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Abstract

This paper develops a new nonparametric series estimator for the average treatment
effect for the case with unconfounded treatment assignment, that is, where selection for
treatment is on observables. The new estimator is efficient. In addition we develop an
optimal procedure for choosing the smoothing parameter, the number of terms in the series
by minimizing the mean squared error (MSE). The new estimator is linear in the first-stage
nonparametric estimator. This simplifies the derivation of the MSE of the estimator as a
function of the number of basis functions that is used in the first stage nonparametric regres-
sion. We propose an estimator for the MSE and show that in large samples minimization
of this estimator is equivalent to minimization of the population MSE.
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1 Introduction

Recently a number of estimators have been proposed for average treatment effects under the
assumption of unconfoundedness or selection on observables. Many of these estimators re-
quire nonparametric estimation of an unknown function, either the regression function or the
propensity score. Typically results are presented concerning the rates at which the smoothing
parameters go to their limiting values, without specific recommendations regarding their values
(Hahn, 1998; Hirano, Imbens and Ridder, 2003; Heckman, Ichimura and Todd, 1998; Rotnitzky
and Robins, 1995; Robins, Rotnitzky and Zhao, 1995)).

In this paper we make two contributions. First, we propose a new efficient estimator. Our
estimator is a modification of an estimator introduced in an influential paper by Hahn (1998).
Like Hahn, our estimator relies on consistent estimation of the two regression functions followed
by averaging their difference over the empirical distribution of the covariates. Our estimator
differs from Hahn’s in that it directly estimates these two regression functions whereas Hahn
first estimates the propensity score and the two conditional expectations of the product of the
outcome and the indicators for being in the control and treatment group, and then combines
these to get estimates of the two regression functions. Thus our estimator completely avoids
the need to estimate the propensity score.1

Our second and most important contribution is that we are explicit about the choice of
smoothing parameters. In our series estimation setting the smoothing parameter is the number
of terms in the series. We derive the population MSE of the imputation estimator which
is simplified by the linearity of the imputation estimator in the nonparametrically estimated
conditional expectations. We find that although the estimator does not require an estimate
of the propensity score, the behavior of its MSE depends on the smoothness of the propensity
score. In particular, the number of basis functions needed is determined by the smoothness of
the propensity score, if the propensity score is smoother than the population regression of the
outcome on the covariates. Hence, the regression estimator is undersmoothed. We show that our
order selection criterion is different from the standard one for order selection in nonparametric
regression as in Li (1987) and Andrews (1991), because our criterion focuses explicitly on
optimal estimation of the average treatment effect rather than on optimal estimation of the
entire unknown regression function. The population MSE has a squared bias term that must
be estimated. We propose an estimator and we show that in large samples the minimal value
of the population and estimated MSE are equal.

In the next section we discuss the basic set up and introduce the new estimator. In Section
3 we analyze the asymptotic properties of this estimator. In Section 4 we propose a method
for choosing the number of terms in the series. Section 5 contains a simulation study and an
empirical application.

1Independently Chen, Hong, and Tarozzi (2004) have established the efficiency of their CEP-GMM estimator

which is similar to our new estimator.
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2 The Basic Framework

The basic framework is standard in this literature (e.g Rosenbaum and Rubin, 1983; Hahn,
1998; Heckman, Ichimura and Todd, 1998; Hirano, Imbens and Ridder, 2003; Abadie and
Imbens, 2005). We have a random sample of size N from a large population. For each unit i in
the sample, let Wi indicate whether the treatment of interest was received, with Wi = 1 if unit
i receives the treatment of interest, and Wi = 0 if unit i receives the control treatment. Using
the potential outcome notation popularized by Rubin (1974), let Yi(0) denote the outcome for
unit i under control and Yi(1) the outcome under treatment. We observe Wi and Yi, where

Yi ≡ Yi(Wi) = Wi · Yi(1) + (1−Wi) · Yi(0).

In addition, we observe a vector of pre-treatment variables, or covariates, denoted by Xi. We
shall focus on the population average treatment effect:

τ ≡ E[Y (1)− Y (0)].

Similar results can be obtained for the average effect for the treated:

τt ≡ E[Y (1)− Y (0)|W = 1].

The central problem of evaluation research (e.g., Holland, 1986) is that for unit i we observe
Yi(0) or Yi(1), but never both. Without further restrictions, the treatment effects are not con-
sistently estimable. To solve the identification problem, we maintain throughout the paper the
unconfoundedness assumption (Rubin, 1978; Rosenbaum and Rubin, 1983), which asserts that
conditional on the pre-treatment variables, the treatment indicator is independent of the po-
tential outcomes. This assumption is closely related to “selection on observables” assumptions
(e.g., Barnow, Cain and Goldberger, 1980; Heckman and Robb, 1984). Formally:

Assumption 2.1 (Unconfoundedness)

W ⊥ (Y (0), Y (1))
∣∣∣∣ X. (2.1)

Let the propensity score be the probability of selection into the treatment group:

e(x) ≡ Pr(W = 1|X = x) = E[W |X = x], (2.2)

The final assumption ensures that in the population for all values of X there are both treatment
and control units.

Assumption 2.2 (Overlap)

The propensity score is bounded away from zero and one.
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In practice there are often concerns about possible lack of overlap even if the assumption is
formally satisfied. Crump, Hotz, Imbens and Mitnik (2005) propose a systematic method for
constructing a subsample with an optimal amount of overlap.

Define the average effect conditional on pre-treatment variables:

τ(x) ≡ E[Y (1)− Y (0)|X = x]

Note that τ(x) is estimable under the unconfoundedness assumption, because

E[Y (1)− Y (0)|X = x] = E[Y (1)|W = 1, X = x]− E[Y (0)|W = 0, X = x]

= E[Y |W = 1, X = x]− E[Y |W = 0, X = x].

The population average treatment effect can be obtained by averaging the τ(x) over the distri-
bution of X:

τ = E[τ(X)],

and therefore the average treatment effect is identified.

3 Efficient Estimation

In this section we review two efficient estimators previously proposed in the literature. We then
propose a new estimator. Different from the two existing efficient estimators, the new estimator
is linear in the functions that are being estimated nonparametrically. This will facilitate the
mean-squared error calculations.

3.1 The Hahn Estimator

Hahn (1998) studies the same model as in the current paper. He calculates the efficiency
bound, and proposes an efficient estimator. His estimator imputes the potential outcomes
given covariates, followed by averaging the difference of the imputed values. The difference with
our estimator is that Hahn first estimates nonparametrically the three conditional expectations
E[Y ·W |X], E[Y ·(1−W )|X], and e(X) = E[W |X]. and then uses these conditional expectations
to estimate the two regression function µ0(x) = E[Y (0)|X = x] and µ1(x) = E[Y (1)|X = x] as

µ̂0(x) =
Ê[Y (1−W )|X = x]

1− ê(X)
, and µ̂1(x) =

Ê[Y W |X = x]
ê(X)

.

The average treatment effect is then estimated as

τ̂h =
1
N

N∑
i=1

(µ̂1(Xi)− µ̂0(Xi)) .

Hahn shows that under regularity conditions this estimator is consistent, asymptotically nor-
mally distributed, and that it reaches the semiparametric efficiency bound.
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3.2 The Hirano-Imbens-Ridder Estimator

Hirano, Imbens and Ridder (2003) (HIR from here onwards) also study the same set up. They
propose using a weighting estimator with the weights based on the estimated propensity score:

τ̂hir,1 =
1
N

N∑
i=1

Yi ·
(

Wi

ê(Xi)
− 1−Wi

1− ê(Xi)

)
.

They show that under regularity conditions, and with ê(x) a nonparametric estimator for the
propensity score, this estimator is consistent, asymptotically normally distributed and efficient.

It will be useful to consider a slight modification of this estimator. Consider the weights
for the treated observations, 1/ê(Xi). Summing up over all treated observations and dividing
by N we get

∑
i(Wi/ê(Xi))/N . This is not necessarily equal to one. We may therefore wish to

modify the weights to ensure that they add up to one for the treated and control units. This
leads to the following estimator:

τ̂hir,2 =
N∑

i=1

Yi ·
(

Wi

ê(Xi)
− 1−Wi

1− ê(Xi)

)/ N∑
i=1

(
Wi

ê(Xi)
− 1−Wi

1− ê(Xi)

)
.

3.3 A New Estimator

The new estimator relies on estimating the unknown regression functions µ1(x) and µ0(x)
through nonparametric regression of Y on X for the treatment and control subpopulations sep-
arately. These two nonparametric regressions are used to impute the counterfactual outcomes.
For this reason we refer to the new estimator as the imputation estimator. The imputation
estimator is a modification of Hahn’s estimator. Like Hahn’s estimator it estimates the average
treatment effect as the average of the difference between the imputed outcomes

τ̂imp =
1
N

N∑
i=1

(µ̂1(Xi)− µ̂0(Xi)) .

The difference with Hahn’s estimator is that the two regression functions are estimated directly
without first estimating the propensity score and the two conditional expectations E[Y ·W |X]
and E[Y · (1−W )|X]. Hahns estimator also estimates E(Y0|X) and E(Y1|X), but by a different
method. This implies that we only need to estimate two regression functions nonparametrically
rather than three and this will simplify the optimal choice of smoothing parameters. Moreover
the imputation estimator is linear in the nonparametrically estimated regression functions, and
this further simplifies the population MSE of the average treatment effect and its estimator.
Note that the imputation estimator still requires more unknown regression functions to be
estimated than the HIR estimator which requires only estimation of the propensity score, but
since the new estimator relies on estimation of different functions, it is not clear which is to be
preferred in practice.
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To provide additional insight into the structure of the problem, we introduce one final
estimator, which combines features of the Hirano-Imbens-Ridder estimators and the imputation
estimator:

τ̂mod =
N∑

i=1

(
Wi · µ̂1(Xi)

ê(Xi)
− (1−Wi) · µ̂0(Xi)

1− ê(Xi)

)
.

This estimator is a nonparametric version of the double-robust estimator proposed by Robins,
Rotnitzky and Zhao (1995) and Rotnitzky and Robins (1995). It will play a role in the efficiency
proof of the imputation estimator, but it may also be of independent interest.

The data consist of a random sample (Yi,Wi, Xi), i = 1, . . . , N . We can think of this as
two random samples (WiYi(1), Xi), i = 1, . . . , N and ((1−Wi)Yi(0), Xi), i = 1, . . . , N . The first
random sample is used to estimate E(Y (1)) and the second to estimate E(Y (0)). In both random
samples the variable of interest is missing for some observations. The missing value is recorded as
0. Consider first the estimation of E(Y (1)) using the random sample (WiYi(1), Xi), i = 1, . . . , N .
(The estimation of E(Y (0)) is completely analogous.) To simplify the notation we denote Yi(1)
by Yi. The conditional expectation µ(x) = E(Y (1)|X) = E(Y |X, W = 1) is estimated with
the observations that have both Yi and Xi, i.e. for which Wi = 1. The subsequent average is
over the full sample, including the observations for which Yi is not observed. The number of
observations for which both Yi and Xi are observed is N1 =

∑N
i=1 Wi. In the current setup

N1 is proportional to N → ∞, so that asymptotic bounds can be expressed as functions of
N . Without loss of generality we arrange that data such that the first N1 observations have
Wi = 1.

It should be noted that there is another type of data that can be used to estimate E(Y (0)), E(Y (1)).
In particular, we could have two independent random samples from the joint distributions of
(Y, X) given W = 1 and W = 0 and in addition an independent random sample from the
marginal population distribution of X. The imputation estimator can be computed with this
information. Note that the propensity score cannot be identified unless we know Pr(D = 1)
and without this information, neither the Hahn nor the weighting estimator can be used. Most
of our results, and in particular results that compare the different estimators, are for a single
sample. We will see that the order selection for the imputation estimator does not depend on
the type of data that is used.

In order to implement these estimators we need estimators for the two regression func-
tions and the propensity score. Following Newey (1995), we use series estimators for the two
regression functions µw(x). Let Kw denote the number of basis functions in the series. As
basis functions we use power series. Let λ(d) = (λ1, ..., λd) be a multi-index of dimension
d, that is, a d-dimensional vector of non-negative integers, with |λ(d)| =

∑d
k=1 λk, and let

xλ(d) = xλ1
1 . . . xλd

d . Consider a series {λ(r)}∞r=1 containing all distinct vectors λ such that |λ(r)|
is nondecreasing. Let pr(x) = xλ(r) and Pr(x) = (p1(x), ..., pr(x))′.

Under some conditions given below the matrix ΩK = E[PK(X)PK(X)′|W = 1] is non-
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singular for all K (Newey, 1994). Hence we can construct a sequence of basis functions
RK(x) = Ω−1/2

K PK(x) with E[RK(X)RK(X)′] = IK . Let RkK(x) be the kth element of the
vector RK(x). It will be convenient to work with this sequence of basis function RK(x). The
vector of basis functions RK(x) is bounded by ζ(K) = supx∈X |RK(x)|. Newey (1994) shows
that ζ(K) ≤ CK if the basis functions are a power series.

The conditional expectation µ(x) is estimated by the series estimator µ̂K(x) = R′
K(x)γ̂K

with γ̂K the least squares estimator. The matrix R′
KRK , with RK the N ×K matrix with ith

row equal to RK(Xi)′, may be singular, although Lemma A.3 in the appendix shows that this
happens with probability going to zero. To deal with this case we define γ̂K as

γ̂K =

 0 if λmin(Ω̂K,N1) ≤ 1/2,(∑N1
i=1 RK(Xi)R′

K(Xi)
)−1∑N1

i=1 RK(Xi)Yi otherwise,
(3.3)

with Ω̂K,N1 = 1
N1

∑N1
i=1 RK(Xi)RK(Xi)′. Define 1N1 to be an indicator for the event λmin(Ω̂K,N1) ≥

1/2. By Lemma A.3 in the appendix, it follows that a sufficient condition for 1N1

p→ 1 is
ζ(K)K1/2N−1/2 → 0, i.e. the number of basis functions increases with N at a rate that ensures
that Ω̂K,N1

p→ IK , so that with a slight abuse of notation 1− 1N1 = Op(ζ(K)K1/2N−1/2).
Given the estimated regression functions we estimate E(Y (1)) as

µ̂Y (1) =
1
N

N∑
i=1

µ̂K(Xi).

