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In this paper I discuss alternatives to the GMM estimators proposed by Hansen (1982) and 
others. These estimators are shown to have a number of advantages. First of all, there is no need 
to estimate in an initial step a weight matrix as required in the conventional estimation procedure. 
Second, it is straightforward to derive the distribution of the estimator under general misspecifi- 
cation. Third, some of the alternative estimators have appealing information-theoretic interpreta- 
tions. In particular, one of the estimators is an empirical likelihood estimator with an interpretation 
as a discrete support maximum likelihood estimator. Fourth, in an empirical example one of the 
new estimators is shown to perform better than the conventional estimators. Finally, the new 
estimators make it easier for the researcher to get better approximations to their distributions 
using saddlepoint approximations. The main cost is computational: the system of equations that 
has to be solved is of greater dimension than the number of parameters of interest. In practice 
this may or may not be a problem in particular applications. 

1. INTRODUCTION 

Generalized Method of Moments (henceforth GMM) estimation has become an important 
unifying framework for inference in econometrics in the last fifteen years. It can be thought 
of as nesting estimation methods such as maximum likelihood, least squares, instrumental 
variables and two-stage-least-squares. Its formalization by Hansen (1982), Burguete, Gall- 
ant and Souza (1982), and Manski (1983), centres on the presence of known functions, 
"moment functions", of observable random variables and unknown parameters that have 
expectation zero when evaluated at the true parameter values. The unknown parameters 
are estimated by setting the sample averages of these moment functions as close to zero 
as possible. Chamberlain (1987) showed that optimal GMM estimators achieve the semi- 
parametric efficiency bound. See Gallant (1987), Manski (1988), Davidson and Mac- 
Kinnon (1993), Hamilton (1994), and Newey and McFadden (1994) for general 
discussions. 

When the number of moment functions is larger than the number of unknown param- 
eters, the so-called "over-identified case", it is in general not possible to set the sample 
average of these moment functions exactly equal to zero. The solution proposed by Hansen 
(1982), following similar approaches in linear models such as two- and three-stage least 
squares, is to set a linear combination of the sample average of the moment functions 
equal to zero, with the dimension of the linear combination equal to the number of 
unknown parameters. To ensure efficiency in this case, the researcher has to choose the 
linear combination optimally, and here Hansen suggested employing initial, possibly 
inefficient, estimates to estimate the optimal linear combination. This introduces some 
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arbitrariness in the estimation procedure, however, leading to estimators that are not 
invariant to, for example, linear transformations of the original moment functions. 

In various forms, and for various special cases, a number of alternative estimators 
have been proposed that, implicitly or explicitly, are based on estimates of the distribution 
function that satisfy all the moment restrictions exactly rather than only a number of 
(linear combinations of) these restrictions. Some of these alternative estimators have 
appealing information-theoretic interpretations in addition to being invariant to linear 
transformations of the moment functions. I refer to estimators of this type as one-step 
estimators, as opposed to the conventional two-step estimators where an initial estimate 
is used to estimate the optimal linear combination of the moment functions. One example 
of these one-step estimators is the raking estimator for estimating cell probabilities in a 
contingency table with known marginals (Deming and Stephan, 1942; Ireland and Kull- 
back, 1968; Little and Wu, 1991). Haberman (1983) proposed an estimator similar to this 
in the context of regressions models with additional moment restrictions that do not 
depend on unknown parameters. Another example is Cosslett's pseudo maximum likeli- 
hood estimator for discrete choice models with choice-based sampling and known marginal 
choice probabilities (Cosslett, 1981a, b). More recently Back and Brown (1990) and Qin 
and Lawless (1994) presented an estimator for the general GMM case that is closely 
related to the empirical likelihood literature in statistics (Owen, 1988, 1990; DiCiccio and 
Romano, 1990; DiCiccio, Hall and Romano, 1991), and that can also be thought of as a 
generalization of Cosslett's estimator. Imbens and Hellerstein (1997) discuss an interpreta- 
tion of a weighted estimator as an empirical likelihood estimator. 

In this paper it will be shown that in the general GMM case the empirical likelihood 
estimator is the exact maximum likelihood estimator given finite discrete support for the 
data. An alternative representation of this one-step estimator will be provided that allows 
straightforward application of the standard just-identified GMM procedures. In addition 
a number of alternative one-step estimators, based on different metrics for the difference 
between the estimated and the empirical distribution function, will be discussed. An 
empirical example will be provided where the sensitivity of the standard two-step GMM 
estimator to initial estimates will be discussed and the conventional estimator compared 
to one of the one-step estimators as well as to the "iterated" GMM estimator recently 
proposed by Hansen, Heaton and Yaron (1994). Finally, using saddlepoint approxima- 
tions, I illustrate how one can investigate whether additional moments do in fact increase 
precision of estimation. Standard first order asymptotics imply that additional moment 
restrictions cannot decrease precision, while the saddlepoint approximation, which are 
easier to evaluate for the proposed estimators than for the standard GMM estimator, 
shows that in fact precision may decrease when using additional moment restrictions. 

2. GENERALIZED METHOD OF MOMENTS ESTIMATION 

In this section the generic form of the GMM estimation problem in a cross-section context 
is presented. Let 0 be a K dimensional parameter vector, an element of 0, a compact 
subset of K. The random vector X has dimension P, with its support X a compact 
subset of MP. The moment function Vi: X x x -,M, is a vector valued function such that 
Eil (x, 0) = 0 for a unique 0* eint 0. It is assumed that V/ is twice continuously differenti- 
able with respect to 0, and measurable in x, and that the expected outerproduct A= 
EV(X, 0*)V(X, 0*)' and the matrix of expected derivatives [=E(01/D0')(X, 0*) are of 
full rank. For a recent discussion of these and other regularity conditions see Newey and 
McFadden (1994). 
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Given a sequence of independent and identically distributed random variables {X"} 
we are interested in estimating 0*. The conventional (i.e. Hansen (1982)) solution is to 
minimize for some positive definite M x M symmetric matrix C the quadratic form 

RC,N(0)= = I V(Xn,0)] C[Zn= V(Xn, O) 

over 0e0. Under the regularity conditions given above, the minimand Ogmm of (1) has 
the following large sample properties: 

ogmin 0 9 

N(0gmm - 0*) cl X'(0, (F'CF )F'CACF(F'CF)-) 

In the just-identified case with the number of parameters K equal to the number of moments 
M, the choice of weight matrix C is immaterial. In that case F is a square matrix, and 
because it is full rank by assumption, F is invertible and the asymptotic covariance matrix 
reduces to (F'A-'F )'. In the overidentified case with M> K, however, the choice of the 
weight matrix C is important. The optimal choice for C is in this case A-'. Then 

N(0gnin -0*) 4 V(O, (F'A 'F)'). (2) 

This estimator is generally not feasible because typically A-' is not known to the researcher. 
A feasible solution is to obtain an initial consistent, but generally inefficient, estimate of 
0* by minimizing RCNN(0) using an arbitrary positive definite Mx M matrix X, e.g. the 
identity matrix of dimension M. Given this initial estimate, 0, one can estimate the optimal 
weight matrix as 

LN A [NEn=1 VI(Xn, 0)f (Xn, 0) ] 

In the second step one estimates 0* by minimizing RA-',N(0). The resulting estimator Ogmm 
has the same first order asymptotic distribution as the minimand of the quadratic form 
with the true, rather than estimated, optimal weight matrix, RA-',N(O). 

The estimator Ogmm is not invariant to linear transformations of the moment functions. 
Consider replacing the moment vector yV by yi = A yV for some fixed, non-singular, M x M 
matrix A. The initial estimator 0 is in this case the minimand of RA CA, N () which will in 
general differ from the minimand of RCN( (). Hence the estimator of the optimal weight 
matrix A-'(0) and subsequently the final estimator Ogmm will be affected by the choice of 
A. 

