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1 Introduction

In this paper we consider estimation and inference for partial and full means. These estimands

were introduced in the econometric literature by Newey (1994). We focus on estimands that are

weighted averages of smooth functions of (derivatives of) of regression functions. The regression

functions are not known and must be estimated nonparametrically. The averaging can be over

the full set of regressors (the full mean case), or over a subset of the regressors (the partial

mean case). This setting covers many semiparametric models that have been considered in the

literature. Examples for the full mean case include average treatment effects in the treatment

effect literature, and the partial linear model developed by Robinson (1988), and in the partial

mean case the dose-response function studied by Imbens (2000). Examples of full average

derivatives include the density weighted average derivative introduced by Powell, Stock and

Stoker (1989), and the unweighted average derivative analyzed by Härdle and Stoker (1989).

Newey (1994) considers estimation and inference for partial and full means and analyzes the

properties of estimators where in the first step the regression function is estimated using kernel

methods. In order to ensure uniform convergence he uses a fixed trimming procedure. We

develop a new boundary correction that ensures uniform convergence of the kernel estimator

over the entire support even if this support is compact with the density bounded away from

zero. The new estimator projects points close to the boundary to the internal region, defined as

the subset of the support not affected by boundary bias and then uses a Taylor series expansion

of the estimated density at an internal point to estimate the density at the point of interest.

We show that this modified kernel estimator can be used to estimate partial and full means,

in the case that the support of the covariates is compact. We derive the asymptotic properties

of the estimators. In general the estimators are asymptotically normal with no asymptotic

bias. In the case of the full mean the convergence rate is the regular parametric rate and the

estimator achieves the semiparametric efficiency bound. For this case the results show that

asymptotic properties are similar to those obtained for series or sieve estimates. For the partial

mean case the convergence rate is slower, depending on the number of covariates that are not

averaged over. In Section 2 we discuss generalized partial means and give some examples where

estimands of interest may have this form. In Section 3 we discuss the first stage in the estimation

procedure, the nonparametric estimation of the regression function. Here we introduce the new

boundary correction and derive its properties. In Section 4 we discuss inference for partial and

full means. We also report results from a small simulation study to investigate how reliable the

results from our proposed methods are for realistic settings (modelled on the lottery data set).

Section 6 concludes.

2 Generalized Full and Partial Means

We consider a parameter that can be expressed as the expected value of a nonlinear function of a

vector of conditional expectations of anM dimensional random vector Y given an L dimensional

covariate vectorX . The covariates have a distribution that is absolutely continuous with respect

to the Lebesgue measure and that has a compact support X. Let g(x) denote the conditional
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expectation:

g(x) = E[Y |X = x]. (2.1)

In addition define the M + 1 dimensional vector of functions

h(x) =

(

h1(x)

h2(x)

)

=

(

fX(x)

fX(x) · g(x)

)

. (2.2)

Although g depends on the full vector X , the expectation is computed over the the distribution

of the L1 dimensional subvector X1. The remaining L2 = L − L1 components of X , X2, are

evaluated at a function of X1, i.e. at X2 = t(X1) with t : R
L1 → R

L2 a known function. In

Newey’s (1994) partial mean parameter this is a constant function, i.e. x2 = t(X1). A limiting

case is that L1 = L, i.e. the expectation is over the full covariate vector. We now define the

Generalized Partial Mean (GPM) as the Q dimensional parameter vector

θgpm = E
[

ω(X1)
′m (h (X1, t(X1)))

]

, (2.3)

with m : RM → RP a known function that depends on X1 only through g and ω a Q × P

matrix of known weight functions that depend on X1. If L1 = L we refer to this parameter as

the Generalized Full Mean (GFM),

θgfm = E
[

ω(X)′m (h (X))
]

. (2.4)

The data are a random sample from the joint distribution of Y,X : The estimators of θgpm and

θgfm are

θ̂gpm =
1

N

N
∑

i=1

ω(X1i)
′m (ĝNIP,s (X1i, t(X1i))) , (2.5)

and

θ̂gfm =
1

N

N
∑

i=1

ω(Xi)
′m (ĝNIP,s (Xi))) , (2.6)

with ĝNIP,s(x) a nonparametric, kernel-type, estimator of g(x) that will be defined later.

INCLUDE EXAMPLES FROM PRESENTATIONS. WHAT ABOUT CAUSAL INTER-

PRETATION IN FULL AND PARTIAL CASE? E.G. WHY DO LONG REGRESSION IF

ONLY INTERESTED IN THE EFFECT OF A SINGLE COVARIATE? WHAT DO WE

MEAN BY ’CONTROLLING ON AVERAGE’? LINK WITH ASF IN NONSEPARABLE

MODELS.

Example 2.1 (Full Mean: Average Treatment Effect an Average Treatment Ef-

fect on the Treated)

Suppose units in a population are characterized by two potential outcomes, Y (0) and Y (1),
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outcomes given a control and active treatment respectively. Interest is in the average difference

between these, θATT = E[Y (1) − Y (0)]. Suppose one is willing to assume that given some co-

variates X assignment to the treatment, denoted by W ∈ {0, 1}, is independent of the potential

outcomes, or W ⊥ Y (0), Y (1)|X (unconfoundedness/selection-on-observables). This setting is

widely studied in the program evaluation literature. See for example Rosenbaum and Rubin

(1984), Hahn (1998), Heckman, Ichimura and Todd (1998), Hirano, Imbens and Ridder (2003).

Then

θATT = E

[

E[Y ·W |X ]

E[W |X ]
− E[Y · (1 −W )|X ]

E[1 −W |X ]

]

.

This fits into the full mean form by setting

ω(x) = 1,

g(x) =





g1(x)

g2(x)
g3(x)



 =





E[W |X = x]

E[Y W |X = x]
E[Y (1−W )|X = x]



 ,

and

m(g(x)) = g2(x)/g1(x)− g3(x)/(1− g1(x)).

Hahn (1998) suggests an efficient estimator for θATT based on this representation but using

a series estimator for g(x). Another treatment effect parameter of interest is the Average

Treatment Effect on the Treated (ATET), E[Y (1) − Y (0)|W = 1]. Following Hirano, Imbens

and Ridder (2003), the efficient estimator if we know the ratio of the probability of selection

and the fraction in the population that is treated g0(x), is obtained from

θATET = E

[

g0(X)

(

E[Y ·W |X ]

E[W |X ]
− E[Y · (1−W )|X ]

E[1 −W |X ]

)]

.

The estimator is again a full mean and the estimator is the same as that for the ATT with the

only difference that

ω(x) = g0(x)

which is assumed to be known. As noted by Hirano, Imbens, and Ridder, the efficient estimator

requires estimation of the (known) regression function in g.�

Example 2.2 (Full Mean: Robinson Partial Linear Model)

Robinson (1988) is interested in estimating β in the partial linear model for the scalar dependent

variable Y :

E[Y |X = z, Z = z] = β′x+ k(z).

Under his assumptions β is equal to

β =
(

E
[

(X − E[X |Z]) (X − E[X |Z])′
])−1

E [(X − E[X |Z]) (Y − E[Y |Z])] .
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All components of the matrix E [(X − E[X |Z]) (Y − E[Y |Z])] have the full mean form. In the

scalar X and Y case:

E [(X − E[X |Z]) (Y − E[Y |Z])]

= E [XY ] − E [X · E[Y |Z]]− E [E[X |Z] · Y ] + E [E[X |Z] · E[Y |Z]]

= E [E[XY |Z]] − E [E[X |Z] · E[Y |Z]] .

This fits into the full mean setting by setting

ω(z) = 1,

g(z) =





g1(z)

g2(z)
g3(z)



 =





E[X |Z = z]

E[Y |Z = z]
E[X · Y |Z = z]



 ,

and

m(g(z)) = g3(z) − g1(x) · g2(x).

Hence β can be written as a smooth function of full means. Robinson (1988) proposes a kernel

estimator for g(z), but uses trimming to get around boundary problems, requiring the choice

of a second bandwidth (in addition to the bandwidth for the regression function itself). �

Example 2.3 (Partial Mean: Dose Response Function)

Imbens (2000), Hirano and Imbens (2003), and Flores (????) are interested in estimating the

dose response function for an assigned value w

µ(w) = E[Y (w)],

where the researcher has available a random sample of (Y,W,X), with Y = Y (W ), under the

assumption that

Y (w) ⊥W |X.

If w is continuous we can estimate µ(w) for fixed w in the partial mean set up by setting

t(x) = w,

ω(x) = 1,

g(x, w) = E[Y |X = x,W = w],

m(g(x, w)) = g(x, w).

�
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Example 2.4 (Partial Mean: Aggregate Redistributional Effect)

Graham, Imbens and Ridder are interested in estimating the effect of assortive matching where

inputs are reallocated. Their estimand can be written as

θ = E
[

g
(

X, F−1
W (FX(X))

)]

.

We can estimate θ in the partial mean set up by setting

t(x) = F−1
W (FX(x)),

ω(x) = 1,

g(x, w) = E[Y |X = x,W = w],

m(g(x, w)) = g(x, w).

�

3 Uniform Convergence of Kernel Estimators

In this section we study the problem of estimating g(x). We do this indirectly, first by nonpara-

metrically estimating the probability density function of X , fX(x), and then by estimating the

product of g(x) and fX(x), which we denote by h(x). The regression function itself will then be

estimated by the ratio ĥ(x)/f̂X(x). The key is the development of an estimator for h(x) that

is uniformly consistent even if h(x) is bounded away from zero on the compact support of X .

3.1 Notation and Set Up

First we introduce some notation to deal with the case where X is an L-dimensional vector.

Let λ denote an L vector of nonnegative integers, with |λ| =∑L
l=1 λl, and λ! =

∏L
l=1 λl!. For L

vectors of nonnegative integers λ and µ let µ ≤ λ be equivalent to µl ≤ λl for all l = 1, . . . , L,

and define

(

λ
µ

)

=
λ!

µ!(λ− µ)!
=

L
∏

l=1

λl!

µl!(λl − µl)!
=

L
∏

l=1

(

λl

µl

)

.

For L vectors λ and x let xλ =
∏L

l=1 x
λl
l . As shorthand for partial derivatives we use g(λ)(x):

g(λ)(x) =
∂g|λ|

∂xλ
(x).

For matrices we use the matrix norm

|A| =
√

tr(A′A).

The norm that we use for functions g : X ⊂ R
L → R that are at least j times continuously

differentiable is the Sobolev norm

|g|j = sup
x∈X,|λ|≤j

∣

∣

∣

∣

∣

∂g|λ|

∂xλ
(x)

∣

∣

∣

∣

∣

.
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Let K : RL 7→ R denote the kernel function. We will assume that K(u) = 0 for u /∈ U with U

compact, and K(u) bounded. The standard Nadaraya-Watson (NW) kernel density estimator,

based on the bandwidth b, is:

f̂X,nw(x) =
1

N

N
∑

i=1

1

bL
K

(

x−Xi

b

)

, (3.7)

For the bandwidth b define the internal region of the support X as

X
I
b =

{

x ∈ X

∣

∣

∣

∣

{

x̃ ∈ R
k

∣

∣

∣

∣

x− x̃

b
∈ U

}

⊂ X

}

= {x ∈ X | {x− b · u|u ∈ U} ⊂ X} . (3.8)

This is a compact subset of the interior of X that contains all points that are sufficiently far away

from the boundary that the standard kernel density estimator at those points is not affected by

any potential discontinuity in the density at the boundary. In the case with U = [−1, 1]L and

X =
⊗L

l=1[xl, xl], we have X
I
b =

⊗L
l=1[xl+b, xl−b].1 Next, we need to develop some notation for

Taylor series approximations. Define for a given, m−1 times differentiable function g : RL → R,

a point y ∈ RL and an integer m, the m− 1-th order polynomial function t : RL → R based on

the Taylor series expansion of order m− 1 of g(·) around y:

t(x, g(·), y,m) =

m−1
∑

j=0

∑

|λ|=j

1

λ!

∂|λ|

∂xλ
g(y) · (x− y)λ. (3.9)

If the function g(x) is m times differentiable the remainder term in the Taylor series expansion

is

g(x)− t(x, g(·), y,m) =
∑

|λ|=m

1

λ!

∂m

∂xλ
g(y(x)) · (x− y)λ.

with y(x) intermediate between x and y. If the m-th order derivative is bounded, this remainder

term can be bounded by C · |x− y|m.

3.2 The Nearest Internal Point Estimator

It is well-known that kernel density estimators are biased if the support of the density that is

estimated is bounded. Because GPM and GFM estimates require first-stage density estimates,

their behavior is affected by this bias. In the literature two types of assumptions are made to

avoid this problem.

Newey (1994) shows that if the population probability density function and its derivatives

up to order j are zero on the boundary of the support, then

sup
x∈X,|λ|≤j

∣

∣

∣

∣

∣

∂|λ|

∂xλ
f̂X,NW (x)− ∂|λ|

∂xλ
fX(x)

∣

∣

∣

∣

∣

= Op

(

lnN 1/2
(

N · bL+2j
N

)−1/2
+ bsN

)

,

1The set [−1, 1]L is the set of L vectors with components that are between -1 and 1. The set
NL

l=1[xl, xl] is
the set of L vectors with l-th component between xl and xl.
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If the density is bounded from zero on its support, then the uniform bound holds on a compact

subset of the interior of the support. Alternatively one can assume that the support is un-

bounded. Andrews (1995) gives uniform bounds on the estimation error for this case. Neither

the Newey (1994) nor the Andrews (1995) results imply uniform convergence on the full support

if the support is compact and the density is bounded away from zero on the support. In fact,

in that case it is easy to see that the standard kernel density estimator is not even consistent

at the boundary. If X is scalar, the kernel density estimator converges to 1/2 times the value

of the density at the boundary.

Various modifications of the kernel density estimator have been proposed to deal with the

boundary bias. Here we discuss two of these, and we show that they do not lead to uniformly

consistent estimators of the density and its derivatives. To simplify the discussion we assume

that the support of the random variable is X = [0, 1]. The first boundary modification is

sometimes referred to as reflection. It consists of adding artificial observations to the data

that are mirror images of the existing ones but are outside the support of the distribution.

So, for an observation Xi, we add one observation on the other side of the lower boundary

zero, X ′
i = 0 − (Xi − 0) = −Xi and one observation on the other side of the upper boundary,

X ′′
i = 1 + (1−Xi) = 2 −Xi. This leads to the estimator

f̂X,R(x) =
1

N

N
∑

i=1

1

b

[

K

(

x−Xi

b

)

+K

(

x−X ′
i

b

)

+K

(

x −X ′′
i

b

)]

=

1

N

N
∑

i=1

[

K

(

x−Xi

b

)

+K

(

x+Xi

b

)

+K

(

x− (2 −Xi)

b

))

.

At the boundary it is as if the probability density function is extended by imputing the density

at values below the lower boundary point 0 as fX(0 − x) = fX(0 + x) for y > 0. This removes

the bias of the kernel density estimator at the boundary, so that we have uniform convergence

over the compact support. However, the kernel density estimator of the derivative of the density

now converges to zero at the boundary, and is not consistent for that derivative, so that we

cannot have uniform convergence of the derivatives. A second method to remove the boundary

bias is a jackknife approach (Gray and Schucany, 1972). It is based on two density estimates

that use two different bandwidth sequences bN and b′N . It then uses a convex combination

of the two estimates to eliminate the first-order bias near the boundary. This cannot restore

convergence of the density estimator at the boundary (and hence uniform convergence over a

compact support) because at the boundary the probability limit of the estimated density is

equal to half times the actual density, irrespective of the bandwidth sequence used.

An estimator that removes the boundary bias should not only ensure uniform convergence

of the density estimator and its derivatives, but should also preserve the bias reduction that

higher-order kernels deliver. Although this feature of kernel density estimators may not always

be important in practice, it is needed to ensure that the bias of the GPM and GFM estimators

converges to 0 at an appropriate rate. A final requirement is that the proofs of the asymp-

totic properties of the GPM and GFM estimators should not be unduly complicated and that

no additional smoothing parameters should be involved. Note that the asymptotic trimming

arguments that could be used to deal with the boundary bias fail these tests.
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The new estimator, the Nearest Internal Point (NIP) estimator, is equal to the NW estimator

of the density and its derivatives on the internal region of X and to a Taylor series expansion

of the density and its derivatives on the boundary region. To define the estimator we introduce

the transformation rb(x) indexed by the bandwidth. This transformation maps a point x ∈ X

to a point in the internal region of X. If rb(x) 6= x, rb(x) is the point where the Taylor series

expansion is taken that replaces the usual kernel density estimator. The usual estimator is used

if rb(x) = x.

An obvious choice for rb(x) is the projection of x onto the set XI
b :

rb(x) = argminy∈X
I
b
|x− y|.

Thus, for x ∈ X
I
b , rb(x) = x which implies that on the interior region this estimator coincides

with the kernel density estimator. If X =
⊗2

l=1[xl, xl] and U = [−1, 1]2, the projections are as

in Figure 2. Note that for x in the boundary region, moving b in one or both directions will

take us out of the support X. For x in the larger rectangles in the boundary set, there is a

direction where moving by b keeps us inside the support. The estimator does not use a Taylor

series approximation in these ”long” directions, but instead uses the kernel density estimator

and its derivatives, if derivatives of the density have to be estimated. The NIP estimator of

the λ derivative on the boundary region based on this choice of the point of approximation, the

NIP estimator is based on a Taylor series expansion of the λ derivative of fX at rb(x):

f̂
[λ]
X,nip,m(x) =

{

t
(

x, ∂|λ|

∂xλ f̂X,NW , rb(x), m
)

if x ∈ X

0 elsewhere.
(3.10)

Note that in general the nearest interior point estimator of the derivative of the density is not

equal to the derivative of the nearest interior point estimator of the density, because the latter

depends on the λ derivative of rb(x) with respect to x. For that reason we use the notation [λ]

to distinguish this estimator from the λ derivative of the NIP estimator that is indicated by the

superscript (λ). Of course the equality f̂
[λ]
X,nip,m(x) = f̂

(λ)
X,nip,m(x) holds on the internal region.

Moreover, if X =
⊗L

l=1[xl, xl] and U = [−1, 1]L we have for the l-th component of the point of

approximation

rb(x)l =







xl + b if xl < xl + b
xl if xl + b ≤ x ≤ xl − b

xl − b elsewhere.

Note that the derivative of rb(x) is either 1 or 0, so that if the support is a hyper rectangle

f̂
[λ]
X,nip,m(x) = f̂

(λ)
X,nip,m(x) for all x ∈ X so that we have uniform convergence in Sobolev norm.

It is essential to bound the distance between x and the point of approximation rb(x). To

obtain the same bound on the bias as Newey (1994), we need the boundary area to be “small”,

in the sense that supx∈X |x−rb(x)| is of order O(b). If X =
⊗L

l=1[xl, xl], X
I
b =

⊗L
l=1[xl+b, xl−b],

and rb(x) is the projection of x on the internal set, then the condition is satisfied. An example

of a support X ⊂ R2 that has a boundary that is not small is given in Figure 1. This figure

shows (part of) a compact support with its internal region XI
b . Because the support is bounded

[8]



by the curve (1 − x)2, we have that if rb(x) is the nearest point in the internal set

|xe − rb(xe)| =
√

2b+ b2 = O(
√
b).

Hence the shape of the support X matters.

3.3 Products of Regression and Density Functions

It is useful to look not only at the estimation of densities, but also of a more general class of

functions. Let Z be a random vector defined on the same probability space as X , and define

h(x) = E[Z|X = x] · fX(x).

Let

h(λ)(x) =
∂|λ|

∂xλ
h(x),

be the λ derivative. When we consider partial and full means, we will use a special case where

Z is of the form (1, Y ′)′, and so h(x) will be h(x) = (h1(x), h2(x)
′)′ = (fX(x), fX(x) · g(x)′)′.

Partial and full means depend on h through g = h2/h1, but for notational ease we formulate and

derive the results without this structure. As we shall see later, the expressions for asymptotic

variances of estimators simplify, if the dependence is through h2/h1.

We consider two estimators for h(x). The first is based on the standard Nadaraya-Watson

kernel:

ĥnw(x) =
1

N

N
∑

i=1

1

bL
· Zi ·K

(

x−Xi

b

)

, (3.11)

with estimator for the λ derivative equal to the derivative of the estimator:

ĥ(λ)
nw (x) =

∂|λ|

∂xλ
ĥ(x) =

1

N

N
∑

i=1

1

bL+|λ|
· Zi ·K(λ)

(

x−Xi

b

)

. (3.12)

The second estimator is based on the NIP density estimator :

ĥnip,m(x) =

{

t
(

x, ĥNW , rb(x), m
)

if x ∈ X

0 elsewhere.
(3.13)

As for the estimator of the λ derivative of the density we estimate the λ derivative of h by a

Taylor series expansion of the derivative. To emphasize the difference between this estimator

and the λ derivative of the NIP estimator of h we use [λ] and not (λ).