Note that the estimation of E(Y (0)) is completely analogous.
The modified estimator τ̂mod also requires estimation of the propensity score. We use the

series logit estimator (HIR) Let L(z) = exp(z)/(1 + exp(z)) be the logistic cdf. The series logit
estimator of the population propensity score e(x) is êL(x) = L(RL(x)′π̂L), where

π̂L = arg max
π

LN,L(π), (3.4)

for

LN,L(π) =
N∑

i=1

(
Wi · lnL(RL(Xi)′π) + (1−Wi) · ln(1− L(RL(Xi)′π))

)
. (3.5)

3.4 First Order Equivalence of Estimators

We make the following assumptions.

Assumption 3.1 (Distribution of Covariates)

X ∈ X ⊂ Rd, where X is the Cartesian product of finite intervals [xjL, xjU ], j = 1, . . . , d, with
−∞ < xjL < xjU < ∞. The density of X is bounded away from zero on X.

[6]



Assumption 3.2 (Propensity Score)

(i) The propensity score is bounded away from zero and one on X.
(ii) The propensity score is se times continuously differentiable on X.

Assumption 3.3 (Conditional Outcome Distributions)

(i) The two regression functions µw(x) are sµ times continuously differentiable on X.
(ii) The conditional variance of Yi(w) given Xi = x is bounded by σ2

w on X.

Because e(x) = Pr(W = 1|X = x) is bounded from 0 on X, Assumption 3.1 implies that the
density of the distribution of X|W = 1 is also bounded away from 0 on X (and that X is its
support).

The properties of the estimators will follow from the following theorem:

Theorem 3.1 (Asymptotic Equivalence of τ̂imp, τ̂mod, τ̂hir,1 and τ̂hir,2)

Suppose assumptions 3.1-3.3 hold. Then
(i),

√
N ·(τ̂imp − τ̂mod) = Op

(
N−1/2ζ(K)2ζ(L)K1/2L1/2

)
+Op

(
N−1/2ζ(K)3K1/2

)
+Op

(
N−1/2ζ(L)5L

)
+Op

(
N1/2ζ(K)2ζ(L)2K−sµ/dL−se/(2d)

)
+Op

(
ζ(K)2ζ(L)L1/2K−sµ/d

)
+Op

(
N1/2ζ(K)K−sµ/d

)
+Op

(
ζ(L)4L1/2L−se/(2d)

)
+ Op

(
N1/2ζ(L)2L−se/d

)
+ Op

(
N1/2ζ(L)L−se/(2d)

)
+Op

(
ζ(K)2ζ(L)2K1/2L−se/(2d)

)
,

(ii),

√
N · (τ̂mod − τ̂hir,1) = Op

(
N−1/2ζ(K)2ζ(L)K1/2L1/2

)
+ Op

(
N−1/2ζ(L)5L

)
+Op

(
N1/2ζ(K)2ζ(L)2K−sµ/dL−se/(2d)

)
+ Op

(
ζ(K)ζ(L)L1/2K−sµ/d

)
+Op

(
ζ(L)4L1/2L−se/(2d)

)
+ Op

(
ζ(K)2ζ(L)2K1/2L−se/(2d)

)
+Op

(
N1/2ζ(K)2K1/2K−se/d

)
+ Op

(
N1/2ζ(K)K1/2K−se/d−sµ/d

)
,

(iii),

√
N · (τ̂hir,1 − τ̂hir,2) = Op

(
N−1/2ζ(L)5L

)
+ Op

(
ζ(L)4L1/2L−se/(2d)

)
+Op

(
N1/2ζ(L)L−se/(2d)

)
+ Op

(
N1/2ζ(L)2L−se/d

)

[7]



Proof: See appendix.
In the bounds it is implicitly assumed that K0 = K1. Alternatively, the bounds are the sum

of the bounds in theorem 3.1 with K replaced by K0 and K1 respectively. To obtain bounds
on the rate at which K and L increase with N , we need to choose a particular class of basis
functions. For power series we have ζ(K) = K. The next corollary gives the rates at which the
estimators are asymptotically equivalent.

Corollary 3.1 If ζ(K) = K and K = NνK , L = NνL, then τ̂imp and τ̂mod are asymptotically
equivalent if se/d > 9 and

1
2 (sµ/d− 1)

< δK <
1
7

1
se/d− 2

< δL <
1
12

5
se/d− 4

< δL
δK

<
2(sµ/d− 4)

3

Note that to satisfy the first two inequalities we need sµ/d > 4 and se/d > 14. With these
restrictions the final inequality can be satisfied if sµ/d > 5 and in that case all inequalities can
be satisfied simultaneously. Note that if e(·) is smoother, we can let L go to ∞ slower relative
to K and the opposite is true if µ is smoother.

Corollary 3.2 If ζ(K) = K and K = NνK , L = NνL, then τ̂mod and τ̂hir,1 are asymptotically
equivalent if se/d > 9 and

δL <
1
12

1
2(se/d)− 5

< δK <
1
5
− 3

5
δL

5
se/d− 4

< δL
δK

<
2(sµ/d− 1)

3

To satisfy the last inequality we need that sµ/d > 3. In that case we can satisfy all inequalities
without further restrictions.

Corollary 3.3 If ζ(K) = K and K = NνK , L = NνL, then τ̂mod and τ̂hir,2 are asymptotically
equivalent if se/d > 9 and

1
2(se/d− 2)

< δL <
1
12

In the proof of part (iii) we require that the weighting estimator is consistent. HIR (2003) show
that a sufficient condition is that

1
4(se/d− 1)

< δL <
1
9

If the inequality in corollary 3.2 holds, then this inequality is always satisfied.
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4 A feasible MSE criterion

All three estimators contain a function or functions that are estimated nonparametrically. For
the Hahn estimator we need nonparametric estimates of the propensity score and the conditional
expectations of the product of the outcome and the treatment/control indicators given the
covariates. For the HIR weighting estimator an estimator of the propensity score is needed, and
for the imputation estimator introduced in section 3.3 we need estimators for the conditional
means in the treatment and control populations. Both Hahn and HIR use series estimators
for either the propensity score or the conditional expectations. That leaves the question how
to select the order of the series. For a meaningful comparison of the performance of these
asymptotically equivalent estimators such a selection rule is essential.

Despite its practical importance there has been little work on the selection of the nonpara-
metric estimators. The only paper that we are aware of is Ichimura and Linton (2003) who
consider bandwidth selection if the propensity score in the weighting estimator is estimated by a
kernel nonparametric regression estimator. The current practice in propensity score matching,
which is a nonparametric estimator that is different from the estimators considered in Section
3, is that the propensity score is selected using the balancing score property

W⊥X|e(X)

In practice this is implemented by stratifying the sample on the propensity score and testing
whether the means of the covariates are the same for treatment and controls (see e.g. Dehejia
and Wahba (2000)). This method of selecting the model for the propensity score focuses
exclusively on the bias in the estimation of the treatment effect. This could lead to over-fitting
of the propensity score and inflation of the variance of the estimator of the treatment effect.

We consider both the bias and the variance associated with a choice of the nonparametric
function in the treatment effect estimator. As in Section 3we consider the estimation of E(Y (1))
using the sample (WiYi(1), Xi), i = 1, . . . , N and we denote Y (1) by Y . The order selection for
the estimation of E(Y (0)) is completely analogous, with the understanding that the orders for
the two parameters are chosen independently.

4.1 The MSE and its estimator

As in Li (1987) we consider a population in which the joint distribution of Y, X is such that

Y = µ(X) + U

with E(U |X) = 0 and Var(U |X) = σ2. Andrews (1991) has generalized Li’s results to the
heteroskedastic case and we could do the same. To concentrate on essentials first we maintain
the assumption that U is homoskedastic. Note that by unconfoundedness U⊥W |X.

The data are as in Section 3.3, i.e. we have a sample (WiYi, Xi), i = 1, . . . , N with as
before W · Y = W · Y (1). Without loss of generality we assume that Y is observed for the first

[9]



N1 =
∑N

i=1 Wi observations, and these observations are a random sample from the distribution
of Y, X|W = 1. The imputation estimator for µY = E(Y ) is

τ̂imp = µ̂Y,K =
1
N

N∑
i=1

µ̂K,N1(Xi)

with

µ̂K,N1(x) = RK(x)′(R′
K,N1

RK,N1)
−1R′

K,N1
y

The subscript K is the number of basis functions used in the estimation of µ(x), and we use
the notation

yN1 =


Y1

...
YN1

 µN1 =


µ(X1)

...
µ(XN1)

 uN1 =


U1

...
UN1


and

RK(x) =


R1K(x)

...
RKK(x)

 RK,N1 =


RK(X1)′

...
RK(XN1)

′

 RK,N =


RK(X1)′

...
RK(XN )′


As is common in this literature we treat Xi, i = 1, . . . , N as constants. Alternatively, we can
consider the derivation of the MSE as being conditional on Xi, i = 1, . . . , N . In particular,
when considering the population MSE it is convenient to average the MSE over X.

The MSE is obtained from

√
N(µ̂Y,K − µY ) =

1√
N

N∑
i=1

(
µ̂K,N1(Xi)− EY |X,W=1 [µ̂K,N1(Xi)]

)
(4.6)

+
1√
N

N∑
i=1

(
EY |X,W=1 [µ̂K,N1(Xi)]− µ(Xi)

)
+ (4.7)

+
1√
N

N∑
i=1

(µ(Xi)− µY ) (4.8)

Because we treat Xi, i = 1, . . . , N as constants, we redefine the parameter of interest as

µY =
1
N

N∑
i=1

µ(Xi)

Hence the final term in the comparison, (4.8), can be omitted, and we need only consider the
first two terms. This parameter is the sample treatment effect of Imbens (2004).
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We now consider the first two terms separately. The first term, (4.6), corresponds to the
variance and the second, (4.7), to the bias term in the MSE. The first term can be written as

V =
1√
N

N∑
i=1

(
µ̂K,N1(Xi)− EY |X,W=1 [µ̂K,N1(Xi)]

)
=

1√
N

ι′NRK,N (R′
K,N1

RK,N1)
−1R′

K,N1
uN1

so that the variance term of the MSE is

E(V 2) = σ2 1
N

ι′NRK,N (R′
K,N1

RK,N1)
−1R′

K,N ιN =
1
N

σ2
(
ι′NRK,N

) (
R′

K,N1
RK,N1

)−1 (
ι′NRK,N

)′
=

1
N

σ2ι′NM̃K,N ιN

with

M̃K,N = RK,N

(
R′

K,N1
RK,N1

)−1
R′

K,N

Because

R′
K,N ιN

N
=

1
N

N∑
i=1

rK(Xi) ≈
1
N

N∑
i=1

Wi

e(Xi)
rK(Xi) =

1
N

N1∑
i=1

1
e(Xi)

rK(Xi) =
1
N

R′
K,N1

aN1

(≈ means that left- and right-hand side have the same expectation and limit) with

aN1 =


1

p(X1)
...
1

p(XN1
)


we obtain an alternative expression for the variance term

E(V 2) =
σ2

N
a′N1

MK,N1aN1

with

MK,N1 = RK,N1(R
′
K,N1

RK,N1)
−1R′

K,N1

This expression is useful for the study of the relation between the smoothness of the propensity
score and the variance.

The bias term is

B =
1√
N

N∑
i=1

(
EY |X,W=1 [µ̂K,N1(Xi)]− µ(Xi)

)
=

1√
N

N∑
i=1

(
RK(Xi)′(R′

K,N1
RK,N1)

−1R′
K,N1

µN1 − µ(Xi)
)

≈ 1√
N

N∑
i=1

Wi

e(Xi)
[
RK(Xi)′(R′

K,N1
RK,N1)

−1R′
K,N1

µN1 − µ(Xi)
]

[11]



=
1√
N

N1∑
i=1

1
e(Xi)

[
RK(Xi)′(R′

K,N1
RK,N1)

−1R′
K,N1

µN1 − µ(Xi)
]

= − 1√
N

a′N1
AK,N1µN1

with AK,N1 = I − MK,N1 . Note that
a′N1

AK,N1
µN1

N1
is the covariance of the residuals of the

regressions of µN1 on RK,N1 and aN1 on RK,N1 , respectively. By Lemma A.5, A.6(ii), A.7 and
A.8(ii) in the appendix, we have that

|a′N1
AK,N1µN1 | = O

(
Nζ(K)2K1/2−sµ/d−se/(2d)

)
so that the squared bias term is of order O

(
Nζ(K)4K1−2sµ/d−se/d

)
with sµ the number of

continuous derivatives of µ(x), se the number of continuous derivatives of e(x), and d the
dimension of X.

Because U⊥W |X, we have that E(U |X, W = 1) = 0, so that B and V are uncorrelated.
Hence the population MSE is the sum of the variance of V 2 and B2

EN (K) =
1
N

(
σ2ι′NM̃K,N ιN + (a′N1

AK,N1µN1)
2
)

=
1
N

(
σ2a′N1

MK,N1aN1 + (a′N1
AK,N1µN1)

2
)

(4.9)

The first expression on the right-hand side of (4.9) is the basis for an estimator of the MSE.
There are several potential estimators of the bias term2. Let eK,N1 be the vector of residuals
of the regression of yN1 on RK,N1 , i.e. eK,N1 = AK,N1yN1 . Using

a′N1
eK,N1 = a′N1

AK,N1µN1 + a′N1
AK,N1uN1

so that

(a′N1
eK,N1)

2 = (a′N1
AK,N1µN1)

2 +a′N1
AK,N1uN1u

′
N1

AK,N1aN1 +2a′N1
AK,N1µN1a

′
N1

AK,N1uN1

Hence,

E
[
(a′N1

eK,N1)
2
]

= (a′N1
AK,N1µN1)

2 + σ2a′N1
AK,N1aN1 .