One can also interpret the two-step estimator for over-identified GMM models as a 
just-identified GMM estimator with an augmented parameter vector (e.g. Newey and 
McFadden (1994); Chamberlain and Imbens (1995)). Define the following moment 
function 

A- (x,fB) Do, 
A'Cyi(x, fB) 

h(x, 0, F, A, 1, A)= A- yI(x, fB)yV(x, /B)' . (3) 

a", A- I (x,0) 

F'A-'i(x, 0)/ 
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Because the dimension of the moment function h(*), MX K+K+ (M+ 1) x 
M/2 + M x K+ K= (M+ 1) x (2K+ M/2), is equal to the combined dimensions of its 
parameter arguments, the estimator for (0, F, A, ,s, A) obtained by setting the sample 
average of h( * ) equal to zero is a just-identified GMM estimator. The arbitrariness of the 
estimator shows up in the dependence of the moment function h( ) on C, although the 
choice of C does not affect the limiting distribution of afN(0 - 0*). This interpretation is 
interesting because it also emphasizes that distributional results for just-identified GMM 
estimators can directly be translated into results for over-identified GMM estimators. For 
example, using the standard approach to finding the large sample covariance matrix for 
just-identified GMM estimators one can use this representation to find the covariance 
matrix for the over-identified GMM estimator that is robust against misspecification: the 
appropriate submatrix of 

( 0EL(o r , P A)]) E[hh'](E[A(0 F,A, , A)l)' 

evaluated at the probability limits of the estimates. 
Recently Hansen, Heaton and Yaron (1996) have proposed two alternatives to the 

standard GMM procedure that are partly aimed at dealing with the lack of invariance to 
linear transformations of the moment functions of the standard GMM estimator. Their 
first alternative, the "iterated" GMM estimator, denoted here by Ogmmi, is based on iterat- 
ing the standard procedure by repeatedly updating the weight matrix and re-estimating 
the parameters till both weight matrix and parameters converge. This estimator can be 
written as a just-identified GMM estimator with moment function 

A- V(x, 0) V(x, 0)' 

g(x, 0, F, A) = |/ r- X@, 0x) .(4) Do, 
F'A-lv(x, 0) 

Note that the components of the moment vector (4) correspond to the last three compo- 
nents of the moment vector (3) with fB in the characterization of the outerproduct A 
replaced by 0. While the iterated GMM estimator is invariant to transformations of the 
form yi(x, 0) = A VI(x, 0) for non-singular, fixed M x M matrices A, it is not invariant to 
transformation of this type if A =A(0), depending on the unknown parameter 0. 

Their second proposal, the "continuously updated" estimator, is invariant to trans- 
formations of both types. It minimizes the quadratic form, RA(o)-',N(0), over 0 in weight 
matrix as well as in the average moments. Although this estimator does not have an 
interpretation as setting the sample average of (a linear combination of) the moment 
functions equal to zero, it does, like the iterated GMM estimator, have the same large 
sample distribution as the standard GMM estimator. 

Hansen, Heaton and Yaron (1996) investigate the small sample properties of their 
proposed estimators and find that while in many aspects these are similar to those of the 
standard estimator, the sampling distributions of the new estimators can be somewhat 
thick-tailed because of the repeated updating of the weight matrix. Although the authors 
note the connection with Sargan's (1958) estimators and Limited-Information-Maximum- 
Likelihood estimators in the linear case, their estimators do not have a general information- 
theoretic motivation. 
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3. EMPIRICAL LIKELIHOOD ESTIMATION 

The estimator discussed in this section will be motivated through a finite discrete support 
argument similar to that used in Chamberlain (1987), Imbens (1992) and Imbens and 
Lancaster (1994). Let X = { v1, V2, . . ., VL} be the known, finite, support of X. This implies 
the model is a fully parametric one, with log likelihood function 

L(i, 0) = l" I 
b(xn) In 7rl, 

for Xc and 0 such that El_ =r,I(v,, 0) = 0, and E lr1= 1, (5) 

where 6,(x) is the indicator function for the event x = v,. 
Let A and p be the Lagrange multipliers for the restrictions E 'r, Iv(vl, 0) = 0 and 

Z r,-= 1 respectively. The first order conditions for the maximum likelihood estimator IC 
and 0e1 are 

En= I [s(jn)A,/(VI, &I) p10, for l= ,...,L, 

A'Z., yr1 (Vl -,e) 0, 

combined with the two restrictions 
L and 

Zl 17Iyr( (V/,Oel>) = ? and El= I or,= 1. 

Multiplying the first part of the first order condition by ir, and adding up over 1= 1, . . ., L 
demonstrates that the solution for p is N. Solving for 7ri one obtains 

7rT =E , 8,(xn)1(Nf+A V( v,, O9el)). 

By concentrating out * and substituting p = N, the equations characterizing the estimate 
of the parameter of interest Oei and the vector of normalized Lagrange multipliers A= 
A;/N can be rewritten as 

EN 0= V1(Xn, 0el)/(0 + 'Y (Xn, Oel)), (6) 

0=Z 1 i' -(xn, Oel)/(l + 'V(Xn, Oel)). (7) 

In this representation some of the Lagrange multipliers are linearly related. To remove 
the redundant Lagrange multipliers, let tel= ( /N)Z (0If/@0')(Xn Oel)/(1 + ;[i,V(xn Oel)) 
be the M x K matrix of estimated derivatives. Because F has full rank, we can, possibly 
after rearranging some of the rows, split it into F = (I", Fr ) with F, a non-singular K x K 
matrix. In large samples we can therefore split fiei accordingly into a nonsingular Fell and 
an (M-K) x K matrix fei25 and A into a K vector A, and an M-K vector -A2. From (7) 
it follows that A.'fel = 0 and therefore AX = -(fell ) fTeq2 A2. This relation can be used to 
rewrite the equations characterizing Oel as 

N A 
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A_ 

where A4' iS X2A and p = (p', p2)' with 

pI(X, 0, A, F) =tr( , (9) 1 + A3'YIi2(X, 0) - A3'F2FI-' t/' (X, 0)' 9 

vec (F-0V//D0'(x, 0)) (10) p2(x, 0, ~ F = 1 
A3'Y2(X, 0) - AJF2FI-' t/i~ (X, 0) (0 

This characterization allows the use of the standard methods for just identified GMM 
estimation because the dimension of p( * ) is equal to M x (K+ 1), the combined dimension 
of the unknown parameters 0, A, and F. From the definition of F and the fact that 
EI(X, 0*) = 0 it is immediately clear that at (0*, A = 0, F) the moment functions have 
expectation zero, irrespective of the finiteness of the support of X. Consistency and asymp- 
totic normality can therefore be proven using the standard GMM methods without assum- 
ing discreteness of X. The derivation based on the finite support maximum likelihood 
estimator implies that the efficiency argument from Chamberlain (1986) applies. 

The main properties of the estimator are summarized in the following result. 

Theorem 1. Given regularity conditions, the estimator 0 for 0* given by (8) has the 
following asymptotic properties: 

N(Oelj)~~~~~Oe p0 
(Rel) ( 0 

Ael 

((o)Xt o ~[F2r,'AI,(F,)- ' 2rr-^2/,(,-'F' + A221-') 

Proof. See Appendix A. 11 

Inspection of (9) reveals that the estimator for 0 discussed in this section solves a 
weighted version of the original moments VI(x, 0). The scalar weight function, or tilting 
function, 1/(1 + A'Yp2 (x, 0)- 2.'F2F' I1,y (x, 0)), ensures that the weighted average of the 
moment functions can be set exactly equal to zero. Note that at 2=0 all weights are 
exactly equal to one. Because )el converges to zero, it therefore follows that in large 
samples the weights are close to one, and that Oel approximately sets the average moments 
equal to zero. 

