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This article evaluates the usefulness of a nonparametric approach to Bayesian inference by presenting 
two applications. Our first application considers an educational choice problem. We focus on obtain- 
ing a predictive distribution for earnings corresponding to various levels of schooling. This predictive 
distribution incorporates the parameter uncertainty, so that it is relevant for decision making under 
uncertainty in the expected utility framework of microeconomics. The second application is to quan- 
tile regression. Our point here is to examine the potential of the nonparametric framework to provide 
inferences without relying on asymptotic approximations. Unlike in the first application, the standard 
asymptotic normal approximation turns out not to be a good guide. 
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This article evaluates in the context of two applications the 
usefulness of a nonparametric approach to Bayesian inference. 
The basic approach is due to Ferguson (1973, 1974) and Rubin 
(1981). It has three key features. First, it has the basic bene- 
fits of Bayesian inference in providing a well-defined posterior 
distribution that is an important ingredient in many decision 
problems. Second, it has some of the advantages of semipara- 
metric models used in frequentist analyses by not relying on 
a tightly parameterized likelihood function, based, for exam- 
ple, on a normal distribution. Third, it avoids pitfalls arising 
in Bayesian analyses from using high-dimensional parameter 
spaces with flat or other conventional prior distributions by 
using a prior distribution that arguably reflects lack of prior 
knowledge. These three features are illustrated in the two 
applications. 

Our first application considers an educational choice prob- 
lem. Specifically, we look at an individual's decision on the 
level of schooling when the individual is uncertain about the 
return to schooling. Following Angrist and Krueger (1991) we 
allow for endogeneity of the schooling measure by using a 
quarter of birth dummy as an instrumental variable. A stan- 
dard parametric model would require distributional assump- 
tions on the joint distribution of earnings and schooling given 
the instrument. On the other hand, standard instrumental 
variables methods that do not require such assumptions do 
not lead to the predictive earnings distributions required for 
the educational choice problem. The Bayesian nonparametric 
approach discussed in this article allows us to obtain a pre- 
dictive distribution for earnings corresponding to various lev- 
els of schooling that incorporates the parameter uncertainty, 
so that it is relevant for decision making under uncertainty 
in the expected utility framework of microeconomics. At the 
same time in this application this approach avoids strong dis- 
tributional assumptions without introducing strong sensitivity 
to the prior distribution. 

The second application is to quantile regression. Our point 
here is to examine the potential of the nonparametric Bayesian 

framework to provide inferences without making asymp- 
totic approximations. Unlike in the first application, in this 
application the standard asymptotic normal distribution turns 
out to be a poor approximation to the sampling distribution 
of the estimator in some cases. If the standard normal dis- 
tribution provides a good approximation to the finite sample 
distribution, posterior intervals obtained through the Bayesian 
nonparametric approach discussed in this article are close to 
confidence intervals. When the large sample normal approxi- 
mation fails to provide a good approximation to the finite sam- 
ple distribution, the interpretation of our posterior distribution 
is not affected. 

1. DIRICHLET PRIOR DISTRIBUTIONS 

Here we present a concise review of the basic theory, 
extended to allow for parameters defined by moment restric- 
tions, that is sufficient to follow the applications. For more 
details, see the work of Ferguson (1973, 1974), Rubin (1981), 
Chamberlain and Imbens (1995), and Hirano (2002). There 
is a family of probability distributions {Po: 0 e }01, and we 
observe {Zi}in1, where the random variables Zi are indepen- 
dently and identically distributed according to P0 for some 
unknown value of 0 in the parameter space 0. To simplify 
notation, let Z denote a random variable that is distributed 
according to P.. We assume that the distributions P0 have 
a common, finite support, P0(Z = aj) = 0 (ji = 1, ... , J), 
where Oj denotes the jth component of 0, and we take 0 
to be the unit simplex in RJ. Because J can be arbitrar- 
ily large and our data are measured with finite precision, the 
finite support assumption is arguably not restrictive. In fact, 
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Ferguson's (1973) discussion does not rely on discreteness. 
See also Hirano (2002). 