This suggests the following estimator for the bias term:

(a′N1
eK,N1)

2 − σ2a′N1
AK,N1aN1

Upon substitution of the estimate we obtain the estimated MSE

CN (K) =
1
N

(
σ2ι′NM̃K,N ιN + (a′N1

eK,N1)
2 − σ2a′N1

AK,N1aN1

)
(4.10)

2Note that a′AK µ̂K = 0, so that this obvious estimator cannot be used.
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4.2 The population MSE

Before we consider properties of the estimated MSE (4.10) we study the behavior of the popu-
lation MSE. Using the alternative expression for the variance term we find that if N →∞

E(V 2) =
σ2

N
a′N1

MK,N1aN1

p→ σ2e E
[
RK(X)′

e(X)

∣∣∣∣W = 1
]

Σ−1
K E

[
RK(X)
e(X)

∣∣∣∣W = 1
]

with, because we use polynomials that are orthonormal with respsect to the distribution of
X|W = 1,

ΣK = E
[
RK(X)RK(X)′|W = 1

]
= IK

so that the variance term converges to

σ2e

K∑
k=1

(
E
[
RkK(X)

e(X)

∣∣∣∣W = 1
])2

Because

1
N1

a′N1
AK,N1µN1

p→ E
[
µ(X)
e(X)

∣∣∣∣W = 1
]
−

K∑
k=1

E
[
RkK(X)

e(X)

∣∣∣∣W = 1

]
E [RkK(X)µ(X)|W = 1]

the bias term B is asymptotically equal to (ratio converges to 1)

√
Ne

(
E
[
µ(X)
e(X)

∣∣∣∣W = 1
]
−

K∑
k=1

E
[
RkK(X)

e(X)

∣∣∣∣W = 1

]
E [RkK(X)µ(X)|W = 1]

)
To obtain simple expressions for the bias and variance terms, we assume that

e(x) =
1

γ′Ke
RKe(x)

µ(x) = δ′Kµ
RKµ(x) (4.11)

Because R1K(x) ≡ 1 and the support of X is bounded, we can ensure that e(x) is a proper
probability on the support of X. We have for this choice

E
[
RkK(X)

e(X)

∣∣∣∣W = 1
]

= γk if k ≤ Ke

= 0 if k > Ke

and analogously for µ(x), so that

E
[
µ(X)
e(X)

∣∣∣∣W = 1
]

=
min{Ke,Kµ}∑

k=1

γkδk

We conclude that the population MSE is approximately

EN (K) = σ2e

min{K,Ke}∑
k=1

γ2
k + Ne2

min{Ke,Kµ}∑
k=K+1

γkδk

2
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For fixed N the variance term increases with K. The squared bias decreases with K if γk

and δk have the same sign. The bias term need not be monotonic in K. If Ke < Kµ, then
the variance term is constant and the squared bias is 0 if K ≥ Ke. A special case is random
assignment of treatment with Ke = 1. In this case EN (K) is constant, suggesting the choice
K = 1 that in this case is clearly optimal. Because for random assignment aN1 = 1

Pr(W=1) ιN1

both the squared bias and its estimate are 0, so that the estimated MSE is minimized for K = 1
irrespective of the sample size.

If (4.11) holds then the squared bias term in the population MSE in (4.9) is 0 for K ≥
min(Ke,Kµ). This is true irrespective of the sample size. This implies that the population
MSE is minimized at K = min(Ke,Kµ). The estimate of the squared bias term in (4.10) is 0
if K ≥ Ke, but in large samples a′N1

eK,N1/N1 is approximately 0 if Kµ ≤ K < Ke (see section
4.3) so that in large samples the estimated MSE is also minimized at K = min(Ke,Kµ).

If we consider the number of basis functions that are needed to approximate either µ(x) or
1/e(x) as an index of smoothness, we conclude that the relative smoothness of these functions
determines the number of basis functions that minimizes the population MSE. If the (the inverse
of) propensity score is smoother than the conditional mean, we may need only a small number of
basis functions, even if the conditional mean is unsmooth. This can be seen as oversmoothing of
the conditional mean. Often in two-step semiparametric procedures the first step nonparametric
estimator is undersmoothed to deal with bias in the second stage parametric estimator. If the
weights are smooth the second stage bias will be small and we can safely use a smooth first-stage
nonparametric estimator. If Ke < Kµ the population MSE is constant for K ≥ Ke with Ke the
minimizer of the MSE. In that case it seems natural to select the smallest order that minimizes
the population MSE. The fact that the inverse of the propensity score plays an important role
seems surprising, but is less so, if one considers that this inverse reweights the sample in which
Y is observed to the population.

It is instructive to compare the population MSE with Li’s (1986) average squared error
criterion. This criterion is used to select the estimator that approximates µ(x) well. As we noted
above, it may not be optimal to select an estimator that estimates the conditional expectation
well. In particular, if the propensity score is smoother than the conditional expectation, Li’s
criterion may suggest a number of basis functions that is too large. To obtain intuitive results
we assume again (4.11). Li’s average squared error criterion is

LN (K) =
1

N1

N1∑
i=1

(µ̂K,N1(Xi)− µ(Xi))2

i.e. it is average squared deviation in the sample in which we observe both Y and X. The
expected value of the variance term is

σ2 1
N1

N1∑
i=1

RK(Xi)′(R′
KRK)−1RK(Xi) = σ2 K

N1

[14]



The bias term is equal to

1
N1

µ′N1
µN1 −

1
N1

µ′RK,N1(R
′
K,N1

RK,N1)
−1R′

K,n1
µN1

which converges to
∑K0

k=K+1 δ2
k. Hence Li’s criterion is

E [LN (K)] = σ2 K

N1
+

Kµ∑
k=K+1

δ2
k (4.12)

which we compare with

EN (K) = e

σ2

min{K,Ke}∑
k=1

γ2
K + N1

min{Ke,Kµ}∑
k=K+1

γkδk

2
These two criteria are clearly different. For instance, for fixed N , E [LN (K + 1)] ≤ E [LN (K)]

if and only if t2K+1 ≥ 1 with

tK+1 =
δK+1

σ√
N

the asymptotic t-ratio for δK+1. If we take γk = γ and Ke = Kµ, then for our criterion we find
that it decreases if and only if

tK+1 ≥
√

1 + T 2
K+2 − TK+2

or

tK+1 ≤ −
√

1 + T 2
K+2 − TK+2

with TK+2 =
∑Kµ

k=K+2 tk.

4.3 Optimality of the minimizer of the estimated MSE

Let KN = {k = 1, 2, . . . |Nν0 ≤ k ≤ Nν1} be the set of positive integers between Nν0 and Nν1 .
We will need ν0 > 0. The upper bound can be ν1 = 1. Define K̂ and K∗ as

K̂N = argminK∈KN
CN (K), and K∗

N = argminK∈KN
EN (K).

We will show that K̂ is optimal in the sense that (Li, 1987)

EN (K̂)
infK∈KN

EN (K)
p→ 1 (4.13)

This does not imply that the difference between K̂ and K∗ converges to 0.
We make the following assumptions

[15]



Assumption 4.1 E
[
U2m

]
< ∞ for some integer m.

Note that this implies that

E
[
U2m|W = 1

]
< ∞

which is what is used in the proof.

Assumption 4.2 For the m satisfying Assumption 4.1,

N−ν1+ν0m(se/(2d)−1) inf
K∈KN

EN (K)
m
2 →∞

with d the dimension of X.

Because the population MSE EN (K) is bounded from below by the positive variance term, a
sufficient condition for assumption 4.2 is that se > 2dm+ν1/ν0

m . For sufficiently large m this
holds under the rate assumptions in the Corolaries 3.1-3.3.

The sufficient condition illustrates an important issue with the MSE calculations. The
optimal value K∗

N needs to increase fast enough so that K∗
N > Nν0 . This rules out particularly

smooth functions the same way Li’s approach rules out regression functions that are exact
polynomials for with a finite number of nonzero coefficients.

Theorem 4.1 If assumptions 4.1-4.2 hold, then

EN (K̂)
infK∈KN

EN (K)
p→ 1

Proof See appendix.

4.4 Simulation results

The finite sample performance of our estimator is investigated in a small number of sampling
experiments. The sampling experiments are limited and do not address a number of important
questions, as the choice of basis functions, the estimation of σ2, the order of basis functions,
in particular when there are many covariates etc. The main issues that we investigate are the
finite sample performance of the estimated MSE, and the behavior of the population MSE, in
particular the role of the smoothness of the µ(x) and e(x).

The population model is

Y = µ(X) + U

with

µ(x) = (x + .6)(x + .42)(x + .3)(x + .2)(x− .1)(x− .3)(x− .4)(x− .5)+

[16]



Figure 1: Conditional mean function, propensity score and inverse propensity score

+50(x + .65)(x + .55)(x + .3) ∗ (x + .2)(x + .4)(x− .3)(x− .8)(x− .7)

X is a scalar variable and U is normal with mean 0 and variance 5. We choose a simple logit
model for e(x)

e(x) =
e.2+1x

1 + e.2+1x

Graphs of the functions µ(x), e(z) and 1/e(x) are given in figure 1.
As basis functions we choose the Legendre polynomials. These polynomials are defined on

[−1, 1] and are orthogonal with weight function equal to 1 on this interval. For that reason we
choose the marginal distribution of X such that X|W = 1 is a uniform distribution on [−1, 1],
i.e. the distribution of X has density

f(x) =
Pr(W = 1)

2
1

p(x)
− 1 ≤ x ≤ 1

Of course, in practice it may not be feasible to choose polynomials that are orthogonal with a
weight function that is equal to the distribution X|W = 1. The results in sections 4.1 and 4.3
do not depend on this choice, and the only reason for setting the simulation up this way is to
check the results in section 4.2

Table 1 gives some statistics for the data generating process. The fraction in the population
with an observed Y is .5089. The mean of Y is smaller in the subpopulation with observed
Y than in the full population. The propensity score is between .31 and .77, i.e. the deviation
from random assignment is moderate and the weights are not too large (see also figure 1). The
R2 is that of the population model.
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Table 1: Statistics sampling experiment

Mean Std dev

Y .9146 3.1248
Y |W = 1 .8021 3.0511

W .5089
R2 .4878

Table 2: Population and estimated MSE

mean K̃ mean K̂ min K̂ max K̂ frac K̂ = K̃ EN (K̂)

EN (K̃)

N = 100 2.4 2.1 1 5 .669 1.0487
N = 1000 3.6 3.4 1 5 .773 1.0286
N = 5000 4.9 4.8 3 6 .923 1.0001

We consider three sample sizes N = 100, 1000, 5000. The number of repetitions is 1000.
The results are in table 2 and the figures.

The final column is in line with theorem 4.1. That theorem does not imply that the min-
imizer of the population and estimated MSE are closer if the sample size increases. However,
this is what we find in this experiment. Indeed if we consider even larger sample sizes (not
reported), we find that both the population and estimated MSE are minimal for K = 5. Hence,
in this example the weights are sufficiently smooth (but not exactly a linear combination of
basis functions) that the bias is essentially 0 and the variance constant if the number of basis
functions is smaller than the order of the polynomial for µ(x).

In the figures 1-3 we report the population MSE and its estimator and the poulation squared
bias and variance terms. The first thing to note is that the estimator of the population MSE
is acurate, in particular for larger sample sizes. The estimate has to be accurate for large K

because in that case the bias is very small compared to the variance, and the variance term
need not be estimated. For sample size 100 the variance seems to increase with K this is a
small sample phenomenon, because the variability of the variance term for larger K is big. For
larger sample sizes the behavior of the population MSE is as if the inverse propensity score is
a polynomial of order 5. It should be noted that for if the sample size is small, the population
MSE may have local minima. In particular, it occurs that the population MSE is minimal for
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K = 1 increases if K = 2 and then decreases again for K ≥ 2 in some cases to a value that is
larger than the minimum at K = 1. In this case the preferred estimate is the biased mean in
the subsample in which Y is observed. As predicted by theorem 4.1 local minima disappear if
the sample size increases.

4.5 Empirical application

In the empirical application we use data from the Great Avenue to INdependence (GAIN)
experiments. These experimental evaluations of job training and job search assistance programs
took place in the 1990’s in a number of locations in California. As the evaluations are based on
formal randomization within the sites, evaluations of the within-site effects are straightforward.
Here we focus on comparisons of the control groups in different sites.

Such comparisons can be useful to assess whether for the program evaluations it is important
to have randomizations. Specifically, to analyze the question whether controls in one location
(e.g., Los Angeles) could have provided a comparison group for the program in a second location
(e.g., Riverside), one could investigate whether conditional on covariates there is a systematic
difference (e.g., a non-zero average difference) between the two groups. This amounts to esti-
mating an average treatment effect on the control group data from the two locations with the
location indicator as the treatment dummy.

We compare the control groups in Riverside and Los Angeles with 313 and 1022 observa-
tions in the control groups respectively. For each individual we have individual background
characteristics, including age, ethnicity (hispanic, black, or other), an indicator for high school
graduation, an indicator for the presence of exactly one child (all individuals have at least one
child), and an indicator for the presence of children under the age of 5, and ten quarters of
earnings data. As outcome we use earnings in the year after the program. Table 3 presents
summary statistics for the covariates by site. All earnings data are in thousands of dollars.

The table suggests that the two locations have some differences, especially in the average
earnings prior to the enrollment in the program, but only limited differences in individual
background charateristics other than ethnicity (the control group in LA has many more Blacks
relative to Whites compared to Riverside, with similar proportions of Hispanics). The full
population consist of the control group population in either Los Angeles or Riverside. The
population means E(Y (0)) and E(Y (1)) are the mean earnings in the case that the combined
control population would live in either Los Angeles or Riverside. We estimate the mean for Los
Angeles county.

The sequence of models we consider is indexed by the number of pre-program earnings
periods we include in the regression function. All models include the six individual background
characteristics plus age-squared. The ten models then differ by the number of pre-program
quarters of earnings data they include. The result is in figure 5 where the top graph is for an
estimate of Li’s criterium, Mallow’s Cp and the bottom graph is for our estimated MSE. Note
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Figure 2: Population and estimated MSE; population squared bias and variance: N = 100
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Figure 3: Population and estimated MSE; population squared bias and variance: N = 1000
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Figure 4: Population and estimated MSE; population squared bias and variance: N = 5000
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Table 3: GAIN Data: Summary Statistics

All Riverside (313) Los Angeles (1022)
mean s.d. min max mean s.d. mean s.d.

Age 37.7 8.6 16 66 34.4 8.7 38.7 8.3
Hispanic 0.36 0.48 0 1 0.37 0.48 0.36 0.48
Black 0.37 0.48 0 1 0.17 0.37 0.43 0.50
HS Dipl 0.20 0.40 0 1 0.21 0.41 0.19 0.39
1 Child 0.32 0.47 0 1 0.35 0.48 0.31 0.46
Child [0,5] 0.12 0.32 0 1 0.13 0.34 0.11 0.31
Earnings Quarter -1 0.20 0.81 0 9.09 0.16 0.64 0.21 0.86
Earnings Quarter -2 0.20 0.79 0 9.73 0.19 0.71 0.20 0.82
Earnings Quarter -3 0.20 0.77 0 9.37 0.13 0.51 0.22 0.83
Earnings Quarter -4 0.20 0.81 0 11.10 0.14 0.49 0.22 0.89
Earnings Quarter -5 0.20 0.81 0 11.53 0.17 0.68 0.21 0.85
Earnings Quarter -6 0.19 0.76 0 9.62 0.17 0.67 0.19 0.79
Earnings Quarter -7 0.18 0.71 0 9.67 0.17 0.61 0.18 0.74
Earnings Quarter -8 0.16 0.71 0 10.32 0.19 0.66 0.16 0.72
Earnings Quarter -9 0.18 0.73 0 8.46 0.26 0.87 0.16 0.69
Earnings Quarter -10 0.18 0.76 0 10.39 0.27 0.88 0.16 0.71

Earnings Year 1 1.13 3.30 0 37.28 0.86 2.40 1.21 3.53

that Cp is minimal for K = 5 while our estimated MSE suggests that K should be chosen as 3.