An interesting implication of the argument presented here is that it naturally leads 
to an efficient estimate of the distribution function. If X has a discrete distribution, the 
maximum likelihood estimator of its distribution function at x is equal to 

FN(X)= l= v 1?V<XA 

Substituting for Ar, shows that this is equal to 

N(Xi=- n 1 NrI 
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which can also be applied to the case with continuous or mixed random variables. This 
is a natural modification of the standard empirical distribution function FN(x) = (1/N) 
EN=1 x <X that takes account of the restrictions implied by the over-identifying moment 
restrictions. The following theorem summarizes the properties of this estimator for the 
distribution function. 

Theorem 2. For any Borel set A, the probability * =pr(xeA) can be estimated by 

Af1 ih ! N A1 i,( A-',fI 'ijx -,1 cJlx-eAFN( N zn-I E - A IeAL +el V/2 (Xn ,Oel) Aelr2 n 

As N-? o, 

__* and A_*) d X(0o V) 

where 

V=o*(l - o*) - V/' AA'IA + WA A 'F(F'A-'F)-'F'A-'IA, 

and VIA is used as shorthandfor E[VI(x, 0*) * 1xeAI = o* * E[yr(x, 0*)Ixe A]. This estimator 
6) is efficient in the sense that its variance achieves the semi-parametric efficiency bound. 

Proof. See Appendix A. 11 

Without the overidentifying restrictions the variance of the efficient estimator for * 
would be o*( 1 - o*). The difference represents the gain in precision in estimating c* from 
the overidentifying restrictions, and depends on the correlation between these moments and 
the indicator function 1xeA* If 0* were known, the large sample variance would be equal 
to o*(1 - o*) - V/A A- W A. The third term in the large sample variance of b is therefore 
the contribution from the lack of knowledge of 0*. Back and Brown (1993) and Brown 
and Newey (1993) propose similar efficient estimators for the distribution function, based 
on the standard two-step GMM estimator for 0*. 

The estimator discussed in this section, i.e. the solution to EN= I P(Xn, 0, A, F) = 0 can 
now be interpreted as the solution to I v,(x, O)FN(dx), that is, as setting the average of 
the moments equal to zero where the underlying estimator of the distribution function, 
FN (x), is efficient because it takes into account the over-identifying restrictions. An alterna- 
tive interpretation of FN(x) is as the projection of the empirical distribution function FN 

onto the space of feasible distributions (i.e. distributions that admit a solution to 
f V(x, 0)F(dx) = 0). See also Manski (1988, p. 5), who discusses in the context of the 
analogy principle the general idea of projecting the empirical distribution function on the 
space of feasible distribution functions. 

An alternative derivation of the estimator discussed in this section is through maximiz- 
ing the empirical, rather than the finite support likelihood, function. See Owen (1988, 
1990), DiCiccio and Romano (1989, 1990), and DiCiccio, Hall and Romano (1991) for 
general discussions and examples of empirical likelihood methods. Formally, one can 
define 0el as the solution to 

N N N 

maxZEn1 In rn subject toEn I, 7r Zn=,_ 7rn Ip(Xn, O) =0. (12) 
ir,6 
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This is also the approach used in Cosslett (1981a, b) in the case of discrete choice models 
with choice-based sampling and known marginal choice probabilities. (A two-step GMM 
estimator for this problem is developed in Imbens (1992)). Ireland and Kullback (1963) 
and Little and Wu (1991) discuss this estimator in the context of estimation of cell probabil- 
ities in two-by-two contingency tables with known marginals as alternative to the raking 
estimator. Back and Brown (1990) and Qin and Lawless (1994) developed the estimator 
for the general GMM case through this empirical likelihood approach. Following the 
latter, this estimator will be referred to as the empirical likelihood (EL) estimator. 

4. ALTERNATIVE ONE-STEP ESTIMATORS 

The empirical likelihood estimator for 0* based on solving EN= I p(xn, 0, i, F) = 0 is not 
the only possible one-step estimator. Because the GMM asymptotics are based on a linear 
approximation to the moment functions around the true values of the parameters, any 
combination of moment functions leading to the same linear approximation leads to 
estimators that have identical first order asymptotic properties. We can construct these 
linear approximations because we know the limiting value for one of the estimators, the 
Lagrange multipliers i, to be zero. More specifically, because Ak enters only in the tilting 
or weight functiong(x, A, 0, F)= 1/(1 + )'2(x, 0)- 'F'2F' /IV(x, 0)), alternative estima- 
tors can be constructed by transforming this tilting function. Two of these alternative 
estimators are discussed here. 

The first, called the linearized empirical likelihood estimator, based on a Taylor 
expansion of p(*) around A= 0, uses the tilting function g(x, i, 0, F) = (ag/a2')(x, A= 
0, 0, F)2k. This leads to the set of moments functions: 

pA(X, 0, i, Ir) = vecX _)1-'Y(, )+srr 1ylxo] 

p32(x, 0, x, F) =vec (r- 00, (x, 0)}[ - )'12(X, 0) + X'r2rF I' (x, 0)]. 

The estimator, (Oiei, )keki Iei) is the solution to EN= 1 P(Xn, 0, A, F) = 0. A potential draw- 
back of this estimator is that the implicit estimate of the distribution function, 
FN(x) = (1/N) E l ,n_x1l )4el/12(xn Oiei) + Ein`e= 2IIex I Ae(x", Oiei)I, is not necessarily 
monotone in x because the implicit estimates of the probabilities, *lel 1 A4eli/i2(Xn 

Olel) + )ueif iei2fh I>II (xn O,ei), can be negative. 
The second alternative considered in this section has an information-theoretic inter- 

pretation similar to that of the empirical likelihood estimator. Note that the empirical 
likelihood estimator can also be characterized as the solution to 

max EN _(In ( n ln-I ) subject to Zn1 ,r,,= ZN En I i(xn, 0)=0? 

Reversing the role of the estimated probability 7rn and empirical frequency 1/N, one 
obtains 

N (1 N N 

,r,OEn N I n En-I 
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The same calculations that by concentrating out 'r led to the GMM representation (9)- 
(10) now lead to a GMM representation with moments 

51 (x, 0, X, V)= V'(x, 0) exp [-X'VI2(x, 0)+ X'V2VT'iI I(x, 0)], 

PA(X, 0, A, r) = vc (r- 

Dv 
(x o)) ex -'2x )Rr2r, i( ) 

The exponential tilting estimator, (et, iRet, ret) is the solution to 0= 
,N= 1 (x,,E 0, 2, V). Compared to the empirical likelihood estimator it is characterized by 
a tilting function g(x, i, 0, r) =exp (1 - l/g(x, X, 0, r)). 

The exponential tilting estimator has previously appeared in the literature in a number 
of specific cases. In the raking literature, concerned with estimation of cell probabilities 
in a two-by-two contingency table with known marginals, it is known as the raking estima- 
tor. As early as 1942, Deming and Stephan suggested this estimator, and later Ireland 
and Kullback (1963) and Little and Wu (1991) discussed this estimator and alternatives. 
Haberman (1983) proposes this estimator for the problem of estimating regression 
coefficients in the presence of moment restrictions. The focus of his study differs from the 
general GMM problem in that the additional moment restrictions do not depend on 
unknown parameters. Qin and Lawless (1994) briefly mention it as a potential alternative 
to the empirical likelihood estimator. Efron (1981) and DiCiccio and Romano (1990) 
discusses the construction of confidence intervals in the just-identified case using the expo- 
nential tilting in a least favourable family approach. 

The following result summarizes the key properties of the two estimators discussed 
in this section. 

Theorem 3. Under regularity conditions, the estimators 0, and Oet have the same first 
order asymptotic properties as Oei. In particular, aN(Oiep Oel) 40 and IN(Oet - Oei) 40. 

