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Abstract 

A stock/flow panel is a way of sampling a population of agents moving through 
a collection of discrete states. The scheme is to form separate samples of the residents of 
each state - the stocks - and of those moving between states - the flows. We calculate 
optimal stock/flow sampling schemes and provide efficient estimators of the transition 
intensities in the particular case of an alternating Poisson process. We also compute the 
efficiency gains compared to randomly sampled panels. 
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1. Introduction 

Selection of people to form a panel can take place by randomly or exogenous- 
ly sampling a population, or it can be done by sampling people in a way that 
depends upon the endogenous variables of the problem. In this paper we show 
that major gains can be obtained by balanced endogenous sampling. The same 
precision of estimation can be obtained from an endogenous sample observed 
for a short time as from a randomly selected panel observed for a long time. 
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Endogenous panel selection is likely to lead to savings in sampling costs and to 
a reduction in biases due to nonrandom attrition. 

These gains are made possible by the application of the recently developed 
method of moments procedure for efficient estimation from endogenous sam- 
ples (Imbens, 1992; Lancaster and Imbens, 1991). This procedure solves the 
problem of simple, efficient estimation of parametric models using endogenous 
samples, a problem previously considered by Manski and McFadden (1981), 
Cosslett (1981) Hsieh, Manski, and McFadden (1986). and Hausman and Wise 
(1981).’ 

The question of panel design has been a major focus of research in the 
econometrics of discrete state, continuous time stochastic processes. The 
approach to the design problem in that literature has, however, typically 
been passive, emphasising the critical importance of taking account of the 
sampling scheme in the construction of the likelihood, particularly in models 
with neglected heterogeneity. Heckman and Singer’s work, for example their 
paper of 198.5, is perhaps the most outstanding example, and the effect of the 
sampling scheme on the likelihood is a major theme of Lancaster (1990). This 
approach is natural in a world in which most data used by econometricians are 
gathered by other people, for other purposes, and often in peculiarly compli- 
cated ways. In contrast the present paper focuses on the question of optimal (or 
at least pretty good) design - how should an econometrician gather his own 
sample? 

The endogenous variable in the model studied in this paper is a two-state, 
alternating, continuous time stochastic process. The endogenous sampling 
scheme is one in which people are selected on the basis of the state, or sequence 
of states, that they occupy. In particular, four groups of the population are 
identified; the residents of each state at a point in time, and the people 
who change states in one direction or the other during a short interval 
of time. These groups form an endogenous stratification of the population 
and samples from each stratum are selected with predetermined probabilities. 
This is called a stock/flow sampling scheme. Some theory of stock/flow 
sampling was developed in Chesher and Lancaster (1983). Ridder, in his 
University of Amsterdam dissertation (1987), devised and implemented 
a stock/flow scheme for sampling the Dutch labour market. He also 
adapted the choice-based sampling technique of Manski and Lerman 
(1987) to provide a consistent estimator of the parameters of a transition 
model. 

In order to realise the gains from endogenous sampling it is necessary for the 
investigator to supply a model for the conditional state occupancy probabilities 

’ The problem has also been studied in the biometric, technometric, and general statistical literature, 
usually under the name case/control sampliny, by. for example, Prentice and Breslow (1978). 
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given the covariates. We solve this problem in the present work by ruling out 
unmeasured heterogeneity and time-varying covariates and by supposing that 
the process from which we sample is in stochastic equilibrium. In consequence, 
our paper represents a theoretical exploration of the potential gains from 
endogenous sampling and is not a template for immediate general application. 
The surprising magnitude of the gains revealed by our calculations indicate that 
research to make the procedure applicable to more general models may have 
large returns. 

The research reported in this paper originated in our attempt to understand 
the sampling scheme used in a survey of homelessness among women and 
children in New York city.’ This phenomenon, from the simplest statistical 
point of view, is a two-state alternating process - homeless and housed. The data 
for the survey comprised two distinct samples. One was a sample of people who 
were not homeless; this is a sample from the population of people who, at 
a particular point of time, occupied the state ‘housed. The other was a sample of 
women who, during a particular week, entered the city’s emergency shelter 
system; this is a sample from the population of those who moved from one state 
to the other in that week. The former is a stock sample; the latter is a flow sample 
in the terminology of this paper. 