5 Conclusion

Although the method that we propose to select the non-parametric first component in a two-
step estimator of the average treatment effect works well in a simulation study and an empirical
example, much work has to be done before it will be a fully automatic feature of the estimation
procedure. First, we need more insight in the performance of our procedure in a wider array
of settings. In particular, the choice of basis functions in the case that the covariate vector has
more than one variable is important. Second, the choice of the variance parameter σ2 may be
important, at least in finite samples. The current practice is to use the variance estimate in a
’large’ regression model.
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Figure 5: Li and INR MSE criterium
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The order selection is particularly simple for the imputation estimator that is linear in the
nonparametric estimator. One would expect that the qualitative results on the relation between
the smoothness of the regression function, the propensity score and the population MSE holds
also for estimators that are nonlinear in the nonparametric estimators, as the HIR weighting
estimator.
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A Appendix

For matrices A we use the norm |A| = (tr(A′A))1/2.3 For reference we state some of the properities of
this norm.

Lemma A.1 (Properties of Norm) For conformable matrices A and B,
(i), |AB| ≤ |A| · |B|,
(ii), |A′BA| ≤ |B| · |A′A|.
If B is positive semi-definite and symmetric, then, for λmax(B) equal to the maximum eigenvalue of B,
(iii), tr(A′BA) ≤ |A|2 · λmax(B),
(iv), |AB| ≤ |A| · λmax(B),
(v), |BA| ≤ |A| · λmax(B).

Proof: Omitted.
The data consist of a random sample (Yi,Wi, Xi), i = 1, . . . , N . We can think of this as two random

samples (WiYi(1), Xi), i = 1, . . . , N and ((1 − Wi)Yi(0), Xi), i = 1, . . . , N . The first random sample is
used to estimate E(Y (1)) and the second to estimate E(Y (0)). In both random samples the variable of
interest is missing for some observations. The missing value is 0. In this appendix we only consider the
estimation of E(Y (1)) using the random sample (WiYi(1), Xi), i = 1, . . . , N . The estimation of E(Y (0))
is completely analogous. To simplify the notation we denote Y (1) by Y . The conditional expectation
E(Y |X = x) ≡ µ(x) is estimated with the observations that have both Yi and Xi, i.e. for which Wi = 1.
The subsequent average is over the full sample, including the observations for which Y is not observed.
If it does not cause confusion, we suppress the condition W = 1 in moments of the (joint) distribution(s)
of Y , X for the subpopulation in which both Y and X are observed. This makes no difference for the
conditional distribution of Y given X = x that by assumption does not depend on W . The number
of observations for which both Y and X are observed is N1 =

∑N
i=1 Wi. In the current setup N1 is

proportional to N → ∞, so that asymptotic bounds are expressed as functions of N . Without loss of
generality we arrange that data such that the first N1 observations have Wi = 1.

We use a series estimator for the regression function µ(x). Let K denote the number of terms
in the series. As the basis functions we use power series. Let λ(d) = (λ1, ..., λd) be a multi-index
of dimension d, that is, a d-dimensional vector of non-negative integers, with |λ(d)| =

∑d
k=1 λk, and

let xλ(d) = xλ1
1 . . . xλd

d . Consider a series {λ(r)}∞r=1 containing all distinct vectors such that |λ(r)| is
nondecreasing. Let pr(x) = xλ(r), where Pr(x) = (p1(x), ..., pr(x))′.

Assumption A.1 X ∈ X, where X is the Cartesian product of intervals [xjL, xjU ], j = 1, . . . , d, with
xjL < xjU . The density of X is bounded away from zero on X.

If we assume, as we do in assumption A.5, that e(x) = Pr(W = 1|X = x) is bounded from 0 on X,
assumption A.1 implies that the density of the distribution of X|W = 1 is also bounded away from 0 on
X (and that X is its support). Given assumption A.1 the matrix ΩK = E[PK(X)PK(X)′] is nonsingular
for all K (Newey, 1994)4. Hence we can construct a sequence of basis functions RK(x) = Ω−1/2

K PK(x)

3Because this norm coincides with the usual Euclidean norm if A is a vector or a scalar, we use the same

notation for the scalar, vector or matrix case. The properties of the norm depend in part on whether A is a

scalar, vector or matrix.
4By the convention adopted above we omit the condition W = 1 in the (conditional) expectation.
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with E[RK(X)RK(X)′] = IK . Let RkK(x) be the kth element of the vector RK(x). It will be convenient
to work with this sequence of basis function RK(x). Define

ζ(K) = sup
x∈X

|RK(x)|.

Lemma A.2 (Newey, 1994)

ζ(K) = O(K).

Let RK be the N1 ×K matrix with ith row equal to R′
K(Xi), and let Ω̂K,N1 = R′

KRK/N1.

Lemma A.3 (Newey, 1995)

|Ω̂K,N1 − IK | = Op

(
ζ(K)K1/2N−1/2

)
Proof: By Cauchy-Schwartz

E[|Ω̂K,N1 − IK |] ≤
√

E[|Ω̂K,N1 − IK |2] =

√√√√√ 1
N2

E

tr

( N∑
i=1

(RK(Xi)RK(Xi)′ − IK)

)2
 =

1
N

√√√√tr

(
N∑

i=1

E [(RK(Xi)RK(Xi)′ − IK)2]

)
≤ 1

N

√√√√ N∑
i=1

E [tr(RK(Xi)RK(Xi)′RK(Xi)RK(Xi)′)] =

1√
N

√
E [(RK(Xi)′RK(Xi))2] ≤

√
supx∈X RK(x)′RK(x)

√
N

√
E [RK(Xi)′RK(Xi)] = O

(
ζ(K)K1/2N−1/2

)
The result follows by the Markov inequality. Note that this rate is faster than that in Newey (1995),
because we take the basis functions as orthonormal. �

Let Ui = Yi − µ(Xi). Let U, Y, and X be the N1 vectors and N1 × d matrix with ith row equal to
Ui, Yi, and X ′

i. Let 1N1 be the indicator for the event λmin(Ω̂K,N1) > 1/2.

Assumption A.2

sup
x∈X

Var(Y |X) ≤ σ̄2 < ∞.

Lemma A.4 (i),

1N1 ·
∣∣∣Ω̂−1/2

K,N1
R′

KU/N1

∣∣∣ = Op(K1/2N−1/2),

and (ii),

1N1 ·
∣∣∣Ω̂−1

K,N1
R′

KU/N1

∣∣∣ = Op(K1/2N−1/2),

Proof: First we prove (i).

E
[
1N1 ·

∣∣∣Ω̂−1/2
K,N1

R′
KU/N1

∣∣∣2 ∣∣∣∣X]
= E

[
1N1 ·U′RKΩ̂−1

K,N1
R′

KU/N2
1

∣∣∣X]
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= E
[
1N1 ·U′RK(R′

KRK)−1R′
KU/N1

∣∣X]
= E

[
1N1 tr

(
U′RK(R′

KRK)−1R′
KU

)∣∣X] /N1

= E
[
1N1 tr

(
RK (R′

KRK)−1
R′

KUU′
)∣∣∣X] /N1

= tr
(
RK (R′

KRK)−1
R′

KE [ 1N1UU′|X]
)

/N1

≤ σ̄2 · tr
(
RK(R′

KRK)−1R′
K

)
/N1

= σ̄2 ·K/N1

Then by the Markov inequality 1N1 |Ω̂
−1/2
K,N1

R′
KU/N1| = Op(K1/2/N−1/2).

Next, consider part (ii). Using lemma A.1(v),

1N1 ·
∣∣∣Ω̂−1

K,N1
R′

KU/N1

∣∣∣ ≤ 1N1 · λmax(Ω̂
−1/2
K,N1

) ·
∣∣∣Ω̂−1/2

K,N1
R′

KU/N1

∣∣∣ .
Since 1N1 · λmax(Ω̂

−1/2
K,N1

) = Op(1), the conclusion follows. �

The conditional expectation µ(x) is estimated by the series estimator µ̂K(x) = R′
K(x)γ̂K with γ̂K

the least squares estimator. Formally R′
KRK may be singular, although lemma A.3 shows that this

happens with probability going to zero. To deal with this case we define γ̂K as

γ̂K =

 0 if λmin(Ω̂K,N1) ≤ 1/2,(∑N1
i=1 RK(Xi)R′

K(Xi)
)−1∑N1

i=1 RK(Xi)Yi otherwise,
(A.1)

By lemma A.3, it follows that a sufficient condition for 1N1

p→ 1 is ζ(K)K1/2N−1/2 → 0, i.e. K

increases with N at a rate that ensures that Ω̂K,N1

p→ IK . This implies that for any sequence aN we
have aN1N1

p→ 0 so that if the rate condition is met, the indicator does not affect the rate of convergence
of the OLS estimator.

Define γ∗K to be the pseudo true value defined as

γ∗K = arg min
γ

E
[
(µ(X)−RK(X)′γ)2

∣∣∣W = 1
]
, (A.2)

with the corresponding pseudo true value of the regression function denoted by µ∗K(x) = RK(x)′γ∗K .
First we state some of the properties of the estimator for the regression function. In order to do so

it is useful to first give some approximation properties for µ(x).

Assumption A.3 µ(x) is sµ times continuously differentiable on X.

This assumption together with assumption A.1 implies that µ is bounded on X.

Lemma A.5 (Lorentz, 1986) Suppose assumptions A.1 and A.3 hold. Then there is a sequence γ0
K

such that

sup
x∈X

|µ(x)−RK(x)′γ0
K | = O

(
K−sµ/d

)
.

For the sequence γ0
K in lemma A.5, define the corresponding sequence of regression functions,

µ0
K(x) = RK(x)′γ0

K .
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Lemma A.6 (Convergence Rate for Regression Function Estimators)

Suppose assumptions A.1-A.3 hold. Then (i):∣∣γ∗K − γ0
K

∣∣ = O
(
K1/2−sµ/d

)
, (A.3)

(ii):

sup
x∈X

|µ∗K(x)− µ0
K(x)| = O(ζ(K)K1/2−sµ/d). (A.4)

(iii):

|γ̂K − γ∗K | = Op(ζ(K)KN−1/2), (A.5)

(iv): ∣∣γ̂K − γ0
K

∣∣ = Op

(
ζ(K)K1/2N−1/2 + K−sµ/d

)
, (A.6)

(v):

sup
x∈X

|µ̂K(x)− µ∗K(x)| = Op(ζ(K)2KN−1/2), (A.7)

and (vi):

sup
x∈X

|µ̂K(x)− µ(x)| = Op(ζ(K)2K1/2N−1/2 + ζ(K)K−sµ/d)), (A.8)

Proof: First, consider (i):

γ∗K = (E[RK(X)R′
K(X)])−1 E[RK(X)Y ] = (E[RK(X)R′

K(X)])−1 E[RK(X)µ(X)]

= E[RK(X)µ(X)],

where we use E[RK(X)RK(X)′] = IK . Also, γ0
K = E[RK(X)R′

K(X)γ0
K ], so that

|γ∗K − γ0
K | = |E[RK(X)µ(X)]− E[RK(X)RK(X)′γ0

K ]|

= |E[RK(X)(µ(X)−RK(X)′γ0
K)]| ≤ E[|RK(X)||µ(X)−RK(X)′γ0

K |]

≤
√

E [(µ(X)−RK(X)′γ0
K)2] E [RK(X)′RK(X)]

≤
√

sup
x∈X

(µ(x)−RK(x)′γ0
K)2 · E [RK(X)′RK(X)] = O

(
K1/2K−sµ/d

)
.

because E[RX(X)′RK(X)] = tr(E[RX(X)RK(X)′]) = K. Next, consider (ii):

sup
x∈X

|µ∗K(x)− µ0
K(x)| = sup

x∈X
|RK(x)′(γ∗K − γ0

K)|

≤ sup
x∈X

|RK(x)| · |γ∗K − γ0
K | = O

(
ζ(K)K1/2−sµ/d

)
,

using the result in lemma A.6(i).
Next, consider (iii): The bound that is derived is proportional to N−1/2, so that it converges to 0

for fixed K. Using the same method of proof as in (iv) below, a ’better’ bound can be obtained that
however only converges to 0 if K →∞ as well. We have

|γ̂K − γ∗K | = 1N1 · |γ̂K − γ∗K |+ (1− 1N1) · |γ∗K |,
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The second term (1−1N1)·|γ∗K | is op(ζ(K)K1/2N−1/2), in the sense that it is nonzero only if λmin(Ω̂K,N1) ≤
1/2 and the probability of this event converges to 0 if the rate condition is met5. The first term is

1N1 · |γ̂K − γ∗K | = 1N1 · |Ω̂−1
K,N1

(R′
KY/N1)− Ω̂−1

K,N1
(R′

KRKγ∗K/N1)|

= 1N1 · |Ω̂−1
K,N1

(R′
KU/N1) + Ω̂−1

K,N1
(R′

K(µ(X)−RKγ∗K)/N1)|

≤ 1N1 · |Ω̂−1
K,N1

(R′
KU/N1)|+ 1N1 · |Ω̂−1

K,N1
(R′

K(µ(X)−RKγ∗K)/N1)|.

