set of X-values. Following from the argument given before, the pre-
diction can be written as

µ̂P,M(x) =
∑

z∈MM(P,K)

ωz(x) · µ(z),

where

ωz(x) = hP (z)′H(M)−1hP (x).

The bias of the prediction is
∑

z∈M
ωz(x) · (µ(z) − µ(x)) .

Assumption 3.1 (smoothness)

The regression function µ(x) is P + 1 times continuously differentiable and the absolute value
of the P + 1th derivative of µ(x) is bounded by CP+1.

Lemma 3.2 (Bias Reduction)

On the set X the bias µ̂P,M(x)− µ(x) is bounded by

sup
z∈M

sup
x

|ωz(x)| · sup
x,z∈X

‖x− z‖P+1.

Proof: See Appendix.
Suppose we have a sample {(X1, Y1), . . . , (XN , YN )}. Define for a given ε > 0,

M(x) = argminMM(P,K)⊂{X1,...,XN}:ω({x},MM(P,K))<δ(P,K)+ε max
z∈MM(P,K)

‖x− z‖.

Then define the estimated regression function

µ̂P (x) =
∑

z∈M(x)

ωz(x) · µ(z),

where ωz(x) is as before. In large samples with probability one there will exist for all x a set
M(x) satisfying the conditions in its definition. In finite samples, however, such sets do not
necessarily exist. If they do not exist, we will define the estimated regression function to be
the value at the single closest neighbour. Since we will only need to use this modification with
probability zero, this does not affect any of the results.

Theorem 3.2 (Uniform Bias Reduction)

For any α < 1/K, and any η > 0, there is a N such that for all N > N ,

Pr

(
sup
x∈X

|µ̂P (x)− µ(x)| < N−α(P+1)

)
> 1 − η.
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Proof: See Appendix.
Fixing α at some value less than 1/K, we can always find a P such that the order of the

bias is less than N−1/2. Specifically, we choose P > 1/(2α)− 1. The smallest possible value for
P is therefore P ∗(K) = K/2 if K is even and P ∗(K) = K/2 − 1/2 if K is odd. Then we are
mainly interested in δ(P, K) at the minimum value for P , δ∗(K) = δ(P ∗(K), K).

Note also that since the order of the distance to the nearest neighbour is N−1/K, one expects
to have a finite number of neighbours with neighbourhoods of order N−1/K. However, in order
to insure that we can find close neighbours for every sample point, we expand the neighbourhood
by ε.

4 Bias-adjusted Nearest Neighbor Estimation of Robinson’s Par-

tial Linear Model

For each unit i, for i = 1, . . . , N , we observe the triple (Xi, Zi, Yi). We are interested in the
conditional expectation of Y given X and Z. The model postulates additive separability of this
conditional expectation between X and Z, a linear regression function for X :

Yi = X ′
iβ + g(Zi) + εi,

with E[εi|Xi, Zi] = 0. In order to estimate β, we wish to regress Y on X , both in deviations
from the estimated conditional expectation given Z.

Let K be the dimension of Z, and L the dimension of X . The polynomial adjustment we
use is of order P = P ∗(K) = [(K − 1)/2], where [A] is the largest integer less than or equal
to A. Let M∗ = M(P, K) = M(P ∗(K), K) be the required number of nearest neighbors. Let
δ∗ = δ(P, K) = δ(P ∗(K), K) be the optimal feasible weight. We fix δ > δ∗ to be the required
weight. Then for each i we look for a set M of M∗ neighbors such that

max
j∈M

hP (zj)

(∑

l∈M
hP (zl)hP (zl)′

)−1 ∑

l∈M
hP (zl) ≤ δ,

Among the sets satisfying this condition we look for the one that minimizes
∑

j∈M
‖Zj − Zi‖.

Given these sets M(i) we estimate E[X |Zi] as

hP (Zi)

(∑

l∈M
hP (zl)hP (zl)′

)−1 ∑

l∈M
hP (zl)Xl,

and calculate the deviation from the expectation as

X̃i = Xi − Ê[X |Zi] = Xi − hP (Zi)

(∑

l∈M
hP (zl)hP (zl)′

)−1 ∑

l∈M
hP (zl)Xl.

[12]



Similarly we estimate the deviation from its mean for the outcome as

Ỹi = Yi − Ê[Y |Zi] = Yi − hP (Zi)

(∑

l∈M
hP (zl)hP (zl)′

)−1 ∑

l∈M
hP (zl)Yl.