ĥ
[λ]
nip,m(x) =

{

t
(

x, ĥ
(λ)
NW , rb(x), m

)

if x ∈ X

0 elsewhere.
(3.14)

As noted before we have ĥ
[λ]
nip,m(x) = ĥ

(λ)
nip,m(x) if X is a hyper rectangle.
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3.4 Assumptions

THE ONLY CHANGE IN MAIN TEXT IS THAT I REPLACED THE ASSUMPTIONS, LEM-

MAS AND THEOREMS BY THOSE IN THE APPENDIX.

We make three sets of assumptions. The first deals with the joint distribution of (Zi, Xi), the

second with the kernel, and the third with the bandwidth. The assumptions are stronger than

necessary for the first set of results, but are formulated in order to be useful in the subsquent

discussion of generalized partial means.

Assumption 1 (Distribution)

(i) (Y1, X1), (Y2, X2), . . . , are independent and identically distributed, and one of the components

of Z is identically equal to 1,

(ii) the support of X is X ⊂ R
L, X =

⊗L
l=1[xl, xl], xl < xl for all l = 1, . . . , L.

(iii) supx∈X E[|Y |p|X = x] <∞ for some p > 2.

(iv) g(x) = E[Y |X = x] is q times continuously differentiable on the interior of X with the q-th

derivative bounded,

(v) fX(x) is q times continuously differentiable on the interior of X with the q-th derivative

bounded.

Definition 3.1 Derivative Order of a Kernel A Kernel K : U 7→ R is of derivative order

d if for all u in the boundary of the set U and all |λ| ≤ d− 1,

lim
v→u

∂λ

∂uλ
K(v) = 0.

Assumption 2 (Kernel)

(i) K : RL → R, with K(u) =
∏L

l=1 K(ul),

(ii) K(u) = 0 for u /∈ U, with U = [−1, 1]L,

(iii) K is r times continuously differentiable, with the r-th derivative bounded on the interior

of U,

(iv) K is a kernel of order s, so that
∫

U
K(u)du = 1 and

∫

U
uλK(u)du = 0 for all λ such that

0 < |λ| < s, for some s ≥ 1,

(v) K is a kernel of derivative order d.

We refer to such a kernel as a derivative kernel of order (s, d). Hence a derivative kernel is

a higher order kernel that deals with boundary terms that appear in the asymptotically linear

expressions for the GFAD and GPAD estimators. If d = 0 there is no restriction on the kernel

beyond the higher order.

Assumption 3 The bandwidth bN = N−δ for some δ > 0.

We assume that U = [−1, 1]L for simplicity. Key is that it has bounded support and that

the kernel itself is bounded.

Define Zi = (1, Y ′
i )

′.

[10]



3.5 Properties of Standard Kernel Estimators

The first set of results establishes the asymptotic properties of the usual Nadaraya-Watson (NW)

and the new Nearest Interior Point (NIP) density estimators. Results on uniform convergence

of the NW estimator are given in Newey (1994). The first lemma gives the uniform bias. This

result holds for a fixed bandwidth and hence we omit the subscript N on the bandwidth.

Lemma 3.1 (Bias, Newey, 1994)

Suppose Assumptions 1-2 hold, and q ≥ j + s, then:

sup
x∈X

I
b ,|λ|≤j

∣

∣

∣

∣

∣

∂|λ|

∂xλ
E

[

ĥnw(x)
]

− ∂|λ|

∂xλ
h(x)

∣

∣

∣

∣

∣

= O (bs) .

i.e. the Sobolev norm (of order j) of the bias of the kernel estimator is O(bs).

The proofs for the Lemmas and Theorems in the text are given in Appendix C. This Lemma

follows directly from Lemma B.2 in Newey (1994), with the one difference that we allow the

set XI
b to expand with the bandwidth. We give the proof for completeness.

Lemma 3.2 (Variance of Standard Kernel Estimator, Newey, 1994)

Suppose Assumptions 1-2 hold, q ≥ j, r ≥ j + 1, and the bandwidth satisfies C1N
−γ1 ≤ bN ≤

C2N
−γ2, for some 0 < γ2 < γ1 <

1−2/p
2j+L+2 . Then:

sup
x∈X,|λ|≤j

∣

∣

∣

∣

∣

∂|λ|

∂xλ
ĥNW (x) − ∂|λ|

∂xλ
E

[

ĥNW (x)
]

∣

∣

∣

∣

∣

= Op





(

logN

N · bL+2j
N

)1/2


 .

This follows directly from Lemma B.1 in Newey (1994). We give the proof in the Appendix

for completeness. Note that unlike the bias, the variance is not affected by the boundary

problem, and the Lemma is valid uniformly over X, not just over X
I
b . We index the bandwidth

in this Lemma by the sample size because the variance bound only applies if the bandwidth

sequence satisfies the conditions in Assumption.

3.6 Properties of Nearest Internal Point Estimator

THE ONLY CHANGE IN MAIN TEXT IS THAT I REPLACED THE ASSUMPTIONS, LEM-

MAS AND THEOREMS BY THOSE IN THE APPENDIX.

We use the NIP estimator with the order of the Taylor series expansion equal to s− 1 with

s the order of the kernel.

The next two lemmas establish the rate of uniform (on X) convergence of the NIP estimator

of the λ derivatives of h up to order j. The NIP estimator of order s of h(λ) is

ĥ
(λ)
NIP,s(x) =

s−1
∑

j=0

∑

|µ|=j

1

µ!
ĥ

(λ+µ)
NW (rb(x))(x− rb(x))

µ

[11]



Lemma 3.3 (Bias)

If Assumptions 1-2 hold, and q ≥ j + 2s− 1 and r ≥ j + s− 1, then for all |λ| ≤ j:

sup
x∈X

∣

∣

∣
E

[

ĥ
(λ)
nip,s(x)

]

− h(λ)(x)
∣

∣

∣
= O (bs) .

Note that the only difference with Lemma 3.1 is that we require s−1 additional derivatives

of h.

Lemma 3.4 (Variance)

Suppose Assumptions 1-3 hold and q ≥ j + s − 1, r ≥ j + s, and the bandwidth rate δ satisfies

δ <
1−2/p

2j+L+2 . Then:

sup
x∈X,|λ≤j

∣

∣

∣
ĥ

(λ)
nip,s(x) − E

[

ĥ
(λ)
nip,s(x)

]∣

∣

∣
= Op





(

logN

N · bL+2j
N

)1/2


 .

Theorem 3.1 (Uniform Convergence)

If Assumptions 1-3 hold, and q ≥ |λ|+ 2s− 1, r ≥ |λ|+ s− 1, then:

sup
x∈X

∣

∣

∣
ĥ

[λ]
nip,s(x)− h[λ](x)

∣

∣

∣
= Op





(

logN

N · bL+2|λ|
N

)1/2

+ bsN



 .

If also

s > max

{

L+ 2|λ|, L + 2|λ|+ 2

2 − 4/p

}

,

and

1

2s
< δ < min

{

1 − 2/p

L+ 2|λ|+ 2
,

1

2L+ 4|λ|

}

,

then,

(i)

sup
x∈X

∣

∣

∣
E

[

ĥ
[λ]
nip,s(x)

]

− h[λ](x)
∣

∣

∣
= o

(

N−1/2
)

,

and (ii)

sup
x∈X

∣

∣

∣ĥ
[λ]
nip,s(x)− h[λ](x)

∣

∣

∣ = op

(

N−1/4
)

.

Note that in the case that the support X is a hyperrectangle Lemmas 3.3, 3.4 and Theo-

rem A.1 imply the same upper bounds for the Sobolev norm, so that the results are directly

comparable to those in the previous section.

The results on ĥnip,s(x) will be used for estimation of partial means. In particular, we use the

fact that the results imply that under sufficient smoothness conditions the difference between

[12]



ĥnip,s(x) and h(x) disappears faster than N−1/4, and that the corresponding bias vanishes faster

than N−1/2, both uniformly over X. These are the well-known minimal rates of convergence of

first-stage nonparametric estimators indicated by Newey (1994). The following Lemma makes

this precise.

We can always choose the order of the kernel such that the interval for δ is not empty. It

is obvious that a higher order kernel is needed. An advantage of the NIP estimator is that it

preserves the order of the usual kernel estimator. Note that if 3 ≤ p ≤ 4, we have

1

2s
< δ <

1 − 2
p

L+ 2

so that the required order of the kernel is less than the number of variables in X .

4 Large Sample Properties of Estimators for Generalized Full

and Partial Means and Average Derivatives

4.1 Assumptions

In this section we present the main results of the paper. For four cases, the full mean, the full

average derivative, the partial mean and the partial average derivative, we present results on

the large sample properties of the estimators. We also present some results for special cases,

most importantly for the case where the function m(h) depends only on (derivatives of) the

regression function g = h2/h1. In addition we present estimators for the large sample variances

of the four estimators.

Next we make an assumption on the smoothness of m(·) and the weight function ω(·).
Because components of g are continuous functions on the compact set X, we can consider m

as a functional on the set C[X] of continuous (and hence bounded) functions on X. We need

to linearize this functional in an open neighborhood of the population value of g. Define this

neighborhood by B(g, ε) = {g′ ∈ C[X]||g′ − g| < ε} with ε > 0. We also define G ⊂ RL

by G = {g′(x)|x ∈ X, g′ ∈ B(g, ε)}. We now give the assumption that ensures that we can

linearize m. In this assumption we consider m as a function of M real arguments, i.e. as

a function of g′1(x), . . . , g
′
M(x) with x ∈ X and g′ ∈ B(g, ε). In applications ε is chosen to

ensure differentiability of m. An example is the weighting estimator in Example 2.1 where

we assume that g3(x) is bounded from 0 and 1 on X. We choose ε such that all g′ ∈ B(g, ε)

have the same property. If an estimator ĝ converges uniformly to g on X then in large samples

g + α(ĝ − g) ∈ B(g, ε) for all 0 ≤ α ≤ 1.

Assumption 4 (Smoothness of m and ω)

(i) The function m is t times continuously differentiable on Hλ with its t-th derivative bounded

on this set, and

(ii) the function ω is t times differentiable with bounded t-th derivative on X1 =
⊗L1

l=1[xl, xl],

and ∂µω
∂zµ (z) is zero on the boundary of X1.

[13]



Assumption 5 (Smoothness of t)

The function t is v times continuously differentiable on X1 with its v-th derivative bounded on

this set.

It should be noted that this assumption stronger than needed for consistency of the GFM

and GPM estimators. For consistency continuity of m on G suffices.

4.2 Full Means

Here we focus on estimation of the GFM

θgfm = E
[

ω(X)′m (h (X))
]

.

The proposed estimator is

θ̂gfm =
1

N

N
∑

i=1

ω(Xi)
′m
(

ĥnip,s (Xi)
)

.

Define

ψgfm(y, x) = ψgfm1(y, x) + ψgfm2(y, x),

where

ψgfm1(y, x) =
(

ω(x)′m(h(x))− θgfm

)

(4.15)

and

ψgfm2(y, x) = fX(x)ω(x)′
∂

∂h′
m(h(x)) ·

(

1

y

)

−E

[

fX(X)ω(X)′
∂

∂h′
m(h(X)) ·

(

1

Y

)]

(4.16)

We will show that ψgfm(y, x) is the influence function for the estimator θ̂gfm. The first term

in the influence function, ψgfm1(y, x), is the contribution from the averaging of g(x) over the

sample, and the second, ψgfm2(y, x), captures the uncertainty coming from the estimation of

g(x).

Theorem 4.1 (Generalized Full Mean)

Suppose Assumptions 1–4 hold. Then

(i) (Consistency) If q ≥ 2s− 1, r ≥ s− 1 + L, p ≥ 3, 0 < δ < 1/L, then

θ̂gfm
p−→ θgfm,

(ii) (Asymptotic Linearity) If, in addition to the conditions in (i), t ≥ s, d ≥ s − 1, and

1

2s
< δ < min

{

2 − 4
p

2L+ 4
,

1

2L

}

,

then

√
N
(

θ̂gfm − θgfm

)

=
1√
N

N
∑

i=1

ψgfm(Yi, Xi) + op(1),

[14]



(iii) (Asymptotic Normality) Under the same conditions as in (ii),
√
N
(

θ̂gfm − θgfm

)

d−→ N
(

0,E
[

ψgfm(Y,X) · ψgfm(Y,X)′
])

.

Next we present a result for the special case where m(·) depends on h(·) only through

the regression function h2(x)/h1(x). Then we can define a function n : G 7→ R
P such that

n(g(x)) = m(fX(x), g(x) · fX(x)) for all g(x). Define

ψgfm,reg(y, x) = ω(x)′
∂

∂g′
n(g(x)) · (y − g(x)) +

(

ω(x)′n(g(x))− θ
)

. (4.17)

Corollary 4.1 (Generalized Full Mean of Regression Function)

Suppose Assumptions 1–4 hold with q ≥ 2s − 1, r ≥ s − 1 + L, p ≥ 3, 0 < δ < 1/L, t ≥ s,

d ≥ s− 1, and

1

2s
< δ < min

{

2 − 4
p

2L+ 4
,

1

2L

}

,

then (i)

√
N
(

θ̂gfm − θgfm

)

=
1√
N

N
∑

i=1

ψgfm,reg(Yi, Xi) + op(1),

and (ii)
√
N
(

θ̂gfm − θgfm

)

d−→ N
(

0,E
[

ψgfm,reg(Y,X)ψgfm,reg(Y,X)′
])

.

Lemma 4.1 Consistent Estimator for Asymptotic Variance for Full Mean

4.3 Full Average Derivatives

Theorem 4.2 (Generalized Full Average Derivative)

Consider the estimator

θ̂ =
1

N

N
∑

i=1

ω(Xi)m(ĥ
[λ]
NIP,s(Xi))

of the GFM/GFAD

θ = E

[

ω(X)m
(

h[λ] (X)
)]

with h
[λ]
NIP,s the NIP estimator of h[λ], then

(i) (Consistency) If Assumptions 1 and 4 hold2, q ≥ |λ|+2s−1, r ≥ |λ|+ s−1+L, , p ≥ 3,

and bN = N−δ with

0 < δ <
1

L+ 2|λ|
then

θ̂
p−→ θ.

2The function n need not be differentiable. Continuity on Hλ suffices.
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(ii) (Asymptotic Linearity) If Assumptions 1-4 hold, q ≥ |λ|+ 2s− 1, r ≥ |λ|+ s− 1 +L,t ≥
|λ|+ s, p ≥ 3, d ≥ max{λ1, . . . , λL} + s− 1, all µ ≤ λ, |µ| ≤ |λ| − 1, and

1

2s
< δ < min

{

2 − 4
p

2L+ 4 max{1, |λ|},
1

2L+ 4|λ|

}

then the estimator is asymptotically linear with

√
N(θ̂ − θ) =

1√
N

N
∑

i=1

(

ω(Xi)m(h
[λ]
0 (Xi))− E

[

ω(X)m
(

h[λ] (X)
)])

+
1√
N

N
∑

i=1





∑

κ≤λ

(−1)|κ|
2
∑

m=1

(

α(κ)
κm(Xi)Zim − E[α(κ)

κm(X)Zm]
)



+ op(1)

with Zi1 = 1, Zi2 = Yi and for m = 1, 2

α(κ)
κm(x) = fX(x)ω(x)

∂n

∂h
(κ)
m (x)

(h
[λ]
0 (x)).

(iii) (Asymptotic Normality) Under the same assumptions as in (ii),

√
N(θ̂ − θ0)

d−→ N (0, V )

with

V = Var
(

ω(X)n
(

h
[λ]
0 (X)

))

+
∑

κ1≤λ

∑

κ2≤λ

(−1)|κ1|+|κ2|E

[

α
(κ1)
κ1,2(X)α

(κ2)
κ2,2

(X)Var(Y |X)
]

+
∑

κ1≤λ

∑

κ2≤λ

2
∑

m1=1

2
∑

m2=1

(−1)|κ1|+|κ2|Cov
(

α(κ1)
κ1,m1

(X)E(Zm1|X) , α(κ2)
κ2,m2

(X)E(Zm2|X)
)

+2
∑

κ≤λ

2
∑

m=1

(−1)|κ|E
[(

ω(X)n
(

h
[λ]
0 (X)

)

− E

[

ω(X)n
(

h
[λ]
0 (X)

)])(

α(κ)
κm(X)E(Zm|X)− E

[

α(κ)
κm(X)E(Zm|X)

])]

.

Lemma 4.2 Consistent Estimator for Asymptotic Variance for Full Derivatives

4.4 Partial Mean

Recall the definitions of the generalized partial and full means:

θgpm = E
[

ω(X1)
′m (h (X1, t(X1)))

]

,

and The corresponding estimators are

θ̂gpm =
1

N

N
∑

i=1

ω(X1i)
′m
(

ĥnip,s (X1i, t(X1i))
)

,
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Theorem 4.3 (Generalized Partial Mean)

(i) Suppose Assumptions 1-5 hold with q ≥ 2s− 1, r ≥ s− 1 +L, p ≥ 3, and 0 < δ < 1/L, then

θ̂gpm p−→ θgpm.

(ii) Suppose Assumptions 1-5 hold with v ≥ 2, λ = 0, q ≥ 2s − 1, r ≥ s − 1 + L, t ≥ s, p ≥ 4,

d ≥ s− 1, and

1

2s
< δ < min

{

2 − 4
p

2L+ 4
,

1

2L

}

then θ̂gpm is asymptotically linear with

√
Nb

L2/2
N

(

θ̂gpm − θgpm
)

=

1

bN
L2/2

√
N

·
N
∑

i=1

2
∑

m=1

(

αm(Xi1)Zim

∫

U1

K

(

u1,
Xi2 − t(Xi1)

bN
+

∂

∂x′1
t(Xi1) · u1

)

du1

−E

[

αm(X1)Zm

∫

U1

K

(

u1,
X2 − t(X1)

bN
+

∂

∂x′1
t(X1) · u1

)

du1

])

+ op(1)

with Zi1 = 1, Zi2 = Yi, and for m = 1, 2,

ακm(x1) = fX(x1, t(x1))ω(x1)
∂n

∂h
(κ)
m (x1, t(x1))

(h(x1, t(x1)))

(iii), under the same asssumptions as in (ii),

√
Nb

L2/2
N (θ̂gpm − θgpm)

d−→ N
(

0,

2
∑

k=1

2
∑

m=1

Vk,m

)

with

Vk,m =

∫

X1

µkm(x1, t(x1))αk(x1)αm(x1)

∫

U2

(∫

U1

K

(

u1,
∂t

∂x1
(x1)u1 + u2

)

du1

)2

du2fX(x1, t(x1))dx1

with µkm(x) = E[ZkZm|X = x] for k,m = 1, 2.