By lemma A.4(ii) the first term is Op(K1/2N−1/2). For the second term, we have, using lemma A.1(v),
and using the fact that if 1N1 is equal to 1, then λmax(Ω̂−1

K,N1
) ≤ 2,

1N1 · |Ω̂−1
K,N1

(R′
K(µ(X)−RKγ∗K)/N1)| ≤ 1N1 · 2|(R′

K(µ(X)−RKγ∗K)/N1)|

Now,

R′
K(µ(X)−RKγ∗K)/N1 =

1
N1

N1∑
i=1

(RK(Xi)µ(Xi)−RK(Xi)RK(Xi)′γ∗K)

which is an average of mean 0 random variables. By the Markov inequality the rate of convergence is
the square root of

1
N1

E [(RK(X)µ(X)−RK(X)RK(X)′γ∗K)′(RK(X)µ(X)−RK(X)RK(X)′γ∗K)]

=
1

N1
E
[
µ(X)2RK(X)′RK(X) + γ∗

′

KRK(X)RK(X)′RK(X)RK(X)′γ∗K − 2µ(X)′RK(X)′RK(X)RK(X)′γ∗K
]

The first term of the final expression is bounded by

supx∈X µ(x)2

N1
E[RK(X)′RK(X)] ≤ C1

K

N

the second by using lemma A.1(ii) and ζ(K) = supx∈X |RK(x)| is bounded by

|γ∗K |2

N1
E[|RK(X)RK(X)′RK(X)RK(X)′|] =

|γ∗K |2

N1
E[|RK(X)|2|RK(X)′RK(X)|] ≤ C2

ζ(K)2K2

N

because |γ∗K | = |E[RK(X)µ(X)]| ≤ supx∈X |µ(x)|
√

E[RK(X)′RK(X)] = O(
√

K), and the third term is
bounded by

2
supx∈X |µ(x)| · supx∈X |RK(x)||γ∗K |

N1
E[RK(X)′RK(X)] ≤ C3

ζ(K)K3/2

N

Hence

|γ̂K − γ∗K | = Op(ζ(K)KN−1/2)

Next, consider (iv): In this case the bound requires that both K, N →∞. We have

|γ̂K − γ0
K | = 1N1 · |γ̂K − γ0

K |+ (1− 1N1)|γ0
K |

5This is an abuse of notation because it only expresses that the term is op(1) if the rate condition holds, but

the usual rules for stochastic order terms do not apply.
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The second term is op(ζ(K)K1/2N−1/2) as was the analogous term in the proof of (iii). Also

1N1 · |γ̂K − γ0
K | = 1N1 · |Ω̂−1

K,N1
(R′

KY/N1)− Ω̂−1
K,N1

(R′
KRKγ0

K/N1)|

≤ 1N1 · |Ω̂−1
K,N1

(R′
KU/N1)|+ 1N1 · |Ω̂−1

K,N1
(R′

K(µ(X)−R′
Kγ0

K)/N1)|.

By lemma A.4(ii) the first term is Op(K1/2N−1/2). For the second term, we have, using lemma A.1(v),
and using the fact that if 1N1 is equal to 1, then λmax(Ω̂

−1/2
K,N1

) ≤
√

2,

1N1 · |Ω̂−1
K,N1

(R′
K(µ(X)−RKγ0

K)/N1)| ≤ 1N1 · λmax(Ω̂
−1/2
K,N1

) · |Ω̂−1/2
K,N1

(R′
K(µ(X)−RKγ0

K)/N1)|

≤ 1N1 ·
√

2 ·
(

1
N2

1

(µ(X)−RKγ0
K)′R′

KΩ̂−1/2
K,N1

Ω̂−1/2
K,N1

R′
K(µ(X)−RKγ0

K)
)1/2

= 1N1 ·
√

2 ·
(

1
N1

(µ(X)−RKγ0
K)′RK(R′

KRK)−1R′
K(µ(X)−RKγ0

K)
)1/2

≤
√

2 ·
(

1
N1

(µ(X)−RKγ0
K)′(µ(X)−RKγ0

K)
)1/2

(A.9)

where we use the fact that because RK(R′
KRK)−1R′

K is a projection matrix, it follows that IN1 −
RK(R′

KRK)−1R′
K is positive semi-definite. Since

E
[

1
N1

(µ(X)−RKγ0
K)′(µ(X)−RKγ0

K)
]

≤ sup
x∈X

|µ(x)−RK(x)′γ0
K |2 ≤ CK−2sµ/d,

it follows by the Markov inequality that (A.9) is Op(K−sµ/d). Hence ‖γ̂K − γ0
K‖ = Op(K−sµ/d) +

Op(K1/2N−1/2) + Op(ζ(K)K1/2N−1/2) = Op(K−sµ/d + ζ(K)K1/2N−1/2). Note that the bound on the
variance is obtained from the rate of convergence of Ω̂K,N1 .

Next, consider (v):

sup
x∈X

|µ̂K(x)− µ∗K(x)| = sup
x∈X

|RK(x)′(γ̂K − γ∗K)|

≤ sup
x∈X

|RK(x)| · |γ̂K − γ∗K | = Op(ζ(K)2KN−1/2).

Finally, consider (vi).

sup
x∈X

|µ̂K(x)− µ(x)| ≤ sup
x∈X

|µ̂K(x)− µ0
K(x)|+ sup

x∈X
|µ0

K(x)− µ(x)|

= Op(ζ(K)2K1/2N−1/2 + ζ(K)K−sµ/d + K−sµ/d) = Op(ζ(K)2K1/2N−1/2 + ζ(K)K−sµ/d).

�

Here we briefly summarize the relevant results from HIR for the nonparametric estimator for the
propensity score. Let L(z) = exp(z)/(1 + exp(z)) be the logistic cdf and L′(z) = L(z) · (1− L(z)). The
series logit estimator of the population propensity score e(x) is êL(x) = L(RK(x)′π̂L), where

π̂L = arg max
π

LN (π), (A.10)
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for

LN (π) =
N∑

i=1

(Wi · lnL(RL(Xi)′π) + (1−Wi) · ln(1− L(RL(Xi)′π))) . (A.11)

For N →∞ and L fixed we have π̂L
p→ π∗L, with π∗L the pseudo true value:

π∗L = arg max
π

E [e(X) · lnL(RL(X)′π) + (1− e(X)) · ln(1− L(RL(X)′π))] . (A.12)

We also define the pseudo true propensity score: e∗L(x) = L(RL(x)′π∗L).

Assumption A.4 e(x) is se times continuously differentiable on X.

Lemma A.7 Suppose assumptions A.1 and A.4 hold. Then there is a sequence π0
L such that

sup
x∈X

|e(x)− L(RL(x)′π0
L)| = O

(
L−se/d

)
.

Proof: See HIR.

We define e0
L(x) = L(RL(x)′π0

L).

Assumption A.5 infx e(x) > 0 and supx∈X e(x) < 1.

Lemma A.8 (Convergence Rate for Propensity Score Estimators)

Suppose assumptions A.1, A.4 and A.5 hold and se/d ≥ 4.
Then (i):∣∣∣∣π∗L − π0

L

∣∣∣∣ = O
(
L−se/(2d)

)
, (A.13)

(ii):

sup
x∈X

∣∣e∗L(x)− e0
L(x)

∣∣ = O
(
ζ(L)L−se/(2d)

)
. (A.14)

(iii):

||π̂L − π∗L|| = Op(ζ(L)2L1/2N−1/2), (A.15)

(iv),

|π̂L − π0
L| = Op(ζ(L)L1/2N−1/2 + L−se/(2d)), (A.16)

(v):

sup
x∈X

|êL(x)− e∗L(x)| = Op

(
ζ(L)3L1/2N−1/2

)
. (A.17)

(vi),

sup
x∈X

|êL(x)− e0
L(x)| = Op(ζ(L)2L1/2N−1/2 + ζ(L)L−se/(2d)), (A.18)

and (vii),

sup
x∈X

|êL(x)− e(x)| = Op(ζ(L)2L1/2N−1/2 + ζ(L)L−se/(2d))). (A.19)
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Proof: See HIR.
Note that the bound in (ii) of lemma A.8 is not faster than that in (ii) of lemma A.7, if µ and e are
equally smooth and sµ/d = se/d ≥ 1.

The second estimator is a modified imputation estimator that only averages over the observations
with Wi = 1:

τ̂mod =
1
N

N∑
i=1

Wi · µ̂K(Xi)
êL(Xi)

. (A.20)

The third estimator is the weighting estimator proposed by HIR:

τ̂hir,1 =
1
N

N∑
i=1

Wi · Yi

êL(Xi)
. (A.21)

HIR show that τ̂hir,1 is consistent, asymptotically normal and efficient.
The fourth estimator is a modified version of the Hirano-Imbens-Ridder estimator where the weights

are normalized to add up to unity:

τ̂hir,2 =
N∑

i=1

Wi · Yi

êL(Xi)

/ N∑
i=1

Wi

êL(Xi)
. (A.22)

The properties of τ̂imp follow from theorem 3.1 that establishes that all estimators are asymptotically
equivalent.

Proof of theorem 3.1:
First we prove (i). In this proof (and the proofs of the other parts) we encounter four types of terms

that have distinct asymptotic bounds:

a. Terms with an upper bound that depends solely on the smoothness of the conditional mean
function and/or the propensity score. These terms involve the cross-product of an estimate and
the bias of either the conditional mean function or the propensity score and are bounded by
lemmas A.5 and A.7

b. Terms with an upper bound as in lemma A.6, (v), (vi), or lemma A.8, (vi), (vii). These terms
involve the cross-product of estimates of either the conditional mean function and the propensity
score.

c. Terms that are degenerate U-statistics.

d. Terms that are projection remainders.

We have

√
N |τ̂imp−τ̂mod| =

∣∣∣∣∣ 1√
N

N∑
i=1

µ̂K(Xi)−
1√
N

N∑
i=1

Wi · µ̂K(Xi)
êL(Xi)

∣∣∣∣∣ =
∣∣∣∣∣ 1√

N

N∑
i=1

(
µ̂K(Xi) · êL(Xi)

êL(Xi)
− Wi · µ̂K(Xi)

êL(Xi)

)∣∣∣∣∣
(A.23)

=

∣∣∣∣∣ 1√
N

N∑
i=1

{
µ̂K(Xi)

(
1

êL(Xi)
− 1

e0
L(Xi)

)
+

1
e0
L(Xi)

(
µ̂K(Xi)− µ0

K(Xi)
)
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+µ0
K(Xi)

(
1

e0
L(Xi)

− 1
e(Xi)

)
+

1
e(Xi)

(
µ0

K(Xi)− µ(Xi)
)}

(êL(Xi)−Wi) +
µ(Xi)
e(Xi)

(êL(Xi)−Wi)
∣∣∣∣

≤

∣∣∣∣∣ 1√
N

N∑
i=1

µ̂K(Xi)
(

1
êL(Xi)

− 1
e0
L(Xi)

)
(êL(Xi)−Wi)

∣∣∣∣∣ (A.24)

+

∣∣∣∣∣ 1√
N

N∑
i=1

1
e0
L(Xi)

(
µ̂K(Xi)− µ0

K(Xi)
)
(êL(Xi)−Wi)

∣∣∣∣∣ (A.25)

+

∣∣∣∣∣ 1√
N

N∑
i=1

µ0
K(Xi)

(
1

e0
L(Xi)

− 1
e(Xi)

)
(êL(Xi)−Wi)

∣∣∣∣∣ (A.26)

+

∣∣∣∣∣ 1√
N

N∑
i=1

1
e(Xi)

(
µ0

K(Xi)− µ(Xi)
)
· (êL(Xi)−Wi)

∣∣∣∣∣ (A.27)

+

∣∣∣∣∣ 1√
N

N∑
i=1

µ(Xi)
e(Xi)

(êL(Xi)−Wi)

∣∣∣∣∣ . (A.28)

We will deal with (A.24)-(A.28) separately. First consider (A.24).∣∣∣∣∣ 1√
N

N∑
i=1

µ̂K(Xi) ·
(

1
êL(Xi)

− 1
e0
L(Xi)

)
· (êL(Xi)−Wi)

∣∣∣∣∣
≤

∣∣∣∣∣ 1√
N

N∑
i=1

(
µ̂K(Xi)− µ0

K(Xi)
)
·
(

1
êL(Xi)

− 1
e0
L(Xi)

)
· (êL(Xi)−Wi)

∣∣∣∣∣ (A.29)

+

∣∣∣∣∣ 1√
N

N∑
i=1

(
µ0

K(Xi)− µ(Xi)
)
·
(

1
êL(Xi)

− 1
e0
L(Xi)

)
· (êL(Xi)−Wi)

∣∣∣∣∣ (A.30)

+

∣∣∣∣∣ 1√
N

N∑
i=1

µ(Xi) ·
(

1
êL(Xi)

− 1
e0
L(Xi)

)
· (êL(Xi)−Wi)

∣∣∣∣∣ (A.31)

First consider (A.29). Since infx∈X e(x) > c for some c > 0, it follows from e0
L(x) ≥ e(x) −

supx∈X |e(x)−e0
L(x)| and lemma A.7 that if N (and hence L) is sufficiently large infx∈X e0

L(x) > c/2. Also
analogously by lemma A.8, (vii) for large enough N (and hence6 L), with arbitrarily high probability ,
infx êL(x) > c/2. Thus by lemma A.8, (vi)

sup
x∈X

∣∣∣∣ 1
êL(x)

− 1
e0
L(x)

∣∣∣∣ = sup
x∈X

1
e0
L(x)êL(x)

∣∣êL(x)− e0
L(x)

∣∣ = Op(ζ(L)2L−se/(2d) + ζ(L)L1/2N−1/2).

Thus by lemma A.5 and A.6 (vi)∣∣∣∣∣ 1√
N

N∑
i=1

(
µ̂K(Xi)− µ0

K(Xi)
)
·
(

1
êL(Xi)

− 1
e0
L(Xi)

)
· (êL(Xi)−Wi)

∣∣∣∣∣
≤ N1/2 · sup

x∈X

∣∣µ̂K(x)− µ0
K(x)

∣∣ · sup
x∈X

∣∣∣∣ 1
êL(x)

− 1
e0
L(x)

∣∣∣∣ · 2
6We require that ζ(L)2L1/2N−1/2 + ζ(L)L−se/(2d) → 0.
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= Op

(
N1/2 · (ζ(K)K−sµ/d + ζ(K)2K1/2N−1/2) · (ζ(L)L−se/(2d) + ζ(L)2L1/2N−1/2)

)
.

Note that this is a bound of type b.
Next, consider (A.30). Using the bound derived above and lemma A.5∣∣∣∣∣ 1√

N

N∑
i=1

(
µ0

K(Xi)− µ(Xi)
)
·
(

1
êL(Xi)

− 1
e0
L(Xi)

)
· (êL(Xi)−Wi)

∣∣∣∣∣
≤ N1/2 · sup

x∈X
|µ0

K(x)− µ(x))| · sup
x∈X

∣∣∣∣ 1
êL(Xi)

− 1
e0
L(Xi)

∣∣∣∣ · 2
= Op

(
N1/2K−sµ/d(ζ(L)L−se/(2d) + ζ(L)2L1/2N−1/2)

)
.