Finally, we estimate β as

β̂ =

(
N∑

i=1

X̃iX̃
′
i

)−1 N∑

i=1

X̃iỸi.

Theorem 4.1 ()

Suppose Then (i):

β̂ − β = Op(N−1/2),

and (ii),

√
NV̂ −1/2(β̂ − β) d−→ N(0, I L).

5 Application: Robinson’s Partial Linear Model

We use a subsample of the 1979 National Longitudinal Survey of Youth (NLSY), with observa-
tions on earnings, education, age, and two measures of ability, an iq test and a testscore referred
to as kww (knowledge of the world of work). Means and standard devations for the sample
are given in Table 1. In this table the variable experience is calculated as age minus six minus
years of education.

We consider the following model:

log(earn)i = β1educi + β2experi + β3exper2
i + g(iqi, kwwi) + εi, (5.6)

where E[εi|educ, exper, iq, kww] = 0.

The parameter of interest is the returns to education, that is, the coefficient on years of
education, β2. We consider seven estimators for this parameter. The first is based on a linear
regression model with no controls for iq and kww:

log(earn)i = β1educi + β2experi + β3exper2
i + εi.

Next, we add linear controls for iq and kww:

log(earn)i = β1educi + β2experi + β3exper2
i + β4iqi + β5kwwi + εi.

The third estimator adds second order terms for iq and kww:

log(earn)i = β1educi+β2experi+β3exper2
i +β4iqi+β5kwwi+β6iq2

i +β7kww2
i +β8iqikwwi+εi.

[13]



The next five estimators are based on first estimating residuals from regression the outcome
variable Y = log(earn) and covariates X = (educ, exper, exper2) on Z = (iq, kww). The
remaining five estimators differ in the way they estimate the conditional expectation given Z.
Let us focus on estimation of the conditional expectation of Y given Z, since estimation of the
conditional expectation of each component of X given Z works in the same way. The fourth
estimator uses the value of Y for the single nearest match given Z. The fifth estimator uses
the three nearest matches and averages the Y for those three matches. The sixth estimator
uses the three nearest matches, and then regression adjusts for the differences in Z between
the matches and the matched observations using linear regression. The seventh and eight are
similar to the fifth and sixth in that they use three matches, but they differ in the way the
three matches are choosen. Instead of picking the three closest matches, the three matches are
choosen to be the closest subject subject to the constraint that the maximum weight for the
three matches in predicting the outcome for the unit that is being matches is restricted to be
less than or equal to 3.

Results for estimating this on the NLS data set are given in Table 2.

6 Simulations

For the simulations we first estimate the linear regression model with second order terms on
the NLS data with 935 observations:

ln earni = β1educi+β2experi+β3exper2
i +β4iqi+β5kwwi+β6iq2

i +β7kww2
i +β8iqikwwi+εi, (6.7)

and E[εi|educi, experi, iqi, kwwi] = σ2. The estimates for the parameters are presented in Tabel
3. The variables iq and kww are normalized by subtracting 100 and 36 respectively, and dividing
by 10 and 7.

For the simulations we use two data generating processes. In both cases the joint distribution
of educ, exper, iq and kww is normal with the vector of means and the covariance matrix
estimated from the NLS data (after iq is transformed by subtracting 10 and dividing by 10 and
kww is transformed by subtracting 36 and dividing by 7. The means, standard deviation and
correlation matrix are given in Tabel 1. After generating these variables exper2 is generated as
the square of exper. Finally, the outcome log(earn) is generated using the model with second
order terms in iq and kww given in (6.7) and normal residuals. The first set of parameter values
is very similar to those estimated on the NLS data. The one modification is that the returns
to education are set equal to 0.06. The second set of parameter values differ from the first only
in the coefficients on the five iq and kww terms which are all multiplied by 20 to increase the
biases from failing to adjust for the iq and kww covariates. These two sets of parameter values
are presented in Tabel 3. In the simulations we use two different sample sizes, N = 100 and
N = 800. Results (mean and median bias, root mean squared error, and median absolute error)
for the simulations are presented in Table 4
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7 Conclusion
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Appendix

Lemma A.1 (Existence)

For any P and K, there is a set {x1, . . . , xM(P,K)} of elements of RK such that the M (P, K)×M (P, K)
matrix with mth column equal to hP (xm) is nonsingular.