Typically we are interested in some function of 6 rather 
than elements of 6 itself: 3 = g(O), where the function g(.) 
may depend on the points of support {aj} =,. For example, 
we consider cases where g(.) is defined implicitly through 
moment restrictions, 

J 

Eoq(Z, 3) = r(aj, 3) . 0 = 0, (1) 
j=1 

where q1 is a given function with dimension equal to that of/3, 
and there is a unique solution for all 0 e ?. Although it may 
appear to be restrictive to limit this discussion to the case with 
the dimension of /3 equal to that of q1, one can apply the same 
approach to overidentified gmm models where the dimension 
of q1 is higher than the dimension of/3 by augmenting the 
parameter vector and the moment functions. Specifically, let 

y = (00 l 'F Fo, , A), and let 

{ Foq(Zg o)) 
/vec(d 0(Z9, f0)/do'- F0) 

0(Z, y) = lvec((Z, o)(Z, go)'- A) 
I r'A-1 (Z,01) 

vec(D0(Z, /3)/0 - F1) 

Then the solution to Eil i,(zi, y) =0 gives the standard opti- 
mal two-step generalized method of moments estimator for 

/3, motivating our interest in the posterior distribution for the 
parameter defined as the solution to E[&(Z, y)] = 0. Our 
proposed procedure will give a posterior distribution for this 
parameter given the data. 

A second example concerns cases where g(-) is defined as 
the solution to an optimization problem, 

J 

3=-argminEo[p(Z, t)] =argmin p(aj, t).-Oj, (2) 
t t 

1= 1 

where p is a given scalar-valued function and there is a unique 
solution for all 0 e ?. In both cases we obtain draws from the 
posterior distribution of 3 by first drawing from the posterior 
distribution of 0 and then solving (1) or (2). 

We limit ourselves to prior distributions in the Dirichlet 
family with density 

J 

p(O) c•Hx for 0 6 e (b1 > 0), (3) 
j= 1 

which, with J free parameters bj, is fairly flexible. Simi- 
lar to the way the Beta distribution is the conjugate prior 
distribution for the parameter of a binomial distribution, the 
Dirichlet distribution is the conjugate prior distribution for 
the parameters of a multinomial distribution. Let d = {zi}i= 
denote the data, that is, the observed values of the Zi, and let 

n - 2in, 1(zi = a1) be the number of sample observations 
equal to a1. The posterior density is proportional to the prod- 
uct of the prior density and the likelihood function, 

Pn(I d) oH 0nI+b -1 

j=1 

and thus also Dirichlet with parameters nj + bj, j = 1, ... , J. 
Within this family of Dirichlet prior distributions we focus on 
the improper prior distribution with all the b--+ 0. There are 
three important features of this improper prior distribution. 

First, the improper prior distribution avoids the potential pit- 
fall in using the Dirichlet prior with large J and all of the bj 
bounded away from zero. Because we rely on J being large to 
make the model flexible, this potentially would be an impor- 
tant drawback of the method. To see the problem, let 4) denote 
the probability that Z is in some set B: 4)-= Ej:ajB Oj. Then 
the posterior distribution for 4) is a beta distribution with 

E(4) Id) = E (nj + bj) (nj + bj), 
j:aj EB j=1 

Var(4) I d)=E(4) I d)[1-E(4 Id)] 1+ (nj + bj) . 
j=1 

Suppose bj = e > 0 for all j, and consider increasing the 
number of support points while keeping the data d fixed. 
Let the fraction of support points in B approach a limit 
r: jE 1(a e B) -+ r as J-+oo. Then E(4) Id) -+ r, 
Var (4) •d) -+ 0, and both prior and posterior distribution of 4) 
become concentrated at r, regardless of the data. In particu- 
lar, this argument covers a flat prior for 6 (bj - 1), suggesting 
that a flat prior distribution does not capture a lack of prior 
information very well when J is large. 