This is a bound of type a.
Finally, consider (A.31).∣∣∣∣∣ 1√

N

N∑
i=1

µ(Xi) ·
(

1
êL(Xi)

− 1
e0
L(Xi)

)
· (êL(Xi)−Wi)

∣∣∣∣∣
≤

∣∣∣∣∣ 1√
N

N∑
i=1

µ(Xi) ·
1

êL(Xi)e0
L(Xi)

(
êL(Xi)− e0

L(Xi)
)
· (êL(Xi)− e(Xi))

∣∣∣∣∣ (A.32)

+

∣∣∣∣∣ 1√
N

N∑
i=1

µ(Xi) ·
1

êL(Xi)e0
L(Xi)

(
êL(Xi)− e0

L(Xi)
)
· (e(Xi)−Wi)

∣∣∣∣∣ (A.33)

For (A.32) we have by lemma A.8 (vi) and (vii)∣∣∣∣∣ 1√
N

N∑
i=1

µ(Xi) ·
1

êL(Xi)e0
L(Xi)

(
êL(Xi)− e0

L(Xi)
)
· (êL(Xi)− e(Xi))

∣∣∣∣∣
≤
√

N sup
x∈X

µ(x)
êL(x)e0

L(x)
sup
x∈X

|êL(x)−e0
L(x)| sup

x∈X
|êL(x)−e(x)| = Op

(
N1/2(ζ(L)2L1/2N−1/2 + ζ(L)L−se/(2d))2

)
a type b bound. For (A.33)∣∣∣∣∣ 1√

N

N∑
i=1

µ(Xi) ·
1

êL(Xi)e0
L(Xi)

(
êL(Xi)− e0

L(Xi)
)
· (e(Xi)−Wi)

∣∣∣∣∣
≤

∣∣∣∣∣ 1√
N

N∑
i=1

µ(Xi) ·
1

êL(Xi)e0
L(Xi)

(êL(Xi)− e∗L(Xi)) · (e(Xi)−Wi)

∣∣∣∣∣ (A.34)

+

∣∣∣∣∣ 1√
N

N∑
i=1

µ(Xi) ·
1

êL(Xi)e0
L(Xi)

(
e∗L(Xi)− e0

L(Xi)
)
· (e(Xi)−Wi)

∣∣∣∣∣ (A.35)

with using lemma A.8 (ii) for (A.35) the type a bound∣∣∣∣∣ 1√
N

N∑
i=1

µ(Xi) ·
1

êL(Xi)e0
L(Xi)

(
e∗L(Xi)− e0

L(Xi)
)
· (e(Xi)−Wi)

∣∣∣∣∣ ≤ √
N sup

x∈X

µ(x)
êL(x)e0

L(x)
sup
x∈X

|e∗L(x)−e0
L(x)|·2

= Op

(
N1/2ζ(L)L−se/(2d)

)
[35]



For (A.34)∣∣∣∣∣ 1√
N

N∑
i=1

µ(Xi) ·
1

êL(Xi)e0
L(Xi)

(êL(Xi)− e∗L(Xi)) · (e(Xi)−Wi)

∣∣∣∣∣
≤

∣∣∣∣∣ 1√
N

N∑
i=1

µ(Xi) ·
1

e0
L(Xi)2

(êL(Xi)− e∗L(Xi)) · (e(Xi)−Wi)

∣∣∣∣∣ (A.36)

+

∣∣∣∣∣ 1√
N

N∑
i=1

µ(Xi) ·
1

êL(Xi)e0
L(Xi)2

(
êL(Xi)− e0

L(Xi)
)
· (êL(Xi)− e∗L(Xi)) · (e(Xi)−Wi)

∣∣∣∣∣ (A.37)

with by lemma A.8 (v) and (vi) for (A.37) the type b bound∣∣∣∣∣ 1√
N

N∑
i=1

µ(Xi) ·
1

êL(Xi)e0
L(Xi)2

(
êL(Xi)− e0

L(Xi)
)
· (êL(Xi)− e∗L(Xi)) · (e(Xi)−Wi)

∣∣∣∣∣
≤
√

N sup
x∈X

µ(x)
êL(x)e0

L(x)2
sup
x∈X

|êL(x)− e0
L(x)| sup

x∈X
|êL(x)− e∗L(x)| · 2

= Op

(
N1/2ζ(L)3L1/2N−1/2(ζ(L)2L1/2N−1/2 + ζ(L)L−se/(2d))

)
To derive a bound on (A.36) we use the fact that êL(Xi)− eL(Xi) is a residual, because if we use lemma
A.8 (iii) we obtain a bound that does not converge to 0. By a first-order Taylor series expansions of the
residual and the likelihood equation we have

êL(Xi)− e∗L(Xi) = L′(RL(Xi)′π̃L)RL(Xi)′(π̂L − π∗L)

= L′(RL(Xi)′π̃L)RL(Xi)′

 1
N

N∑
j=1

L′(RL(Xj)′πL)RL(Xj)RL(Xj)′

−1 1
N

N∑
j=1

(Wj − e∗L(Xj))RL(Xj)


(A.38)

with π̃L and πL intermediate between π̂L and π∗L. Define

Σ̂L,N ≡ 1
N

N∑
j=1

L′(RL(Xj)′πL)RL(Xj)RL(Xj)′

and

ΣL ≡ E [e∗L(X)(1− e∗L(X))RL(X)RL(X)′]

We need that Σ̂L,N is nonsingular for the series logit estimator to exist. As noted before, if ζ(L)2L1/2N−1/2+
ζ(L)L−se/2d → 0 then by lemma A.8, (vii) infx∈X L′(RL(x)′πL) ≥ c > 0 with probability arbitrarily
close to 1, if N is sufficiently large. Hence because

λmin(Σ̂L,N ) = min
a′a=1

a′Σ̂L,Na

and with probability arbitrarily close to 1 if N is sufficiently large, for all L vectors a, a′Σ̂L,Na ≥
ca′Ω̂L,Na, we have

λmin(Σ̂L,N ) ≥ cλmin(Ω̂L,N )

[36]



Hence existence and its effect on the rate of convergence can be handled as for the nonparametric
regression estimator, because existence of the regression estimator implies existence of the series logit
estimator. Hence we can ignore existence if ζ(L)2L1/2N−1/2 + ζ(L)L−se/2d → 0.

Substitution of (A.38) in (A.36) gives∣∣∣∣∣∣ 1√
N

N∑
i=1

µ(Xi)
e0
L(Xi)2

(e(Xi)−Wi)L′(RL(Xi)′π̃L)RL(Xi)′Σ̂−1
L,N

 1
N

N∑
j=1

(Wj − e∗L(Xj))RL(Xj)

∣∣∣∣∣∣

≤

∣∣∣∣∣∣ 1√
N

N∑
i=1

µ(Xi)
e0
L(Xi)2

(e(Xi)−Wi)L′(RL(Xi)′π̃L)RL(Xi)′(Σ̂−1
L,N − Σ−1

L )

 1
N

N∑
j=1

(Wj − e∗L(Xj))RL(Xj)

∣∣∣∣∣∣
(A.39)

+

∣∣∣∣∣∣ 1√
N

N∑
i=1

µ(Xi)
e0
L(Xi)2

(e(Xi)−Wi)L′(RL(Xi)′π̃L)RL(Xi)′Σ−1
L

 1
N

N∑
j=1

(Wj − e∗L(Xj))RL(Xj)

∣∣∣∣∣∣ (A.40)

with for (A.39)∣∣∣∣∣∣ 1√
N

N∑
i=1

µ(Xi)
e0
L(Xi)2

(e(Xi)−Wi)L′(RL(Xi)′π̃L)RL(Xi)′(Σ̂−1
L − Σ−1

L )

 1
N

N∑
j=1

(Wj − e∗L(Xj))RL(Xj)

∣∣∣∣∣∣
≤

∣∣∣∣∣ 1√
N

N∑
i=1

µ(Xi)
e0
L(Xi)2

(e(Xi)−Wi)L′(RL(Xi)′π̃L)RL(Xi)′
∣∣∣∣∣ ∣∣∣Σ̂−1

L − Σ−1
L

∣∣∣
∣∣∣∣∣∣ 1
N

N∑
j=1

(Wj − e∗L(Xj))RL(Xj)

∣∣∣∣∣∣
The first factor is bounded by∣∣∣∣∣ 1√

N

N∑
i=1

µ(Xi)
e0
L(Xi)2

(e(Xi)−Wi)L′(RL(Xi)′π∗L)RL(Xi)′
∣∣∣∣∣+∣∣∣∣∣ 1√

N

N∑
i=1

µ(Xi)
e0
L(Xi)2

(e(Xi)−Wi)(L′(RL(Xi)′π̃L)− L′(RL(Xi)′π∗L)RL(Xi)′
∣∣∣∣∣

Because

E

[∣∣∣∣∣ 1√
N

N∑
i=1

µ(Xi)
e0
L(Xi)2

(e(Xi)−Wi)L′(RL(Xi)′π∗L)RL(Xi)′
∣∣∣∣∣
]
≤

√√√√√E

∣∣∣∣∣ 1√
N

N∑
i=1

µ(Xi)
e0
L(Xi)2

(e(Xi)−Wi)L′(RL(Xi)′π∗L)RL(Xi)′
∣∣∣∣∣
2
 =

1√
N

√√√√E

[(
N∑

i=1

µ(Xi)
e0
L(Xi)2

(e(Xi)−Wi)L′(RL(Xi)′π∗L)RL(Xi)′
)(

N∑
i=1

µ(Xi)
e0
L(Xi)2

(e(Xi)−Wi)L′(RL(Xi)′π∗L)RL(Xi)

)]
=

1√
N

√√√√ N∑
i=1

E
[

µ(Xi)2

e0
L(Xi)4

(e(Xi)−Wi)2L′(RL(Xi)′π∗L)2RL(Xi)′RL(Xi)
]
≤ 2

√
sup
x∈X

µ(x)2

e0
L(x)4

E[RL(X)′RL(X)] = O(
√

L)

[37]



the first term is Op(
√

L) by the Markov inequality. The second term is bounded by

2
√

N sup
x∈X

|L′(RL(x)′π̃L)− L′(RL(x)′π∗L)|
∣∣∣∣ µ(x)
e0
L(x)2

∣∣∣∣ |RL(x)| = Op

(
ζ(L)4L1/2

)
which is also the bound on the first factor. For the second factor we note that∣∣∣Σ̂−1

L,N − Σ−1
L

∣∣∣ = ∣∣∣Σ̂−1
L,N

∣∣∣ ∣∣Σ−1
L

∣∣ ∣∣∣Σ̂L,N − ΣL

∣∣∣
We have

|Σ̂−1
L,N | =

√√√√ L∑
k=1

1
λk(Σ̂L,N )2

≤
√

L
1

λmin(Σ̂L,N )
= Op(

√
L)

if the rate that ensures identification is met. An analogous argument gives |Σ−1
L | = O(

√
L). Further

∣∣∣Σ̂L,N − ΣL

∣∣∣ ≤
∣∣∣∣∣∣ 1
N

N∑
j=1

(L′(RL(Xj)′πL)− L′(RL(Xj)′π∗L))RL(Xj)RL(Xj)′

∣∣∣∣∣∣+
∣∣∣∣∣∣ 1
N

N∑
j=1

L′(RL(Xj)′π∗L)RL(Xj)RL(Xj)′ − ΣL

∣∣∣∣∣∣
Using lemma A.8, (v) and the Markov inequality, the first term is bounded by

sup
x∈X

|L′(RL(x)′πL)− L′(RL(x)′π∗L)| 1
N

N∑
j=1

RL(Xj)′RL(Xj) = Op

(
ζ(L)3L1/2N−1/2L

)
The second term is by an argument as in the proof of lemma A.3, but for basis functions that are not
orthonormal O

(
ζ(L)2N−1/2

)
so that the second factor is Op

(
ζ(L)3L3/2N−1/2

)
. Because for the third

factor

E

∣∣∣∣∣∣ 1
N

N∑
j=1

(Wj − e∗L(Xj))RL(Xj)

∣∣∣∣∣∣
 ≤ E [|(W − e∗L(X))RL(X)|] ≤ 2 · ζ(L)

we have∣∣∣∣∣∣ 1
N

N∑
j=1

(Wj − e∗L(Xj))RL(Xj)

∣∣∣∣∣∣ = Op(ζ(L))

Combining bounds∣∣∣∣∣∣ 1√
N

N∑
i=1

µ(Xi)
e0
L(Xi)2

(e(Xi)−Wi)L′(RL(Xi)′π̃L)RL(Xi)′(Σ̂−1
L,N − Σ−1

L )

 1
N

N∑
j=1

(Wj − e∗L(Xj))RL(Xj)

∣∣∣∣∣∣ =
Op

(
ζ(L)5L3N−1/2

)
For (A.40)∣∣∣∣∣∣ 1√

N

N∑
i=1

µ(Xi)
e0
L(Xi)2

(e(Xi)−Wi)L′(RL(Xi)′π̃L)RL(Xi)′Σ−1
L

 1
N

N∑
j=1

(Wj − e∗L(Xj))RL(Xj)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1√
N

N∑
i=1

µ(Xi)
e0
L(Xi)2

(e(Xi)−Wi)L′(RL(Xi)′π̃L)RL(Xi)′Σ−1
L

 1
N

N∑
j=1

(Wj − e(Xj))RL(Xj)

∣∣∣∣∣∣ (A.41)
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+

∣∣∣∣∣∣ 1√
N

N∑
i=1

µ(Xi)
e0
L(Xi)2

(e(Xi)−Wi)L′(RL(Xi)′π̃L)RL(Xi)′Σ−1
L

 1
N

N∑
j=1

(e(Xj)− e∗L(Xj))RL(Xj)

∣∣∣∣∣∣
(A.42)

with (A.42) bounded by∣∣∣∣∣ 1√
N

N∑
i=1

µ(Xi)
e0
L(Xi)2

(e(Xi)−Wi)L′(RL(Xi)′π̃L)RL(Xi)′
∣∣∣∣∣ |Σ−1

L |

∣∣∣∣∣∣ 1
N

N∑
j=1

(e(Xj)− e∗L(Xj))RL(Xj)

∣∣∣∣∣∣
The first factor is Op

(
ζ(L)4L1/2

)
as shown above. The second factor is O(

√
L), and the third factor by

lemmas A.5, A.8(ii) and the Markov inequality∣∣∣∣∣∣ 1
N

N∑
j=1

(e(Xj)− e∗L(Xj))RL(Xj)

∣∣∣∣∣∣ ≤ sup
x∈X

|e(x)− e∗L(x)|

∣∣∣∣∣∣ 1
N

N∑
j=1

RL(Xj)

∣∣∣∣∣∣ = Op

(
L−se/(2d)ζ(L)

)
Hence (A.42) is Op

(
ζ(L)5L1−se/(2d))

)
.