Lemma 4.3 Consistent Estimator for Asymptotic Variance for Partial Mean

4.5 Partial Average Derivative

Theorem 4.4 (Generalized Partial Mean and Average Derivative)

Consider the estimator

θ̂ =
1

N

N
∑

i=1

ω(Xi1)n(ĥ
[λ]
NIP,s(Xi1, t(Xi1)))
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of the GFM/GFAD

θ0 = E

[

ω(X)n
(

h
[λ]
0 (X1, t(X1))

)]

with h
[λ]
NIP,s the NIP estimator of h(λ) for an boundary set of width 2bN that uses the trimmed

NW estimator, then

(i) Consistency. If Assumptions 1 and 4 hold3, q ≥ |λ|+ 2s− 1, r ≥ |λ|+ s− 1 +L, , p ≥ 3,

and bN = N−δ with

0 < δ <
1

L+ 2|λ|
then

θ̂
p−→ θ0

(ii) Asymptotic distribution. If Assumptions 1, 2 and 4 hold, then

a. if t(x1) is twice continuously differentiable on X1, λ = 0, q ≥ 2s − 1, r ≥ s − 1 + L,

t ≥ s, p ≥ 4, d ≥ s − 1, and bN = N−δ with

1

2s
< δ < min

{

2 − 4
p

2L+ 4
,

1

2L

}

then the estimator is asymptotically linear with

√
Nb

L2/2
N (θ̂−θ0) =

1

bN
L2/2

√
N

·
N
∑

i=1

2
∑

m=1

(

αm(Xi1)Zim

∫

U1

K

(

u1,
Xi2 − t(Xi1)

bN
+

∂

∂x′1
t(Xi1) · u1

)

du1

−E

[

αm(X1)Zm

∫

U1

K

(

u1,
X2 − t(X1)

bN
+

∂

∂x′1
t(X1) · u1

)

du1

])

+op(1)

with Zi1 = 1, Zi2 = Yi and for m = 1, 2

ακm(x) = fX(x)ω(x)
∂n

∂h
(κ)
m (x)

(h
[λ]
0 (x))

Hence

√
Nb

L2/2
N (θ̂ − θ0)

d−→ N (0, V )

with

V =

2
∑

m=1

2
∑

m′=1

∫

X1

µmm′(x1, t(x1))αm(x1)αm′(x1)

∫

U2

(∫

U1

K

(

u1,
∂t

∂x1
(x1)u1 + u2

)

du1

)2

du2fX(x1, t(x1))dx1

with µmm′(x) = E[ZmZm′ |X = x] for m,m′ = 1, 2

3The function n need not be differentiable. Continuity on Hλ suffices.
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b. If λ ≥ 0 and t(x1) = x02, and q ≥ |λ|+ 2s− 1, r ≥ |λ|+ s− 1 +L,t ≥ |λ|+ s, p ≥ 4,

d ≥ max{λ1, . . . , λL}+ s− 1, and bN = N−δ with4

1

2s
< δ < min

{

2 − 4
p

2L+ 4 max{1, |λ|},
1

2L+ 4|λ|

}

then the estimator is asymptotically linear with

√
NbN

L2/2+|λ2|(θ̂ − θ0) =

1

bN
L2/2

√
N

·
N
∑

i=1





∑

κ1≤λ1

(−1)|κ1|
2
∑

m=1

(

α
(κ1)
κ1λ1,m

(Xi1)ZimK
(λ2)

(

x02 −Xi2

bN

)

− E

[

α
(κ1)
κ1λ1,m(X1)ZmK

(λ2)

(

x02 −X2

bN

)

with Zi1 = 1, Zi2 = Yi and for m = 1, 2

ακm(x) = fX(x)ω(x)
∂n

∂h
(κ)
m (x)

(h
[λ]
0 (x))

Hence

√
NbN

L2/2+|λ2|(θ̂ − θ0)
d−→ N (0, V )

with

V =

2
∑

m=1

2
∑

m′=1

∫

X1

µmm′ (x1, t(x1))





∑

κ1≤λ1

(−1)|κ1|α
(κ1)
κ1λ2,m(x1)









∑

κ1≤λ1

(−1)|κ1|α
(κ1)
κ1λ2,m′(x1)





·
∫

U2

(

K(λ2) (u2)
)2

du2fX(x1, t(x1))dx1

Lemma 4.4 Consistent Estimator for Asymptotic Variance for Partial Deriva-

tive

5 Applications

IN THIS SECTION WE SPECIALIZE THE GENERAL RESULT TO INTERESTING CASES:

FULL AND PARTIAL MEAN, FULL AVERAGE DERIVATIVES (WEIGHTED AND UN-

WEIGHTED), PARTIAL AVERAGE DERIVATIVES (UNWEIGHTED?), FULL AND PAR-

TIAL CROSS DERIVATIVES, FULL AND PARTIAL SECOND DERIVATIVES. NOTHING

TO PROVE, BUT JUST THE INFLUENCE FUNCTIONS AND ASYMPTOTIC VARIANCE.

6 Conclusion

To be added

4These are the bounds on δ if |λ| < 2L which is usually true.
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Appendix A: Additional Lemmas and Theorems

Lemma A.1 Under the assumptions of Lemma 3.1 and in addition r ≥ j, we have that for |λ| ≤ j, and x ∈ X,

E
h

ĥ(λ)
nw (x)

i

=
∂|λ|

∂xλ
E
h

ĥnw(x)
i

.

Lemma A.2 Under the assumptions of Lemma 3.2, we have that for |λ| ≤ j

sup
x∈X

˛

˛

˛ĥ
(λ)
NW (x)‘ − E

h

ĥ
(λ)
NW (x)

i˛

˛

˛ = Op

0

@

 

logN

N · bL+2j
N

!1/2
1

A .

Here we introduce some additional notation to keep track of derivatives. We do this part only for scalar Y . For
a L-vector of nonnegative integers λ, define ĥ

[λ]
nip,s as the vector of NIP estimators of the derivatives of h up to

order λ. Note that h = (h1 h2)
′ with

h1 = fX , h2 = fX · g,
so that h1 : X 7→ R and h2 : X 7→ R. Hence h[λ] is a 2Λ vector of derivatives of h1 and h2 with Λ =

QL
l=1(1 + λl)

and the first Λ components the derivatives of h1, i.e. h
[λ]
1 and the second Λ components the derivatives of h2,

i.e. h
[λ]
2 . For example, if λ = (1, 2), then Λ = (1 + 1) · (1 + 2) = 6, and

h
[λ]
1 (x) =

0

B

B

B

B

B

B

B

B

@

h1(x)
∂

∂x1
h1(x)

∂
∂x2

h1(x)
∂2

∂x1∂x2
h1(x)

∂2

∂x2
2

h1(x)

∂3

∂x1∂x2
2

h1(x)

1

C

C

C

C

C

C

C

C

A

.

Also define the Λ × L matrix [λ] with rows equal to the order of differentation in [λ], so that for λ = (1, 2)′,

[λ] =

0

B

B

B

B

B

B

@

0 0
1 0
0 1
1 1
0 2
1 2

1

C

C

C

C

C

C

A

,

and |[λ]| to be the Λ vector with the row sums, so that in the same example with λ = (1, 2)′,

|[λ]| = [λ]ιL =

0

B

B

B

B

B

B

@

0
1
1
2
2
3

1

C

C

C

C

C

C

A

,

where ιL is the L-vector with all elements equal to one. Note that for a scalar µ, h[µ] contains all derivatives of
h1, h2 up to order µ. Thus for λ = (1, 2), the vector of functions h[|λ|] contains all derivatives up to order 3:

h
[|λ|]
1 (x) =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

h1(x)
∂

∂x1
h1(x)

∂
∂x2

h1(x)
∂2

∂x2
1

h1(x)

∂2

∂x1∂x2
h1(x)

∂2

∂x2
2

h1(x)

∂3

∂x3
1

h1(x)

∂3

∂x2
1

∂x2
h1(x)

∂3

∂x1∂x2
2

h1(x)

∂3

∂x3
2

h1(x)

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.
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Finally ∗ is the component by component multiplication of two vectors with the same number of components,
and |x|∗ is the vector of absolute values of the components of the vector x.

Theorem A.1 (Uniform Convergence)
If Assumptions 1-3 hold, and q ≥ j + 2s − 1, r ≥ j + s− 1 + L, then for all |λ| ≤ j:

sup
x∈X

˛

˛

˛ĥ
(λ)
nip,s(x) − h(λ)(x)

˛

˛

˛ = Op

0

@

 

logN

N · bL+2j
N

!1/2

+ bsN

1

A .

Note that this implies that if δ < 1/(L+ 2|λ|), we have convergence of ĥ
(λ)
nip,s(x) to h(λ)(x) uniform in x.

Lemma A.3 (Estimation of h(x))
Suppose that Assumptions 1-3 hold, with

s > max



L+ 2j,
L+ 2j + 2

2 − 4/p

ff

,

q ≥ j + 2s− 1,

r ≥ j + s − 1,

and

1

2s
< δ < min



1 − 2/p

L+ 2j + 2
,

1

2L+ 4j

ff

.

Then, for |λ| ≤ j,
(i)

sup
x∈X

˛

˛

˛E

h

ĥ
(λ)
nip,s(x)

i

− h(λ)(x)
˛

˛

˛ = o
“

N−1/2
”

,

and (ii)

sup
x∈X

˛

˛

˛ĥ
(λ)
nip,s(x) − h(λ)(x)

˛

˛

˛ = op

“

N−1/4
”

.

The results in Lemmas 3.3, 3.4, A.3 and Theorem A.1 with j = |λ| can now be read as results on a uniform

bound on the bias and variance of ĥ
[λ]
nip,s as an estimator of the vector of derivatives h[λ].

The next set of Lemmas A.4-A.11 do the groundwork for the proofs of Theorems 4.1-??. They provide the tools
for the analysis of the correction term that accounts for the effect of the estimation of g and/or its derivatives
on the asymptotic distribution of the Generalized Full Mean (GFM), the Generalized Full Average Derivative
(GFAD), the Generalized Partial Mean (GPM), and the Generalized Partial Average Derivative (GPAD). The
lemmas show that the properties of the GPM and GFM estimators follow from the properties of the NIP
estimator. Those lemmas that apply to both the full and partial mean cases are stated for partial means with
the understanding that they apply to full means as well.
The estimand of the GFM and GFAD is

θ = E

h

ω(X)′m
“

h[λ] (X)
”i

,

and that of the GPM and GPAD is

θ = E
h

ω(X1)
′m
“

h[λ] (X1, t(X1))
”i

.

Here h[λ] denotes the vector of derivatives of h up to λ.
We then consider a number of special cases that are obtained by particular choices of λ, e.g. λ = 0 or a unit
vector which corresponds to an average partial derivative.
Because components of h[λ] are continuous functions on the compact set X, we can consider m as a functional
on the set C[X] of continuous (and hence bounded) functions on X. We need to linearize this functional in an
open neighborhood of the population value of h[λ]. Denoting the sup norm on X by

˛

˛

˛h̃
[λ] − h[λ]

˛

˛

˛

0
= sup

x∈X

˛

˛

˛h̃
[λ](x) − h[λ](x)

˛

˛

˛ ,
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we define this neighborhood by

B(h[λ], ε) =
n

h̃[λ] ∈ C[X]
˛

˛

˛

˛

˛

˛h̃
[λ] − h[λ]

˛

˛

˛

0
< ε
o

,

with ε > 0. We also define Hλ ⊂ R2Λ by

Hλ =
n

h̃[λ](x)
˛

˛

˛x ∈ X, h̃[λ] ∈ B(h[λ], ε)
o

.

The derivatives of the function n with respect to h[λ] are the partial derivative of n(h[λ](x)) with respect to the
argument h[λ](x).
The proofs of the lemmas are for the case that m and ω are scalar. The proofs for the case that these are vectors
are essentially the same, but with more complex notation.
In the sequel we assume that the support X =

QL
l=1[xl, xl]. For the definition of the NIP we take the interior

region as XI
2bN

, i.e. the series expansion is from points that are 2bN from the boundary. When estimating

h[λ](x) for x ∈ XI
2bN

we trim observations that are in X�XI
bN

, i.e. we do not use observations that are less than
bN from the boundary. It should be emphasized that we do not exclude these observations when we average
nonparametric estimators over all or some of their arguments. This asymmetric use of observations allows us to
deal with the two types of boundary bias and the boundary variance problems that affect the behavior of the
estimators. It is possible to generalize the proofs to the case that the support is not a rectangle as long as the
boundary region shrinks at the right rate.
The lemmas that lead to the main theorem are organized as follows. Lemma A.4 gives conditions for the
linearization of the estimators with respect to the nonparametric estimator of h[λ]. The linearization remainder
is small if the conditions of Theorem 3.1 are met. Lemma A.5 considers the bias of the linearized estimator. As
noted, we have to deal with two types of boundary bias: the usual boundary bias of kernel estimators and the
boundary bias due to averaging of the nonparametric estimator over a bounded support. The remaining lemmas
deal with the variance of the estimator, i.e. the part due to sampling variation in the nonparametric estimator.
This done in a number of steps. In the Lemmas A.9 and A.10 the boundary variance problem appears for the
full and partial mean case, respectively.

Lemma A.4 (Linearization)
Suppose that Assumptions 1-4 hold, and q ≥ |λ| + 2s − 1, r ≥ |λ| + s− 1, and δ < 1/(L+ 2|λ|). Then5

1√
N

N
X

i=1



ω(Xi1)
“

m(ĥ
[λ]
NIP,s(Xi1, t(Xi1)) −m(h[λ](Xi1, t(Xi1))

”

−ω(Xi1)
∂

∂h[λ]′
m(h[λ](Xi1, t(Xi1))

“

ĥ
[λ]
NIP,s(Xi1, t(Xi1)) − h[λ](Xi1, t(Xi1))

”

ff

= Op

„√
N
˛

˛

˛ĥ
[λ]
NIP,s − h[λ]

˛

˛

˛

2

0

«

.

Define for m = 1, 2 the functions νm : RL1 7→ RΛ by

νm(x1) = ω(x1)
∂

∂h
[λ]
m

m(h[λ](x1, t(x1)),

and let ν = (ν′1 ν
′
2)

′ be a 2Λ vector of functions. By Assumption 4 (ii) ν is bounded on X1. In the sequel we
consider derivatives of νm. If µ is an L vector of nonnegative integers, then the µ derivative of νm exists if ω
is |µ| times differentiable, m is |µ| times differentiable, and h is |λ + µ| times differentiable. We also use the
notation v(x1) = (x′

1 t(x1)
′)′.

The next lemma relates the bias of the GPM, GFM, GAFD, and GAPD estimators to that of the NIP estimator.
Remember that the interior region is taken as XI

2bN
and the set XI

bN
is considered as the support. The NIP

estimator is for all x ∈ X

ĥ
(λ)
NIP,s(x) =

s−1
X

j=0

X

|µ|=j

1

µ!
ĥ

(λ+µ)
NW (r2b(x))(x− r2b(x))

µ

5Op

“˛

˛

˛ĥ
[λ]
NIP,s − h

[λ]
0

˛

˛

˛

0

”

indicates an expression that is of the same stochastic order as
˛

˛

˛ĥ
[λ]
NIP,s − h[λ]

˛

˛

˛

0
.
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with for x ∈ XI
2bN

the trimmed NW estimator of h(λ)

ĥ
(λ)
NW (x) =

1

Nb
L+|λ|
N

N
X

j=1

I
“

Xj ∈ X
I
bN

”

ZjK
(λ)

„

x−Xj

bN

«

The trimmed NW estimator has bias O (bsN ) on XI
2bN

so that Lemma 3.3 applies XI
2bN

as interior region and

XI
bN

as support. Note that the uniform bias on X of the NIP estimator is O ((2bN )s), because of the additional
extrapolation. In the sequel we will not use special notation for the trimmed NW estimator.

Lemma A.5 If Assumptions 1, 2, and 4 hold, and q ≥ |λ| + 2s − 1, r ≥ |λ| + s − 1, and t ≥ 1, then

1

N

N
X

i=1

ν(Xi1)
′
“

E

h

ĥ
[λ]
nip,s(v(Xi1))

i

− h[λ](v(Xi1))
”

= O(bs).

The next lemma gives an alternative linear representation of the weighted partial mean of the vector of derivatives
of the Nadaraya-Watson kernel estimator ĥnw up to λ using U-statistic theory. Note that this result is slightly
different for the partial and full mean cases. This lemma is used in the proof of a corresponding result for the
weighted partial mean of the NIP estimator of the vector of derivatives up to λ. The NW estimator is the
trimmed NW estimator.

Lemma A.6 Suppose Assumptions 2-4 hold, and r ≥ |λ|. Then:

1√
N

N
X

i=1

ν(Xi1)
′
“

ĥ[λ]
nw(v(Xi1)) − E

h

ĥ[λ]
nw(v(Xi1))

i”

−
√
N

„Z

X1

ν(x1)
′
“

ĥ[λ]
nw(v(x1)) − E[ĥ[λ]

nw(v(x1))]
”

fX1
(x1)dx1

«

= Op

“

N−1b
−L/2−L1/2−|λ|
N +N−1/2b

−L/2−|λ|
N

”

.

The next Lemma shows that the same result applies to the nip estimator, using a slightly stronger condition
on the degree of differentiability of the kernel. Remember that we use the trimmed NW estimator, but that we
average over the full support. Also the NIP estimator extrapolates from r2bN (x).

Lemma A.7 Suppose that Assumptions 2-4 hold and that r ≥ |λ| + s− 1. Then:

1√
N

N
X

i=1

ν(Xi1)
′
“

ĥ
[λ]
nip,s(v(Xi1)) − E

h

ĥ
[λ]
nip,s(v(Xi1))

i”

−
√
N

„Z

X1

ν(x1)
′
“

ĥ
[λ]
nip,s(v(x1)) − E[ĥ

[λ]
nip,s(v(x1))]

”

fX1
(x1)dx1

«

= Op

“

N−1b
−L/2−L1/2−|λ|
N +N−1/2b

−L/2−|λ|
N

”

.

Lemma A.8 Suppose Assumption 2 holds, and that r ≥ d and |λ| ≤ d − 1. Then for all γ ≤ λ,
Z

U

uγK(λ)(u)du =



0 if γ 6= λ

(−1)|λ|λ! if γ = λ.

Notation We define the Λ vectors α1(x1) = fX1
(x1)ν1(x1) and α2(x1) = fX1

(x1)ν2(x1). Also α
(λ)
m is the vector

of λ derivatives of the components of αm for m = 1, 2. It will be convenient to refer to the components of α1

and α2 by the derivative that they refer to. Remember that ν1 and ν2 are derivatives of the scalar function n
with respect the h

[λ]
1 (x) and h

[λ]
2 (x), the Λ vectors of derivatives of h1 and h2 up to order λ. Hence we indicate

components of α1, α2 by the derivative h(κ), e.g. ακ1 is the product of fX and the derivative of n with respect to
h

(κ)
1 . By Assumptions 1 and 4 these functions have the same properties as ν1, ν2. In particular by Assumptions

4 and 1 α1 and α2 are q times differentiable and the q-th derivative is bounded. The following lemma refers only
to the full mean case with L2 = 0.
The estimator of h(λ) is the NIP estimator that uses the trimmed NW estimator. The trimming in combination
with the derivative kernel deals with weights that become unbounded if the bandwidth goes to 0, a problem that
we refer to as the boundary variance problem.
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Lemma A.9 (Full Mean) Suppose that Assumptions 2-?? and 4 hold, then if r ≥ |λ| + s − 1, q ≥ 2|λ| + s,
t ≥ |λ| + s d = max{λ1, . . . , λL} + s − 1

√
N

2
X

m=1

Z

X

αm(x)′
“

ĥ
[λ]
m,nip,s(x) − E

h

ĥ
[λ]
m,nip,s(x)

i”

dx− 1√
N

N
X

i=1

0

@

X

κ≤λ

(−1)|κ|
2
X

m=1

“

α(κ)
κm(Xi)Zim − E[α(κ)

κm(X)Zm]
”

1

A

= Op

“

b
min{1,L/2}
N

”

.

The results thus far establish the asymptotic properties of the GFM and GFAD estimators.
Next, we present the results for the partial mean case.

Lemma A.10 Suppose that Assumptions 2, 1 and 4 hold. If λ = 0 then if t(x1) is twice continuously differen-

tiable on X1, the kernel is of derivative order d ≥ s − 1, p ≥ 2, q ≥ s, t ≥ s, and r ≥ s − 1

√
N · bN L2/2

2
X

m=1

Z

X1

αm(x1)
“

ĥm,nip,s(x1, t(x1)) − E
h

ĥm,nip,s(x1, t(x1))
i”

dx1

− 1

bN
L2/2

√
N

·
N
X

i=1

2
X

m=1

„

αm(Xi1)Zim

Z

U1

K

„

u1,
Xi2 − t(Xi1)

bN
+

∂

∂x′
1

t(Xi1) · u1

«

du1

−E

»

αm(X1)Zm

Z

U1

K

„

u1,
X2 − t(X1)

bN
+

∂

∂x′
1

t(X1) · u1

«

du1

–«

= Op

“

b
min{1,L1/2}
N

”

.

If t(x1) = x02 then for λ ≥ 0 with in addition to the listed assumptions a kernel of derivative order d ≥
s − 1 + max{λ1, . . . , λL}, p ≥ 2, q ≥ 2|λ| + s, t ≥ |λ| + s, and r ≥ s− 1 + max{λ11, . . . , λ1L1

}

√
N · bN L2/2+|λ2 |

2
X

m=1

Z

X1

αm(x1)
′
“

ĥ
[λ]
m,nip,s(x1, t(x1)) − E

h

ĥ
[λ]
m,nip,s(x1, t(x1))

i”

dx1

− 1

bN
L2/2

√
N

·
N
X

i=1

0

@

X

κ1≤λ1

(−1)|κ1 |
2
X

m=1

„

α
(κ1)
κ1λ1,m(Xi1)ZimK

(λ2)

„

x02 −Xi2

bN

«

− E

»

α
(κ1)
κ1λ1,m(X1)ZmK

(λ2)

„

x02 −X2

bN

«–«

1

A

= Op

“

b
min{1,L1/2}
N

”

.