Proof of Lemma A.1:
Fix K. For any positive integer j, let p = min{p′|M (p′, K) ≥ j}. Then define h1:j

p (x) as the first
j elements of hp(x) where the elements of hp(x) are ordered such that for K-dimensional vectors of
nonnegative integers λ, λ′ if |λ| < |λ′| then xλ is listed before xλ′

in the vector hP (x). Further hj
p(x)

will denote the ith element of the vector hp(x).
We will show the following: For any j and K, there is a set {x1, . . . , xj} of elements of RK such that

the j × j matrix [h1:j
p (x1) · · ·h1:j

p (xj)] is nonsingular. This assertion is stronger than the statement of
the lemma. We prove it by induction.

First, consider the case j = 1, any K. Let x be a nonzero element of RK . h1
p(x) = 1 is nonsingular.

Hence the result holds for j = 1, and any K.
Second, consider the case j = 2, any K. Choose x1 ∈ RK to be any vector with first element 2 and

x2 ∈ RK any vector with first element 3, ie x1 =


 2

...


, and x2 =


 3

...


. Then [h1:2

p (x1)h1:2
p (x2)] =

(
1 1
2 3

)
is nonsingular. Hence the result holds for j = 2 and any K.

Now assume that the result holds for up to j and any K. Then there exists a set {x1, . . . , xj} of
elements of RK such that [hK,j(x1) · · ·hK,j(xj)] is nonsingular. We will show that there exists a z ∈ RK

such that [hK,j+1(x1) · · ·hK,j+1(xj)hK,j+1(z)] is nonsingular.
Note that rank([hK,j(x1) · · ·h1:j

p (xj)]) = j, so rank([h1:j+1
p (x1) · · ·h1:j+1

p (xj)]) = j. Given z ∈ RK ,
[h1:j+1

p (x1) · · ·h1:j+1
p (xj)h1:j+1

p (z)] is nonsingular if and only if the only solution for a ∈ Rj to

h1:,j+1
p (z) − [h1:j+1

p (x1) · · ·h1:j+1
p (xj)]a = 0

is a = 0. There exists a unique nonzero a ∈ Rj such that

h1:j
p (z) − [h1:j

p (x1) · · ·h1:j
p (xj)]a = 0.

This unique solution is

a = [h1:j
p (x1) · · ·h1:j

p (xj)]−1h1:j
p (z).

Now let

l(z) = hj+1
p (z) − [hj+1

p (x1) · · ·hj+1
p (xj)][h1:j

p (x1) · · ·h1:j
p (xj)]−1h1:j

p (z)

Then [h1:j+1
p (x1) · · ·h1:j+1

p (xj)h1:j+1(z)] is nonsingular if and only if l(z) 6= 0. That is, the lemma will
follow if we can show l(z) is not identically zero. For some λ, hj+1

p (z) = zλ. For this λ, dλ

dzλ hi
p(z) = 0

for i = 1, . . . j and dλ

dzλ hj+1
p (z) = 1. Hence, dλ

dzλ l(z) = 1, so continuity of l(z) implies that l(z) cannot be
identically zero. �
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Proof of Lemma 3.1:
Let x1, . . . , xM(P,K) be a set of points satisfying Lemma A.1. Then we can also find a set of points
satisfying this condition inside the unit ball BK = {x ∈ RK |‖x‖ ≤ 1} by multiplying each point xi

by c =
(
maxi=1,...,M(P,K) ‖xi‖

)−1. (This changes the value of the function xλ by c|λ|, and so the
determinant by cM(P,K)·|λ|, and therefore does not change the nonsingularity of the matrix.) Hence
there is a set of points x1, . . . , xM(P,K) in the ball BK such that the M (P, K) × M (P, K) matrix with
mth column equal to hP (xm) is nonsingular and positive definite. For this set of points the corresponding
H =

∑M(P,K)
m=1 hP (xm)hP (xm)′/M (P, K) is nonsingular, so the eigenvalues of H are bounded away from

zero, hence the eigenvalues of H−1 are bounded. Let ζmax denote the maximum eigenvalue of H−1.
Using a matrix version of the Cauchy-Schwarz inequality for nonnegative definite matrices, for any
x, z ∈ BK,

hP (x)′H−1hP (z) ≤
√

hP (x)′H−1hP (x)
√

hP (z)′H−1hP (z)

≤

√
hP (x)′H−1hP (x)

hP (x)′hP (x)

√
hP (z)′H−1hP (z)

hP (z)′hP (z)
sup

w∈BK

hp(w)′hP (w)

≤ ζmax · sup
w∈BK

hp(w)′hP (w)

≤ ζmax · M (P, K)

< ∞

where the fourth inequality follows by noting that

sup
w∈BK

hp(w)′hP (w) = sup
w∈BK

∑

λ∈ΛP

(wλ)2 ≤
∑

λ∈ΛP

sup
w∈BK

(wλ)2 ≤
∑

λ∈ΛP

1 = M (P, K).