Finally (A.41) is bounded by∣∣∣∣∣∣ 1√
N

N∑
i=1

µ(Xi)
e0
L(Xi)2

(e(Xi)−Wi)(L′(RL(Xi)′π̃L)− L′(RL(Xi)′π∗L))RL(Xi)′Σ−1
L

 1
N

N∑
j=1

(Wj − e(Xj))RL(Xj)

∣∣∣∣∣∣+∣∣∣∣∣∣ 1√
N

N∑
i=1

µ(Xi)
e0
L(Xi)2

(e(Xi)−Wi)L′(RL(Xi)′π∗L)RL(Xi)′Σ−1
L

 1
N

N∑
j=1

(Wj − e(Xj))RL(Xj)

∣∣∣∣∣∣
The first term is bounded by∣∣∣∣∣ 1√

N

N∑
i=1

µ(Xi)
e0
L(Xi)2

(e(Xi)−Wi)(L′(RL(Xi)′π̃L)− L′(RL(Xi)′π∗L))RL(Xi)′
∣∣∣∣∣ |Σ−1

L |

∣∣∣∣∣∣ 1
N

N∑
j=1

(Wj − e(Xj))RL(Xj)

∣∣∣∣∣∣
with the first factor bounded by

2 sup
x∈X

|µ(x)|
e0
L(x)2

sup
x∈X

|L′(RL(x)′π̃L)− L′(RL(x)′π∗L)| 1√
N

N∑
i=1

|RL(Xi)| = Op

(
ζ(L)4L1/2

)
by lemma A.8, (v) and the Markov inequality. The second factor is O(

√
L), and the third, because

E

∣∣∣∣∣∣ 1
N

N∑
j=1

(Wj − e(Xj))RL(Xj)

∣∣∣∣∣∣
 ≤ 1

N

√√√√√√E


∣∣∣∣∣∣

N∑
j=1

(Wj − e(Xj))RL(Xj)

∣∣∣∣∣∣
2
 ≤

1√
N

√
E [(Wj − e(Xj)2RL(Xj)′RL(Xj)] = O(L1/2N−1/2)

is by the Markov inequality Op(L1/2N−1/2). Upon multiplication the first term is Op(ζ(L)4L3/2N−1/2).
The second term is a degenerate U-statistic∣∣∣∣∣∣ 1

N
√

N

N∑
i=1

N∑
j=1

µ(Xi)
e0
L(Xi)2

(e(Xi)−Wi)L′(RL(Xi)′π∗L)RL(Xi)′Σ−1
L RL(Xj)(Wj − e(Xj))

∣∣∣∣∣∣
[39]



We need to bound the variance of the kernel

E

[(
µ(Xi)

e0
L(Xi)2

(e(Xi)−Wi)L′(RL(Xi)′π∗L)RL(Xi)′Σ−1
L RL(Xj)(Wj − e(Xj))

)2
]

= E
[

µ(Xi)2

e0
L(Xi)4

L′(RL(Xi)′π∗L)2(e(Xi)−Wi)2(Wj − e(Xj))2(RL(Xi)′Σ−1
L RL(Xj))2

]
≤ 16 · sup

x∈X

µ(x)2

e0
L(x)4

L′(RL(x)′π∗L)2E
[
(RL(Xi)′Σ−1

L RL(Xj))2
]

= O(L2)

because E
[
(RL(Xi)′Σ−1

L RL(Xj))2
]

= E
[
RL(Xi)′Σ−1

L RL(Xj)RL(Xj)′Σ−1
L RL(Xi)

]
= tr

(
(Σ−1

L )2
)

Hence
we conclude that (A.41) is Op

(
LN−1/2

)
(see e.g. Van der Vaart (1998), Theorem 12.10). This ends the

discussion of (A.24).
Expression (A.25) is bounded by∣∣∣∣∣ 1√

N

N∑
i=1

1
e0
L(Xi)

(
µ̂K(Xi)− µ0

K(Xi)
)
(êL(Xi)−Wi)

∣∣∣∣∣
≤

∣∣∣∣∣ 1√
N

N∑
i=1

1
e0
L(Xi)

(
µ̂K(Xi)− µ0

K(Xi)
)
(êL(Xi)− e(Xi))

∣∣∣∣∣ (A.43)

+

∣∣∣∣∣ 1√
N

N∑
i=1

1
e0
L(Xi)

(
µ̂K(Xi)− µ0

K(Xi)
)
(e(Xi)−Wi)

∣∣∣∣∣ (A.44)

For (A.43) we have the bound by lemma A.6(vi) and lemma A.8 (vii)∣∣∣∣∣ 1√
N

N∑
i=1

1
e0
L(Xi)

(
µ̂K(Xi)− µ0

K(Xi)
)
(êL(Xi)− e(Xi))

∣∣∣∣∣ ≤ N1/2 sup
x∈X

1
e0
L(x)

sup
x∈X

∣∣µ̂K(x)− µ0
K(x)

∣∣ sup
x∈X

|êL(Xi)− e(Xi)|

= Op

(
N1/2

(
ζ(K)2K1/2N−1/2 + ζ(K)K−sµ/d

)(
ζ(L)L−se/(2d) + ζ(L)2L1/2N−1/2

))
.

For (A.44) we have∣∣∣∣∣ 1√
N

N∑
i=1

1
e0
L(Xi)

(
µ̂K(Xi)− µ0

K(Xi)
)
(e(Xi)−Wi)

∣∣∣∣∣
≤

∣∣∣∣∣ 1√
N

N∑
i=1

1
e0
L(Xi)

(µ̂K(Xi)− µ(Xi)) (e(Xi)−Wi)

∣∣∣∣∣ (A.45)

+

∣∣∣∣∣ 1√
N

N∑
i=1

1
e0
L(Xi)

(
µ(Xi)− µ0

K(Xi)
)
(e(Xi)−Wi)

∣∣∣∣∣ (A.46)

with (A.46) bounded by (lemma A.5)∣∣∣∣∣ 1√
N

N∑
i=1

1
e0
L(Xi)

(
µ(Xi)− µ0

K(Xi)
)
(e(Xi)−Wi)

∣∣∣∣∣
≤ N1/2 sup

x∈X

1
e0
L(x)

sup
x∈X

∣∣µ(x)− µ0
K(x)

∣∣ · 2 = Op

(
N1/2K−sµ/d

)
which is a bound of type a.

[40]



To bound (A.45) we write∣∣∣∣∣ 1√
N

N∑
i=1

1
e0
L(Xi)

(µ̂K(Xi)− µ(Xi)) (e(Xi)−Wi)

∣∣∣∣∣
≤

∣∣∣∣∣ 1√
N

N∑
i=1

1
e0
L(Xi)

(µ̂K(Xi)− µ∗K(Xi)) (e(Xi)−Wi)

∣∣∣∣∣ (A.47)

+

∣∣∣∣∣ 1√
N

N∑
i=1

1
e0
L(Xi)

(µ∗K(Xi)− µ(Xi)) (e(Xi)−Wi)

∣∣∣∣∣ (A.48)

Be lemma A.5 and A.6(ii) (A.48) is bounded by

N1/2 sup
x∈X

1
e0
L(x)

· sup
x∈X

|µ∗K(x)− µ(x)| · 2

= O
(
N1/2ζ(K)K1/2−sµ/d

)
a type a bound.

For (A.47) the bound is∣∣∣∣∣ 1√
N

N∑
i=1

1
e0
L(Xi)

(µ̂K(Xi)− µ∗K(Xi)) (e(Xi)−Wi)

∣∣∣∣∣
≤

∣∣∣∣∣∣ 1√
N

N∑
i=1

1
e0
L(Xi)

RK(Xi)′(Ω̂−1
K,N1

− IK)

 1
N1

N1∑
j=1

RK(Xj)Yj

 (e(Xi)−Wi)

∣∣∣∣∣∣ (A.49)

+

∣∣∣∣∣∣ 1√
N

N∑
i=1

1
e0
L(Xi)

RK(Xi)′

 1
N1

N1∑
j=1

RK(Xj)Yj − E(RK(X)µ(X)|W = 1)

 (e(Xi)−Wi)

∣∣∣∣∣∣ (A.50)

with for (A.49) the type b bound∣∣∣∣∣∣ 1√
N

N∑
i=1

1
e0
L(Xi)

RK(Xi)′(e(Xi)−Wi)(Ω̂−1
K,N1

− IK)

 1
N1

N1∑
j=1

RK(Xj)Yj

∣∣∣∣∣∣
≤

∣∣∣∣∣ 1√
N

N∑
i=1

1
e0
L(Xi)

RK(Xi)′(e(Xi)−Wi)

∣∣∣∣∣ ∣∣∣Ω̂−1
K,N1

− IK

∣∣∣
∣∣∣∣∣∣ 1
N1

N1∑
j=1

RK(Xj)Yj

∣∣∣∣∣∣ = Op

(
ζ(K)2K3/2N−1/2

)
Because the first factor is Op(

√
K) by the Markov inequality, the third is Op(ζ(K)) by the Markov in-

equality and E(|RK(X)Y |) = O(ζ(K)), and
∣∣∣Ω̂−1

K,N1
− IK

∣∣∣ = |Ω̂−1
K,N1

|
∣∣∣Ω̂K,N1 − IK

∣∣∣ = Op(
√

K)Op(ζ(K)K1/2N−1/2).
For (A.50)

1
N
√

N

N

N1

N∑
i=1

N∑
j=1

1
e0
L(Xi)

RK(Xi)′(e(Xi)−Wi)Wj (RK(Xj)Yj − E(RK(X)µ(X)|W = 1))

is a degenerate U-statistic and the variance of the kernel is bounded by

4·sup
x∈X

1
e0
L(x)2

E
[
(RK(Xi)′Wj (RK(Xj)Yj − E(RK(X)µ(X)|W = 1)))2

]
≤ 4·sup

x∈X

1
e0
L(x)2

E [RK(X)′RK(X)]
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·E [Wj (RK(Xj)′Yj − E(RK(X)′µ(X)|W = 1)) (RK(Xj)Yj − E(RK(X)µ(X)|W = 1))]

= 4·sup
x∈X

1
e0
L(x)2

E [RK(X)′RK(X)]·(E [µ2(X)RK(X)′RK(X)|W = 1]− E(RK(X)′µ(X)|W = 1)E(RK(X)µ(X)|W = 1))

≤ 4 · sup
x∈X

1
e0
L(x)

E [RK(X)′RK(X)] · E [µ2(X)RK(X)′RK(X)|W = 1] = O(K2)

with µ2(x) = E(Y 2|X = x) bounded on X and E [RK(X)′RK(X)] ≤ supx∈X
e

e(x)E [RK(X)′RK(X)|W = 1].
Hence (A.50) is Op

(
KN−1/2

)
Expression (A.26) is bounded by (lemma A.7)∣∣∣∣∣ 1√

N

N∑
i=1

µ0
K(Xi)

(
1

e0
L(Xi)

− 1
e(Xi)

)
(êL(Xi)−Wi)

∣∣∣∣∣
≤ N1/2 sup

x∈X
|µ0

K(x)| · sup
x∈X

∣∣∣∣ 1
e0
L(x)

− 1
e(x)

∣∣∣∣ · 2
= Op

(
N1/2L−se/(2d)

)
.

because by lemma A.5 µ0
K(x) is bounded if K goes to ∞ with N .

Expression (A.27) is bounded by∣∣∣∣∣ 1√
N

N∑
i=1

1
e(Xi)

(
µ0

K(Xi)− µ(Xi)
)
· (êL(Xi)−Wi)

∣∣∣∣∣
≤ N1/2 sup

x∈X

1
e(x)

· sup
x∈X

∣∣µ0
K(x)− µ(x)

∣∣ · 2
= Op

(
N1/2L−sµ/d

)
.

Both bounds for (A.26) and (A.27) are of type a.
Finally, consider (A.28). Because e(x) is bounded away from 0 on X, X is a compact subset of Rd,

and µ(x) and e(x) are sµ and se times continuously differentiable, it follows that µ(X)
e(X) is min(sµ, se)

times continuously differentiable. By lemma A.5 there is δ0
L such that

sup
x∈X

∣∣∣∣µ(x)
e(x)

−RL(x)′δ0
L

∣∣∣∣ = O
(
L−

min(sµ,se)
d

)
. (A.51)

Hence,∣∣∣∣∣ 1√
N

N∑
i=1

µ(Xi)
e(Xi)

(êL(Xi)−Wi)

∣∣∣∣∣ (A.52)

≤

∣∣∣∣∣ 1√
N

N∑
i=1

(
µ(Xi)
e(Xi)

−RL(Xi)′δ0
L

)
(êL(Xi)−Wi)

∣∣∣∣∣+
∣∣∣∣∣ 1√

N

N∑
i=1

RL(Xi)′δ0
L(êL(Xi)−Wi)

∣∣∣∣∣
=

∣∣∣∣∣ 1√
N

N∑
i=1

(
µ(Xi)
e(Xi)

−RL(Xi)′δ0
L

)
(êL(Xi)−Wi)

∣∣∣∣∣ , (A.53)
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because the second term vanishes as a result of the first order conditions for the series logit estimator
which imply that

∑
i RL(Xi)(ê(Xi)−Wi) = 0. The last expression, (A.53) can be bounded by

sup
x∈X

∣∣∣∣µ(x)
e(x)

−RL(x)′δ0
L

∣∣∣∣ 1√
N

N∑
i=1

|ê(Xi)−Wi| ≤ 2·
√

N sup
x∈X

∣∣∣∣µ(x)
e(x)

−RL(x)′δ0
L

∣∣∣∣ = O
(
N1/2L−

min(sµ,se)
d

)
,

Combining the bounds finishes the proof of the first assertion in theorem 3.1. We find that the bound is

Op

(
N−1/2ζ(K)2ζ(L)K1/2L1/2

)
+ Op

(
N−1/2ζ(K)3K1/2

)
+ Op

(
N−1/2ζ(L)5L

)
(A.54)

+Op

(
N1/2ζ(K)2ζ(L)2K−sµ/dL−se/(2d)

)
+ Op

(
ζ(K)2ζ(L)L1/2K−sµ/d

)
+ Op

(
N1/2ζ(K)K−sµ/d

)
+Op

(
ζ(L)4L1/2L−se/(2d)

)
+Op

(
N1/2ζ(L)2L−se/d

)
+Op

(
N1/2ζ(L)L−se/(2d)

)
+Op

(
ζ(K)2ζ(L)2K1/2L−se/(2d)

)

Next, consider part (ii) of theorem 3.1. By the triangle inequality we have because 1
êL(X) = 1

e(X) −
êL(X)−e(X)
êL(X)e(X)∣∣∣√N · (τ̂mod − τ̂hir)