Proof. See Appendix A. 11 

5. MISSPECIFICATION AND TESTING 

Using the characterization of the one-step estimators as just-identified GMM estimators 
it is straightforward to derive their large sample distribution even if there is no solution 
to the equation E[ Vi(X, 0)]=0. In large samples the implicit estimator of the distribution 
function converges to the distribution function F*(. ) that, within the set of distribution 
functions satisfying the restrictions, is "closest", using a specific directed distance measure, 
to the empirical distribution function. In this context the choice of tilting function is 
important. Each corresponds to a different projection on the set of distribution functions 
admitting a solution to I VI(x, 0)dF(x) =O.' The probability limit for 0 is the value of 0 
that sets all moments equal to zero, i.e. solves I Vy(x, 0)dF*(x) = 0, for the "rclosest" 
distribution function corresponding to the particular projection. Because the limit F* 
differs for the three one-step estimators discussed here, so does the limit of 0 for each 
of these estimators. In each case the estimator 0 is in large samples normally distributed 
around the corresponding limit with normalized variance the corresponding submatrix 

1. In the case of the linearized estimator O/ this is not strictly true as the implicit estimate of the distribution 
function in this case is not necessarily a distribution function itself because it can be decreasing over part of its 
range. 
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of 

(ELa i, j Et pp'](E EL(o,,i, F') 1) 
where p should be replaced by p or p for the linearized empirical likelihood or the 
exponential tilting estimator respectively. 

In the standard GMM approach one can test the overidentifying restriction by com- 
paring RA-',N(0)/N, the normalized minimizing value of the normalized objective function, 
to the appropriate quantiles of a Chi-squared distribution with M- K degrees of freedom 
(Hansen (1982); Newey (1985a, b)). With the one-step estimators one can still base tests 
on this function, now evaluated at the alternative efficient estimators Oei, Oiei or 0et, There 
are also alternative testing procedures based on comparing the proximity of the normalized 
Lagrange multipliers A, to zero. In addition, there are tests based on the empirical likelihood 
ratio: 2 ZEn (ln *r,, -ln 1/N) has in large samples a chi-squared distribution with M- K 
degrees of freedom. The estimated probability *n can be based on the empirical likelihood 
estimator, with * = 1 /( 1 + ev2(xn, Oel) - FeiF2f 'VIi (Xn, Oel)), or on the exponential 
tilting estimator, with *n= P ep ip12(Xn, Oet)]- F7et2 tt II/(Xn, et)). 

In Imbens, Johnson and Spady (1995) a number of these tests are investigated in 
more detail, with special attention paid to the choice of variance estimators in each case. 
Their Monte Carlo experiments suggest that some of the Lagrange multiplier tests have 
small sample properties superior to those of the standard tests. In the empirical illustration 
and the simulations in the next section I focus on two of the tests proposed by Imbens, 
Johnson and Spady (1995). The first is the standard test based on the proximity of the 
average moment to zero. The form of the test used in the current paper is 

Ts W) (0) ( I/N) E V 1X[LEnZ=, IVi(Xn, 0)1' 

where 0 is evaluated at an efficient estimator for 0*, and A(9) = (1/N) E Vp(xn, 0) V(xn, )' 
is a consistent estimator of A. 

The second test is the robust Lagrange multiplier test based on the exponential tilting 
function. Let i(0) be the minimand of 

En= exp (t'V(xn, 0)) subject to En = I V(xn, 0) exp (t'V(xn, 0)) = 0, 

and let 

irn(O) =exp (t(0 V(Xn, 0))/( .= exp (t( 9(j,0), 

be the corresponding estimated probability. Then the robust Lagrange multiplier test used 
is 

TLM(0) = A (0)' VI (0) V2(0) VI (0) A (0), 

where 
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and 

V()= X,n= n(0) >(Xn, O )V>(Xn , 0)'- 

The motivation for this second test, and some intuition for its remarkably good perform- 
ance in their Monte Carlo study, is given in Imbens, Johnson and Spady (1995). 

6. STATIONARY DEPENDENT DATA 

The discussion so far has been for independent data. One of the attractions of GMM 
estimation, however, has been the ease with which stationary dependent data are handled, 
starting with the seminal paper by Hansen (1982). For more recent discussions see David- 
son and MacKinnon (1993), Hamilton (1994), and Newey and McFadden (1994). In this 
section extensions of the one-step estimators to the stationary dependent case are discussed. 
The focus is on the empirical likelihood estimator, but the other one-step estimators 
discussed in this paper can be modified accordingly. 

For the dependent case some additional notation is required. Define, for integer j, 

Aj = E [ V(Xi, 0* V (Xi +j, 0 )] 

and the sum 

A=ZJi_ A1. 

Under independence, which has been assumed so far, one has Aj = 0 for j#0 O, and therefore 
A reduces to AO = E[iV,(X, 0*) V/i(X, 0*)'], which is the definition for A used before. The 
efficiency bound in the dependent case is (I'A-')-', with the modified definition of A. 
This bound can be achieved by using a consistent estimator for A-' as the weight matrix 
C in the minimization of the quadratic form RC,N(O). 

Although the three estimators defined in Section 3, the empirical likelihood estimator 
Oei, as well as the related estimators Oiei and 0et, continue to be consistent because the 
moment functions are still valid, they are not efficient in this case. One intuitive argument 
is that the discrete likelihood in the first part of Section 3 is no longer an exact parametric 
likelihood function even if X is discrete. In other words, although one is still projecting the 
empirical distribution function on the set of distribution functions satisfying the moment 
restrictions, the metric used in the empirical likelihood estimator and its alternatives is no 
longer optimal. A more mechanical argument is based on inspection of the covariance 
matrix of 0 and Au. In the stationary dependent data case, following the general derivation 
in Hansen (1982), 

AN( AelO) 4 A(O, V), 

where V is the top left submatrix of the full covariance matrix for (O'l 4,, vec (F)')' 

[E (, (0',vec (F)') (X ,i) (, 0, E,i, I)(X 

x pE nn 8 (Xi, ?, i,A)l F i 
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evaluated at 0*, 2=0 and F*. Because apI/a vec (r)', E[pIp2] and E1P2P'2] are all zero 
at A= 0, the top left part of the matrix simplifies to 

={(r(F2(Y 2))M- (2(rK)-'-AO( K)Ao 

r rA-'r ((r)-I rAo 

(r2FrlT->M-K)AOAIF (F2FK' - ) 

In the independent observation case A0 and A are identical and the inverse of the covariance 
matrix simplifies to the inverse of the covariance matrix in Theorem 1 

V f (rt-r'A-'r rAAo A" 

V o [r2r, 'al1(rl)~~~~~~~~~I-'r2-rr ^2a2r)r+ ]'J 

When A0 and A differ the covariance between )Rei and Ofei differs from zero and hence OWe 
is no longer efficient. 

Various modifications to the empirical likelihood estimator are available to ensure 
efficiency. The first is suggested by the above ariument for the inefficiency of 0. The 
inefficiency is caused by the covariance between Oe, and 0ei where the latter has known 
probability limit equal to zero. We can improve on 0e1 by removing this covariance. 
Partitioning V as 

V r V0 V0A A 

(AO, VAA 

one can adjust the empirical likelihood estimator OeI as 

Oel= Oel " VVOA'VA f'el (13) 

The variance of gel is equal to the conditional variance of Ae1 given 2e, which equals the 
inverse of the top left part of V-', (r'A-'r)-', equal to the variance of the efficient GMM 
estimator. 

Back and Brown (1990) suggest an alternative modification. It is based on changing 
the tilting function in the empirical likelihood estimating equations from 

l/(l + A'( V2(xi, ) - 121F I'i(xI, 0))), 

to 

17(1 +A'(ZT, tV2(Xi+j, 0) - I2V' 1(x1+, 0))). 
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In practice, of course, one has to replace the infinite sum by a finite sum leading to an 
estimator (Obb, )Lbb) that sets 

N ( i/(X,, 0)/( 1 + A '(7iM.max J-n j +- '2(X +j1, 0) iA'F217T t'l1(xf?1, 0))) 0 

't' ~vec (r-a (X,,, o))/(1 +i ( + -max2(xJ+n 0)- f21' Vi(xn+j, 0))) 

equal to zero. As the sample gets larger the one can increase J. In large samples this 
modified empirical likelihood estimator also reaches the efficiency bound. 