Therefore the supremum over z ∈ BK and the maximum over m = 1, . . . , M (P, K) of hP (z)′H−1hP (xm)
for such a set of points is finite. �

Before proving Theorem 3.1 we state and prove a couple of preliminary results.

Lemma A.2 (positive probability)

Let fX (x) be a density on BK , bounded from below by f > 0. For any ε > 0, there is a p(P, K) > 0 such
that for a random sample X1, . . . , XM(P,K) of size M (P, K) from this distribution,

Pr
(

sup
z∈BK

max
m∈{1,2,...,M(P,K)

hP (z)′H(X1, . . . , XM(P,K))−1hP (Xm) < δ(P, K) + ε

)
≥ p(P, K). (A.1)

(if the matrix H is singular, we define supz∈BK
hP (z)′H−1hP (x) to be infinite.)

We index the bound by P and K to stress that it depends on the values of these parameters. The bound
also depends on the lower bound of the density f .
Proof of Lemma A.2:
By Lemma 3.1 there is a set of M = {x1, . . . , xM(P,K)} ∈ BK such that

sup
z∈BK

max
x∈M

hP (z)′H(M)−1hP (x) = δ(P, K).

Hence, by continuity of the inverse of a nonsingular matrix in its elements, it follows that there exists
an η > 0 such that for all x′

1, . . . , x
′
M(P,K) with ‖x′

m − xm‖ ≤ η, for m = 1, . . . , M (P, K), we have

sup
z∈BK

max
m=1,...,M(P,K)

hP (z)H(x′
1, . . . , x

′
M(P,K))

−1hP (x′
m) < δ(P, K) + ε.
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Then a lower bound on the lefthand side of (A.1) is

p =

(
fηKπK/2

Γ(1 + K/2)

)M(P,K)

,

since

Pr
(

sup
z∈BK

max
m

hP (z)′H(X1, . . . , XM(P,K))−1hP (Xm) < δ(P, K) + ε

)

≥ Pr
(
∩M(P,K)

m=1 ‖Xm − xm‖ ≤ η
)

=
M(P,K)∏

m=1

Pr(‖X − xm‖ ≤ η) (by independence)

≥

(
fηKπK/2

Γ(1 + K/2)

)M(P,K)

,

where f is the lower bound on the density fX (x) and we use the fact that the volume of the K-dimensional
unit ball is πK/2/Γ(1 + K/2). �

Now consider a convex, compact subset X of RK with non-empty interior, and density fX (x) bounded
away from zero. Fix 0 < α < 1/K. Consider for each z ∈ X the ball BN,α(z) = {x ∈ X|‖x− z‖ ≤ N−α}.
Let X1, . . . , XN be a random sample from density fX (x) (with fX (x) ≥ f for x ∈ X and fX(x) = 0 for
x /∈ X), and let M = {x1, . . . , xM(P,K)} be a subset of RK with M (P, K) elements. Define the probability

pN (z) = Pr

(
∃M

∣∣∣∣∣M ⊂ {X1, . . . , XN}, M ⊂ BN,α(z), sup
y∈BN,α(z)

max
x∈M

hP (y)′H(M)−1hP (x) < δ(P, K) + ε

)
.

Also define NB(z) to be the cardinality of the intersection of BN,α(z) and {X1, . . . , XN}:

NB =
N∑

i=1

1
{
Xi ∈ BK,N−α (z)

}
.

Lemma A.3 (The Number of Close Matches)

For all z ∈ int X, (i):

Pr(NB(z) ≤ M ) ≤ exp(−CN1−αK) ·M · CM · N (1−αK)M,

for C = fπ(K/2)/Γ(1 + K/2), and for all ε > 0, (ii):

lim
N→∞

Pr(NB(z) ≥ N1−αK−ε) → 1.