The second point is computational. The algorithm for eval- 
uation of / = g(O) defined through moment functions takes 
a particularly simple form for the limiting posterior distribu- 
tion that results from letting all the b -+ 0 in (3). Then the 

Oi corresponding to the support points aj not observed in the 
sample are all zero with posterior probability one. Let {Vi}i=l 
be independently distributed according to a standard exponen- 
tial distribution [i.e., the gamma distribution .9(1, 1)]. Then, 
for a given function A(.), 

n n 

A(zi)Vi/ / Vi A(aj)Uj U, 
i=1 =1 j:nj>O j:nj>0 

where Uj = 
Ei:zi=aj Vi -- (nj, 1), using the fact that a sum 

of independent exponential random variables has a gamma 
distribution. Thus to simulate the posterior distribution of 3 
based on (1), instead of drawing from the posterior distribution 

of 6 and then solving 

J 

• df (a j, l) . Oj -- 0, 
j=l 

we draw sets of iid exponential random variables { Vi(' }in and 
solve 

SO(Zi, •(')) Vi(') -- O, (4) 
i=l 

and similarly for /3 based on (2) we solve 

J3() - arg min (zi, t) Vi(/. (5) 
i=1 
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Repeating this for 1 = 1,... , L gives us L independent draws 
from the posterior distribution of /3. Rubin (1981) developed 
this simulation algorithm (using a representation for the ratio 
of exponentials to the sum of exponentials as gaps in order 
statistics from a uniform distribution), and it was applied by 
Lancaster (1994) in the analysis of choice-based samples. 

The third issue is that the improper prior distribution for 0 
does not imply a unique prior distribution for the parameter of 
interest. Although for proper prior distributions for 0 the prior 
distribution for / is well defined, the limiting prior distribu- 
tion for / as the bj -+ 0 depends on the limits of the ratios 

bj/bt. To see this, consider the example discussed in which 
we are interested in 4), the probability that Z is in some set 
B: 4)= Ej:aieB Oj. For fixed bj the prior mean of 4) is E(4)) = 

Ej:aj B/ bj/EjI bj. As we let the bj -+ 0, the limiting mean 
depends on the limit of the ratios of bj/bz. The posterior mean 
is E(( I d)= Ej:ajeB(nflj+bj)/Ej (l(njJ+bj), which, after tak- 

ing the limit bj -+ 0, equals L j:aB nj/ jt1 nj, which does 
not depend on the limit of the ratios bj/bz. As this example 
illustrates, it is important to understand the implications of the 
choice of the limiting Dirichlet distribution. To measure the 
informativeness of the prior distribution for /3, we propose cal- 
culating the expected posterior distribution given a small num- 
ber m of observations, where we take the expectation over the 
empirical distribution. Let Fn denote the empirical distribution 
of our sample: Fn(B) = I 

Enl l(zi e B). Let 7( I- {til}m=1) 
denote the posterior distribution for 3 based on the m obser- 
vations Zi = ti (and assume for a moment that this posterior 
distribution is proper). The expected posterior distribution for 

3 based on a random sample (with replacement) of size m 
from Fn is given by *m(-) = f i7(- {t}ilm=) U=l dFn(ti). 

To 
allow for the possibility of an improper posterior distribution, 
we modify this formula as 

m 

7!= (- I ti )1({ti , ECm) H dFn(ti) 
i=1 

m 

fl({tilm, E CQm) dFn(ti), (6) 
i=1 

where the set Cm consists of the points {t}i{l such that 

7T(.I {ti}m=l) is a proper distribution. If the prior distribution 
is not very informative for /3, different small samples {ti}m=l 
could lead to very different posterior distributions, and thus the 
average posterior distribution should be relatively dispersed. 
If we find, therefore, that this average small sample posterior 
distribution is dispersed compared to the full posterior distri- 
bution, we interpret that as evidence that our prior distribution 
does not dominate the data. 