The final lemma establishes that the asymptotic distribution is normal for partial means and partial average
derivatives.

Lemma A.11 Suppose that Assumptions 2, 1 and 4 hold, and that t(x1) is continuously differentiable on X1

and that p ≥ 4 and N−1b−L2

N → 0. Then

N−1/2b
−L2/2
N

N
X

i=1

 

2
X

m=1

Z

U1

αm(Xi1)ZimK

„

u1,
∂t

∂x1
(Xi1)u1 +

t(Xi1) −Xi2

bN

«

du1

−E

"

2
X

m=1

Z

U1

αm(X1)ZmK

„

u1,
∂t

∂x1
(X1)u1 +

t(X1) −X2

bN

«

du1

#!

d−→ N (0, V ),

where

V =
2
X

m=1

2
X

m′=1

Z

X1

µmm′ (x1, t(x1))αm(x1)αm′(x1)

Z

U2

„Z

U1

K

„

u1,
∂t

∂x1
(x1)u1 + u2

«

du1

«2

du2fX(x1, t(x1))dx1

with µmm′ (x) = E[ZmZm′ |X = x] for m,m′ = 1, 2. If in addition r ≥ |λ2| and q, t ≥ |λ1|

N−1/2b
−L2/2
N

N
X

i=1

0

@

2
X

m=1

0

@

X

κ1≤λ1

(−1)|κ1|α
(κ1)
κ1λ2,m(Xi1)

1

AZimK
(λ2)

„

x02 −Xi2

bN

«

−E

2

4

2
X

m=1

0

@

X

κ1≤λ1

(−1)|κ1 |α
(κ1)
κ1λ2,m(X1)

1

AZmK
(λ2)

„

x02 −X2

bN

«

3

5

1

A

d−→ N (0, V )
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with

V =
2
X

m=1

2
X

m′=1

Z

X1

µmm′ (x1, t(x1))

0

@

X

κ1≤λ1

(−1)|κ1 |α
(κ1)
κ1λ2 ,m(x1)

1

A

0

@

X

κ1≤λ1

(−1)|κ1 |α
(κ1)
κ1λ2 ,m′ (x1)

1

A

·
Z

U2

“

K(λ2) (u2)
”2

du2fX(x1, t(x1))dx1
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7 Higher Order Kernels

Let u be scalar, and let K(u) be a symmetric kernel with µj =
R

u
ujK(u)du, µ0 = 1, µj = 0 for j is odd. Then

we can construct a kernel of order s, as

K(u) =

s−1
X

j=0

αj · uj · K(u),

where the αj ensure that
R

uj ·K(u)du = 0 for j = 1, . . . , s− 1 and
R

K(u)du= 1, leading to

α =

0

B

B

B

@

µ0 µ1 . . . µs−1

µ1 µ2 . . . µs

...
...

. . .
...

µs−1 µs . . . µ2s−2

1

C

C

C

A

−10

B

B

B

@

1
0
...
0

1

C

C

C

A

.

We can choose K(u) = 1/2, for u ∈ [−1, 1], so that µj = 1/(j + 1) for j even, and (assuming s− 1 is even)

α =

0

B

B

B

B

B

@

1 0 1/3 . . . 1/s
0 1/3 0 . . . 0

1/3 0 1/5 . . . 1/(s + 2)
...

...
...

. . .
...

1/s 0 1/(s+ 2) . . . 1/(2s − 1)

1

C

C

C

C

C

A

−10

B

B

B

B

B

@

1
0
0
...
0

1

C

C

C

C

C

A

.

If we choose the Epanechnikov kernel as the basis, K(u) = (3/4)(1−u2) for −1 < u < 1, then µj = 3/((j+1)(j+3))
for j even and greater than 0, and µj = 0 for j odd. Then

α =

0

B

B

B

B

B

@

1 0 1/5 . . . 3/(s(s + 2))
0 1/5 0 . . . 0

1/5 0 3/35 . . . 3/((s + 2)(s + 4))
...

...
...

. . .
...

3/(s(s + 2) 0 3/((s + 2)(s + 4)) . . . 3/((2s − 1)(2s + 1))

1

C

C

C

C

C

A

−10

B

B

B

B

B

@

1
0
0
...
0

1

C

C

C

C

C

A

.

According to Pagan and Ullah (1999) the optimal fourth order kernel is (note that the optimal second order
kernel is the Epanechnikov kernel):

K(u) =
15

32
·
`

7 · u4 − 10 · u2 + 3
´

,

for −1 < u < 1. Let us consider three cases. In each case we look for the least restrictive conditions on the order
of the kernel first, then on the number of moments required for Z given X .

1. L = 1, s = 3, p > 2s/(s − L − 1) = 6, so p = 7, j = 0, J = 1, q = 5, r = 2, 1/6 = 1/(2s) < δ <
(1 − 2/p)/(2L + 2) = 5/28, so 14/84 < δ < 15/84.

2. L = 2, s = 4, p > 2s/(s − L − 1) = 8, so p = 9, j = 0, J = 1, q = 7, r = 3, 1/8 = 1/(2s) < δ <
(1 − 2/p)/(2L + 2) = 7/54, so 27/216 < δ < 28/216.

3. L = 3, s = 5, p > 2s/(s − L − 1) = 10, so p = 11, j = 0, J = 1, q = 9, r = 4, 1/10 = 1/(2s) < δ <
(1 − 2/p)/(2L + 2) = 9/88, so 44/440 < δ < 45/440.

[27]



Appendix B: Proofs of Additional Lemmas and Theorems

Proof of Lemma A.1

We have

E
h

ĥ(λ)
nw (x)

i

= E

»

Z
1

bL+|λ| K
(λ)

„

x−X

b

«–

=

Z

X

g(v)
1

bL+|λ|K
(λ)
“x− v

b

”

fX(v)dv,

for g(v) = E[Z|X = v]. For all x, v ∈ X we have by assumption 1,

˛

˛

˛g(v)K
(λ)
“x − v

b

”

fX(v)
˛

˛

˛ ≤ C sup
x,v∈X

˛

˛

˛K
(λ)
“x − v

b

”˛

˛

˛ = C sup
u∈U

˛

˛

˛K
(λ)(u)

˛

˛

˛ < ∞

because by Assumption 2 the kernel K(λ) is bounded on U. Hence by dominated convergence we can interchange
differentiation and integration λ times, so that

E
h

ĥ(λ)
nw (x)

i

=
∂|λ|

∂xλ
E
h

ĥnw(x)
i

.

�

Proof of Lemma A.2

The result follows directly from Lemma 3.2, if we can interchange the expectation and λ derivative. This follows
from Lemma A.1. �

Proof of Theorem A.1. By the triangle inequality,

sup
x∈X

˛

˛

˛ĥ
(λ)
nip,s(x) − h(λ)(x)

˛

˛

˛

≤ sup
x∈X

˛

˛

˛E
h

ĥ
(λ)
nip,s(x)

i

− h(λ)(x)
˛

˛

˛ (B.1)

+ sup
x∈X

˛

˛

˛ĥ
(λ)
nip,s(x) − E

h

ĥ
(λ)
nip,s(x)

i˛

˛

˛ . (B.2)

By Lemma 3.3 it follows that (B.1) is O (bs). By Lemma 3.4 it follows that (B.2) is Op

 

„

log N

N ·bL+2j
N

«1/2
!

.

Combining these two results implies the result in the Theorem. �

Note that this implies that if δ < 1/(L+ 2|λ|), we have convergence of ĥ
(λ)
nip,s(x) to h(λ)(x) uniform in x.

Proof of Lemma A.3. First consider (i). For the upper bound on the bias in (i) we use Lemma 3.3. If
q ≥ j + s and r ≥ j + s− 1 this Lemma implies that the bias is O(bsN ) = O(N−δs). If δ > 1/(2s), then the bias
is op(N

−1/2).
Next, consider (ii). By the triangle inequality we have

sup
x∈X

˛

˛

˛ĥ
(λ)
nip,s(x) − h(λ)(x)

˛

˛

˛ ≤ sup
x∈X

˛

˛

˛ĥ
(λ)
nip,s(x) − E

h

ĥ
(λ)
nip,s(x)

i˛

˛

˛+ sup
x∈X

˛

˛

˛E
h

ĥ
(λ)
nip,s(x)

i

− h(λ)(x)
˛

˛

˛ .

By the first part of this Lemma the last term is o(N−1/2) = op(N
−1/4). To deal with the first term on the

right hand side we use Theorem A.1. We simultaneously need to satisfy the condition on the bandwidth in this
Theorem, which requires

δ <
1 − 2/p

L+ 2j + 2

and ensure that the upper bound on the variance is of order N−1/4, which requires that

O

0

@

 

logN

N · bL+2j
N

!1/2
1

A = o
“

N−1/4
”

,

which requires that

δ <
1

2L+ 4j
.
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Hence a sufficient condition for the variance is that

δ < min



1 − 2/p

L+ 2j + 2
,

1

2L+ 4j

ff

.

Thus both results hold if

1

2s
< δ < min



1 − 2/p

L+ 2j + 2
,

1

2L+ 4j

ff

.

Finally, for all L, j, p ≥ 2, there are s, q, r and δ that satisfy these conditions. �.
Proof of Lemma A.4: By Assumption 4 there is some M <∞ such that

˛

˛

˛

˛

∂2

∂h[λ]∂h[λ]′
m(h[λ](x))

˛

˛

˛

˛

≤ M,

for all x ∈ X and h[λ] ∈ B(h[λ], ε). Then if ĥ
[λ]
NIP,s ∈ B(h[λ], ε) and h[λ](x) intermediate between h[λ](x) and

ĥ
[λ]
NIP,s(x) we have for all x ∈ X,

˛

˛

˛

˛

ω(x1)

„

m(ĥ
[λ]
NIP,s(x1, t(x1)) −m(h[λ](x1, t(x1)) − ∂

∂h[λ]′
m(h[λ](x1, t(x1))(ĥ

[λ](x1, t(x1)) − h[λ](x1, t(x1)))

«˛

˛

˛

˛

=
1

2

˛

˛

˛

˛

ω(x1)(ĥ
[λ]
NIP,s(x1, t(x1)) − h[λ](x1, t(x1))

′ ∂2

∂h[λ]∂h[λ]′
m(h[λ](x1, t(x1))(ĥ

[λ]
NIP,s(x1, t(x1) − h[λ](x1, t(x1)))

˛

˛

˛

˛

≤ 1

2
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x1∈X1

|ω(x1)| ·M ·
˛

˛

˛ĥ
[λ]
NIP,s − h[λ]

˛

˛

˛

2

0
≤ C ·

˛

˛

˛ĥ
[λ]
NIP,s − h[λ]

˛

˛

˛

2

0
.

Hence if we denote

d(x1) = ω(x1)

„

m(ĥ
[λ]
NIP,s(x1, t(x1)) −m(h[λ](x1, t(x1)) − ∂

∂h[λ]′
m(h[λ](x1, t(x1))(ĥ

[λ]
NIP,s(x1, t(x1)) − h[λ]

m (x1, t(x1)))

«

,

we have that ĥ
[λ]
NIP,s ∈ B(h[λ], ε) implies

˛

˛

˛

˛

˛

1

N

N
X

i=1

d(Xi1)

˛

˛

˛

˛

˛

≤ C
˛

˛

˛ĥ
[λ]
NIP,s − h[λ]

˛

˛

˛

2

0
.

Therefore, for all η > 0 and all sequences aN ,

Pr

 ˛

˛

˛

˛

˛

1

aN

√
N

N
X

i=1

d(Xi1)

˛

˛

˛

˛

˛

> η

!

≤ Pr

 ˛

˛

˛

˛

˛

1
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√
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N
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!

·Pr
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”

+ Pr
“

ĥ
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”

≤ Pr

„

C ·
√
N
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·
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˛ĥ
[λ]
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˛

˛
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2

0
> η

˛

˛

˛
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«

· Pr
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“
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C ·
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·
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«

+ Pr
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˛

˛ĥ
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˛

˛

0
> ε
”

.

The second term in the upper bound converges to 0, because by the assumptions of the lemma the NIP estimator

is uniformly convergent on X. Now if for some sequence aN the sequence
√

N
aN

˛

˛

˛ĥ
[λ]
NIP,s − h[λ]

˛

˛

˛

2

0
is stochastically

bounded, then so is the sequence 1

aN

√
N

PN
i=1 d(Xi1) so that

1√
N

N
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„√
N
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«

.

�
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Proof of Lemma A.5:

˛

˛

˛

˛

˛

1

N

N
X

i=1

ν(Xi1)
′
“

E
h

ĥ
[λ]
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˛
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≤ sup
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˛

˛E
h

ĥ
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nip,s(x)

i

− h[λ](x)
˛

˛

˛ = O ((2b)s) ,

where the last equality follows from Lemma 3.3. �

Proof of Lemma A.6: Define

V =
1

N

2
X
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N
X
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νm(Xi1)
′
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ĥ[λ]
m,nw(v(Xi1)) − E

h

ĥ[λ]
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,
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2
X
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Z

X1
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ĥ[λ]
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1

N

N
X
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νm(Xi1)
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h
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,

and
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Z

X1

νm(x1)
′
“

ĥ[λ]
m,nw(v(x1)) − E[ĥ[λ]

m,nw(v(x1))]
”
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Then the claim in the Lemma is

V − U = Op

“

N−3/2b
−L/2−L1/2−|λ|
N +N−1b
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N

”

,

and since V =
P2

m=1 Vm, and U =
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m=1 Um, it is sufficient to show that
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,

for m = 1, 2.
Note that
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1

N

N
X
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I
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I
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”
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«

,

where the vector b
−L−|[λ]|
N is the Λ vector with components equal to b

−L−|µ|
N with µ ≤ λ. The Λ vector K [λ] has

as its components the derivatives of K up to order λ.
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and

E
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We need two results on the expectations of aN (Xi1, Zj ,Xj). If i 6= j, then

E
ˆ

aN,m(Xi1, Zj ,Xj)
2˜ = O

“

b
−L−2|λ|
N

”

, (B.5)

and

E
ˆ

aN,m(Xi1, Zi,Xi)
2˜ = O

“

b
−L−L1−2|λ|
N

”

. (B.6)

First, we prove (B.5):
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where we use the inequality |x′(y ∗ z)| ≤ maxi=1,...,I |yi||x|′∗|z|∗ and the fact that 1/b
2L+2|λ|
N is the largest

component of 1/b
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N , the Cauchy-Schwartz inequality, and the boundedness of E[Y 2
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Thus (B.5) holds. Next, we prove (B.6):
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The absolute value of the expectation is bounded by
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Thus (B.6) holds.
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N2

N
X

i=1

bN,m(Xi1, Zi,Xi),

so that

Vm − Um =
(N − 1)N

N2
(Vm,1 − Um) +

„

(N − 1)N

N2
− 1

«

Um + Vm,2 .

Hence to prove the lemma it is sufficient to show that

(N − 1)N

N2
(Vm,1 −Um)+

„

(N − 1)N

N2
− 1

«

Um +Vm,2 = Op

“

N−3/2b
−L/2−L1/2−|λ|
N +N−1b

−L/2−|λ|
N

”

. (B.7)

We do this in three steps. First we show that

(N − 1)N

N2
(Vm,1 − Um) = Op

“

N−1b
−L/2−|λ|
N

”

. (B.8)

Second, we show that
„

(N − 1)N

N2
− 1

«

Um = Op

“

N−3/2b
−L/2−|λ|
N

”

= op

“

N−3/2b
−L/2−L1/2−|λ|
N

”

. (B.9)

Third, we show that

Vm,2 = Op

“

N−3/2b
−L/2−L1/2−|λ|
N

”

. (B.10)

First consider (B.8). We have

Vm,1 − Um =
1

N(N − 1)

N
X

i6=j=1

(bN,m(Xi1, Zj ,Xj) − cN,m(Zj ,Xj)) ,

so that

E
ˆ

(Vm,1 − Um)2
˜

=
1

N2(N − 1)2

N
X

i6=j=1

N
X

k 6=l=1

E [(bN,m(Xi1, Zj ,Xj) − cN,m(Zj ,Xj)) (bN,m(Xk1, Zl,Xl) − cN,m(Zl,Xl))] .

We consider

E [(bN,m(Xi1, Zj ,Xj) − cN,m(Zj ,Xj)) (bN,m(Xk1, Zl,Xl) − cN,m(Zl,Xl))] .
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There are four cases: (i), i 6= k, j 6= l, (ii), i 6= k, j = l, (iii), i = k, j 6= l, and (iv), i = k, j = l.
In case (i), if i 6= k, j 6= l, then the expectation is 0. In case (ii), if i 6= k, j = l, then

E [(bN,m(Xi1, Zj ,Xj) − cN,m(Zj ,Xj)) (bN,m(Xk1, Zj ,Xj) − cN,m(Zj , Xj))]

= EZj,Xj [E [(bN,m(Xi1, Zj ,Xj) − cN,m(Zj ,Xj)) (bN,m(Xk1, Zj ,Xj) − cN,m(Zj ,Xj)) |Zj ,Xj ]]

= EZj,Xj [E [bN,m(Xi1, Zj ,Xj) − cN,m(Zj ,Xj)|Zj ,Xj ] E [bN,m(Xk1, Zj , Xj) − cN,m(Zj ,Xj)|Zj ,Xj ]] = 0,

because

E [bN,m(Xi1, Zj ,Xj)|Zj ,Xj ] = cN,m(Zj ,Xj).

In case (iii), with i = k, j 6= l

E [(bN,m(Xi1, Zj ,Xj) − cN,m(Zj ,Xj)) (bN,m(Xi1, Zl,Xl) − cN,m(Zl,Xl))]

= EXi1 [E [(bN,m(Xi1, Zj ,Xj) − cN,m(Zj , Xj)) (bN,m(Xi1, Zl,Xl) − cN,m(Zl,Xl)) |Xi1]]

= EXi1 [E [bN,m(Xi1, Zj ,Xj) − cN,m(Zj ,Xj)|Xi1] E [bN,m(Xi1, Zl,Xl) − cN,m(Zl, Xl)|Xi1]] = 0,

because

E [bN,m(Xi1, Zj ,Xj)|Xi1] = 0, and E [cN,m(Zj ,Xj)|Xi1] = 0.

This leaves only case (iv) where i = k and j = l, so that because of (B.4) and(B.3),

E
ˆ

(Vm,1 − Um)2
˜

=
1

N2(N − 1)2

N
X

i6=j=1

E
ˆ

(bN,m(Xi1, Zj ,Xj) − cN,m(Zj ,Xj))
2˜

≤ 1

N2(N − 1)2

N
X

i6=j=1

E
ˆ

bN,m(Xi1, Zj ,Xj)
2)
˜

≤ 1

N2(N − 1)2

N
X

i6=j=1

E
ˆ

aN,m(Xi1, Zj ,Xj)
2)
˜

≤ C

N(N − 1)
b
−L−2|λ|
N .

Thus, by the Markov inequality we find that

Vm,1 − Um = Op

“

N−1b
−L/2−|λ|
N

”

.

Next, consider (B.9). Because E[(cN,m(Z,X))2] ≤ E[(aN,m(Xi, Zj ,Xj))
2] = O(b

−L−2|λ|
N ), we find that

E[U2
m] =

1

N2
E

"

N
X

i=1

N
X

j=1

cN,m(Zi,Xi) · cN,m(Zj ,Xj)

#

=
1

N2
E

"

N
X

i=1

cN,m(Zi,Xi)
2

#

≤ 1

N2
E

"

N
X

i=1

aN,m(Zi,Xi)
2

#

≤ C

N
b
−L−2|λ|
N ,

so that

Um = Op

“

N−1/2b
−L/2−|λ|
N

”

,

and
„

(N − 1)N

N2
− 1

«

Um = − 1

N
Um = Op

“

N−3/2b
−L/2−|λ|
N

”

.

Finally, consider (B.10).

E
ˆ

V 2
m,2

˜

=
1

N4

N
X

i=1

N
X

j=1

E [bN,m(Xi1, Zi,Xi) · bN,m(Xj1, Zj , Xj)]
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=
1

N4

N
X

i=1

E
ˆ

bN,m(Xi1, Zi,Xi)
2
˜

≤ 1

N4

N
X

i=1

E
ˆ

aN,m(Xi1, Zi,Xi)
2˜ ≤ C

N3
b
−L−L1−2|λ|
N ,

so that

Vm,2 = Op

“

N−3/2b
−L/2−L1/2−|λ|
N

”

.