Proof of Lemma A.3: The probability that Xi is in the set BN,α(z) is bounded from below by f

times the volume of the ball. The volume of the ball BN,α(z) with radius N−α in RK is N−αK times
the volume of a unit ball in RK , which is πK/2/Γ(1 + K/2). Hence the volume of the ball BN,α(z)
is N−αKπ(K/2)/Γ(1 + K/2), and the probability that Xi is in the set BN,α(z) is bounded from below
by p = fN−αKπ(K/2)/Γ(1 + K/2) = CN−αK for C = fπ(K/2)/Γ(1 + K/2) > 0. Since the number
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of observations NB(z) that fall inside the ball has a binomial distribution with parameters N and
p = Pr(Xi ∈ BN,α(z)), it follows that for all M ,

Pr(Nb(z) ≤ M ) ≤
M∑

m=0

(
N

m

)
pm (1 − p)N−m =

M∑

m=0

N !
m!(N − m)!

pm(1 − p)N−m

≤
M∑

m=0

Nm

m!
pm(1 − p)N−m =

M∑

m=0

1
m!

p̃m(1 − p̃/N )N−m,

where p̃ = p ·N = CN1−αK. Using the fact that (1− a/N )N ≤ exp(−a) we can further bound this from
above by

M∑

m=0

1
m!

p̃m(1 − p̃/N )−m · exp(−p̃) ≤
M∑

m=0

1
m!

· p̃m · exp(−p̃)

≤ M · p̃M · exp(−p̃)

= exp(−CN1−αK) · M ·CM · N (1−αK)M . (A.2)

which gives the first result.
For the second result, take the log of the first term on the right hand side of (A.2) to get

−CN1−αK + lnM + M lnC + (1 − αK)M · lnN.

Substitute M = N1−αK−ε to get

−CN1−αK + (1 − αK − ε) · ln N + ln C ·N1−αK−ε + lnN · (1 − αK) · N1−αK−ε

= N1−αK−ε ·
(
−C ·N ε + N−(1−αK−ε)(1 − αK − ε) · lnN + ln C + lnN · (1 − αK)

)
.

The second factor is dominated by the term −CN ε. Since N1−αK goes to infinity, the product goes to
minus infinity. Since this was an upper bound on the log of the probability Pr(NB (z) ≤ N1−αK−ε), this
probability converges to zero, implying the second result in the Lemma. �

Lemma A.4 (probability of existence of suitable set of matches goes to one)

lim
N→∞

pN (z) = 1.

Proof of Lemma A.4: First let us consider the probability that a random sample of size M (P, K)
drawn from the set BN,α(z), satisfies the condition

sup
y∈BN,α(z)

max
m

hP (y)′H(X1, . . . , XM(P,K))−1hP (Xm) < δ(P, K) + ε. (A.3)

Note that if the original density fX (x) is bounded and bounded away from zero, then the conditional
density within the set BN,α(z) is also bounded and bounded away from zero. Also note that hP (cx) =
C ·hp(X) for a diagonal matrix C, with ith diagonal element equal to c|λi| if the ith function hP,i(x) = xλi .
Hence

hP (cy)′H(cX1, . . . , cXM(P,K))−1hP (cXm) = hP (y)C
(
CH(X1, . . . , XM(P,K))C

)−1
ChP (Xm)
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= hP (y)′H(X1, . . . , XM(P,K))−1hP (Xm).

Hence condition (A.3) is the same as

sup
y∈BN,α(z)

max
m

hP (Nαy)′H(NαX1, . . . , N
αXM(P,K))−1hP (NαXm) < δ(P, K) + ε.

Because y ∈ BN,α(z) is equivalent to Nα(y − z) ∈ BK , this is the same as the condition

sup
y∈BK

max
m

hP (y)′H(NαX1, . . . , N
αXM(P,K))−1hP (NαXm) < δ(P, K) + ε.

Because the support of X is BN,α(z), the support of Nα(X−z) is BK, so the probability of this condition
being satisfied is greater than p by Lemma A.2, where p is computed with respect to the density of NαX

on BK , which is bounded and bounded away from zero.
With NB(z) is the number of points inside the ball BN,α(z) there are NB(z)/M (P, K) non-overlapping

sets M. Therefore, with the probability of any one set satisfying the condition bounded from below by
p, the probability of the existence of at least one such set (in a set of NB(z)/M (P, K) sets) that satisfies
the condition is bounded from below by 1 − (1 − p)NB/M(P,K). Given η > 0, choose M > M (P, K) ·
ln(η/2)/ ln(1 − p) so that (1 − p)M/M(P,K) < η

2
and choose N large enough that Pr(NB(z) < M ) < η/2

(this is possible because Lemma A.3). Then,

pN (z) = Pr

(
∃M ⊂ BN,α(z), sup

y∈BN,α(z)

max
x∈M

hP (y)′H(M)−1hP (x) < δ(P, K) + ε

)

= Pr

(
∃M ⊂ BN,α(z), sup

y∈BN,α(z)

max
x∈M

hP (y)′H(M)−1hP (x) < δ(P, K) + ε

∣∣∣∣∣NB ≥ M

)
Pr(NB ≥ M )