2. INSTRUMENTAL VARIABLES 

The first application illustrates how the described general 
method can generate posterior distributions without tightly 
parameterized models. Such a posterior distribution is called 
for to include parameter uncertainty in the decision making 
formulation; see, for example, the work of Rossi, McCulloch, 
and Allenby (1995), Kandel and Stambaugh (1996), and 

Barberis (2000). In this first example the large sample nor- 
mal approximation to the sampling distribution can be used 
to approximate this posterior distribution fairly accurately. If, 
however, the objective is a posterior distribution for the param- 
eter of interest, then our procedure is more direct than having 
to first approximate a sampling distribution by a normal dis- 
tribution and then to argue that this normal distribution can be 
used to approximate a posterior distribution. 

We use a very simple model relating earnings and school- 
ing with a constant, additive treatment effect, linear in years 
of schooling. An individual may choose schooling levels by 
maximizing expected lifetime discounted utility, with utility 
depending on earnings at various schooling levels as well as 
costs associated with schooling. Such a decision requires the 
posterior distribution of earnings at the relevant schooling lev- 
els as one of the inputs. The potential outcome with treatment 
level s is Ys = Yo + ys, where Y0 is the potential outcome 
with treatment level 0 and y is the unknown return to school- 
ing, common to all individuals and common to all school- 
ing levels. The actual treatment level is X, which gives an 
actual outcome Y of Y = Yo + yX. Let a be the population 
mean of Y0, and define the disturbance U = Yo- a so that 
E0(U) =0. The instrumental variable W satisfies E0(WU) =0 
and Cov0(W, X) 0 0. We are abstracting from the presence 
of exogenous covariates-they could be incorporated into the 
presented analyses without any problems. 

Let Z = (Y, X, W) and P' = (a, y). Then /3 satisfies the 
moment condition Eof(Z, /3) = 0 with 

(W) 
q(Z,/3) = (Y - a- yX) W" 

Assuming finite support for the distribution of Z, we use the 
improper Dirichlet prior [with all the bi-* 0 in (3)] for the 
parameters of this, and the posterior distribution of /3 can be 
simulated as in (4). 

Our data is a subset of the data used by Angrist and 
Krueger (1991) containing males born in either the first or the 
fourth quarters between 1930 and 1939. The sample size is 
n = 162,515. The outcome variable Y is the log of weekly 
earnings in 1979. The treatment X is years of schooling com- 
pleted, and the instrumental variable W is an indicator equal 
to one if the individual was born in the fourth quarter and 
equal to zero otherwise. 

First we evaluate the information content of the prior dis- 
tribution for the parameter of interest y. To do so, we cal- 
culate the expected posterior distribution im? as in (6), with 
m = 10 observations. We compare these expected posteriors 
with the actual posterior distribution based on the full sample 
with n = 162,515 observations. Here are some of the quantiles 
for the y distributions: 

quantile: .025 .05 .25 .50 .75 .95 .975, 

• '0:-2.43 -1.02 -.09 .07 .23 1.22 2.51, 

n( d): .047 .054 .075 .089 .104 .124 .132, 

N(.089, .0212): .048 .055 .075 .089 .103 .124 .130. 
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It appears that the prior distribution is reasonably uninforma- 
tive for y, so that the posterior distribution mainly reflects the 
sample information. 

The instrumental-variables estimate 9 [i.e., the solution to 
n 
inlr(zi, /) = 0, where 3' = (a^, 9)] is .089. An asymp- 

totic approximation to its sampling distribution (allowing for 
heteroscedasticity of unknown form) gives a normal distribu- 
tion with mean y and standard deviation .021. A normal dis- 
tribution with mean .089 and standard deviation .021 would 
provide a good approximation to our posterior distribution. 