The two modifications to allow for serial correlation have been discussed in the case 
of the empirical likelihood estimator. Both can also be applied to the other two estimators 
discussed in Section 4, the exponential tilting estimator 0et and the linearized empirical 
likelihood estimator Olel- 

Both modifications to the empirical likelihood estimator require choices regarding 
the length of the autocorrelation structure. The Back-Brown estimator requires the 
researcher to specify the laglength J in the tilting function. The first estimator requires the 
researcher to estimate FV, the joint covariance matrix of the empirical likelihood estimator 
and the Lagrange multiplier, allowing for autocorrelation, and uses this variance to modify 
the initial inefficient estimate of 0. In each case the implementation of the choice of the 
length of autocorrelation structure should be guided by considerations similar to those 
in covariance matrix estimation in standard GMM procedures, e.g. Newey and West 
(1985, 1994), Andrews (1991), and Andrews and Monahan (1992). 

An advantage of the modified empirical likelihood estimator Oel is that it is straight- 
forward to compare estimates based on difference laglengths. Calculating such estimators 
only requires modifying the calculation of the covariance matrix V in (13) and in particular 
does not require additional numerical optimization. An advantage of the Back-Brown 
estimator Obb is that, as in the independent observation case, one can immediately calculate 
estimates of the distribution function using the weights based on the tilting function 

FN(X) =-En= 1 -< x(ZJ=max j;-n+ I -j, V12(Xn +j, Obb) - r2'l v/ I (Xn +i, Obb))F] 
N+1 

Because of the arbitrariness in choosing the laglength, both modifications are to some 
extent less satisfactory than the independent data version of the one-step estimators. 
Nevertheless, by removing one decision faced by the researcher in the conventional GMM 
case, namely the choice of initial estimator to estimate the optimal weight matrix, one 
might expect the resulting estimators to be less affected by the remaining choice, the 
laglength. 

7. AN EMPIRICAL ILLUSTRATION 

In this section the one-step estimators will be compared to the standard two-step GMM 
estimator in the context of a real dataset. The dataset consists of the logarithm of hourly 
wages for 827 men for an eight year period from 1971 to 1978, and has previously been 
used by Abowd and Card (1989). The wages in this data set are characterized by a high 
degree of persistence. For example, the correlation between log earnings in 1971 and 1972 
is 0 80 and the correlation between log earnings in 1971 and 1978, seven years apart, is still 
0 59. The substantive question of interest is whether this persistence is due to permanent 
differences between individuals, or to persistence over time in the effects of shocks to the 
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wage process. The particular model estimated is identical to a model estimated by Card 
(1994). The logarithm of the hourly wage, ln (Yit), is assumed to have a common time- 
varying component pu, an individual fixed component w), an error process ui, following 
an autoregressive process of order one, and a measurement error component ci. Formally, 
the measured log hourly wage of individual i in period t is given by 

ln yit = Pt + wi + uit + 8it, 

where 

uit= auit-I + it 

The measurement error cit, the individual component w1, and the shock to the autoregres- 
sive component mit are all independent with mean zero and variances denoted by C, 

c52a, and a2 respectively. We cannot identify separately the variance of the pre-observation 
period autoregressive component ui0 and the variance of the first period shock to the 
autoregressive component qjj. We therefore set the variance of uoe equal to zero without 
loss of generality. 

The unknown parameters are: (i) the T mean parameters p I,T. , pT; (ii) the T time- 
varying variance parameters 2 l. . .', a2T; (iii) the variance of the measurement error 
term, c2; (iv) the variance of the individual component o2; and (v) the autoregressive 
parameter a. 

Card (1994) estimates this model by first estimating all Tx (T+ 1)/2 covariances 
separately and then fitting the parameters of the restricted model by minimum distance 
methods. The focus in this study is on the standard two-step GMM estimator and the 
one-step estimators discussed in Sections 3 and 4. The full moment function, denoted by 

=(V, V', V')' consists of three parts. First, the moments pertaining to the mean 
earnings, 

VIIJYMl, * YiT,,01, . 1,#T, (S,,* ,4T1, Tg(E, (T., a)= In yit- lt, 

for t = 1 . . . , T. Second, for the variances, for t 1, . . . , T, 

Y12AtYil ,** YiT,11 41s* T, (T2 (T2T** , (eT2 a2S (, a) 
= 

-p)_a _2 t1 2s 2 (ln Yit lt)2 - 
Z,_, 

_'2 a a 1 ,-s, 

and, third, for the covariances, for t = 2, . . ., T and s = 1, . , t-1, 

1//3,s+t(t-I)/2(Yil, * * ,YiT, l1, T, (. , j, 2 T2 2 CTs aE a) 

= (In yit - 1t)(ln Yis - Pis) - c2 _-EJ = T -s 

With the number of periods equal to T= 8, the dimensions of the three components of 
the moment function are T= 8, T= 8 and Tx (T- 1)/2 = 28 respectively, adding up to 
(T2 +3 T)/2 = 44. With the number of unknown parameters equal to 2T+ 3=19, the 
number of overidentifying restrictions is 25. 

The first estimator reported is the two-step GMM estimator. I estimated the optimal 
weight matrix by averaging the outer product of the moments evaluated at an initial 
estimator based on minimizing the quadratic form using the identity matrix as the weight 
matrix. The second estimator is the iterated GMM estimator suggested by Hansen, Heaton, 
and Yaron (1996). The first estimator can be interpreted as the second element in a series 
of estimates converging to the iterated GMM estimator. Third, I calculated the empirical 
likelihood estimator. In Table 1 the results are reported. 
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TABLE 1 

The covariance structure of wages. Estimates based on the Abowd- Card data 

Two-step Iterated Empirical Standard (GMM-GMMi) (GMM-EL)/ (GMMi-EL)/ 
GMM GMM likelihood error /se. s.e. s.e. 

co 04110 0-111 0-123 0-053 -0-02 -0-25 -0-23 
0-040 0-039 0-041 0Q003 0-30 -0-33 -0-64 

a 0-913 0-912 0-899 0-057 0-02 0-25 0-23 
pi 1-254 1-254 1-250 0-018 0-00 0-22 0-22 

Y2 1-296 1-296 1-292 0-018 0-00 0-22 0-22 
P 3 1-316 1-316 1-313 0-018 -0-06 0Q11 0-17 
/4 1-368 1-368 1-366 0-017 0Q00 0-12 0-12 
/5 1-395 1-396 1-395 0-017 -0-06 0-00 0-06 
P6 1-385 1-386 1-383 0-017 -0-06 0 12 0-18 
P7 1-367 1-368 1-365 0-017 -0-06 0-12 0-18 
P8 1-394 1-395 1-392 0-019 -0-05 0Q11 0-16 
a 2 0-126 0-125 0-115 0-051 0-02 0-22 0-21 

r1,27 0-019 0-019 0-022 0-006 0-00 -0-50 -0-51 
r, 2 0-022 0-022 0-023 0-006 0-00 -0-17 -0-17 

a 4 0-023 0-023 0-024 0-006 -0-01 -0-17 -0-18 
a 2 0-013 0-013 0-014 0-006 0-01 -0-17 -0-16 

q.6 0-025 0-025 0-025 0-006 0-01 0-00 0-01 
q,.7 0-027 0-028 0-029 0-007 -0-14 -0-29 -0-14 
182 8 0-030 0-029 0-034 0-019 0-05 -0-21 -0-26 

AM Test 21-5 21-4 22-2 
LM Test 29-1 29-4 25-9 

In the last three columns the differences between the three estimators, scaled by the 
large sample standard errors, are reported. The standard two-step GMM estimates and 
the iterated GMM estimates are quite close, with the possible exception of the variance 
of the measurement error, -2. The maximum difference for the other parameters for these 
two estimators is just a one seventh of a standard error, suggesting that the choice of 
initial estimator for the weight matrix does not affect the final estimates very much. The 
differences between these two estimators and the empirical likelihood estimator, however, 
are much larger, up to two thirds of a standard error, with the typical difference on the 
order of a quarter of a standard error. These appear to be large differences for estimators 
that are first order equivalent. 