Combining the results we have that

Vm − Um = Op

“

N−3/2b
−L/2−L1/2−|λ|
N +N−1b

−L/2−|λ|
N

”

,

proving (B.7), and thus the lemma. �

Proof of Lemma A.7 The proof is analogous to that of the previous lemma. Define

V =
1

N

N
X

i=1

2
X

m=1

νm(Xi1)
′
“

ĥ
[λ]
m,NIP,s(v(Xi1)) − E

h

ĥ
[λ]
m,NIP,s(v(Xi1))

i”

,

U =

2
X

m=1

Z

X1

νm(x1)
′
“

ĥ
[λ]
m,nip,s(v(x1)) − E[ĥ

[λ]
m,nip,s(v(x1))]

”

fX1
(x1)dx1,

Vµ,m =
1

N

N
X

i=1

νm(Xi1)
′
“

ĥ[λ]+(µ)
m,nw (r2bN (v(Xi1)) − E

h

ĥ[λ]+(µ)
m,nw (r2bN (v(Xi1))

i”

(v(Xi1) − r2bN (v(Xi1)))
µ ,

and

Uµ,m =

Z

X1

νm(x1)
′
“

ĥ[λ]+(µ)
m,nw,s (v(x1)) − E[ĥ[λ]+(µ)

m,nw,s (v(x1))]
”

(v(x1) − r2bN (v(x1)))
µ fX1

(x1)dx1.

Here h
[λ]+(µ)
m is the Λ vector of µ derivatives of the components of the vector h

[λ]
m that are the derivatives of hm

up to λ. Then

V =

2
X

m=1

s−1
X

k=0

X

|µ|=k

1

µ!
Vµ,m, and U =

2
X

m=1

s−1
X

k=0

X

|µ|=k

1

µ!
Uµ,m.

The statement in the Lemma is equivalent to

V − U = Op

“

N−3/2b
−L/2−L1/2−|λ|
N +N−1b

−L/2−|λ|
N

”

.

Because there are a finite number of µ, it is sufficient to show that for all µ and m

Vµ,m − Uµ,m = Op

“

N−3/2b
−L/2−L1/2−|λ|
N +N−1b

−L/2−|λ|
N

”

. (B.11)

Define

aN,m,µ(xi1, zj , xj) = I
“

xj ∈ X
I
bN

”

νm(xi1)
′zjm

1

b
|[λ]|+L+|µ|
N

∗K [λ]+(µ)

„

xj − r2bN (v(xi1))

bN

«

·(v(xi1)−r2bN (v(xi1)))
µ,

bN,m,µ(xi1, zj , xj) = aN,m,µ(xi1, zj , xj) − E [aN,m,µ(xi1, Zj ,Xj)] ,

and

cN,m,µ(z,x) = E [bN,m,µ(X1, z, x)] .

We will first show that if i 6= j

E
ˆ

aN,m,µ(Xi1, Zj ,Xj)
2˜ = O

“

b
−L−2|λ|
N

”

, (B.12)

and to cover the case with i = j,

E
ˆ

aN,m,µ(Xi1, Zi,Xi)
2˜ = O

“

b
−L−L1−2|λ|
N

”

. (B.13)
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(In these proofs we use the stronger assumption on the degree of differentiability of the kernel.) Then we will
show that this is sufficient for the statement in the Lemma.
First, consider (B.12):

E
ˆ

aN,m,µ(Xi1, Zj ,Xj)
2
˜

≤ 1

b
|2λ|+2L+2|µ|
N

E

"

I
“

Xj ∈ X
I
bN

”

„

|Zjm||νm(Xi1)|′∗
˛

˛

˛

˛

K [λ]+(µ)

„

Xj − v(Xi1)

bN

«˛

˛

˛

˛

∗

«2

(v(Xi1) − r2bN (v(Xi1)))
2µ

#

≤ 1

b
|2λ|+2L+2|µ|
N

sup
x1X1

|v(x1) − r2bN (v(xx1))|2µ·E
"

I
“

Xj ∈ X
I
bN

”

„

|Zjm||νm(Xi1)|′∗
˛

˛

˛

˛

K [λ]+(µ)

„

Xj − v(Xi1)

bN

«˛

˛

˛

˛

∗

«2
#

≤ C

b
|2λ|+2L
N

· E

"

I
“

Xj ∈ X
I
bN

”

„

|Zjm||νm(Xi1)|′∗
˛

˛

˛

˛

K [λ]+(µ)

„

Xj − v(Xi1)

bN

«˛

˛

˛

˛

∗

«2
#

≤ C

b
|2λ|+2L
N

· C2b
L
N ≤ C

b
L+2|λ|
N

,

using the same argument as in the proof of (B.5) in the proof of Lemma A.6.
Second, consider (B.13):

E
ˆ

aN,m,µ(Xi1, Zi,Xi)
2˜

≤ 1

b
|2λ|+2L+2|µ|
N

E

"

I
“

Xi ∈ X
I
bN

”

„

|Zim||νm(Xi1)|′∗
˛

˛

˛

˛

K [λ]+(µ)

„

Xi − v(Xi1)

bN

«˛

˛

˛

˛

∗

«2

(v(Xi1) − r2bN (v(Xi1)))
2µ

#

≤ 1

b
|2λ|+2L+2|µ|
N

sup
x1∈XI

1,bN

|v(x1) − r2bN (v(xx1))|2µ·E
"

I
“

Xi ∈ X
I
bN

”

„

|Zim||νm(Xi1)|′∗
˛

˛

˛

˛

K [λ]+(µ)

„

Xi − v(Xi1)

bN

«˛

˛

˛

˛

∗

«2
#

≤ C

b
|2λ|+2L
N

· E

"

I
“

Xi ∈ X
I
bN

”

„

|Zim||νm(Xi1)|′∗
˛

˛

˛

˛

K [λ]+(µ)

„

Xi − v(Xi1)

bN

«˛

˛

˛

˛

∗

«2
#

≤ C

b
|2λ|+2L
N

· C2b
L1

N ≤ C

b
2L+2|λ|−L2

N

,

using the same argument as in the proof of (B.6) in the proof of Lemma A.6.
Finally, as in the proof for Lemma A.6, note that

Vµ,m =
1

N2

N
X

i=1

N
X

j=1

bN,m,µ(Xi1, Zj ,Xj), and Uµ,m =
1

N

N
X

i=1

cN,m,µ(Zi,Xi).

Define

Vµ,m,1 =
1

N(N − 1)

X

i6=j

bN,m,µ(Xi1, Zj ,Xj), and Vµ,m,2 =
1

N2

N
X

i=1

bN,m,µ(Xi1, Zi,Xi).

Then

Vµ,m − Uµ,m =
(N − 1)N

N2
(Vµ,m,1 − Uµ,m) +

„

(N − 1)N

N2
− 1

«

Uµ,m + Vµ,m,2.

Following the same argument as in the proof of Lemma A.6, it follows that

(N − 1)N

N2
(Vµ,m,1 − Uµ,m) = Op

“

N−1b
−L/2−|λ|
N

”

,

„

(N − 1)N

N2
− 1

«

Uµ,m = Op

“

N−3/2b
−L/2−|λ|
N

”

= op

“

N−3/2b
−L/2−L1/2−|λ|
N

”

,

and

Vµ,m,2 = Op

“

N−3/2b
−L/2−L1/2−|λ|
N

”

.

Combining these results implies that (B.11) holds. �
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Proof of Lemma A.8:

Consider

Z

U

uγK(λ)(u)du =

L
Y

l=1

Z 1

−1

u
γl
l K(λl)(ul)dul.

We focus on
Z 1

−1

u
γl
l K(λl)(ul)dul,

and, droping the subscripts l for ease of notation, we write this as

Z 1

−1

uγK(λ)(u)du =

Z 1

−1

uγ ∂λ

∂uλ
K(u)du.

The result in the Lemma now follows from the following claim for the scalar case:

Z 1

−1

uγ ∂λ

∂uλ
K(u)du =



0 if 0 ≤ γ < λ

(−1)λλ! if γ = λ.
(B.14)

To prove (B.14), we use partial integration γ times, leading to

Z 1

−1

uγ ∂λ

∂uλ
K(u)du =

γ−1
X

j=0

(−1)j γ!

(γ − j)!
uγ−jK(λ−j−1)(u)

˛

˛

˛

˛

˛

1

−1

+ (−1)γγ!

Z 1

−1

K(λ−γ)(u)du

=

γ−1
X

j=0

„

(−1)j γ!

(γ − j)!
K(λ−j−1)(1) − (−1)γ γ!

(γ − j)!
K(λ−j−1)(−1)

«

+ (−1)γγ!

Z 1

−1

K(λ−γ)(u)du.

By the assumption on the derivative order of the kernel we have that

∂µ

∂uµ
K(1) =

∂µ

∂uµ
K(−1) = 0,

for µ = 0, . . . , λ− 1, so that for all 0 ≤ γ ≤ λ,

Z 1

−1

uγ ∂λ

∂uλ
K(u)du = (−1)γγ!

Z 1

−1

K(λ−γ)(u)du.

If 0 ≤ γ < λ, then,

Z 1

−1

∂λ−γ

∂uλ
K(u)du =

∂λ−γ−1

∂uλ−γ−1
K(u)

˛

˛

˛

˛

1

−1

=
∂λ−γ−1

∂uλ−γ−1
K(1) − ∂λ−γ−1

∂uλ−γ−1
K(−1) = 0.

so that in this case with 0 ≤ γ < λ,

Z 1

−1

uγ ∂λ

∂uλ
K(u)du = 0.

This proves the first part of the claim in (B.14). If γ = λ then

Z 1

−1

uλ ∂λ

∂uλ
K(u)du = (−1)λλ!

Z 1

−1

K(λ−λ)(u)du = (−1)λλ!

Z 1

−1

K(u)du = (−1)λλ!,

proving the second part of (B.14). �

Proof of Lemma A.9: The Λ vector of the NIP estimator of the derivatives of hm up to λ with a polynomial
approximation in 2bN from the boundary and using the trimmed NW estimator is for x ∈ X

ĥ
[λ]
m,NIP,s(x) =

s−1
X

k=0

X

|µ|=k

1

µ!

1

N

N
X

j=1

I
“

Xj ∈ X
I
bN

”

Zjm
1

bN
L+[|λ|]+|µ| ∗K

[λ]+(µ)

„

x−Xj

bN

«

(x− r2bN (x))µ

=
1

N

N
X

j=1

0

@

s−1
X

k=0

X

|µ|=k

1

µ!
I
“

Xj ∈ X
I
bN

”

Zjm
1

bN
L+[|λ|]+|µ| ∗K

[λ]+(µ)

„

x−Xj

bN

«

(x− r2bN (x))µ

1

A .
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Define

φjµ,N =

2
X

m=1

Z

X

1

µ!
I
“

Xj ∈ X
I
bN

”

Zjmαm(x)′
1

bN
L+|[λ]|+|µ| ∗K [λ]+(µ)

„

x −Xj

bN

«

(x− r2bN (x))µdx

so that

√
N ·

2
X

m=1

Z

X

αm(x)′
“

ĥ
[λ]
m,NIP,s(x) − E

h

ĥ
[λ]
m,NIP,s(x)

i”

dx =
1√
N

N
X

j=1

s−1
X

k=0

X

|µ|=k

(φjµ,N − E[φjµ,N ]) .

We will show that for all µ such that 1 ≤ |µ| ≤ s − 1,

1√
N

N
X

j=1

(φjµ,N − E[φjµ,N ]) . (B.15)

converges faster than the term for µ = 0 so that that term dominates.
We start with the case that µ = 0. We have with a change of variables

φj0,N =

2
X

m=1

Z

X

I
“

Xj ∈ X
I
bN

”

Zjmαm(x)′
1

b
L+[|λ|]
N

∗K [λ]

„

x−Xj

bN

«

dx =

2
X

m=1

Z

{u|u=(x−Xj )/bN ,x∈X}
I
“

Xj ∈ X
I
bN

”

Zjmαm(Xj + bNu)
′ 1

b
|[λ]|
N

∗K [λ](u)du

Define U(Xj) = {u ∈ U|u = (x −Xj)/bN , x ∈ X}. By the definition of XI
bN

for all u ∈ U there is an x ∈ X with
x = Xj − bNu, so that6 U ⊂ U(Xj) and hence U(Xj) = U. This is not true if Xj is in the boundary region and
for such Xj we cannot control the variance. Hence

φj0,N =

2
X

m=1

Z

U

I
“

Xj ∈ X
I
bN

”

Zjmαm(Xj + bNu)
′ 1

b
|[λ]|
N

∗K [λ](u)du

We can write

φj0,N =
2
X

m=1

X

κ≤λ

Z

U

I
“

Xj ∈ X
I
bN

”

Zjmακm(Xj + bNu)
1

b
|κ|
N

K(κ)(u)du ≡
X

κ≤λ

φj0,Nκ

We expand ακm(Xj + bNu) in a Taylor series of order |λ|. This gives the vector of expansions

ακm(Xj + bNu) =

|κ|
X

k=0

bkN
X

|µ|=k

1

µ!
α(µ)

κm(Xj)u
µ + b

|κ|+1
N

X

|µ|=|κ|+1

1

µ!
α(µ)

κm(Xj + bNu)u
µ

Substitution gives

φjκ0,N =

2
X

m=1

|κ|
X

k=0

b
k−|κ|
N

X

|µ|=k

1

µ!
I
“

Xj ∈ X
I
bN

”

Zjmα
(µ)
κm(Xj)

Z

U

uµK(κ)(u)du+

bN
X

|µ|=|κ|+1

1

µ!

Z

U

I
“

Xj ∈ X
I
bN

”

Zjmα
(µ)
κm(Xj + bNu)u

µK(κ)(u)du

The expression involves negative powers of the bandwidth. The contribution of these terms must be 0 to avoid
a variance that grows without bounds if the bandwidth becomes small. By the assumptions on the kernel and
by Lemma A.8

φjκ0,N =

2
X

m=1

(−1)|κ|I
“

Xj ∈ X
I
bN

”

α(κ)
κm(Xj)Zjm+bN

2
X

m=1

X

|µ|=|κ|+1

1

µ!

Z

U

I
“

Xj ∈ X
I
bN

”

α(µ)
κm(Xj+bNu)Zjmu

µK(κ)(u)du

6Remember that if u ∈ U, then −u ∈ U.
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Define

ψjκ =
2
X

m=1

I
“

Xj ∈ X
I
bN

”

(−1)|κ|α(κ)
κm(Xj)Zjm

We have

E

2

4

 

1√
N

N
X

j=1

(φj0,Nκ − ψjκ − E [φj0,Nκ − ψjκ])

!2
3

5

= E
ˆ

(φj0,N − ψjκ − E [φj0,Nκ − ψjκ])2
˜

≤ E
ˆ

(φj0,Nκ − ψjκ)2
˜

= b2N E

2

4

0

@

2
X

m=1

X

|µ|=|κ|+1

1

µ!

Z

U

I
“

Xj ∈ X
I
bN

”

α(µ)
κm(Xj + bNu)Zjmu

µK(κ)(u)du

1

A

23

5

The expectation is bounded by a finite sum of terms

E

»

I
“

Xj ∈ X
I
bN

”

Z

U

˛

˛

˛α
(µ1)
κm (Xj + bNu)

˛

˛

˛ |Zjm|
˛

˛

˛u
µ1K(κ)(u)

˛

˛

˛du

Z

U

˛

˛

˛α
(µ2)
κm (Xj + bNu)

˛

˛

˛ |Zjm|
˛

˛

˛u
µ2K(κ)(u)

˛

˛

˛du

–

Because ακm has derivatives up to order |λ|+1 that are bounded on X and K has derivatives up to order |λ| that
are bounded on U, the expectation is obviously bounded if Zjm = 1. If Zjm = Yj , the expectation is bounded
by E(Y 2

j ) which is bounded by Assumption 1. By the Markov inequality we have

1√
N

N
X

j=1

(φj0,Nκ − ψjκ − E [φj0,Nκ − ψjκ]) = Op(bN )

We define

ψj =
X

κ≤λ

(−1)|κ|
2
X

m=1

I
“

Xj ∈ X
I
bN

”

α(κ)
κm(Xj)Zjm

Because the result is for all κ ≤ λ we have

1√
N

N
X

j=1

(φj0,N − ψj − E [φj0,N − ψj ]) = Op(bN )

Next we consider φjµ,N with 1 ≤ |µ| ≤ s− 1 which can be written as a sum of terms φjκµ,N

φjκµ,N =
2
X

m=1

1

bN
L+|κ|+|µ|

Z

X

1

µ!
I
“

Xj ∈ X
I
bN

”

ακm(x)ZjmK
(κ+µ)

„

x−Xj

bN

«

(x− r2bN (x))µdx

By a change of variables from x to u = (x−Xj)/bN with Jacobian bLN

φjκµ,N =

2
X

m=1

1

bN
|κ|+|µ|

Z

U

1

µ!
I
“

Xj ∈ X
I
bN

”

ακm(Xj + bNu)ZjmK
(κ+µ) (u) (Xj + bNu− r2bN (Xj + bNu))

µdu

Consider for X =
QL

l=1[xl, xl] and Xj ∈ XI
bN

(Xj + bNu− r2bN (Xj + bNu))
µ =

L
Y

l=1

(Xjl + bNul − r2bN (Xjl + bNul))
µl

By the definition of XI
bN

we have that Xj + bNu ∈ X for all u ∈ U. If for some l = 1, . . . L xl + 2bN ≤
Xjl + bNu ≤ xl − 2bN , then the expression above is 0. It is nonzero only if all components of Xj are in the
boundary region. This event that we denote by EN has a probability proportional to (2bN )L, because the
density of X is bounded on its support. If EN occurs φjκµ,N involves negative powers of bN that again must
have a 0 contribution. As before the assumptions on the kernel together with a Taylor series expansion of
βκm(Xj +bNu) ≡ ακm(Xj +bNu)(Xj +bNu−r2bN (Xj +bNu))

µ up to order κ+µ ensure this. By Assumptions 2

[38]



and 4 βκm has bounded derivatives up to |κ+µ|+1 so that the Taylor series expansion is valid. If the derivative
order of the kernel is at least equal to max{κ1 + µ1, . . . , κL + µL}, then by Lemma A.8

φjκµ,N =
2
X

m=1

IEN (Xj)I
“

Xj ∈ X
I
bN

” Zjm

µ!

0

@(−1)|κ+µ|β(κ+µ)
κm (Xj) + bN

X

|π|=|κ+µ|+1

1

π!

Z

U

β(π)
κm(Xj + bnu)K(u)du

1

A

Hence because the factor between parentheses is bounded for all Xj ∈ XI
bN

|φjκµ,N | ≤ CIEN (Xj)

˛

˛

˛

˛

˛

2
X

m=1

Zjm

˛

˛

˛

˛

˛

so that because E(Y 2
j |Xj = x) is bounded

E
ˆ

φ2
jκµ,N

˜

≤ C Pr(Xj ∈ EN )

We conclude that

E
ˆ

φ2
jκµ,N

˜

= O(bLN )

so that

1√
N

N
X

j=1

(φjκµ,N − E(φjκµ,N )) = Op(b
L/2
N )

and upon summation over κ

1√
N

N
X

j=1

(φjµ,N − E(φjµ,N)) = Op(b
L/2
N )

and the result follows. �
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Proof of Lemma A.10:

We have using the notation of Lemma A.9:

ĥ
[λ]
m,nip,s(v(x1)) =

s−1
X

j=0

X

|µ|=j

1

µ!

1

N

N
X

i=1

Zim
1

b
L+|[λ]|+|µ|
N

∗K [λ]+(µ)

„

x1 −Xi1

bN
,
t(x1) −Xi2

bN

«

(v(x1)−rbN (v(x1)))
µ.

Define

φiµ,N = b
L2/2
N

2
X

m=1

Z

X1

1

µ!
Zimαm(x1)

′ 1

b
L+|[λ]|+|µ|
N

∗K [λ]+(µ)

„

x1 −Xi1

bN
,
t(x1) −Xi2

bN

«

(v(x1)−rbN (v(x1)))
µdx1

so that

√
N · bL2/2

N

2
X

m=1

Z

X1

αm(x1)
′
“

ĥ
[λ]
m,NIP,s(v(x1)) − E

h

ĥ
[λ]
m,NIP,s(v(x1))

i”

dx1

=
1√
N

N
X

i=1

s−1
X

j=0

X

|µ|=j

(φiµ,N − E[φiµ,N ]) .