3. QUANTILE REGRESSION 

The second application illustrates how the posterior distri- 
bution can be well defined when standard approximations to 
the sampling distribution are not appropriate. Let Z = (X, Y), 
where Y is scalar and X is K x 1. We can define a lin- 
ear predictor corresponding to the rth quantile as follows: 
E* (Y I X = x) =- 'x, where 

/ = argminE0o[c, (Y - t'X)] 
t 

c(t) = t I V[(1 
- ) - l(t < 0) +r. l(t > 

0)]. 
(/ in general depends on r, but this should be clear from the 
context.) If r = .5, then this reduces to minimizing the mean 
absolute error: mint E0(I Y - t'X 1). By weighting the absolute 
error differently for positive and negative values, the check 
function c (.) extends this notion of linear predictor to other 
quantiles. The role of the check function in quantile regression 
was developed by Koenker and Bassett (1978, 1982). 

Our simulation procedure produces independent draws 

{(I)} L_ from the posterior distribution of P. To obtain f/(), 
first take iid draws { Vi( }i1 from a standard exponential dis- 
tribution. Then solve 

n 

3(l) - arg min Vi 
() 

c,(yi- t'xi), t 
i=1 

' 

where the observed value of Zi is zi = (xi, yi). The computa- 
tions are simplified by exploiting the fact that rc,(t) = c,(rt) 
if r >0. Thus define YiM = Vily and X 1) = Vi()xi. Then 

n 

/3() 
- arg min c,(Yi(l) - t'X ). 

t i=1 

This is a linear programming problem, and we use the 
Barrodale-Roberts (1973) modification of the standard sim- 
plex algorithm. 

Our application is based on the work of Meyer, Viscusi, and 
Durbin (1995), who obtained data for two states, Kentucky 
and Michigan, on a random sample of indemnity claims. We 
focus on Kentucky. The claims were filed by workers seeking 
compensation for work-related injury or illness. Meyer et al. 
concentrate on temporary total disability claims. Such a claim 
is filed when the person is unable to work but is expected to 
recover fully and return to work. The data include date injured, 
duration of temporary total benefits, total medical costs, pre- 
vious wage, weekly benefit amount, type of injury (body part 
affected and the type of damage), age, sex, marital status, and 
an industry code. 

Table 1. Quantile Regression Coefficients for Log of Duration, 
Kentucky High and Low Earnings Groups Pooled 

Quantile 

Variables .10 .25 .50 .75 .90 OLS 

Intercept -5.555 -3.067 -1.749 -.811 -1.239 -1.994 
(.817) (.497) (.403) (.490) (.692) (.410) 

After increase .136 .141 .164 .170 .137 .145 
*High earnings (.102) (.057) (.053) (.060) (.088) (.051) 

group 
After increase -.008 -.039 -.029 .013 .074 .000 

(.073) (.042) (.034) (.040) (.057) (.033) 

High earnings 1.755 .525 .024 -.792 -3.191 -.696 
group (1.352) (.931) (.771) (1.014) (1.692) (.806) 

NOTE: The dependent variable in In(.5+duration). The sample size is 5,349. The additional 
regressors are Ln(previous wage), Ln(previous wage) * High earnings group, Male, Married, 
Ln(age), Ln(total medical costs), Hospital stay indicator; Industry indicators: Manufacturing, 
Construction; Injury type indicators: Head, Neck, Upper extremities, Trunk, Low back, Lower 
extremities, Occupational diseases. The omitted industry is other industries, and the omitted 
injury is other injuries. 

The amount of the weekly benefit is based on a schedule 
that determines the benefit as a function of previous earn- 
ings. The schedule has a ceiling, with earnings levels above a 
threshold corresponding to the same weekly benefit. Kentucky 
raised the maximum benefit from $131 to $217 per week on 
July 15, 1980. 