In Section 2 of the paper we define a stock/flow sampling scheme. Section 
3 describes the stochastic process that we shall assume in the theoretical 
calculations that follow. The information provided by a stock/flow panel can be 
decomposed into that provided by the cross-section and that provided by the 
panel. In Sections 4 and 5 of the paper we calculate these two components of the 
total information in the stock/flow panel and in Section 6 we calculate the total 
information. In Section 7 we report some calculations, both theoretical and 
empirical, of the information in cross-section and panel under alternative 
sample designs. Section 8 summarises the conclusions to be drawn and com- 
ments on their implications. 

2. Stock/flow sampling 

Consider a large population of people such that associated with each member 
is a realisation of a continuous time, discrete state, alternating process, and 
a time-invariant covariate vector, X. We identify the states by the labels 1 and 2. 
The objects of inference are the two transition intensities from state 1 to state 2, 
and from state 2 to state 1. In the next section we shall specify the process and 
functional forms for these transition intensities. 

’ Knickman, Weitzman, and Marcus (1989). 
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Let us identify four subgroups of the population by an indicator j such that 

01 if a person moves from state 2 to state 1, at least once, in to, to + 6, 

02 
j= 

if a person moves from state 1 to state 2, at least once, in to, to + S, 

1 if a person resides in state 1 at tI, 

2 if a person resides in state 2 at tz, 

where the times tj, j = 0, 1,2, and the interval 6 are chosen by the sampler. We 
shall describe a sampling scheme in which the investigator selects at random 
from within each of the strata defined above. A sample from either stratum 1 or 
stratum 2 is a stock sample since it selects from the stock of members of each 
state at particular points of time. Examples might be samples of unemployed 
people or samples of homeless people. A sample from strata 01 or 02 is a flow 
sample since it selects from the set of people who flow between states during an 
interval. Examples might be samples of those registering as unemployed or 
entering shelters for the homeless on a particular day. 

We define a stock/flow sample in the following way. Let Hj, j = 01,02,1,2, be 
four probabilities summing to one. The sampler carries out N independent 
multinomial trials with these probabilities. If event j occurs, an individual is 
selected at random from subgroup j. The outcome of this sampling process is 
N observations of which Nj come from group j. These Nj are random subsample 
sizes (with expectations NHj).3 

When a person is selected we observe not merely the subgroup of which she is 
a member but also (a) a time-invariant covariate vector x and (b) her state 
biography for s periods immediately following tl, tZ, or to + S as the case may 
be. By state biography we mean the times and directions of all changes of state. 
For example, we might select an unemployed person, observe that she is 28 years 
old and that in the 12 weeks after selection she resumed employment after 
3 weeks and was still employed 9 weeks later. 

A sampling scheme is a description of the way in which the population is to be 
sampled and a list of the data to be gathered from each sample member. In order 
to clarify further the nature of a stock/flow scheme we shall develop the joint 
distribution of the data to be gathered in such a scheme and compare it with the 
distributions for some other reasonable sampling schemes. 

Let us denote by t the vector giving the times and directions of all changes of 
state during the observation period of length s after tl, t2, or to + 6, as the case 
may be. The symbol t stands for what we are calling the state biography. The 

3 This is a technically convenient model since it will lead To i.i.d. data. The asymptotic results given 

below do not depend on this assumption and would also apply if, for example, the Nj had been 

chosen by some deterministic mechanism 



T. Lancaster, G. ImbenslJournal of Econometrics 66 (1995) 325-348 329 

total data available for a person selected according to a stock/flow scheme arej, 
the stratum from which she was selected, x the covariate, and t the state 
biography. The likelihood contribution of a single person is 

~(j,x,t) = P(j)P(xlj)p(tlj,x). (1) 

In the stock/flow scheme p(j) represents the multinomial mechanism with 
probabilities Hj by which the population is sampled; p(xlj) represents the 
distributions of the covariate in the various sampling strata; finally, p( t 1 j, x) 
represents the distribution of the state biography given the covariate and the 
stratum from which she was selected. Information about the transition inten- 
sities derives from two components of this distribution. The first is p(x 1 j). The 
information here is analogous to that available from choice-based samples 
which also derives from the way in which the covariate distribution shifts 
between sampling strata. All the information in p(x 1 j) can be readily extracted 
- at least asymptotically - since Imbens (1992) has provided a computationally 
simple semiparametrically efficient estimator from data obtained by choice- 
based sampling. The inverse of the asymptotic covariance matrix of this es- 
timator provides a measure of the information in p(x 1 j). We shall refer to this as 
the cross-section information. This is a slightly misleading phrase since two of the 
strata j refer to events happening over a finite interval of time, albeit one whose 
length, 6, is small relative to the mean time between transitions. 