∣∣∣ = ∣∣∣∣∣ 1√
N

N∑
i=1

Wi(Yi − µ̂K(Xi))
êL(Xi)

∣∣∣∣∣
≤

∣∣∣∣∣ 1√
N

N∑
i=1

Wi(Yi − µ̂K(Xi))
e(Xi)

∣∣∣∣∣ (A.55)

+

∣∣∣∣∣ 1√
N

N∑
i=1

Wi

êL(Xi)e(Xi)
(êL(Xi)− e(Xi))(Yi − µ̂K(Xi))

∣∣∣∣∣ (A.56)

First consider (A.56) that we bound by∣∣∣∣∣ 1√
N

N∑
i=1

Wi

êL(Xi)e(Xi)
(êL(Xi)− e(Xi))(Yi − µ(Xi))

∣∣∣∣∣ (A.57)

+

∣∣∣∣∣ 1√
N

N∑
i=1

Wi

êL(Xi)e(Xi)
(êL(Xi)− e(Xi))(µ̂K(Xi)− µ(Xi))

∣∣∣∣∣ (A.58)

Note that (A.58) can be bounded in the same way as (A.43) using lemma A.8 (vii) and lemma A.6 (vi), so
that this term is Op

(
N1/2

(
ζ(K)2K1/2N−1/2 + ζ(K)K−sµ/d

) (
ζ(L)2L−se/(2d) + ζ(L)L1/2N−1/2

))
. Also

note that (A.57) can be bounded by∣∣∣∣∣ 1√
N

N∑
i=1

Wi

êL(Xi)e(Xi)
(êL(Xi)− e∗L(Xi))(Yi − µ(Xi))

∣∣∣∣∣ (A.59)

+

∣∣∣∣∣ 1√
N

N∑
i=1

Wi

êL(Xi)e(Xi)
(e∗L(Xi)− e(Xi))(Yi − µ(Xi))

∣∣∣∣∣ (A.60)

We have that (A.59) can be bounded as (A.34) so that by the bounds on (A.37), (A.39),(A.42), and
(A.41), we find the bound Op

(
N1/2ζ(L)3L1/2N−1/2(ζ(L)2L1/2N−1/2 + ζ(L)L−se/(2d))

)
+Op

(
ζ(L)3L1/2N−1/2

)
+

Op

(
LN−1/2

)
+ Op

(
L−se/(2d)ζ(L)2

)
. For (A.60) we have the bound (lemma A.7 and A.8(ii))

√
N sup

x∈X

1
êL(x)e(x)

sup
x∈X

|e∗L(x)− e(x)| 1
N

N∑
i=1

Wi |(Yi − µ(Xi))| = Op

(
N1/2ζ(L)L−se/(2d)

)
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Finally we consider (A.55). Because e(x) is s times continuously differentiable and bounded away from
zero, by lemma A.5 there is a δ0

K such that

sup
x∈X

∣∣∣∣ 1
e(x)

−RK(x)′δ0
K

∣∣∣∣ = O
(
K−se/d

)
.

¿From the normal equations of the regression of Y on RK(X) it follows that

N∑
i=1

Wi(Yi − µ̂K(Xi))RK(Xi) = 0.

Hence∣∣∣∣∣ 1√
N

N∑
i=1

Wi(Yi − µ̂K(Xi))
e(Xi)

∣∣∣∣∣
≤

∣∣∣∣∣ 1√
N

N∑
i=1

Wi(Yi − µ̂K(Xi)) ·
(

1
e(Xi)

−RK(Xi)δ0
K

)∣∣∣∣∣
+

∣∣∣∣∣ 1√
N

N∑
i=1

Wi(Yi − µ̂K(Xi)) ·RK(Xi)δ0
K

∣∣∣∣∣
≤

∣∣∣∣∣ 1√
N

N∑
i=1

Wi(Yi − µ(Xi)) ·
(

1
e(Xi)

−RK(Xi)δ0
K

)∣∣∣∣∣
+

∣∣∣∣∣ 1√
N

N∑
i=1

Wi(µ(Xi)− µ̂K(Xi)) ·
(

1
e(Xi)

−RK(Xi)δ0
K

)∣∣∣∣∣
≤ N1/2 1

N

N∑
i=1

|Wi(Yi − µ(Xi))| · sup
x∈X

∣∣∣∣ 1
e(x)

−RK(x)δ0
K

∣∣∣∣
+N1/2 sup

x∈X
|µ(x)− µ̂K(x)| · sup

x∈X

∣∣∣∣ 1
e(x)

−RK(x)δ0
K

∣∣∣∣
= Op(N1/2K−se/d) + Op(N1/2K−se/d(ζ(K)2K1/2N−1/2 + ζ(K)K−sµ/d))

by lemma A.6(vi). Combing the bounds we find that the upper bound is

Op

(
N−1/2ζ(K)2ζ(L)K1/2L1/2

)
+ Op

(
N−1/2ζ(L)5L

)
(A.61)

+Op

(
N1/2ζ(K)2ζ(L)2K−sµ/dL−se/(2d)

)
+ Op

(
ζ(K)ζ(L)L1/2K−sµ/d

)
+Op

(
ζ(L)4L1/2L−se/(2d)

)
+ Op

(
ζ(K)2ζ(L)2K1/2L−se/(2d)

)
+Op

(
N1/2ζ(K)2K1/2K−se/d

)
+ Op

(
N1/2ζ(K)K1/2K−se/d−sµ/d

)

Finally, consider part (iii) of the theorem. First we derive a bound on∣∣∣∣∣N1/2

(
N∑

i=1

Wi

êL(Xi)

/
N − 1

)∣∣∣∣∣ . (A.62)
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We use 1
êL(X) = 1

e(Xi)
− 1

e(X)êL(X) (êL(X)− e(X)) to obtain∣∣∣∣∣N1/2

(
N∑

i=1

Wi

êL(Xi)

/
N − 1

)∣∣∣∣∣ =
∣∣∣∣∣ 1√

N

N∑
i=1

Wi − êL(Xi)
êL(Xi)

∣∣∣∣∣
≤

∣∣∣∣∣ 1√
N

N∑
i=1

Wi − êL(Xi)
e(Xi)

∣∣∣∣∣ (A.63)

+

∣∣∣∣∣ 1√
N

N∑
i=1

Wi − êL(Xi)
e(Xi)êL(Xi)

(êL(Xi)− e(Xi))

∣∣∣∣∣ (A.64)

First consider (A.64) that we bound by∣∣∣∣∣ 1√
N

N∑
i=1

Wi − êL(Xi)
e(Xi)êL(Xi)

(êL(Xi)− e(Xi))

∣∣∣∣∣
≤

∣∣∣∣∣ 1√
N

N∑
i=1

Wi − e(Xi)
e(Xi)êL(Xi)

(êL(Xi)− e(Xi))

∣∣∣∣∣ (A.65)

+

∣∣∣∣∣ 1√
N

N∑
i=1

(êL(Xi)− e(Xi))2

e(Xi)êL(Xi)

∣∣∣∣∣ (A.66)

Note that (A.65) can be bounded as (A.33) with the only differend that e0
L must be replaced with

e. Hence from (A.35), (A.37),(A.39),(A.42), and (A.41) we find the bound Op

(
N1/2ζ(L)L−se/(2d)

)
+

Op

(
N1/2ζ(L)3L1/2N−1/2(ζ(L)2L1/2N−1/2 + ζ(L)L−se/(2d))

)
+Op

(
ζ(L)3L1/2N−1/2

)
+Op

(
ζ(L)2L1/2L−se/(2d))

)
+

Op

(
LN−1/2

)
. For (A.66) we note the similarity with (A.32) (again e0

L must be replaced with e), so that
we have the bound Op

(
N1/2(ζ(L)2L1/2N−1/2 + ζ(L)L−se/(2d))2

)
. Finally consider (A.63). Because e(x)

is bounded from 0 on X) and is se times continuously differentiable, there is a sequence of δL such that
for some finite C we have

sup
x∈X

∣∣∣∣ 1
e(x)

−RL(x)′δL

∣∣∣∣ = O(L−se/d).

Then ∣∣∣∣∣ 1√
N

N∑
i=1

Wi − êL(Xi)
e(Xi)

∣∣∣∣∣
≤

∣∣∣∣∣ 1√
N

N∑
i=1

(Wi − êL(Xi))RL(Xi)′δL

∣∣∣∣∣+
∣∣∣∣∣ 1√

N

N∑
i=1

(Wi − êL(Xi)) ·
(

RL(Xi)′δL −
1

e(Xi)

)∣∣∣∣∣ .
Because of the first order conditions for π̂L the first term vanishes. The second term is bounded by

2 ·N1/2 · sup
x∈X

∣∣∣∣RL(x)′δL −
1

e(x)

∣∣∣∣ = O(N1/2L−se/d).

Next, define

CN =
1
N

N∑
i=1

Wi · Yi

êL(Xi)
− 1,
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so that

β̂hir,1 − β̂hir,2 =
1
N

N∑
i=1

Wi · Yi

êL(Xi)
·
(

1− 1
1 + CN

)
.

Hence
√

N ·
∣∣∣β̂hir,1 − β̂hir,2

∣∣∣
≤

∣∣∣∣∣ 1
N

N∑
i=1

Wi · Yi

êL(Xi)

∣∣∣∣∣ ·
∣∣∣∣∣
√

N · CN

1 + CN

∣∣∣∣∣ .
The first factor is τ̂hir and is Op(1) if the rate restrictions that ensure weak consistency are satisfied. The
second term is bounded by bound on

√
NCN derived above and this is also the bound on the difference,

so that the bound is

Op

(
N−1/2ζ(L)5L

)
+Op

(
ζ(L)4L1/2L−se/(2d)

)
+Op

(
N1/2ζ(L)L−se/(2d)

)
+Op

(
N1/2ζ(L)2L−se/d

)
(A.67)

�

Lemma A.9 If

sup
K∈KN

|EN (K)− CN (K)|
EN (K)

p→ 0

then

EN (K̂)
infK∈KN

EN (K)
p→ 1

Proof: Define

K̃ = argminK∈KN
EN (K)

For N large enough we have that for any δ, η > 0

Pr
(

sup
K∈KN

∣∣∣∣CN (K)
EN (K)

− 1
∣∣∣∣ < δ

)
> 1− η

Hence if N is sufficiently large then with probability of at least 1− η

1 + δ

1− δ
≥ CN (K̃)

(1− δ)EN (K̃)
≥ CN (K̂)

(1− δ)EN (K̃)
≥ EN (K̂)

EN (K̃)
≥ 1

and the conclusion follows because δ, η are arbitrary. �

Proof of Theorem 4.1: We have

CN (K) = EN (K)+
2
N

u′N1
AK,N1aN1a

′
N1

AK,N1µN1 +
1
N

(a′N1
AK,N1uN1u

′
N1

AK,N1aN1−σ2a′N1
AK,N1aN1)

We need to show

sup
K∈KN

1
N

∣∣u′N1
AK,N1aN1a

′
N1

AK,N1µN1

∣∣
EN (K)

p→ 0 (A.68)
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and

sup
K∈KN

1
N

∣∣a′N1
AK,N1uN1u

′
N1

AK,N1aN1 − σ2a′N1
AK,N1aN1

∣∣
EN (K)

p→ 0 (A.69)

We consider (A.68) first.
We have for δ > 0 (using the Markov inequality for the final bound)

Pr
(

sup
K∈KN

1
N

|a′N1
AK,N1µN1 ||u′N1

AK,N1aN1 |
EN (K)

> δ

)
≤

∑
K∈KN

Pr
(

1
N

|a′N1
AK,N1µN1 ||u′N1

AK,N1aN1 |
EN (K)

> δ

)

≤
∑

K∈KN

|a′N1
AK,N1µN1 |mE(|u′N1

AK,N1aN1 |m)
δmNmEN (K)m

By Theorem 2 in Whittle (1960) and assumption 4.1

E(|u′N1
AK,N1aN1 |m) ≤ C(a′N1

AK,N1aN1)
m
2

We have by lemmas A.7, A.8(ii) and assumption 3.2

a′N1
AK,N1aN1 ≤ CNζ(K)2K−se/d (A.70)

Also

NEN (K) ≥ (a′N1
AK,N1µN1)

2 (A.71)

so that∑
K∈KN

|a′N1
AK,N1µN1 |mE(|u′N1

AK,N1aN1 |m)
δmNmEN (K)m

≤
∑

K∈KN

C
ζ(K)mK−mse/(2d)

EN (K)
m
2

.

Hence sufficient for (A.68) is that:

∑
K∈KN

ζ(K)mK−mse/(2d)

EN (K)
m
2

→ 0

We have∑
K∈KN

ζ(K)mK−mse/(2d)

EN (K)
m
2

≤ 1
infK∈KN

EN (K)
m
2

∑
K∈KN

ζ(K)mK−mse/(2d)

With KN = {Nν0 , . . . , Nν1}, this holds if

N−ν1+ν0m(se/(2d)−1) inf
K∈KN

EN (K)
m
2 →∞ (A.72)

We now consider (A.69). We have by Theorem 2 in Whittle (1960) and assumption 4.1

Pr

(
sup

K∈KN

∣∣a′N1
AK,N1uN1u

′
N1

AK,N1aN1 − σ2a′N1
AK,N1aN1

∣∣
NEN (K)

> δ

)
≤

≤
∑

K∈KN

Pr

(∣∣a′N1
AK,N1uN1u

′
N1

AK,N1aN1 − σ2a′N1
AK,N1aN1

∣∣
NEN (K)

> δ

)
≤
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≤
∑

K∈KN

E
(∣∣a′N1

AK,N1uN1u
′
N1

AK,N1aN1 − σ2a′N1
AK,N1aN1

∣∣m)
δmNmEN (K)m

≤

≤
∑

K∈KN

Ctr
(
(AK,N1aN1a

′
N1

AK,N1)
2
)m

2

δmNmEN (K)m
≤ C

∑
K∈KN

(a′N1
AK,N1aN1)

m

δmNmEN (K)m

By (A.70)

∑
K∈KN

(a′N1
AK,N1aN1)

m

δmNmEN (K)m
≤ C

∑
K∈KN

ζ(K)2mK−mse/d

EN (K)m

so that we need∑
K∈KN

ζ(K)2mK−mse/d

EN (K)m
→ 0

Under the earlier assumptions on ζ(K) and the dimension of KN we need

Nκ(m(se/d−2)−1) inf
K∈KN

EN (K)m →∞

which is implied by (A.72). �
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