We consider first the term µ = 0 that makes a contribution to the asymptotic distribution

φi0,N = b
L2/2
N

2
X

m=1

Z

X1

Zimαm(x1)
′ 1

b
L+|[λ]|
N

∗K [λ]

„

x1 −Xi1

bN
,
t(x1) −Xi2

bN

«

dx1

This is the sum of terms

φiκ0,N = b
L2/2
N

2
X

m=1

Z

X1

ακm(x1)Zim
1

b
L+|κ|
N

K(κ)

„

x1 −Xi1

bN
,
t(x1) −Xi2

bN

«

dx1

By a change of variables from x1 to u1 = (x1 −Xi1)/bN with Jacobian bL1

N

φiκ0,N =
1

b
L2/2+|κ|
N

2
X

m=1

Z

{u1 |(x1−Xi1)/bN ,x1∈X1}
ακm(Xi1 + bNu1)ZimK

(κ)

„

u1,
t(Xi1 + bNu1) −Xi2

bN

«

du1

Using the same argument as before we have for almost all x1 and N ≥ N0(x1)

φiκ0,N =
1

b
L2/2+|κ|
N

2
X

m=1

Z

U1

ακm(Xi1 + bNu1)ZimK
(κ)

„

u1,
t(Xi1 + bNu1) −Xi2

bN

«

du1

To analyze this term we note that κ is an L vector of nonnegative integers. We partition κ according to x1 and
x2. First, we consider the case that t(x1) = x02 so that

φiκ0,N =
1

b
L2/2+|κ|
N

2
X

m=1

Z

U1

ακm(Xi1 + bNu1)ZimK
(κ)

„

u1,
x02 −Xi2

bN

«

du1

By a Taylor series expansion of ακm(Xi1 + bNu1) up to order |κ1|

ακm(Xi + bNu1) =

|κ1 |
X

j=0

bjN
X

|µ1 |=j

1

µ1!
α(µ1)

κm (Xi1)u
µ1

1 + b
|κ1 |+1
N

X

|µ1 |=|κ1 |+1

1

µ1!
α(µ1)

κm (Xi1 + bNu1)u
µ1

so that

φiκ0,N =

|κ1 |
X

j=0

b
j−L2/2−|κ|
N

2
X

m=1

X

|µ1 |=j

1

µ1!
α(µ1)

κm (Xi1)Zim

Z

U1

uµ1

1 K(κ)

„

u1,
x02 −Xi2

bN

«

du1

+
b
1−|κ2 |
N

b
L2/2
N

2
X

m=1

X

|µ1 |=|κ1 |+1

1

µ1!
Zim

Z

U1

α(µ1)
κm (Xi1 + bNu1)u

µ1K(κ)

„

u1,
x02 −Xi2

bN

«

du1
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Note that if the kernel is a derivative kernel we have
Z

U1

uµ1

1 K(κ)

„

u1,
x02 −Xi2

bN

«

du1 = K(κ2)

„

x02 −Xi2

bN

«Z

U1

uµ1

1 K(κ1)(u1)du1

and the final integral is (−1)|κ1 |κ1! if µ1 = κ1 and 0 otherwise. Hence we define

ψiκ,N =

2
X

m=1

(−1)|κ1|b
−L2/2−|κ2|
N α(κ1)

κm (Xi1)ZimK
(κ2)

„

x02 −Xi2

bN

«

Now

E

2

4

 

b
|κ2 |
N√
N

N
X

i=1

(φiκ0,N − E(φiκ0,N ) − ψiκ,N − E(ψiκ,N ))

!2
3

5 ≤ b
2|κ2 |
N E

ˆ

(φiκ0,N − ψiκ,N )2
˜

=

b2−L2

N E

2

4

0

@

2
X

m=1

X

|µ1|=|κ1 |+1

1

µ1!
Zim

Z

U1

α(µ1)
κm (Xi1 + bNu1)u

µ1K(κ)

„

u1,
x02 −Xi2

bN

«

du1

1

A

23

5

The expectation on the right-hand side is bounded by a finite sum of terms

E

»

E(Z2
im|Xi)

˛

˛

˛

˛

Z

U1

α(µ1)
κm (Xi1 + bNu1)u

µ1K(κ)

„

u1,
x02 −Xi2

bN

«

du1

˛

˛

˛

˛

˛

˛

˛

˛

Z

U1

α(µ̃1)
κm (Xi1 + bNu1)u

µ̃1K(κ)

„

u1,
x02 −Xi2

bN

«

du1

˛

˛

˛

˛

–

and

E

»

E(|Zim||Xi)

˛

˛

˛

˛

Z

U1

α(µ1)
κm (Xi1 + bNu1)u

µ1K(κ)

„

u1,
x02 −Xi2

bN

«

du1

˛

˛

˛

˛

˛

˛

˛

˛

Z

U1

α(µ̃1)
κm (Xi1 + bNu1)u

µ̃1K(κ)

„

u1,
x02 −Xi2

bN

«

du1

˛

˛

˛

˛

–

with |µ1| = |µ̃1| = |κ1| + 1. Because E(Z2
im|Xi = x), α

(µ1)
κm , α

(µ̃1)
κm are bounded functions of x and x1, the

expectation is bounded by

CE

"

„Z

U1

K(κ)

„

u1,
x02 −Xi2

bN

«

du1

«2
#

= C

Z

X2

„Z

U1

K(κ)

„

u1,
x02 − x2

bN

«

du1

«2

fX2
(x2)dx2 ≤ CbL2

N

by a change of variables to u2 = (x02 − x2)/bN with Jacobian bL2

N . We conclude that

E

2

4

 

b
|κ2 |
N√
N

N
X

i=1

(φiκ0,N − E(φiκ0,N ) − ψiκN, + E(ψiκN,))

!2
3

5 = O(b2N )

so that by the Markov inequality

b
|κ2 |
N√
N

N
X

i=1

(φiκ0,N − E(φiκ0,N ) − ψiκ,N + E(ψiκ,N )) = Op(bN )

Summing over κ and defining

ψiN =
X

κ≤λ

(−1)|κ1|
2
X

m=1

α(κ1)
κm (Xi)Zimb

−L2/2−|κ2 |
N K(κ2)

„

x02 −Xi2

bN

«

we obtain

b
|λ2 |
N√
N

N
X

i=1

(φi0,N − E(φi0,N ) − ψiN + E(ψiN )) = Op(bN )

Note that because of the multiplication by b
|λ2 |
N ψiN simplifies because terms with κ2 < λ2 are asymptotically

negligible. Hence

ψiN =
X

κ1≤λ1

(−1)|κ1 |
2
X

m=1

α
(κ1)
κ1λ2,m(Xi1)Zimb

−L2/2−|λ2 |
N K(λ2)

„

x02 −Xi2

bN

«
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In the case that t(x1) is unrestricted, but λ = 0

φi0,N = b
L2/2
N

2
X

m=1

Z

X1

Zimαm(x1)
′ 1

bLN
K

„

x1 −Xi1

bN
,
t(x1) −Xi2

bN

«

dx1

For almost all x1 and N ≥ N0(x1) this is equal to

φi0,N =
1

b
L2/2
N

2
X

m=1

Z

U1

αm(Xi1 + bNu1)ZimK

„

u1,
t(Xi1 + bNu1) −Xi2

bN

«

du1

Define

ψiN =
1

b
L2/2
N

2
X

m=1

Z

U1

αm(Xi1)ZimK

„

u1,
∂t

∂x1
(Xi1)u1 +

t(Xi1) −Xi2

bN

«

du1

with ∂t
∂x1

the L2 × L1 matrix of partial derivatives of t with respect to x1. After factorizing K into K1 and K2

according to x1 and x2, we have

E[(φi0,N − ψiN )2] =

1

bL2

N

E

2

4

 

2
X

m=1

Zim

Z

U1

K1(u1)

„

αm(Xi1 + bNu1)K2

„

t(Xi1 + bNu1) −Xi2

bN

«

− αm(Xi1)K2

„

∂t

∂x1
(Xi1)u1 +

t(Xi1) −Xi2

bN

««

du1

!2
3

5

This is bounded by a sum of terms of the form

1

bL2

N

E

»

E[|ZmZm′ ||X ]

˛

˛

˛

˛

Z

U1

K1(u1)

„

αm(Xi1 + bNu1)K2

„

t(Xi1 + bNu1) −Xi2

bN

«

− αm(Xi1)K2

„

∂t

∂x1
(Xi1)u1 +

t(Xi1) −Xi2

bN

«

du1

«˛

˛

˛

˛

·
˛

˛

˛

˛

Z

U1

K1(u1)

„

αm′(Xi1 + bNu1)K2

„

t(Xi1 + bNu1) −Xi2

bN

«

− αm′(Xi1)K2

„

∂t

∂x1
(Xi1)u1 +

t(Xi1) −Xi2

bN

«

du1

«˛

˛

˛

˛

–

withm,m′ = 1, 2. After a change of variables to u2 = (t(x1)−x2)/bN and for almost all x1, x2 and N ≥ N0(x1, x2)
this is bounded by

C

Z

X1

Z

U2

„Z

U1

˛

˛

˛

˛

αm(x1 + bNu1)K2

„

t(x1 + bNu1) − t(x1)

bN
+ u2

«

− αm(x1)K2

„

∂t

∂x1
(x1)u1 + u2

«˛

˛

˛

˛

du1

«

·
„Z

U1

˛

˛

˛

˛

αm′(x1 + bNu1)K2

„

t(x1 + bNu1) − t(x1)

bN
+ u2

«

− αm′ (x1)K2

„

∂t

∂x1
(x1)u1 + u2

«˛

˛

˛

˛

du1

«

fX(x1, t(x1)−bNu2)du2dx1

Now

αm(x1 + bNu1) = αm(x1) + bN
∂αm

∂x1
(x1 + bNu1)u1

and for some 0 ≤ ξ ≤ 1

K2

„

t(x1 + bNu1) − x2

bN

«

= K2

„

∂t

∂x′
1

(x1)u1 +
t(x1) − x2

bN
+
bN
2
u′

1
∂2t

∂x1∂x′
1

(x1 + bNu1)u1

«

= K2

„

∂t

∂x′
1

(x1)u1 +
t(x1) − x2

bN

«

+
bN
2

∂K2

∂x′
2

„

ξ

„

∂t

∂x1
(x1)u1 +

t(x1) − x2

bN

«

+ (1 − ξ)
bN
2
u′

1
∂2t

∂x1∂x′
1

(Xi1 + bNu1)u1

«

·u′
1

∂2t

∂x1∂x′
1

(x1 + bNu1)u1

By substitution we find, because the derivatives of αm and K2 and the second derivatives of t are bounded, that
E[(φi0,N − ψiN )2] is bounded by terms that are all O(b2N ), so that by the Markov inequality

1√
N

N
X

i=1

(φi0,N − E(φi0,N ) − ψiN + E(ψiN)) = Op(bN )
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Now we return to the case that t(x1) = x02. However if we set κ = 0 and x02 = t(Xi1) the same proof can be
used with minor changes. As in Lemma A.9 we show that for 1 ≤ |µ| ≤ s − 1

1√
N

N
X

i=1

(φiµ,N − E[φiµ,N ])

converges faster than for |µ| = 0. To show this we note that φiµ,N is the sum of terms

φiκµ,N = b
L2/2
N

2
X

m=1

Z

X1

1

µ!
Zimακm(x1)

1

b
L+|κ|+|µ|
N

K(κ+µ)

„

x1 −Xi1

bN
,
x02 −Xi2

bN

«

(v(x1) − rbN (v(x1)))
µdx1

After a change of variables to u1 = (x1 −Xi1)/bN we have for almost all x1 and N ≥ N0(x1)

φiκµ,N = b
−L2/2
N

2
X

m=1

1

µ!
Zim

Z

U1

ακm(Xi1+bNu1)
1

b
|κ|+|µ|
N

K(κ+µ)

„

u1,
x02 −Xi2

bN

«

(v(Xi1+bNu1)−rbN (v(Xi1+bNu1)))
µdu1

If we partition the L vector µ according to x1, x2, then

(v(Xi1 + bNu1) − rbN (v(Xi1 + bNu1)))
µ = (Xi1 + bNu1 − rbN (Xi1 + bNu1))

µ1(x02 − rbN (x02))
µ2

This is 0 unless all components of Xi1 are in the boundary region. This event that we call E1N has a probability
proportional to bL1

N . If this event occurs, then the L1 components of rbN (Xi1 + bNu1) are either equal to xl or
to xl. Define

βκm(Xi1 + bNu1) = ακm(Xi1 + bNu1)(Xi1 + bNu1 − rbN (Xi1 + bNu1))
µ1

A Taylor series expansion of βκm(Xi1 + bNu1) up to order κ+ µ followed by κ+ µ times partial integration of
the result gives if the kernel has derivative order max{κ1 + µ1, . . . κL + µL}

φiκµ,N = IE1N (Xi1)b
−L2/2
N

2
X

m=1

1

µ!
Zim

0

@(−1)|κ+µ|β(κ+µ)
κm (Xi1) + bN

X

|π|=|κ+µ|+1

Z

U1

β(π)
κm(Xi1 + bNu1)K

(κ1+µ1)(u1)du1

1

A

·K(κ2+µ2)

„

x02 −Xi2

bN

«

(x02 − rbN (x02))
µ2

Note that this term is largest if µ2 = 0. In that case we have with a change in variables to u2 = (x02 − x2)/bN

E(φ2
iκµ,N ) ≤ C Pr(X1 ∈ E1N ) = O(bL1

N )

so that by the Markov inequality

1√
N

N
X

i=1

(φiκµ,N − E(φiκµ,N)) = Op(b
L1/2
N )

and upon summation over κ

1√
N

N
X

i=1

(φiµ,N − E(φiµ,N )) = Op(b
L1/2
N )

and the result follows. �

Proof of Lemma A.11: If t(x1) is unrestricted and λ = 0 we define

ψiN =
1

b
L2/2
N

2
X

m=1

Z

U1

αm(Xi1)ZimK

„

u1,
∂t

∂x1
(Xi1)u1 +

t(Xi1) −Xi2

bN

«

du1

so that we have to prove

N−1/2 ·
N
X

i=1

(ψiN − E[ψiN ])
d−→ N (0, V ).
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We first show that the variance of ψiN is finite. We have

V(ψiN ) ≤ E(ψ2
iN ) =

1

bL2

N

E

2

4

 

2
X

m=1

Z

U1

αm(Xi1)ZimK

„

u1,
∂t

∂x1
(Xi1)u1 +

t(Xi1) −Xi2

bN

«

du1

!2
3

5

This is bounded by a sum of terms of the form

1

bL2

N

Z

X

E(|ZimZim′ ||X = x)|αm(x1)||αm′(x1)|
„Z

U1

˛

˛

˛

˛

K

„

u1,
∂t

∂x1
(x1)u1 +

t(x1) − x2

bN

«˛

˛

˛

˛

du1

«2

fX(x)dx

By a change of variables to u2 = (t(x1) − x2)/bN with Jacobian bL2

N the upper bound is (the integration region
for u2 is a subset of U2 and E(|ZimZim′ ||X = x) is a bounded function) bounded by

Z

X1

Z

U2

|αm(x1)||αm′(x1)|
„Z

U1

˛

˛

˛

˛

K

„

u1,
∂t

∂x1
(x1)u1 + u2

«˛

˛

˛

˛

du1

«2

fX(x1, t(x1) − bNu2)du2dx1 <∞

because all functions in the integrand are bounded and so are the sets U1 and U2. In the same way we can show

that E(|ψiN |) = O
“

b
L2/2
N

”

, so that

lim
N→∞

V(ψiN ) = lim
N→∞

E(ψ2
iN )

and

E(ψ2
iN ) =

1

bL2

N

2
X

m=1

2
X

m′=1

E

"

ZimZim′αm(Xi1)αm′(Xi1)

„Z

U1

K

„

u1,
∂t

∂x1
(Xi1)u1 +

t(Xi1) −Xi2

bN

«

du1

«2
#

=

2
X

m=1

2
X

m′=1

Z

X1

Z

{u2 |u2=(t(x1)−x2)/bN ,x2∈X2}
E(ZimZim′ |X1 = x1,X2 = t(x1) − bNu2)αm(x1)αm′(x1)

·
„Z

U1

K

„

u1,
∂t

∂x1
(x1)u1 + u2

«

du1

«2

fX(x1, t(x1) − bNu2)du2dx1

If we define

µmm′ (x) = E(ZimZim′ |X = x)

then by dominated convergence

lim
N→∞

E(ψ2
iN) =

2
X

m=1

2
X

m′=1

Z

X1

µmm′ (x1, t(x1))αm(x1)αm′(x1)

Z

U2

„Z

U1

K

„

u1,
∂t

∂x1
(x1)u1 + u2

«

du1

«2

du2fX(x1, t(x1))dx1 ≡ V

The final step is to check the Lyapunov condition, so that we can apply the Lyapunov Central Limit Theorem.
The Lyapunov condition for a triangular array of random variables is

NE
ˆ˛

˛(ψiN − E[ψiN ])2+δ
˛

˛

˜

N1+δ/2V(ψiN )1+δ/2
→ 0

for some δ > 0. Because V(ψiN ) < ∞, this is equivalent to

N−δ/2
E

h˛

˛

˛(ψiN − E[ψiN ])2+δ
˛

˛

˛

i

→ 0

We take δ = 2 and note that because E[ψiN ] → 0 we only need to check

N−1
E
ˆ

ψ4
iN

˜

→ 0

Now

E
ˆ

ψ4
iN

˜

=
1

b2L2

N

E

2

4

 

2
X

m=1

αm(Xi1)Zim

!4
„Z

U1

K

„

u1,
∂t

∂x1
(Xi1)u1 +

t(Xi1) −Xi2

bN

«

du1

«4
3

5
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≤ 1

b2L2

N

E

2

4

0

@

X

km+km′=4,km ,km′ ≥0

(|αm(Xi1)||Zim|)km (|αm′(Xi1)||Zim′ |)km′

1

A

„Z

U1

K

„

u1,
∂t

∂x1
(Xi1)u1 +

t(Xi1) −Xi2

bN

«

du1

«4
3

5

≤ C

b2L2

N

E

"

„Z

U1

K

„

u1,
∂t

∂x1
(Xi1)u1 +

t(Xi1) −Xi2

bN

«

du1

«4
#

because E(Y 4|X = x) and αm(x1) are bounded functions on X and X1, respectively. By the Hölder inequality
the right-hand side is bounded by

C

b2L2

N

Z

X

Z

U1

K

„

u1,
∂t

∂x1
(x1)u1 +

t(x1) − x2

bN

«4

du1fX(x)dx

By a change of variables to u2 = (t(x1) − x2)/bN with Jacobian bL2

N we obtain the upper bound (we enlarge the
integration region for u2 to U2)

C

bL2

N

Z

X1

Z

U

K

„

u1,
∂t

∂x1
(x1)u1 + u2

«4

fX(x1, t(x1) − bNu2)dudx1 ≤ Cb−L2

N

because K is a bounded function and U1 is a bounded set. Hence the Lyapunov condition holds if

N−1b−L2

N → 0

The proof for the case that λ > 0 and t(x1) = x02 is the same, if we assume that K(λ2) is bounded on U and
αm,m = 1, 2 is λ1 times differentiable with a bounded λ1 derivative. We consider

ψiN =
1

b
L2/2
N

2
X

m=1

0

@

X

κ1≤λ1

(−1)|κ1 |α
(κ1)
κ1λ2 ,m(Xi1)

1

AZimK
(λ2)

„

x02 −Xi2

bN

«

so that

E(ψ2
iN ) =

1

bL2

N

2
X

m=1

2
X

m′=1

E

2

4ZimZim′

0

@

X

κ1≤λ1

(−1)|κ1 |α
(κ1)
κ1λ2 ,m(Xi1)

1

A

0

@

X

κ1≤λ1

(−1)|κ1 |α
(κ1)
κ1λ2 ,m′ (Xi1)

1

A

„

K(λ2)

„

x02 −Xi2

bN

««2
3

5

=

2
X

m=1

2
X

m′=1

Z

X1

Z

{u2|u2=(t(x1)−x2)/bN ,x2∈X2}
E(ZimZim′ |X1 = x1,X2 = t(x1)−bNu2)

0

@

X

κ1≤λ1

(−1)|κ1|α
(κ1)
κ1λ2,m(x1)

1

A

·

0

@

X

κ1≤λ1

(−1)|κ1|α
(κ1)
κ1λ2,m′ (x1)

1

A

“

K(λ2) (u2)
”2

fX(x1, t(x1) − bNu2)du2dx1 → V ≡

2
X

m=1

2
X

m′=1

Z

X1

µmm′ (x1, t(x1))

0

@

X

κ1≤λ1

(−1)|κ1|α
(κ1)
κ1λ2,m(x1)

1

A

0

@

X

κ1≤λ1

(−1)|κ1 |α
(κ1)
κ1λ2 ,m′ (x1)

1

A

Z

U2

“

K(λ2) (u2)
”2

du2fX(x1, t(x1))dx1

�
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Appendix C: Proofs of Lemmas and Theorems in Main Text

Proof of Lemma 3.1:

The Nadaraya-Watson estimator of h is

ĥNW (x) =
1

NbL

N
X

i=1

Zi ·K
„

x−Xi

b

«

.