The second informative component of the likelihood is p( t 1 x,j). This is 
a more conventional object, being just the likelihood for a panel continuously 
observed for s periods, conditional on j, which determines the initial state, and 
upon the covariate. We shall refer to the information arising from p( t 1 x, j) as the 
panel information. In view of the structure of (1) the total information about the 
transition intensities is the sum of that provided by the cross-section and the 
panel. In Section 4 and later we shall evaluate these components of information. 

The class of stock/flow schemes can be compared with a more conventional 
scheme in which we randomly sample the population at the fixed time t,, 
observe their state at that time, say i, their covariate x, and their subsequent 
state biography, t. The likelihood is 

p(i,x,t) =~(x)p(ilx)p(tli,x). (2) 

The covariate distribution p(x) provides no information about the transition 
intensities - x is exogenous in this scheme. The distribution of the state occupied 
at to, p(i 1 x), provides no information about the two transition intensities 
separately. It is, with two states, a binary choice model from which at most one 
coefficient vector can be identified. The panel component p( t ( i, x) provides 
information about both transition intensities, and p( i I x) augments such in- 
formation. 

A third scheme is one in which the population is stratified solely by the state 
occupied at to and random samples are taken from within these two mutually 



330 T. Lancaster, G. ImbenslJournal of Econometrics 66 (1995) 325-348 

exclusive and exhaustive groups. This is just a stock/flow scheme with no flow, 
that is, Ho1 and Hoz are zero. Here the cross-section likelihood is just a binary, 
but choice-based, likelihood. It can, by itself, provide no information about the 
two separate transition intensities for the reason given in the previous para- 
graph. 

In order to obtain explicit and readily comprehensible answers we shall adopt 
the simplest interesting model - the equilibrium alternating Poisson process. 
The ultimate objective of the work is to obtain guidance about good ways of 
sampling two-state processes generated by econometrically reasonable models, 
which may be more complex than the equilibrium alternating Poisson. 

3. A parametric model 

Let the sequence of states occupied by someone whose covariate is x be 
a realisation of an equilibrium alternating Poisson process (APP)4 and assume 
that realisations for distinct individuals are stochastically independent. The 
lengths of visits to state i are, therefore, exponentially distributed with means, 
say, pi(x), i = 1,2, and these variates are mutually stochastically independent. 
Let pi = l/pi, i = 1,2. We shall adopt the parametric model and notation 

j4(x) = exPCh7 + Dilxl) 3 i = 1,2, 

p(x) = ccl(X) + pz(x), n(x) = Al(X) + J,(x). (3) 

The probability that an individual randomly selected from among those with 
covariate x occupies state i at any fixed date is 

pi(x) = pi(x)lp(x), i = 1,2. (4) 

This is a consequence of the assumption that the processes are in stochastic 
equilibrium. 

The probability that a randomly selected x individual moves from state 1 to 
state 2 in any interval of length 5 is b/p(~) + O(S*) as 6 -+ 0. This is also the 
probability that she moves from 2 to state 1. We shall write 

PCJi(X*6) = k.i(Ab)/p(X), i = 1,2, 

where, for every x, Ki(x, 6) = S + 0(S2) as 6 --+ 0. These are the conditional 
probabilities of observing a randomly selected .X person making each of the two 
possible changes of state in an interval of length 6. These transition probabilities 

4The equilibrium APP is an alternating renewal process. Cox (1962) is the standard reference on 

Renewal Theory. 
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depend on the length of the sampling interval, 6. At a later stage in the analysis 
we shall let 6 approach zero. We therefore also define 

pOi(x) = al_? (l/6)( k.i(X, 6)/P(X)) = l/P(X) 3 i = 1,2. 

These are the instantaneous probabilities of movement per unit time period 
_ the transition intensities - for people with covariate x. An analysis in which 
6 + 0 is intended to capture the idea that the interval during which the flow 
sample is gathered is small compared to the mean lengths of stay in each state. 
The reasonableness of this specification depends upon the context of applica- 
tion. For example, people don’t normally register as unemployed twice on the 
same day. Nor do they begin new jobs twice a day. 

Since the limiting conditional flow probabilities for each direction of move- 
ment are identical, the two flows can, for part of our analysis, be treated as one 
stratum - the pow. We define 

P,(x,6) = k.(X,~)/P(X), K(X,b) = 26 + O(P), 

PO(X) = ~_~(l/~)(K(X.b)/~(X)) = 2//4X). (5) 

The distribution of the covariate over the population is denoted f(x). The 
marginal probabilities that randomly selected individuals will occupy each of 
the three groups are 

Qi = SPi(x)f(x)dx, i = 1,2, 

Qo(& = jW4)f(xW~, (6) 

Q. = lim &(S)/S. 
6-O 

Note that the Qi do not sum to 1 since the subgroups are, in general, neither 
mutually exclusive nor exhaustive. 