To see the impact of these differences between the estimators on the decomposition 
of the variance, consider the cross-section variance of ln (yiT), the logarithm of the hourly 
wage in the final year 1978. This variance can be decomposed into the variance of the 
individual component wi, equal to a 2, the variance of the measurement error term i6it, 
equal to c2, and the variance of the autoregressive term UiT, equal to Ei' = acrv2 T-i. 
Using the two-step GMM estimates, 48% of the variance is attributed to the autoregressive 
term, 38% is attributed to the individual component and 14% to measurement error. Using 
the empirical likelihood estimates 44% is attributed to the autoregressive term, 42% is 
attributed to the individual component and again 14% is attributed to measurement error. 
According to the empirical likelihood estimates the autoregressive component contributes 
essentially as much as the individual component (44% vs. 42%), while the GMM estimates 
based on the exact same sample suggest the contribution of the autoregressive component 
is 10 percentage points higher (48% vs. 38%). 
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I also calculated six over-identifying test statistics. The first three are the standard 
form of the overidentifying restrictions test, based on the quadratic form RA-',N(O) 

underlying conventional GMM estimation. The three tests differ in the value of the param- 
eter where the weight matrix and the average moments are evaluated. The first test reported 
is calculated with the average moments evaluated at Ogmm, and the weight matrix estimated 
as ((I/N) EN 

, v(x", ) iV(xn, 0)'-', where O is the estimate based on the identity weight 
matrix. This is the most commonly used test for overidentifying restrictions. The second 
and third tests calculated are based on weight matrix estimates and average moments both 
evaluated at ogmmi and Oel respectively. I also report, for each of the three estimators, the 
robust Lagrange multiplier test TLM(O) with 0 evaluated at Ogmm, ogmmi, and Oei, respec- 
tively. None of the test statistics exceed the ninetieth quantile of a Chi-squared distribution 
with twenty-five degrees of freedom, confirming Card's conclusion that the model fits quite 
well. 

In the second part of this section I evaluate the same three estimators in a Monte 
Carlo experiment based on the Card model. For each simulated data set I calculated the 
same estimators and test statistics as before. Table 2 presents some summary statistics 
from these simulations. The two summary statistics, root-mean-squared-error and mean 
bias divided by the average of the asymptotic standard errors. As in the study by Altonji 
and Segal (1996), based on a simpler model, the GMM estimates of the common variance 
C2 are severely biased downward, in this case by just under a third of a standard error. 
The bias of the empirical likelihood estimator is only about half that of the GMM and 
iterated GMM estimators. The empirical likelihood estimator consequently has slightly 
lower root-mean-squared-error. The variance of the individual component, c2 is also more 

TABLE 2 

The covariance structure of wages: Simulation results, mean bias and RMSE (Divided by asymptotic 
standard errors, 500 replications) 

GMM GMMi EL 

True value Bias RMSE Bias RMSE Bias RMSE 

v, 0-10 -0-28 1-04 -0-28 1-04 -0-16 1 00 
a 

2 0-05 -031 1-04 -030 1-04 -0-22 1*02 
a 0-50 0-05 1-01 0-06 1-00 0-02 1-00 

Pi 1-00 -0-01 1-00 -0-01 1-01 -0-00 1-00 

P2 1-00 -0-01 0-99 -0-02 0-97 .0-00 1.00 

P3 1-00 0-04 0-99 0-04 0-99 0-04 1.00 

P4 1-00 -0-03 0-98 -0-04 0.99 -0-03 1.00 

P5 1-00 -0-04 0-99 -0-04 1-03 -003 1-00 

P6 1-00 -0-04 0-99 -0-03 1-02 -0-04 1-00 

P7 1.00 0-02 0.99 0-02 1-01 0-03 1.01 

P8 1-00 -0-04 0-99 -0-05 1-02 -0-04 1.00 

7121 0-15 -0 16 1-00 -0-16 101 -0 09 1-00 

O,%2 0-05 -0-08 1 00 -0-09 1-00 -0 03 1-00 
O'q3 0.05 -0 02 0-99 -0-02 0-99 0-02 1-00 
O%,4 0.05 -0-01 0-99 -0-02 0.99 0-04 1.00 

O7,5 0.05 0-07 1-00 0-07 1 00 .0-04 1.00 

j7 6 0 05 -0-06 0.99 -0-06 0.99 -0-02 1-00 

Y1,7 0.05 _0-00 1-00 -0-01 1-00 0-03 1-00 

2, 005 0-01 1 00 0-01 1-00 0-05 1-00 
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severely biased downward for the GMM and iterated GMM estimators than for the EL 
estimator. The autoregressive parameter is well estimated by all three estimation pro- 
cedures, with a slightly smaller bias for the empirical likelihood estimator. For the other 
parameters there is much less of a difference between the different estimators. This is not 
surprising for the mean parameters p, since these are less affected by the degree of over- 
identification. Under normality p, could in fact have been estimated efficiently by the 
corresponding period average. Similarly the estimates for the variances of the period 
specific shocks, especially for the later periods, are mainly determined by period specific 
variances captured by the moment Yv2, although because of the non-zero value of a these 
variances do enter into the covariance moments Y/3 . Of these variances, the variance for 
the first period shock, a2& is most affected by the degree of overidentification and is also 
more biased for the GMM and GMMi estimators than for the EL estimator. 

The comparison of the typical difference between the three estimators in the simula- 
tions and with the real data set is also interesting. Whereas with the real data the difference 
between the empirical likelihood estimator and the other two estimators is typically around 
one fourth of a standard error and occasionally larger than half a standard error, in the 
simulations it is around one eighth of a standard error, and never larger than a third of 
a standard error. This may be due to the non-normality in the real data, or to misspecifi- 
cation of the model. 

TABLE 3 

Summary statistics of simulated test-statistics (500 replications) 

Average moment tests Tilting parameter tests 

GMM GMMi EL GMM GMMi EL 

Mean 25-9 26-3 26-2 27-5 27-5 26-2 

Variance 29-0 29-3 30 7 36-9 34-3 28-7 
Prob (T> X2.900(25)) 0-133 0 134 0-133 0-180 0-179 0 133 
Prob(T>Z.95o(25)) 0-080 0-082 0 090 0-110 0-111 0-076 
Prob (T>Xo.975(25)) 0-040 0040 0-047 0-062 0-063 0-036 

Prob (T> X.99o(25)) 0-017 0-018 0-017 0-031 0 033 0-016 

In Table 3 simulation results for the six tests for overidentifying restrictions are 
presented. The tests all perform quite well. For the standard and iterated GMM the 
conventional average moment test performs somewhat better than the tilting test, but for 
the empirical likelihood estimator the conditional tilting test is better than its average 
moment test. Compared to the Imbens, Johnson and Spady (1995) results, there appears 
to be much less disagreement between the tests, suggesting the sample size is large enough 
for this specific model to make inferences based on large sample chi-squared approxima- 
tions valid. 

8. DETERMINING THE OPTIMAL NUMBER OF MOMENTS 

In this section I investigate how the estimators proposed in this paper can help to determine 
the optimal number of moments used in a method of moments procedure. This is an 
example of a problem that is difficult to solve in the standard framework of GMM 
estimation, and where the estimators discussed in this paper may be useful. I look only 
at a single, simple, example of this much larger and complicated problem. The results are 
therefore suggestive only. The interest is centred on the expectation of a random variable 
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X, and in addition to X the researcher observes a random variable Y known to have 
expectation zero. The two moments restrictions implied by this model are EVI(X, Y, 0*)= 
0, with 

/(x,y, 0)( 0). 