In the proofs of the Lemmas 3.1 and 3.2 we omit the subscript NW, because it is understood that we deal with
the usual kernel estimator. We have,

E
h

ĥ(x)
i

= E

»

Z
1

bL
K

„

x −X

b

«–

= E

»

E

»

Z
1

bL
K

„

x−X

b

«˛

˛

˛

˛

X

––

= E

»

g(X)
1

bL
K

„

x−X

b

«–

=

Z

X

g(v)
1

bL
K
“x− v

b

”

fX(v)dv

=

Z

X

h(v)
1

bL
K
“x− v

b

”

dv

=

Z

U

1{x− bu ∈ X} · h(x− bu)K(u)du

where the final equality is obtained by a change of variables from v to u = (x− v)/b with Jacobian bL. By the
definition of XI

b , x ∈ XI
b implies x − bu ∈ X for all u ∈ U , so that, because K(u) = 0 if u 6= U, the integration

region is U and the indicator function is identically equal to 1, and thus

E

h

ĥ(x)
i

=

Z

U

K(u)h(x− bu)du.

By Assumption 2 U is compact and K is continuous on U, and thus K(u) is bounded on U. By Assumption
1 fX(x) and g(x) and thus h(x) = g(x) · fX(x) are continuously differentiable up to order j + s. Hence by
dominated convergence we can interchange integration and differentiation with respect to x repeatedly, so that
for |λ| ≤ j

∂|λ|

∂xλ
E

h

ĥ(x)
i

=

Z

U

K (u)h(λ)(x − bu)du.

Now, again using the continuously differentiability of h(x) up to order j + s, we can construct a Taylor series
expansion of h(λ)(x− bu) around x of order s− 1, to get

∂|λ|

∂xλ
E
h

ĥ(x)
i

=

Z

U

K (u)

s−1
X

j=0

X

|θ|=j

1

θ!
h(θ+λ)(x)uθ(−b)|θ|du+

Z

U

K (u)
X

|θ|=s

1

θ!
h(θ+λ)(x̃)uθ(−b)|θ|du

=

Z

U

K (u) h(λ)(x)du (C.1)

+

s−1
X

j=1

X

|θ|=j

(−b)|θ| 1

θ!
h(θ+λ)(x)

Z

U

uθK (u) du (C.2)

+(−b)s
X

|θ|=s

Z

U

1

θ!
h(θ+λ)(x̃)uθK (u) du. (C.3)

with x̃ intermediate between x and x − bu. If s = 1, the second term (C.2) does not appear. The first term,
(C.1), is equal to h(λ)(x). All the terms in (C.2) are equal to 0 because the order of the kernel is s and thus
R

uθK(u)du = 0 if 1 ≤ |θ| ≤ s − 1. The third term, (C.3), is O(bs) by the fact that by Assumption 1 h(θ+λ)(x)
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is continuous and hence bounded for |θ + λ| ≤ j + s on the compact set X, and x̃ ∈ X for all x ∈ XI
b and u ∈ U.

Hence it follows that

sup
x∈X

I
b

,|λ|≤j

˛

˛

˛

˛

∂|λ|

∂xλ
E

h

ĥ(x)
i

− ∂|λ|

∂xλ
h(x)

˛

˛

˛

˛

= O (bs) .

�

Proof of Lemma 3.2:

For ease of notation we omit the subscript nw on the kernel estimator, and use ĥ(x) as shorthand for ĥnw(x).
Without loss of generality we give the proof for the case with scalar Z. The proof is easy if the support of Z is
bounded. To deal with the case of an unbounded support we use the assumption on the conditional moments of
Z in Assumption 1. First, for some constant P , and for the p > 2 in Assumption 1(iii) define

ZiN =

8

<

:

−P ·N1/p if Zi < −P ·N1/p,

Zi if − P ·N1/p ≤ Zi ≤ P ·N1/p,

P ·N1/p if P ·N1/p < Zi.

Also define the kernel estimator with Zi replaced by ZiN ,

h̃(x) =
1

N

N
X

i=1

ZiN
1

bN
L
K

„

x −Xi

bN

«

. (C.4)

By the triangle inequality,

sup
x∈X,|λ|≤j

˛

˛

˛

˛

∂|λ|

∂xλ
ĥ(x) − ∂|λ|

∂xλ
E
h

ĥ(x)
i

˛

˛

˛

˛

≤ sup
x∈X,|λ|≤j

˛

˛

˛

˛

∂|λ|

∂xλ
ĥ(x) − ∂|λ|

∂xλ
h̃(x)

˛

˛

˛

˛

(C.5)

+ sup
x∈X,|λ|≤j

˛

˛

˛

˛

∂|λ|

∂xλ
E
h

ĥ(x)
i

− ∂|λ|

∂xλ
E
h

h̃(x)
i

˛

˛

˛

˛

(C.6)

+ sup
x∈X,|λ|≤j

˛

˛

˛

˛

∂|λ|

∂xλ
h̃(x) − ∂|λ|

∂xλ
E
h

h̃(x)
i

˛

˛

˛

˛

. (C.7)

We consider the three terms (C.5)-(C.7) separately. First we show that (C.5) is op

“

(log(N)N−1b−L−2j
N )1/2

”

.

Second we show that (C.6) is o
“

(log(N)N−1b−L−2j
N )1/2

”

. Third, we show that the dominant term (C.7) is

Op

“

(log(N)N−1b−L−2j
N )1/2

”

.

First consider (C.5). By Assumption 1, the definition of ZiN , and the Markov inequality, it follows that for any
ν > 0, and all ε > 0

Pr

 

sup
x∈X,|λ|≤j

Nν ·
˛

˛

˛

˛

∂|λ|

∂xλ
ĥ(x) − ∂|λ|

∂xλ
h̃(x)

˛

˛

˛

˛

> ε

!

≤ Pr

 

sup
x∈X,|λ|≤j

˛

˛

˛

˛

∂|λ|

∂xλ
ĥ(x) − ∂|λ|

∂xλ
h̃(x)

˛

˛

˛

˛

> 0

!

≤
X

|λ|≤j

Pr
“

∃i with |Zi| > PN1/p
”

≤ C

N
X

i=1

Pr
“

|Zi| > PN1/p
”

= C · N · Pr
“

|Zi| > PN1/p
”

= C · N · Pr (|Zi|p > P pN)

≤ C · N · E [|Zi|p] /(NP p) = CE [|Zi|p] /P p.

We can make this probability arbitrarily small by choosing P sufficiently large. Hence

sup
x∈X,|λ|≤j

˛

˛

˛

˛

∂|λ|

∂xλ
ĥ(x) − ∂|λ|

∂xλ
h̃(x)

˛

˛

˛

˛

= op

`

N−ν´ .
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By the condition on the lower bound on the bandwidth there is a ν such that limN→∞N−ν(log(N))−1NbL+2j
N = 0,

and hence (C.5) is op

“

(log(N)N−1b−L−2j
N )1/2

”

.

Second, consider (C.6) for fixed x ∈ X and λ ≤ j. By the boundedness of the λ derivative of the kernel on U,
and the boundedness of E[Z|X = x] and fX(x) (if Z is not identically equal to 1) on X, we can interchange the
expectation and repeated differentiation as in the proof of Corollary A.1, so that using |Zi−ZiN | ≤ 2|Zi|1{|Zi| ≥
P ·N1/p}:

˛

˛

˛

˛

∂|λ|

∂xλ
E
h

ĥ(x)
i

− ∂|λ|

∂xλ
E
h

h̃(x)
i

˛

˛

˛

˛

=

˛

˛

˛

˛

E

»

∂|λ|

∂xλ
ĥ(x) − ∂|λ|

∂xλ
h̃(x)

–˛

˛

˛

˛

≤ 2

˛

˛

˛

˛

bN
−L−|λ| · E

»

1{|Zi| > PN1/p} · |Zi| ·K(λ)

„

x−Xi

bN

«–˛

˛

˛

˛

= 2

˛

˛

˛

˛

bN
−L−|λ| · E

»

E
h

1{|Zi| > PN1/p} · |Zi|
˛

˛

˛Xi

i

·K(λ)

„

x −Xi

bN

«–˛

˛

˛

˛

. (C.8)

By the Cauchy-Schwartz and Markov inequalities, and using the definition µ2(x) = E[Z2|X = x] (finite because
of Assumption 1(iii)) we have for any x ∈ X

E

h

1{|Zi| > PN1/p} · |Zi|
˛

˛

˛Xi = x
i

= E

h

1{|Zi| > PN1/p} ·
“

1{|Zi| > PN1/p} · |Zi|
”˛

˛

˛Xi = x
i

≤ E

»

“

1{|Zi| > PN1/p}
”2
˛

˛

˛

˛

Xi = x

–1/2

· E

»

“

1{|Zi| > PN1/p} · |Zi|
”2
˛

˛

˛

˛

Xi = x

–1/2

= Pr
“

|Zi| > PN1/p
˛

˛

˛Xi = x
”1/2

· E
h

1{|Zi| > PN1/p} · |Zi|2
˛

˛

˛Xi = x
i1/2

≤ Pr
“

|Zi| > PN1/p
˛

˛

˛Xi = x
”1/2

· E
ˆ

|Zi|2
˛

˛Xi = x
˜1/2

= Pr ( |Zi|p > P pN |Xi = x)1/2 · µ2(x)
1/2

≤ (E [ |Zi|p|Xi = x]/(P pN))
1/2 · µ2(x)

1/2 = Cµp(x)
1/2µ2(x)

1/2N−1/2. (C.9)

where the conditional p-th moment of |Z| is denoted by µp(x). Substituting (C.9) into (C.8), we find by a change
of variables in the integral

sup
x∈X,|λ|≤j

˛

˛

˛

˛

∂|λ|

∂xλ
E
h

ĥ(x)
i

− ∂|λ|

∂xλ
E
h

h̃(x)
i

˛

˛

˛

˛

≤ C sup
x∈X,|λ|≤j

bN
−L−|λ|N−1/2 · E

»

µp(Xi)
1/2µ2(Xi)

1/2 ·
˛

˛

˛

˛

K(λ)

„

x−Xi

bN

«˛

˛

˛

˛

–

≤ C sup
x∈X,|λ|≤j

bN
−L−|λ|N−1/2

Z

X

µp(v)
1/2µ2(v)

1/2 ·
˛

˛

˛

˛

K(λ)

„

x− v

bN

«˛

˛

˛

˛

fX(v)dv

≤ Cb−j
N ·N−1/2 sup

x∈X

X

|λ|≤j

Z

U

1{x− bNu ∈ X}µp(x− bNu)
1/2µ2(x− bNu)

1/2
˛

˛

˛K
(λ) (u)

˛

˛

˛ fX(x− bNu)du

≤ Cb−j
N ·N−1/2

„

sup
x∈X

µp(x)µ2(x)

«1/2

· sup
x∈X

fX(x)
X

|λ|≤j

Z

U

˛

˛

˛K
(λ) (u)

˛

˛

˛du ≤ Cb−j
N ·N−1/2,

by the boundedness of the p-th moment of |Z| given X = x and the boundedness of fX(x) and K(λ)(u), and
where we use the condition that bN → 0, so that b−λ

N ≤ Cb−j
N . Finally,

Cb−j
N · N−1/2 = O

“

b−j
N ·N−1/2

”

= o

0

@

 

logN

N · bL+2j
N

!1/2
1

A ,

because the ratio

b−2j
N N−1

ln N

Nb
2j+L
N

=
bLN

lnN
→ 0,
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by the condition on the upper bound on the bandwidth in the Lemma.
Third, consider (C.7). Because X is compact, it can be covered by CNL open balls with radius N−1. Index
these balls by d = 1, . . . ,D with D ≤ CNL, and their centers by xdc, d = 1, . . . ,D. For any x ∈ X denote the
center of its covering ball (or one of its covering balls if there is more than one) by xc(x). Hence, by the triangle
inequality,

sup
x∈X,|λ|≤j

˛

˛

˛h̃
(λ)(x) − E[h̃(λ)(x)]

˛

˛

˛

≤ sup
x∈X,|λ|≤j

˛

˛

˛h̃
(λ)(xc(x)) − E[h̃(λ)(xc(x))]

˛

˛

˛ (C.10)

+ sup
x∈X,|λ|≤j

˛

˛

˛h̃
(λ)(x) − h̃(λ)(xc(x))

˛

˛

˛ (C.11)

+ sup
x∈X,|λ|≤j

˛

˛

˛E[h̃(λ)(x)] − E[h̃(λ)(xc(x))]
˛

˛

˛ . (C.12)

We show that (C.11) and (C.12) are o
“

(log(N)N−1b−L−2j
N )1/2

”

, and that (C.10) is Op

“

(log(N)N−1b−L−2j
N )1/2

”

.

First consider (C.11). Because we assume that the λ derivative of the kernel K has bounded derivatives with
respect to its arguments, we have

sup
|λ|≤j

|K(λ)(u) −K(λ)(u′)| ≤
X

|λ|≤j

Cλ · ‖u− u′‖ ≤ C · ‖u− u′‖,

for all u, u′ ∈ U. Hence we have, because r ≥ j + 1,

sup
‖x−x′‖≤N−1,|λ|≤j

|h̃(λ)(x) − h̃(λ)(x′)| (C.13)

≤ sup
‖x−x′‖≤N−1,|λ|≤j

1

N

N
X

i=1

|ZiN |
b
|λ|+L
N

·
˛

˛

˛

˛

K(λ)

„

x−Xi

bN

«

−K(λ)

„

x′ −Xi

bN

«˛

˛

˛

˛

≤ C sup
‖x−x′‖≤N−1,|λ|≤j

1

N

N
X

i=1

|ZiN |
b
|λ|+L
N

· ‖x − x′‖ · b−1
N

≤ CN1/p−1b−j−L−1
N .

By (C.13) it follows that (C.11) is O(N1/p−1b−j−L−1
N ). The next step is to show that

C ·N1/p−1b−j−L−1
N = o

0

@

 

lnN

Nb2j+L
N

!1/2
1

A .

To see this, consider the ratio

N1/p−1b−j−L−1
N

“

lnN
.“

Nb2j+L
N

””1/2
=

0

@

N2/p−2b−2j−2L−2
N

lnN
.“

Nb2j+L
N

”

1

A

1/2

=

 

N2/p−1b−L−2
N

lnN

!1/2

≤
“

N2/p−1b−L−2
N

”1/2

→ 0,

by the condition on the lower bound on the bandwidth in the statement of the Lemma. Thus we have for (C.11):

sup
x∈X,|λ|≤j

˛

˛

˛h̃
(λ)(x) − E[h̃(λ)(x)]

˛

˛

˛ = o

0

@

 

lnN

Nb2j+L
N

!1/2
1

A .

Next, consider (C.12). By (C.13) it follows that

sup
x∈X,|λ|≤j

˛

˛

˛E[h̃(λ)(x)] − E[h̃(λ)(xc(x))]
˛

˛

˛ ≤ E

"

sup
x∈X,|λ|≤j

˛

˛

˛h̃
(λ)(x) − h̃(λ)(xc(x))

˛

˛

˛

#

= O
“

N1/p−1b−j−L−1
N

”

= o

0

@

 

lnN

Nb2j+L
N

!1/2
1

A .
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Finally, consider (C.10):

sup
x∈X,|λ|≤j

˛

˛

˛h̃
(λ)(xc(x)) − E

h

h̃(λ)(xc(x))
i˛

˛

˛ = max
d=1,...,D,|λ|≤j

˛

˛

˛h̃
(λ)(xdc) − E

h

h̃(λ)(xdc)
i˛

˛

˛ .

Define ηN = (b
−(L+2j)
N N−1 lnN)1/2. We have η2

N = b
−(L+2j)
N N−1 lnN < b

−(L+2j)
N N2/p−1 lnN → 0 by the

bandwidth conditions in the Lemma so that ηN → 0. Let M > 0 be a constant. By deriving an upper bound on

Pr

 

sup
d=1,...,D,|λ|≤j

˛

˛

˛h̃
(λ)(xdc) − E[h̃(λ)(xdc)]

˛

˛

˛ > MηN

!

, (C.14)

that for N sufficiently large goes to 0 as M → ∞, we establish that (C.10) is Op(ηN ) and thus by the definition

of ηN (C.10) is Op((b
−(L+2j)
N N−1 lnN)1/2). We have

Pr

 

sup
d=1,...,D,|λ|≤j

˛

˛

˛h̃
(λ)(xdc) − E[h̃(λ)(xdc)]

˛

˛

˛ > MηN

!

≤
X

|λ|≤j

D
X

d=1

Pr
“˛

˛

˛h̃
(λ)(xdc) − E[h̃(λ)(xdc)]

˛

˛

˛ > MηN

”

.

Because K(λ)(u) is bounded (with upper bound Kλ), the kernel estimator

h̃(λ)(xdc) =
1

N

N
X

i=1

ZiN

b
L+|λ|
N

·K(λ)

„

xdc −Xi

bN

«

,

is an average of bounded random variables (with upper bound Kλ · P · N1/pb
−|λ|−L
N ). Hence by Bernstein’s

inequality (see e.g. Serfling (1980), p. 95)7

Pr
“˛

˛

˛h̃
(λ)(xdc) − E[h̃(λ)(xdc)]

˛

˛

˛ > MηN

”

≤ 2 exp

8

>

>

<

>

>

:

− NM2η2
N

2V

„

ZiN

b
|λ|+L
N

K(λ)
“

xdc−X
bN

”

«

+ 2
3

KλPN1/p

b
|λ|+L
N

MηN

9

>

>

=

>

>

;

.

Now, by a change of variables from x to u = (xdc − x)/bN with Jacobian bLN ,

V

 

ZiN

b
|λ|+L
N

K(λ)

„

xdc −X

bN

«

!

≤ 1

b
2|λ|+2L
N

E

"

„

ZiN ·K(λ)

„

xdc −X

bN

««2
#

≤ 1

b
2|λ|+L
N

Z

U

1{xdc − bNu ∈ X}µ2(xdc − bNu)K
(λ)(u)2fX(xdc − bNu)du

≤ Cb
−2|λ|−L
N ,

The last inequality follows because fX and µ2(x) are bounded on X and so is K(λ)(u)2 on U. Hence, using the
fact that D ≤ CNL,

Pr

 

sup
d=1,...,D,|λ|≤j

˛

˛

˛ĥ
(λ)(xdc) − E[ĥ(λ)(xdc)]

˛

˛

˛ > MηN

!

7For independent random variables Z1, . . . , ZN with variance V(Zi) that satisfy Pr(|Zi −E(Zi)| ≤ U) = 1 for
all i with U < ∞, Bernstein’s inequality states that for z > 0

Pr

 ˛

˛

˛

˛

˛

1

N

N
X

i=1

(Zi − E(Zi))

˛

˛

˛

˛

˛

≥ z

!

≤ 2 exp

(

− N2z2

2
PN

i=1 V(Zi) + 2
3
UNz

)

.

Hence with identically distributed Zi we have

Pr

 ˛

˛

˛

˛

˛

1

N

N
X

i=1

(Zi − E(Zi))

˛

˛

˛

˛

˛

≥ z

!

≤ 2 exp



− Nz2

2V(Zi) + 2
3Uz

ff

.

.
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≤ C1N
L
X

|λ|≤j

exp

8

>

<

>

:

− NM2η2
N

2CbN
−2|λ|−L + 2

3
KλPN1/p

b
|λ|+L
N

MηN

9

>

=

>

;

≤ C1N
L
X

|λ|≤j

exp

(

− NM2η2
Nb

2|λ|+L
N

C2 +C3b
|λ|
N N1/pMηN

)

≤ C1 exp

(

L logN − M

C2

Nη2
Nb

2j+L
N

1/M + C3

C2
bjNN

1/pηN

)

(C.15)

because for |λ| ≤ j

Nη2
Nb

2|λ|+L
N

1/M + C3

C2
b
|λ|
N MN1/pηN

≥ Nη2
Nb

2j+L
N

1/M + C3

C2
bjNMN1/pηN

.