The numbers Qi can be known to the investigator, for example from census 
data. In the unemployment application Q1 and Q2 are the unemployment rate 
and its complement. Q. is the instantaneous rate of movement per unit time 
period into and out of employment. In what follows the analysis is slightly 
different depending on whether or not the Qi are assumed known to the 
econometrician. We shall assume for the most part that they are known, though 
we shall comment on the analysis in the contrary case and in our empirical 
calculations we shall report results under both hypotheses. 

We now have a model in which the transition intensities are specified para- 
metrically by fil and fi2. The single-agent likelihood, Eq. (l), is 

p(j,x,t) = P(j)p(xlj)p(tlj,.u). 
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The assumption of an alternating Poisson process and the specific forms, Eq. (3), 
determine p( t lj, x) as a function of fir, /I2 for given data. These assumptions do 
not determine p(xlj) as a function of a finite parameter vector since this 
distribution involves the unknown population covariate distribution f(x) as we 
shall show explicitly in the next section. Inference about pi, p2 from p(x lj), 
which is a choice-based sampling likelihood, is a semiparametric problem but, as 
we remarked in the last section, a simple semiparametrically efficient estimator 
is known. So the specifications of this section suffice to enable us to proceed with 
efficient inference about the parameters of the two transition intensities. 

The total single-agent likelihood, Eq. (l), is the product of 

Ypl = p(j, x) and -Y2 = p( t lj, x), 

the cross-section and panel likelihoods. In the next three sections we shall 
inspect the information content of each component and of their product. 

4. The cross-section information 

This is the information in p(j, x). The marginal distribution of the subgroup 
membership indicator is multinomial with probabilities Hi, with 
HO = HoI + H,,2, by the definition of the stock/flow sampling scheme.5 The 
conditional density of x givenj can be found from Pj(x), Qjt and f(x) by the law 
of conditional probability. Hence 

dj, x) = sWs(x Id = Hj 
Pj(X)f(X) 

Qj ’ 

In this expression ~(0, x) depends on 6, the flow sampling interval, since both 
P,(x,6) and Q0(8) do. We shall complete the parametric specification of the 
model by dividing numerator and denominator in ~(0, x) by 6 and allowing 6 to 
go to zero. Since both PO(x, 6)/d and Q,(d)/6 approach nonzero limits P,(x) 
and Q0 where the latter is the expectation of the former with respect to f(x) the 
resulting limit provides a proper joint probability distribution, p(j, x). We shall 
call it the equilibrium stock/Jaw sampling cross-section likelihood. It is meant to 
be an appropriate likelihood when the flow sampling interval is small compared 
to the mean lengths of stay in each state. 

In order to avoid a proliferation of notation we shall continue to describe the 
likelihood by the notation of (7). The ratio Po(x)/Qo is to be interpreted as 

Po(x)/Qo = I*(x)-‘/So-‘f(z)dz. 

5 We are now pooling the two flow strata since they have identical probabilities. 
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The joint density for a single observation is therefore 

91(b) = fi (HjPj(X)IQj)“Jf(X), (8) 
j=O 

where the yj are binary indicators of group membership. This is just (7) written 
in indicator notation. 

To develop the efficient GMM estimator of PI, p2 we require the marginal 
distribution of x and the conditional distribution of the strata given x that are 
induced by the choice-based sampling scheme. The efficient moment vector has 
elements which are the scores from the conditional likelihood induced by the 
sampling scheme and a pair of moments which extract the information provided 
by the covariate distribution induced by the scheme. 

The marginal distribution of x induced by stock/flow sampling is found by 
summing (7) over j and is 

g(x) = So where S(X) = i HjPj(x)/Qj. 
j=O 

Consequently the conditional distribution of j given x is 

p(jlx) = fi RJJ where Rj = HjPj(X)/QjS(x) . 
j=O 

Using the functional forms specified in (3) we find 

Rj = 
eXp{Bj0 + 0;1X13 

1 + exp{B,, + 8;1x1} + exp{0,, + 13;~x~)’ 

Here R. = 1 - R, - R2 and 

fljo = log(HjQoIHoQj) + Sjo, Ojl = Pjl. 