In all simulations the random variables X and Y have mean zero, unit variance and 
correlation coefficient r. The main question is whether using the second moment, i.e. using 
the fact that E( Y) =0, leads to an estimator with smaller variance than estimates that 
ignore this restriction. In large samples including the second moment should not increase 
the variance, but in small samples the estimator that uses this restriction might be worse 
than one that does not utilize this information. 

The following four estimators are considered: 

MEAN: 0,= EN= x,/N. 
EL: The empirical likelihood estimator, 02, defined here as the first part of the solution 
to g(0, A)-= E l P(Xn,Yn y, 0, A) = 0, with 

p(Xy, o A) =((X ()/( +AY)) 

Formally the estimator thus defined need not exist. If all realizations yi are positive, or 
all are negative, no solution exists for ,i,. In that case, which has a probability of the 
order of CN for c = max {P(y > 0), P(y < 0) }, define A = 0, and therefore 02=ZE x/N. 
Since the probability of this event happening is negligible for most sample sizes, this 
definition has no effect on the Monte Carlo results reported below. 
GMM1: 0 is estimated as 03, the minimand of 

RA1,( N (O) En= l(Xn, Yn, 0) JA [n= Ig(Xn 9,Yn, 

the quadratic form with the optimal weight matrix A-'. This estimator is not feasible, 
since one does not know the correlation between the moments. If one did actually know 
the optimal weight matrix this would constitute extra information that could potentially 
be used in additional moment restrictions. The estimator is given here to ease the interpreta- 
tion of some of the differences between estimators in relation to estimation of the weight 
matrix. 
GMM2: First an initial estimate is obtained as 0= O =n"= I xn/N. Given this estimate 
the optimal weight matrix is estimated as 

A [ N tf(n 9 Xn,Yn 9) (Xn, Yn, 

Then 0 is estimated as 04, the minimand of 

RArI,N(0)4Z ) = ( (Xn,Y, 0)]A [ZN ((Xn,Yn, 0)] 

This is a feasible GMM estimator. 
The variance for the first estimator, MEAN, is equal to 1/N. This is the exact variance, 

for which no large sample arguments are needed. For the other estimators calculating 
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exact variances is more complicated and they are estimated by simulation. The approximate 
variance, based on the asymptotic normality of I/N times any of these estimators, is equal 
to (1 - r2)/N, where r is the correlation coefficient of X and Y, for each of the estimators, 
GMM 1, GMM2 and EL. Irrespective of the value of r, the normalized asymptotic variance 
of MEAN is always at least as great as the variance of the other estimators as approximated 
by the asymptotic normal distribution of these estimators. Given particular distributions 
for X and Y, i.e. given a choice for r, and given a particular sample size, this may not be 
true if one compares the exact variances. In fact, if X and Y are independent, and therefore 
r = 0, the exact variance of the estimators EL and GMM2 is always larger than the variance 
of MEAN. This never shows up in the first order asymptotic variance and therefore I 
look at saddlepoint approximations to the distributions in addition to the conventional 
normal approximations. In Appendix B details of the calculation of saddlepoint approxi- 
mations to the density function of estimators MEAN and EL are provided. While in 
principle these calculations can also be performed for the GMM 1 and GMM2 estimators 
using the just-identified characterization of overidentified GMM estimators based on the 
moment function given in (3), it would be much more cumbersome to carry out the 
calculations for these estimators given the higher dimension of the augmented parameter 
vector, (M+ 1) x (2K+ M/2) for the standard GMM estimator vs. Mx (K+ 1) for the 
empirical likelihood estimator. 

Given an approximation to the distribution, f(0), two measures of dispersion 
reported. First the normalized variance of the distribution is calculated as 

NV(0) =N{ 02f(O)dO - Of(0)dOJ}. 

Second, a more robust measure of dispersion is calculated as an estimate of the probability 
mass close to 0*, P(I 0 - 0*1 < 1/N). Since 0* is not known this probability is estimated 
as 

?0 1/1N 

P(I 0 - 0*I < 1/N) = / f(0)dO, 

the probability mass around 0 using the estimated distribution for the relevant estimator. 
These calculations are performed for both the normal and the saddlepoint approximations. 
For the normal approximations analytical solutions are available for both the variance 
and the second dispersion measure. For the saddlepoint approximations these quantities 
were calculated by Monte Carlo integration. For these Monte Carlo integrations import- 
ance sampling was used with the importance sampling distribution close to a more 
dispersed version of the normal approximation. 

The distributions chosen for X and Y have zero mean and unit variance. The random 
variable Y is binary with P(Y= 1) = P(Y=-1 ) = 1/2, and X is equal to Yr + /Ir, 
where Z is independent of Y with a standard normal distribution. The calculation of the 
estimators and their distribution does not depend on the particular distributions chosen. 
I investigate the properties of the estimators and the approximations to the distributions 
for two values for the correlation between X and Y: r = 0 0 and r = 0- 3, and two sample 
sizes, N= 25 and N= 100. 

In Table 4 the results from the Monte Carlo investigation are presented. The results 
under the heading "true distribution" are based on 20,000 realizations of the estimators. 
The results under the headings "normal approximation" and "saddlepoint approximation" 
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TABLE 4 

Simulation results 

r=0 0 N=25 

True distribution Normal approximation Saddlepoint approximation 

Estimator N Var P(l0*- 01 <I/ &N) N Var P(I0*- 01 <I//N) N- Var P(I0*-01j<1/N) 

MEAN 1-002 0-682 0 990 0-682 0.990 0*695 
EL 1049 0*668 0-945 0*697 1*025 0-690 
GMMI 1-002 0 682 0-945 0*697 - 

GMM2 1039 0-673 0-945 0-697 - 

r=00 N= 100 

True distribution Normal approximation Saddlepoint approximation 

Estimator N-Var P(lJ*01 <l1//N) N-Var P(lj0*-01 <l/JN) N-Var P(lj0*-0 <1 /N) 

MEAN 1-002 0-682 0 971 0 691 0-969 0-692 
EL 1-012 0-679 0-963 0-692 0-981 0-689 
GMMI 1-002 0-682 0-963 0-692 
GMM2 1-012 0-679 0-963 0-692 - 

r=0-3 N=25 

True distribution Normal approximation Saddlepoint approximation 

Estimator N- Var P(I0*- 1 <I//IN) N-Var P(I0*--1<l</IN) N-Var P(IO*-01<1/INN) 

MEAN 1-003 0-679 0-916 0 704 0-913 0-713 
EL 0-956 0'695 0 790 0-739 0 850 0-731 
GMM1 0-912 0 704 0*790 0*739 - 

GMM2 0-947 0-696 0 790 0-739 - 

r=0-3 N= 100 

True distribution Normal approximation Saddlepoint approximation 

Estimator N- Var P(I 0*- 01 < 1 /IN) N- Var P(I 0*-01 < 1/ IN) N- Var P(l0*-60 <1 /I/N) 

MEAN 1-003 0-687 0-982 0-688 0-981 0-689 
EL 0925 0 704 0-876 0-714 0-890 0-713 
GMMI 0-914 0-708 0-876 0-714 - 

GMM2 0-925 0 704 0-876 0-714 - 

are based on 100 replications, using the same 100 datasets for both normal and saddlepoint 
approximations. 

The key comparison is that between the difference between the variance and probabil- 
ity mass close to 0* for the estimators MEAN and EL according to the normal and 
saddlepoint approximations. Consider the case where r = 0 and N= 25, given in Table 4. 
In that case the difference between the variances based on the normal approximation 
suggests the variance of the MEAN estimator is higher by 0-045 than the variance of the 
EL estimator. If one compares the saddlepoint approximation the variance of the MEAN 
is lower by 0 035 than the variance of the EL estimator. The actual difference based on 
20,000 realizations is that the variance of the MEAN estimator is 0.047 lower than the 
variance of the EL estimator. The saddlepoint approximation is clearly much more accu- 
rate and correctly indicates that the two-moment estimator (EL) is less accurate on average 
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than the one-moment estimator (MEAN), which can never be seen from the normal 
approximations. 