The bound in (C.15) will go to zero as M increases for all N ≥ N0 for some N0, if for N ≥ N0 and some C4 > 0

Nη2
Nb

2j+L
N

1 + C3

C2
N1/pbjNMηN

≥ C4 logN. (C.16)

First, the numerator in (C.16) is by the definition of ηN equal to

Nη2
Nb

2j+L
N = N lnN ·N−1b−2j−L

N b2j+L
N = lnN.

Because

lim
N→∞

N1/pbjNηN = lim
N→∞

N1/pbjN

“

lnN ·N−1b−2j−L
N

”1/2

= lim
N→∞

“

lnN · N−1+2/pb−L
N

”1/2

= 0,

by the bandwidth condition in the Lemma, it follows that for C4 > 0 we can find an N0 and M0 such that for
N ≥ N0, and M ≥M0, the denominator in (C.16) is smaller than 1/C4 and therefore (C.16) holds. Hence (C.14)

goes to zero as M → ∞, and thus (C.10) is Op((b
−(L+2j)
N N−1 lnN)1/2). �

Proof of Lemma 3.3: We have for all x ∈ X,
˛

˛

˛E

h

ĥ
(λ)
nip,s(x)

i

− h(λ)(x)
˛

˛

˛

=
˛

˛

˛E
h

t
“

x, ĥ
(λ)
NW , rb(x), s

”i

− h(λ)(x)
˛

˛

˛

≤
˛

˛

˛E
h

t
“

x, ĥ
(λ)
NW , rb(x), s

”i

− t
“

x,h(λ), rb(x), s
”˛

˛

˛ (C.17)

+
˛

˛

˛t
“

x,h(λ), rb(x), s
”

− h(λ)(x)
˛

˛

˛ , (C.18)

by the triangle inequality. We show that the supremum over X of (C.17) and (C.18) are both O(bs). First
consider (C.17).

˛

˛

˛E
h

t
“

x, ĥ
(λ)
NW , rb(x), s

”i

− t
“

x, h(λ), rb(x), s
”˛

˛

˛

=

˛

˛

˛

˛

˛

˛

E

2

4

s−1
X

j=0

X

|θ|=j

1

θ!
ĥ

(λ+θ)
NW (rb(x))(x− rb(x))

θ

3

5−
s−1
X

j=0

X

|θ|=j

1

θ!
h(λ+θ)(rb(x))(x− rb(x))

θ

˛

˛

˛

˛

˛

˛

=

˛

˛

˛

˛

˛

˛

s−1
X

j=0

X

|θ|=j

1

θ!

“

E

h

ĥ
(λ+θ)
NW (rb(x))

i

− h(λ+θ)(rb(x))
”

(x − rb(x))
θ

˛

˛

˛

˛

˛

˛

≤ C · max
0≤|θ|≤s−1

sup
x∈X

˛

˛

˛E

h

ĥ
(λ+θ)
NW (rb(x))

i

− h(λ+θ)(rb(x))
˛

˛

˛

= C · max
0≤|θ|≤s−1

sup
x∈X

I
b

˛

˛

˛E

h

ĥ
(λ+θ)
NW (x)

i

− h(λ+θ)(x)
˛

˛

˛ = O (bs) ,

by Lemmas 3.1 and A.1 because q ≥ |λ| + 2s − 1 and r ≥ |λ| + s − 1, which is implied by q ≥ j + 2s − 1 and
r ≥ j + s− 1.
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Now consider (C.18). This is a remainder term of a Taylor series expansion, so we have for all x ∈ X and some
x̃ intermediate between x and rb(x)

˛

˛

˛t
“

x, h(λ), rb(x), s
”

− h(λ)(x)
˛

˛

˛

=

˛

˛

˛

˛

˛

˛

X

|θ|=s

h(λ+θ)(x̃)(x− rb(x))
θ

˛

˛

˛

˛

˛

˛

≤
X

|θ|=s

sup
x∈X

˛

˛

˛h
(λ+θ)(x)

˛

˛

˛ ·
 

sup
x∈X

inf
y∈XI

b

‖x − y‖
!s

= O(bs),

where supx∈X
infy∈X

I
b
‖x−y‖ = supx∈X

‖x−rb(x)‖ = O(b) by Assumption 1 and supx∈X

˛

˛

˛h(λ+θ)(x)
˛

˛

˛ < ∞ because

by Assumption 1 h(λ+θ)(·) with |θ| = s is bounded on X. Hence the supremum over X of both (C.17) and (C.18)
are O(bs), which proves the result. �

Proof of Lemma 3.4: Without loss of generality we consider the case with scalar h. We have

sup
x∈X

˛

˛

˛ĥ
(λ)
nip,s(x) − E

h

ĥ
(λ)
nip,s(x)

i˛

˛

˛

≤ sup
x∈XI

bN

˛

˛

˛ĥ
(λ)
nip,s(x) − E

h

ĥ
(λ)
nip,s(x)

i˛

˛

˛ (C.19)

+ sup
x∈XB

bN

˛

˛

˛ĥ
(λ)
nip,s(x) − E

h

ĥ
(λ)
nip,s(x)

i˛

˛

˛ (C.20)

For (C.19) we have, because in the internal area the estimator ĥ
(λ)
nip,s(x) is identical to ĥ

(λ)
nw (x),

sup
x∈XI

bN

˛

˛

˛ĥ
(λ)
nip,s(x) − E

h

ĥ
(λ)
nip,s(x)

i˛

˛

˛ = sup
x∈XI

b

˛

˛

˛ĥ
(λ)
nw (x) − E

h

ĥ(λ)
nw (x)

i˛

˛

˛

≤ sup
x∈X

˛

˛

˛ĥ
(λ)
nw (x) − E

h

ĥ(λ)
nw (x)

i˛

˛

˛ = Op

 

„

logN

NbL+2λ
N

« 1
2

!

,

by Lemmas 3.2 and A.2. The second part, (C.20), corresponds to values in the boundary area. For x ∈ XB
bN

˛

˛

˛ĥ
(λ)
nip,s(x) − E

h

ĥ
(λ)
nip,s(x)

i˛

˛

˛ =
˛

˛

˛t
“

x, ĥ(λ)
nw , rb(x), s

”

− E

h

t
“

x, ĥ(λ)
nw , rb(x), s

”i˛

˛

˛

=

˛

˛

˛

˛

˛

˛

s−1
X

j=0

X

|θ|=j

1

θ!

“

ĥ(λ+θ)
nw (rbN (x)) − E

h

ĥ(λ+θ)
nw (rbN (x))

i”

(x− rbN (x))θ

˛

˛

˛

˛

˛

˛

≤
s−1
X

j=0

X

|θ|=j

1

θ!

˛

˛

˛

“

ĥ(λ+θ)
nw (rbN (x)) − E

h

ĥ(λ+θ)
nw (rbN (x))

i”˛

˛

˛ · ‖x− rbN (x)‖|θ|

≤
s−1
X

j=0

X

|θ|=j

1

θ!
sup
x∈X

˛

˛

˛ĥ
(λ+θ)
nw (rbN (x)) − E

h

ĥ(λ+θ)
nw (rbN (x))

i˛

˛

˛ · sup
x∈X

‖x − rbN (x)‖|θ| .

By Lemmas 3.2 and A.2

sup
x∈X

˛

˛

˛ĥ
(λ+θ)
nw (rbN (x)) − E

h

ĥ(λ+θ)
nw (rbN (x))

i˛

˛

˛

≤ sup
x∈X

I
bN

˛

˛

˛ĥ
(λ+θ)
nw (x) − E

h

ĥ(λ+θ)
nw (x)

i˛

˛

˛

≤ sup
x∈X

˛

˛

˛ĥ
(λ+θ)
nw (x) − E

h

ĥ(λ+θ)
nw (x))

i˛

˛

˛ = Op

0

@

 

logN

Nb
L+2|θ|+2|λ|
N

! 1
2

1

A .
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Using the fact that supx∈X
‖x− rbN (x)‖ ≤ CbN

sup
x∈X

˛

˛

˛ĥ
(λ+θ)
nw (rbN (x)) − E

h

ĥ(λ+θ)
nw (rbN (x))

i˛

˛

˛ ·
„

sup
x∈X

‖x− rbN (x)‖
«|θ|

= Op

0

@

 

logN

Nb
L+2|θ|+2|λ|
N

! 1
2

b
|θ|
N

1

A = Op

0

@

 

logN

Nb
L+2|λ|
N

! 1
2

1

A .

We conclude that

sup
x∈X

˛

˛

˛ĥ
(λ)
nip,s(x) − E

h

ĥ
(λ)
nip,s(x)

i˛

˛

˛ = Op

0

@

 

logN

Nb
L+2|λ|
N

! 1
2

1

A = Op

0

@

 

logN

NbL+2j
N

! 1
2

1

A ,

because |λ| ≤ j. �

Proof of Theorem 3.1:

We can apply Lemmas 3.3, 3.4, A.3 and Theorem A.1 to each row of [λ] because for a row µ of [λ] we have
|µ| ≤ |λ|, so that we can apply the results with j = |λ| and λ = µ. �

Proof of Theorem ??: First we prove part (i). Consider

|θ̂− θ| ≤ 1

N

N
X

i=1

|ω(Xi)|
˛

˛

˛m(ĥ
[λ]
NIP,s(Xi)) −m(h[λ](Xi))

˛

˛

˛+

˛

˛

˛

˛

˛

1

N

N
X

i=1

ω(Xi)m(h[λ](Xi)) − E

h

ω(X)′
“

h[λ] (X)
”i

˛

˛

˛

˛

˛

≤ 1

N

N
X

i=1

|ω(Xi)| sup
x∈X

˛

˛

˛m(ĥ
[λ]
NIP,s(x)) −m(h[λ](x))

˛

˛

˛+

˛

˛

˛

˛

˛

1

N

N
X

i=1

ω(Xi)m(h[λ](Xi)) − E

h

ω(X)′m
“

h[λ] (X)
”i

˛

˛

˛

˛

˛

Hence for all η > 0 a necessary condition for |θ̂ − θ| ≥ η is that either

1

N

N
X

i=1

|ω(Xi)| sup
x∈X

˛

˛

˛m(ĥ
[λ]
NIP,s(x)) −m(h[λ](x))

˛

˛

˛ ≥ η

2

or
˛

˛

˛

˛

˛

1

N

N
X

i=1

ω(Xi)m(h[λ](Xi)) − E
h

ω(X)′m
“

h[λ] (X)
”i

˛

˛

˛

˛

˛

≥ η

2

The probability of the latter event goes to 0 if N → ∞ by a law of large numbers. By the law of total probability
the probability of the first event is bounded by the sum

pr

 

1

N

N
X

i=1

|ω(Xi)| > E(|ω(X)|) + η

!

+ pr

„

sup
x∈X

˛

˛

˛m(ĥ
[λ]
NIP,s(x)) −m(h[λ](x))

˛

˛

˛ ≥ η

2|E(|ω(X)|) + η|

«

The first probability converges to 0 if N → ∞ by a law of large numbers. Because m(·) is continuous on the
bounded set Hλ and hence uniformly continuous on that set, and because the conditions for uniform convergence
of the NIP estimator are met, the probability of the second event converges to 0. This finishes the proof for the
consistency claim in part (i).
Next, we prove part (ii). Adding and subtracting some terms we can write:

√
N(θ̂ − θ) − 1√

N

N
X

i=1

“

ω(Xi)m(h
[λ]
0 (Xi)) − E

h

ω(X)m
“

h[λ] (X)
”i”

− 1√
N

N
X

i=1

0

@

X

κ≤λ

(−1)|κ|
2
X

m=1

“

α(κ)
κm(Xi)Zim − E[α(κ)

κm(X)Zm]
”

1

A

=
√
N(θ̂ − θ) −ω(Xi1)

∂

∂h[λ]′
m(h[λ](Xi1, t(Xi1))

“

ĥ
[λ]
NIP,s(Xi1, t(Xi1)) − h[λ](Xi1, t(Xi1))

”

ff

(C.21)

+
1√
N

N
X

i=1

ω(Xi1)
∂

∂h[λ]′
m(h[λ](Xi1, t(Xi1))

“

h[λ](Xi1, t(Xi1)) − E
h

ĥ
[λ]
NIP,s(Xi1, t(Xi1))

i”

ff

(C.22)
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+
1√
N

N
X

i=1

ν(Xi1)
′
“

ĥ
[λ]
nip,s(v(Xi1)) − E

h

ĥ
[λ]
nip,s(v(Xi1))

i”

(C.23)

−
√
N

„Z

X1

ν(x1)
′
“

ĥ
[λ]
nip,s(v(x1)) − E[ĥ

[λ]
nip,s(v(x1))]

”

fX1
(x1)dx1

«

(C.24)

√
N

2
X

m=1

Z

X

αm(x)′
“

ĥ
[λ]
m,nip,s(x) − E

h

ĥ
[λ]
m,nip,s(x)

i”

dx (C.25)

− 1√
N

N
X

i=1

0

@

X

κ≤λ

(−1)|κ|
2
X

m=1

“

α(κ)
κm(Xi)Zim − E[α(κ)

κm(X)Zm]
”

1

A , (C.26)

using the previous definitions of ν = (ν′1 ν
′
2)

′, where

νm(x1) = ω(x1)
∂

∂h
[λ]
m

m(h[λ](x1, t(x1)),

and

α1(x1) = fX1
(x1)ν1(x1), and α2(x1) = fX1

(x1)ν2(x1).

The proof consists of showing that (C.21), (C.22), (C.23) plus (C.24) and (C.25) plus (C.26) are all op(1) by
checking the relevant conditions for Lemmas A.4-A.9 and Theorem A.1.
First consider (C.21). The conditions in the theorem imply that q ≥ |λ|+2s−1, r ≥ |λ|+s−1, δ < 1/(L+2|λ|).
Hence, by Lemma A.4 it follows that

√
N(θ̂ − θ) − ω(Xi1)

∂

∂h[λ]′
m(h[λ](Xi1, t(Xi1))

“

ĥ
[λ]
NIP,s(Xi1, t(Xi1)) − h[λ](Xi1, t(Xi1))

”

ff

=
1√
N

N
X

i=1



ω(Xi1)
“

m(ĥ
[λ]
NIP,s(Xi1, t(Xi1)) −m(h[λ](Xi1, t(Xi1))

”

−ω(Xi1)
∂

∂h[λ]′
m(h[λ](Xi1, t(Xi1))

“

ĥ
[λ]
NIP,s(Xi1, t(Xi1)) − h[λ](Xi1, t(Xi1))

”

ff

= Op

„√
N
˛

˛

˛ĥ
[λ]
NIP,s − h[λ]

˛

˛

˛

2

0

«

. (C.27)

Moreover, because q ≥ |λ| + 2s − 1, r ≥ |λ| + s − 1 + L, it follows by Theorem A.1 that

sup
x∈X

˛

˛

˛ĥ
(λ)
nip,s(x) − h(λ)(x)

˛

˛

˛ = Op

0

@

 

logN

N · bL+2|λ|
N

!1/2

+ bsN

1

A .

Thus

= Op

„√
N
˛

˛

˛ĥ
[λ]
NIP,s − h[λ]

˛

˛

˛

2

0

«

= Op

 

√
N

 

logN

N · bL+2|λ|
N

+ b2s
N

!!

= Op

“

log(N) ·N−1/2+δL+2δ|λ| +N1/2−2sδ
”

.

By assumption δ < 1/(2L+ 4|λ|), so −1/2 + δL+ 2δ|λ| < 0 and thus log(N) ·N−1/2+δL+2δ|λ| → 0. In addition,
by assumption δ > 1/(2s), so δ > 1/(4s), and thus N1/2−2sδ → 0. Thus

Op

“

log(N) · N−1/2+δL+2δ|λ| +N1/2−2sδ
”

= op(1),

and thus (C.27), and thus (C.21) are op(1).
Next, consider (C.22). By assumption, q ≥ |λ| + 2s− 1, r ≥ |λ+ s − 1, and t ≥ 1, so the conditions for Lemma
A.5 are satisfied. This implies that

1

N

N
X

i=1

ω(Xi1)
∂

∂h[λ]′
m(h[λ](Xi1, t(Xi1))

“

h[λ](Xi1, t(Xi1)) − E
h

ĥ
[λ]
NIP,s(Xi1, t(Xi1))

i”

= Op(bs),

[54]



and thus that (C.22) is Op(N
1/2bs). By assumption δ > 1/(2s), and thus (C.22) is op(1).

Next, consider the sum of (C.23) and (C.24). By Assumption r ≥ |λ|, and so by Lemma A.7 it follows that the
sum of (C.23) and (C.24) is

1√
N

N
X

i=1

ν(Xi1)
′
“

ĥ
[λ]
nip,s(v(Xi1)) − E

h

ĥ
[λ]
nip,s(v(Xi1))

i”

−
√
N

„Z

X1

ν(x1)
′
“

ĥ
[λ]
nip,s(v(x1)) − E[ĥ

[λ]
nip,s(v(x1))]

”

fX1
(x1)dx1

«

= Op

“

N−1b
−L/2−L1/2−|λ|
N +N−1/2b

−L/2−|λ|
N

”

.

By Assumption 3, this is

= Op

“

N−1+δL/2+δL1/2+δ|λ| +N−1/2+δL/2+δ|λ|
”

.

By Assumption, δ < (1/(2L+4|λ), so δ < 1/(L+|λ|) ≤ 1/(L/2+L1/2+|λ|), and therefore Op

“

N−1+δL/2+δL1/2+δ|λ|
”

=

op(1). Also, δ < (1/(2L + 4|λ), so δ < 1/(L+ 2|λ|), and therefore Op

“

N−1/2+δL/2+δ|λ|
”

= op(1), and thus the

sum of (C.23) and (C.24) is op(1).
Next, consider the sum of (C.25) and (C.26). By assumption, r ≥ |λ| + s − 1, q ≥ 2|λ| + s, t ≥ |λ| + s and

d = max{λ1, . . . , λL} + s − 1. Therefore A.9 implies that the sum of (C.25) and (C.26) is Op

“

b
min{1,L/2}
N

”

. By

the assumptions on the bandwidth this is Op(N
−δ/2 = op(1), and thus the sum of (C.25) and (C.26) is op(1).

This finishes the proof of the asymptotic linearity claim in part (ii).
Finally, we prove part (iii).
This finishes the proof of part (iii), and thus all the claims in Theorem ??. �

Proof of Theorem 4.4: Consistency follows from

|θ̂ − θ0| ≤ 1

N

N
X

i=1

|ω(Xi1)|
˛

˛

˛n(ĥ
[λ]
NIP,s(Xi1, t(Xi1))) − n(h

[λ]
0 (Xi1, t(Xi1)))

˛

˛

˛

+

˛

˛

˛

˛

˛

1

N

N
X

i=1

ω(Xi1)n(h
[λ]
0 (Xi1, t(Xi1))) − E

h

ω(X1)
′n
“

h
[λ]
0 (X1, t(X1))

”i

˛

˛

˛

˛

˛

≤

1

N

N
X

i=1

|ω(Xi1)| sup
x1∈X1

˛

˛

˛n(ĥ
[λ]
NIP,s(x1, t(x1))) − n(h

[λ]
0 (x1, t(x1)))

˛

˛

˛+

˛

˛

˛

˛

˛

1

N

N
X

i=1

ω(Xi1)n(h
[λ]
0 (Xi1, t(Xi1))) − E

h

ω(X1)
′n
“

h
[λ]
0 (X1, t(X1))

”i

˛

˛

˛

˛

˛

and the obvious fact that

sup
x1∈X1

˛

˛

˛n(ĥ
[λ]
NIP,s(x1, t(x1))) − n(h

[λ]
0 (x1, t(x1)))

˛

˛

˛ ≤ sup
x∈X

˛

˛

˛n(ĥ
[λ]
NIP,s(x) − n(h

[λ]
0 (x)

˛

˛

˛

so that the result follows as in the proof of Theorem 4.1. The asymptotic distribution is derived directly from
Lemmas A.4-A.6, A.10-A.11. �
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Notation: (page number indicates where it was first introduced)

(Yi, Xi), i = 1, . . . , N is data (page 2)

K is dimension of Y (page 2)

L is dimension of X (page 2) (page 3)
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