+Pr

((
∃M ⊂ BN,α(z), sup

y∈BN,α(z)

max
x∈M

hP (y)′H(M)−1hP (x) < δ(P, K) + ε

)
∩ ({NB < M})

)

≥ Pr

(
∃M ⊂ BN,α(z), sup

y∈BN,α(z)

max
x∈M

hP (y)′H(M)−1hP (x) < δ(P, K) + ε

∣∣∣∣∣NB ≥ M

)(
1 − η

2

)

≥
(
1 − (1 − p)M/M(P,K)

)(
1 −

η

2

)

≥
(
1 − η

2

)(
1 − η

2

)

≥ 1 − η.

The conclusion of the lemma follows. �
Proof of Theorem 3.1:
Define Bν

K(z) = {x ∈ RK |‖x− z‖ ≤ ν}. For some finite L1 we can cover the set X with a set of L1 unit
balls of the form B1

K(zl), for l = 1, . . . , L. For any 0 < ν < 1 there is a finite Lν such that we can cover
the ball B1

K(z) by Lν balls of the form Bν
K(zl). By the same argument, each of those can in turn be

covered by Lν balls of the form Bν2

K (zl). Hence we can cover the unit ball B1
K (z) by LR

ν balls of the form
BνR

K (zl). Therefore, we can cover the unit ball B1
K (z) by (Lν)R balls of the form BN−α

K (zl) if νR ≤ N−α.
This implies that in order to can cover the unit ball B1

K (z) it is sufficient that R ≥ 1−α · ln N/ lnν, and
thus that we need at most (Lν)1−α ln N/ ln ν = N−α ln Lν/ ln ν ·Lν balls of the form BN−α

K (zl). To cover X
we therefore need at most N−α ln Lν/ ln ν · Lν ·L1 = C1 · Nα·C2 balls BN−α

K (zl).
Let Nl be the number of observations in ball BN−α

K (zl) for l = 1, . . . , C1 · Nα·C2. For fixed ε > 0 we
want to bound the probability that for any l, Nl ≤ N1−αK−ε. For fixed l we have (using the first part
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of Lemma A.3 and substituting M = N1−αK−ε)

Pr(Nl ≤ N1−αK−ε)

≤ exp(−CN1−αK)N1−αK−ε · exp(lnC · N1−αK−ε) · exp(ln N · (1 − αK)N1−αK−ε),

for some positive C. To bound the probability that for any of the sets the number of observations is less
than N1−αK−ε we multiply the probability for any one set by the number of sets, C1 ·Nα·C2 to get;

Pr(∃l s.t. Nl ≤ N1−αK−ε)

≤ C1N
C2 · exp(−CN1−αK)N1−αK−ε · exp(lnC ·N1−αK−ε) · exp(ln N · (1− αK)N1−αK−ε).

Taking logs we get

lnC1 +(1−αK) · lnN −CN1−αK +(1−αK − ε) · lnN +lnC ·N1−αK−ε +ln N · (1−αK) ·N1−αK−ε

= N1−αK−ε ·
(
lnC1 ·N−(1−αK−ε) + (1 − αK) · ln N · N−(1−αK−ε) − C · N ε+

N−(1−αK−ε)(1 − αK − ε) · ln N + ln C + ln N · (1 − αK)
)

.

The second factor is dominated by the term −C · N ε, so that the entire expression converges to zero.
Hence we can find for any η > 0 an N such that the probability Pr(∃l s.t. Nl ≤ N1−αK−ε) is less than
η/2.

Conditional on Nl > N1−αK−ε for all l, the probability of at least one ball with no suitable set of
matches (that is no set with the weights limited as in Lemma A.2) is bounded from above by

C1N
C2(1 − p(P, K))N1−αK−ε/M(P,K),

by Lemma A.2. For N large enough we can make this probability less than η/2. For such N the
probability of a suitable set of matches in each ball is therefore at least 1 − η. �
Proof of Lemma 3.2:
Let hP be ordered as described in the proof of Lemma A.1. If hP,j(x) is the jth element of the vector,
then let λP,j be the K-dimensional vector of nonnegative integers such that hP,j(x) = xλP,j . Also, let
hP (x) be a vector consisting of the last M (P, K) − M (P − 1, K) elements of hP (x), ie the elements xλ

with |λ| = P .
Now a Taylor expansion (with remainder) of µ to order P + 1 around x can be expressed as follows:

µ(z) = hP (z − x)′




µ(x)
∇λP,2µ(x)

...
∇λP,M(P,K)µ(x)




+ hP+1(z − x)′




∇λP+1,M(P,K)+1µ(z̄x)
...