Meyer et al. worked with claims with injury dates during the 
year before or the year after the change in the benefit sched- 
ule. They also limited the sample to a high earnings group 
and a low earnings group. The weekly benefit amount for the 
high earnings group was affected by the increase in the ben- 
efit ceiling, whereas the benefit amount for the low earnings 
group was not affected. Thus the low earnings group can pro- 
vide a control for period effects. The basic specification in the 
work of Meyer et al. is 

Eo(Y I X = x) = 
/l + 02 x2 x3 +03 "x2 +04 'x3 (7) 

(xl = 1 denotes a constant). Here Y = log of duration, with 
duration measured by weeks of temporary total benefits paid; 
x2 = 1 if injured after the benefit increase, x2 = 0 otherwise; 

Table 2. Quantile Regression Coefficients for Duration, Kentucky High 
and Low Earnings Groups Pooled 

Quantile 

Variables .10 .25 .50 .75 .90 OLS 

Intercept -6.199 -7.258 -8.972 -11.566 -19.848 -25.886 
(1.157) (1.441) (1.779) (3.310) (7.254) (8.412) 

After increase .229 .302 .873 1.351 2.661 1.665 
*High earnings (.143) (.165) (.230) (.554) (1.339) (1.043) 

group 
After increase -.052 -.032 -.116 .122 .498 .457 

(.085) (.097) (.138) (.289) (.629) (.674) 

High earnings .051 -.356 -1.655 -11.541 -56.802 -41.783 
group (2.546) (2.848) (3.528) (9.299) (27.400) (16.539) 

NOTE: The dependent variable is duration (in weeks). The sample size is 5,349. The addi- 
tional regressors are the same as those in Table 1. The omitted industry is other industries, 
and the omitted injury is other injuries. 
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Figure 1. Posterior Histogram. q = .5 (long list for x). 

X3 = 1 if high earnings group, x3 = 0 otherwise. The key coef- 
ficient is 032, measuring the effect of the benefit increase on 
time out of work, with controls for period and for the earnings 
group: 

2 = [Eo(Y I x2 = 1,x3 
= 1) - Eo(Y I x2 = 0, x3 = 1)] 

- [Eo(YI x2 = 1,x3 = 0) - Eo(Y I x2 = 0, x3 = 0)]. 

An appealing aspect of the Meyer et al. analysis is that it is 
plausible to regard the injury date, and hence the applicable 
benefit schedule, as if it were randomly assigned. 

To account for possible changes in the composition of the 
sample after the benefit increase, Meyer et al. included regres- 
sion controls for attributes of the individual, the job, and the 
injury-16 regressors in addition to the 4 in (7). The last 
column of Table 1 presents least squares estimates (and con- 
ventional standard errors) corresponding to Table 6 in the 
Meyer et al. work. The first five columns of Table 1 present 
estimates of the linear predictor coefficients corresponding to 
the .10, .25, .50, .75, and .90 quantiles. These estimates are 
based on the simulation procedure described earlier. The point 
estimates are posterior medians, and the standard errors in 
parentheses are constructed so that the point estimate plus or 
minus 1.96 standard errors gives an interval with a .95 poste- 
rior probability. The key coefficients [corresponding to /2 in 
(7)] are in the second row. The effect of the benefit increase 
is fairly constant across the quantiles, suggesting a location 
model in which the distribution of log duration shifts rigidly 
in response to the benefit increase. 

Table 2 presents results using duration out of work (in 
weeks) instead of its logarithm. Now the estimates show a 
substantial increase as we go from low to high quantiles, sug- 
gesting that the effect of the benefit increase is concentrated 
on the upper half of the duration distribution. The estimated 
effect on the median of the distribution is .87 weeks, with a 
standard error of .23. In contrast, the least squares estimate of 
the effect on the mean of the distribution is quite imprecise, 
with a point estimate of 1.66 and a standard error of 1.04. 

The histogram of the draws from the posterior distribution 
of 02 is shown in Figure 1 for r = .5, using duration in weeks. 
The posterior mean is .87, and the posterior standard deviation 
is .23. Thus assuming the posterior distribution is normal and 
using .87 + 1.96 x .23 gives a probability interval close to the 
one we constructed without assuming normality. 