The results based on the robust dispersion measure P(I 0* 0- 0 < 1 /fAN), are very 
comparable in that the saddlepoint approximations are again more accurate than the 
normal approximations, and correctly indicate that the two-moment estimator is inferior 
to the one-moment estimator for the case with r = 0 and N= 25. 

When one increases the number of observations the effect is still there, but the size 
of the differences decreases. When the correlation coefficient is set equal to 0 3, the variance 
for the EL estimator goes down, but the saddlepoint approximation is still much more 
accurate than the normal approximation. In this case the one-moment estimator is better 
than the two-moment estimator, which is now recognized by both saddlepoint and normal 
approximations. 

Finally, in all cases the EL estimator is very similar to the feasible GMM estimator, 
GMM2, in efficiency. 

9. CONCLUSION 

In this paper I discuss alternatives to the two-step GMM estimators proposed by Hansen 
(1982) and others. The estimators proposed are based on solving a set of equations without 
the need for initial consistent estimates. This is shown to have a number of advantages. 

First of all, there is no need to specify a procedure to estimate a weight matrix as in 
the conventional procedure. Second, it is straightforward to derive the distribution of the 
estimator under general misspecification. Third, some of the estimators have information- 
theoretic interpretations, including one estimator which can be interpreted as a maximum 
likelihood estimator. Finally, the new estimators allow the researcher more easily to 
get better approximations to their distributions using saddlepoint approximations devel- 
oped for estimating equations by Daniels (1954, 1983) and Spady (199la, b). The main 
cost is computational: the system of equations that has to be solved is of greater 
dimension than the number of parameters of interest. In practice this may or may 
not be a problem in particular applications. It appears not to be so in the examples 
computed in this paper. 

With a real data set, and in a small Monte Carlo investigation based on this data set, 
the properties of the new estimator are seen to be similar to or even slightly better than 
those of standard GMM estimators. In addition it is shown that the saddlepoint approxi- 
mations work well enough for these estimators to affect the choice between just identified 
and over-identified estimators which cannot meaningfully be based on normal approxima- 
tions to their distributions. 

The new estimators therefore appear to be useful alternatives to two-stage GMM 
estimator, especially in the light of the information-theoretic interpretations. Further work 
applying these estimators in realistic settings, including in the context of dependent data, 
appears desirable. 

APPENDIX A 

Proof of Theorem 1 

The expectation of p(x, 0*, 0, [-*) is equal to zero. There is therefore a consistent root of the equation 
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Now consider the asymptotic distribution of (0, A, f). Standard GMM theory (Hansen (1982), Manski (1988), 
and Newey and McFadden (1994)) ensures that under regularity conditions given in Section 2 

/ -0* 

a A X(0, B- 'A (Bt) ) 
vec (Ifr* 

where 

A = Ep(x, 0*, 0, r*)p(x, o*, O, r*), 

and 

B=E Op (x,0o*,o,Fr*). B 
(', A', 

vec (r)') 
(S00o 

We are interested in the K x K dimensional top left sub matrix of B-'A(B')'. In order to calculate this we 
partition A and B according to the parameter vectors 0, A, and r. I only calculate the relevant parts of the 
partitioned matrices 

r ** 0 

A=(A). 

The zero submatrices in the top right hand corner of B simplify the calculation of the asymptotic covariance 
matrix of 0 and A considerably 

6(-0 ) d Xio' V), 

where 

=(^(r|)-r2)), r - 
-JrAMQ-qK (r2() M-K)A 

_(r-'2 r)-' o Af-KA J - 

- \ o [r2r, 'a, (r')-'r'- r2rA1,2- A'l2(F;) -lr2+ A12]1' 

This completes the proof that the EL estimator has the same asymptotic covariance matrix as the conven- 
tional GMM estimator. 

Proof of Theorem 2 

First we show that the empirical likelihood estimator of o* is 6. To see this write the empirical likelihood 
maximization program as 

max-=, In ir, subjectto E> , 7r,, =,Z 7 X40)=O, ZN= 7r(IA-()=O 

Let K be the Lagrange multiplier for the restriction E'v= r,(Ix.veA - o) =0. The first order condition for . is 
-K n,r I = 0, implying i=0. Hence the restriction $=I (lveA - o)) =0 is not binding on 'r, and ir also 

solves 

max E , ln ;, subject to E , irx=l I 0) N. 

Hence, the empirical likelihood estimate for c is equal to Z *n 1EA I J1eA FN(dx) =WA. 

The previous argument implies by virtue of Theorem I that Z is efficient for co*, and all that remains is 
to calculate the large sample variance, or equivalently, the efficiency bound. Define ,B= (o, 0')' and h(x, /) = 
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(CO - '.xA, .Z(x, 0)')'. The efficiency bound for ,B, as derived for the general GMM case by Chamberlain (1987), 
is equal to 

={[E; (x, 1*) '[Eh(x, P*)h(x, *) [E ,(x,I P*)]} 

with 

and 

Eh(x, p*)h(x, 3*) = (0CO) _ V)A 
-VA A 

Simple algebra then leads to the large sample variance given in Theorem 2. 

Proof of Theorem 3 

First consider the exponential tilting estimator, writing the estimate of the combined parameter vector compactly 
as ,.,=(0,,4,, [17,)', and 3* = (0*, 0, [.*)' accordingly. Under the standard regularity conditions it can be 
written as 

,fI3e N fi)E['9P ' *)] AN p(x,,, 3*)+op(1). (14) 

A similar representation exists for 1I and p1. At the true value 13* the three moment functions p(), p() and 
,( ) are identical. Similarly, at 13* the derivatives Op/lp', Ofj/O,', and 0,/13' are identical. Hence for all three 
estimators the normalized difference 'NW(O- 0*) is equal to the first component of the right-hand side of (14) 
up to a term of order op (1), proving the claim in Theorem 3. 11 

APPENDIX B 

For the first estimator calculation of the saddlepoint approximation of the distribution is a straightforward 
exercise. The estimator is the mean of independent and identically distributed random variables, and saddlepoint 
approximations for this case are well established. See for surveys Daniels (1954), Barndorff-Nielsen and Cox 
(1989) and Reid (1988). The particular form of the saddlepoint approximation used is 

( N 1/2 

A(0) = cA ) exp [n{K(s(0)) -s(0)0}], 
\IK,,(s)I/ 

where the constant c is calculated by integrating out the probability density function. In this formula, K(t) is 
the cumulant generating function, estimated as 

K(t) = In [ = exp (tx) 

s(0) is a function of 0, defined implicitly by the equation 

K,(s(0))= 0. 

Subscripts denote derivatives, so K,(*) is the first derivative of K(*) with respect to its argument, and K,,(*) is 
the second derivative. 

The second estimator, EL, cannot be written as a function of simple averages. I therefore use Daniels 
(1983) and Spady's (1991a, b) extension of saddlepoint approximations to estimating equations. For details the 
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reader is referred to the paper by Spady. The saddlepoint approximation to the joint density for 0 and A is, 
using this approach, 

N T2 1/2 

o(, Z) = c( & (s(O,l) exp [nK(s(O, i))] I (o, A) (s(O, A)) 1. 

The notation I I denotes the determinant of the matrix argument. In this case, the cumulant generating function 
K() is, with t a vector of dimension dim (0) + dim (A) = 2, estimated as: 

K(t) =[I E.n= exp [t] p](xn ,Yn , O,i) +t2p2 (Xn ,Yn , O,i)I 

The implicit function s(0, A) satisfies 

K,(s(0, A), 0, A))=0, 

and &(o, A) denotes the cross derivative of the cumulant generating function: 

K(0 A)- = a'K( ) (S(0, A)). 
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