∇λP,M(P+1,K)µ(z̄x)




where ∇λµ(x) = ∂|λ|µ
∂xλ (x).

Now note that for all z, there exists a lower triangular matrix A(x) such that hP (z−x) = A(x)hP (z).
Further all of A(x)’s diagonal elements are equal to one, so A(x) is nonsingular. For example, for
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K = P = 2,



1
z1 − x1

z2 − x2

(z1 − x1)2

(z2 − x2)2

(z1 − x1)(z2 − x2)




=




1
z1 − x1

z2 − x2

z2
1 − 2z1x1 + x1r

z2
2 − 2z2x2 + x2

2

z1z2 − x1z2 − x2z1 + x1x2




=




1 0 0 0 0 0
−x1 1 0 0 0 0
−x2 0 1 0 0 0
x2

1 −2x1 0 1 0 0
x2

2 0 −2x2 0 1 0
x1x2 −x2 −x1 0 0 1







1
z1

z2

z2
1

z2
2

z1z2




.

Hence hP (z) = A(x)−1hP (z − x). Also if we set z = x then hP (x) = A(x)−1hP (0) = A(x)−1e1, where
e1 is a vector with first element equal to one and zeroes elsewhere.
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µ̂P,M(x) − µ(x) =
∑

z∈MM(P,K)

ωz(x)µ(z) − µ(x)

=
∑

z∈MM(P,K)

hP (x)′


 ∑

w∈MM(P,K)

hP (w)hP (w)′



−1

hP (z)µ(z) − µ(x)

= hP (x)′


 ∑

z∈MM(P,K)

hP (z)hP (z)′



−1

∑

z∈MM(P,K)

hP (z)µ(z) − µ(x)

= e1
′A(x)−1′


A(x)−1

∑

z∈MM(P,K)

hP (z − x)hP (z − x)′A(x)−1′



−1

A(x)−1
∑

z∈MM(P,K)

hP (z − x)µ(z) − µ(x)

= e1
′


 ∑

z∈MM(P,K)

hP (z − x)hP (z − x)′



−1

∑

z∈MM(P,K)

hP (z − x)µ(z) − µ(x)

= e1
′


 ∑

z∈MM(P,K)

hP (z − x)hP (z − x)′



−1





∑

z∈MM(P,K)

hP (z − x)hP (z − x)′




µ(x)
∇λP,2µ(x)

...
∇λP,M(P,K)µ(x)




+
∑

z∈MM(P,K)

hP (z − x)hP+1(z − x)′




∇λP+1,M(P,K)+1µ(z̄x)
...

∇λP,M(P+1,K)µ(z̄x)








− µ(x)

= e1
′


 ∑

z∈MM(P,K)

hP (z − x)hP (z − x)′



−1

∑

z∈MM(P,K)

hP (z − x)hP+1(z − x)′




∇λP+1,M(P,K)+1µ(z̄x)
...

∇λP,M(P+1,K)µ(z̄x)




= hP (x)′A(x)′


A(x)

∑

z∈MM(P,K)

hP (z)hP (z)′A(x)′



−1

A(x)

·
∑

z∈MM(P,K)

hP (z)hP+1(z − x)′




∇λP+1,M(P,K)+1µ(z̄x)
...

∇λP,M(P+1,K)µ(z̄x)




= hP (x)′


 ∑

z∈MM(P,K)

hP (z)hP (z)′



−1

∑

z∈MM(P,K)

hP (z)hP+1(z − x)′




∇λP+1,M(P,K)+1µ(z̄x)
...

∇λP,M(P+1,K)µ(z̄x)




=
∑

z∈MM(P,K)

ωz(x)hP+1(z − x)′




∇λP+1,M(P,K)+1µ(z̄x)
...

∇λP,M(P+1,K)µ(z̄x)




For a vector of nonnegative integers λ, let

CP = max
|lambda|=P

sup
x∈X

∣∣∇λµ(x)
∣∣ .
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By Assumption 3.1 CP+1 is finite.
Hence, since M ⊂⊂ X,

sup
x∈X

|µ̂P,M(x) − µ(x)| ≤
[
sup
z∈M

sup
x∈X

|ωz(x)|
]

M (P, K)CP+1 sup
x,z∈X

‖x − z‖P+1

which completest the proof. �
Proof of Theorem 3.2:
By Theorem 3.1,

Pr (∀x ∈ X, M(x) ⊂ BN,α(x)) → 1.