We examine the influence of the prior distribution by cal- 
culating the expected posterior distribution #,m as in (6), for 
m = 21 observations, and comparing this distribution with the 
posterior distribution 4f(. I d) based on the full sample with 
n = 5,349 observations. Here are some of the quantiles of the 
02 distributions for r = .5, using duration in weeks: 

quantile: .025 .05 .25 .50 .75 .95 .975, 
12. -290 -157 -20.4 1.01 24.3 184 323, 

In2(. [ d): .41 .49 .71 .87 1.03 1.25 1.32. 

The prior distribution is dominated by the sample information. 
Now consider dropping all the predictor variables except 

for the four that appear in (7): 1, x2 x3, x2, x3. We compare 

3000 
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T 2000- 
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Figure 2. Posterior Histogram. q = .5 (short list for x). 
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Figure 3. Posterior Histogram. q = .9 (short list for x). 

the expected posterior distribution for m = 5 observations with 
the posterior distribution based on the full sample. Here are 
quantiles of these distributions for /2 with r = .5, using dura- 
tion in weeks: 

quantile: .025 .05 .25 .50 .75 .95 .975, 

r,.2: -121 -36 -6 1 9 59 110, 

32 (. I d): 0 0 1 1 2 2 2. 

The posterior histogram for /2 is in Figure 2. It is concentrated 
on just four points: -1, 0, 1, and 2 weeks, with posterior prob- 
abilities of .01, .14, .55, and .30. This reflects the discreteness 
of the benefit duration distribution. The upper tail of that dis- 
tribution is somewhat continuous, but 56% of the distribu- 
tion is concentrated on the integers from 0 to 4 weeks. The 

(.5, .75, .9, .95, .975) quantiles are (4, 8, 15, 25, 49) weeks. 
Including the long list of predictor variables smoothes out this 
discreteness in the outcome variable, in the sense of produc- 
ing a residual distribution (for Y - P'X) that is much closer to 

being continuous. 
Here are the quantiles of the 12 distributions for r = .9, 

using just the four regressors in (7) and duration in weeks: 

quantile: .025 .05 .25 .50 .75 .95 .975, 

,.2: -145 -41 -7 1 10 72 124, 

"7f2 (. I d): 2 3 5 7 8 11 12. 

The posterior histogram for 32 is in Figure 3. This is closer to 
a normal distribution, corresponding to the continuity in the 
upper tail of the duration distribution. 

The standard asymptotic distribution theory for quantile 
regression requires that the distribution of the residual Y - P'X 
(conditional on 0) be absolutely continuous with a positive 
density in a neighborhood of zero. This requirement may be 
satisfied because the distribution of Y conditional on X is con- 
tinuous. Alternatively, even if Y is discrete, it may be satis- 
fied because X'1 is continuous. For example, with Y binary 
and X uniform on [0, 1], and E[Y I X] = X, the limiting dis- 
tribution of the coefficient in a quantile regression is normal 
despite the binary nature of Y. In our example Y is discrete 
with most mass concentrated on a few values. With only three 
binary regressors, the resulting distribution of the residual is 
still highly discrete. With the long list of regressors, although 
many of them are discrete, the continuity requirement for the 

residual is much closer to being satisfied, and the standard 
large sample approximation to the sampling distribution is 
more accurate. In contrast, our posterior distributions provide 
straightforward inferences that do not rely on the approximate 
normality of a sampling distribution. 

4. CONCLUSION 

The Bayesian approach to inference provides an attractive 
conceptual framework because of its connection with opti- 
mization concepts in decision theory and its lack of reliance on 
large-sample approximations. In practice, its use has been lim- 
ited by the requirement of a fully specified parametric model 
because many econometric models are only partly specified. 
In this article we presented two applications of a less paramet- 
ric Bayes approach that are due to Ferguson (1973, 1974) and 
Rubin (1981). In the first application, the decision-theoretic 
nature of the underlying question forces the use of posterior 
distributions rather than sampling distributions. In the second 

application, the assumptions underlying the asymptotic nor- 
mality of the sampling distributions are clearly violated, but 
inference based on posterior distributions is straightforward. 
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