For such x the bias is bounded by the supremum of the weights, which is δ(P, K)+ε, times the supremum
of the distances between points in M(x) and x, which is bounded by N−α, times the supremum of the
P + 1th derivative of µ(x), which is bounded by CP+1. Hence the bias is bounded by (δ(P, K) + ε) ·
CP+1N

−α(P+1).

[24]



REFERENCES

Abadie, A., and G. Imbens, (2002), “Simple and Bias-Corrected Matching Estimators for Average

Treatment Effects,” unpublished manuscript, Kennedy School of Government, Harvard University.
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Table 1: Summary Statistics NLS data

Correlation Coefficients
covariate mean s.d. min max log(earn) educ age exper iq kww

log(weekly earnings) 5.94 0.44 4.06 7.60 1.00 0.33 0.16 -0.06 0.33 0.33
years of education 13.47 2.20 9.00 18.00 1.00 -0.01 -0.58 0.52 0.39
age 33.08 3.11 28.00 38.00 1.00 0.82 -0.04 0.39
years of experience 13.61 3.83 5.00 23.00 1.00 -0.33 0.10
iq 101.28 15.05 50.00 145.00 1.00 0.41
kww 35.74 7.64 12.00 56.00 1.00

Table 2: Estimates for Returns to Education from NLS data

No controls Linear Quadratic Matching Estimators
M = 1 M = 3 (Unrest) M = 3 (Rest.)

unadj adj unadj adj

0.0923 0.0560 0.0535 0.0490 0.0478 0.0267 0.0493 0.0445
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Table 3: Estimates from NLS data and Parameter Values in Simulations

covariate est. s.e. I II

intercept 4.688 (0.249) 4.688 4.688
education 0.054 (0.01) 0.060 0.060

exper 0.060 (0.03) 0.060 0.060
exper2 -0.002 (0.001) -0.002 -0.002

iq 0.054 (0.011) 0.054 1.071
kww 0.066 (0.016) 0.066 1.312
iq2 0.000 (0.005) 0.000 0.008

kww2 0.028 (0.010) 0.028 0.561
iq×kww -0.011 (0.011) -0.011 -0.222

σ 0.398 0.398 0.398
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Table 4: Mean Bias, Median Bias, RMSE and MAE (True Coefficient 0.06), Simu-

lations with 10,000 Replications

design sample size No Linear Quadratic M = 1 M = 3 (Unrest.) M = 3 (Rest.)
Adj. Adj. Adj Unadj. Unadj. Adj. Unadj. Adj.

I 100
mean bias 0.0384 -0.0002 -0.0002 0.0007 0.0010 0.0026 0.0011 -0.0006

median bias 0.0386 -0.0001 -0.0000 0.0010 0.0010 0.0022 0.0008 -0.0007
rmse 0.0453 0.0289 0.0292 0.0394 0.0337 0.1831 0.0339 0.0509
mae 0.0386 0.0193 0.0196 0.0259 0.0220 0.0927 0.0223 0.0338

I 800
mean bias 0.0390 0.0001 0.0001 0.0002 0.0003 -0.0000 0.0003 -0.0000

median bias 0.0390 0.0001 0.0001 0.0002 0.0003 0.0002 0.0003 0.0001
rmse 0.0398 0.0098 0.0098 0.0137 0.0118 0.0852 0.0119 0.0183
mae 0.0390 0.0067 0.0066 0.0092 0.0080 0.0516 0.0080 0.0122

II 100
mean bias 0.7779 -0.0002 -0.0002 0.0178 0.0253 0.0026 0.0267 -0.0005

median bias 0.7749 -0.0000 -0.0000 0.0172 0.0233 0.0011 0.0247 -0.0007
rmse 0.7895 0.0632 0.0292 0.0532 0.0546 0.1840 0.0561 0.0514
mae 0.7749 0.0411 0.0196 0.0347 0.0348 0.0929 0.0359 0.0339

II 800
mean bias 0.7779 0.0000 -0.0001 0.0029 0.0037 -0.0002 0.0037 0.0002

median bias 0.7772 -0.0001 -0.0001 0.0028 0.0036 0.0006 0.0037 0.0003
rmse 0.7793 0.0221 0.0097 0.0146 0.0133 0.0850 0.0134 0.0183
mae 0.7772 0.0150 0.0065 0.0098 0.0090 0.0521 0.0090 0.0123
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