(9) 

(10) 

j = 1,2. (11) 

(12) 

It follows that the likelihood based on the conditional distribution (10) is that 
for a multinomial logit model with cell probabilities Rj. The coefficients of the 
covariates in x1 are the bjl while the intercept terms involve both the Fiji and the 
Hj, Qj. The intercept parameters, /Ijo* are not identifiable from the cross- 
sectional likelihood without knowledge of the { Qj>. Let us therefore proceed on 
the assumption that the { Qj} are known. We shall comment later on the effect of 
relaxing this assumption. 

The algebra of estimation is most conveniently developed using matrix 
notation in which 

p=(;:). r=(;;) h=($ 4=(;:). y=(;:), 
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and 

P = diag(P,}, - PlPZ 

P,(l - P2) 

= P - pp’, 

with analogous definitions for H, A, Q, Q, and R, 8. The conditional likelihood 
scores for p are 

$1 = (10 x)(.Y - I), 

and the covariate moments are 

(13) 

r,G3 = r - h, 

where x’ = (1 x;). 

(14) 

An efficient estimator of /I is the value /? solving $(fi, i) = 0 where 
I+? = ($,, $,) and the overbar indicates a sample average. Note that the para- 

meter h is also estimated. The asymptotic covariance matrix of fi (p^ - /I), 

q’-(-)h h N 6 h as t e form I+‘AT-” where d is the moment covariance matrix 
and r = E(a$/a/I, h). These matrices take the following forms: 

- s(R @ xx’) - &(RH-’ 0 x) 

~(Rox') -(R-&(@)R_' . W) 
> 

Carrying out the multiplication we find that p^ and h^ are asymptotically 
uncorrelated with 

varfi($-p)=d;,‘-R-‘@.I, 

varfi(6 - h) = R. (16) 

Here,J=jj’andj’=(lO . . . 0) of order 1 x K + 1 where K is the dimension of 

D.” 
The covariance matrix clearly depends upon the true value of /3, the parameter 

being estimated and therefore so does the optimal design - choice of the Hj. To 
calculate the information content of cross-section and panel we shall use two 
strategies. First we shall evaluate the information and optimal design at a speci- 
fic point in the parameter space, namely that in which the covariate has no effect 

6 Since 13 and h^ are asymptotically uncorrelated, an estimator of /3 with the same variance as (16) 

could also have been by minimising an appropriate quadratic form in $ only with respect to 8, using 

the known value of h in forming the moments. 
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on the transition intensities. Second we shall, in Section 7, estimate these 
information components using real data. 

In that part of the natural /I parameter space in which j?r I = fiIZ = 0, so that 
the covariates have no effect on the process, l? becomes equal to J? and so 
nonstochastic. The conditional likelihood information matrix becomes 
AlI =R@ZforZ=&‘(xx’),and 

varfi(lj-p)=R-‘@(C-‘-J). 

This is a singular matrix, since C- ’ - J is, but the submatrix refering to the 
slope coefficients (of x1) is 

V, =R-‘@P, (17) 

where C2’ is the K x K lower right submatrix of C-r. The matrix VI is 
nonsingular, assuming the covariates are linearly independent, and it has deter- 
minant 

But [RI = H0H,H2 which is maximised at Ho = H, = Hz = 3, the equal shares 
solution. We conclude that when the true covariate effects are zero the 
stock/flow sampling scheme which maximises the cross-sectional information 
in the sense of minimising the generalised variance of the slope coefficient 
estimators is to take equal numbers from the flow and from both stocks.’ 

For future use we note that the value of VI at the optimal design is 

VI = (18) 

5. The panel information 

That part of the likelihood that derives from the panel information is condi- 
tional on the stock/flow sampling stratum,j = 01,02,1, or 2. Given this stratum 
the initial state for the panel is determined. Strata 01 and 1 imply initial state 1; 
strata 02 and 2 imply initial state 2. Since the probabilities of the strata given the 
initial state do not involve the parameter fl, the panel likelihood contribution 
can be written as the distribution of the panel information given the initial state. 

’ Stock/flow sampling is, as we have emphasized, a type of choice-based sampling. The optimality of 

equal shares at zero slopes for the choice-based sampled multinomial logit model has been pointed 

out by Scott and Wild (1986). Actually this result is true for a much broader class of models than the 

logit as is shown in Lancaster and Imbens (1991). 
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For a single observation the likelihood for the panel data is the density 
function for an alternating Poisson process observed for s periods conditional 
on both the covariate x and the initial state i. This distribution is 

P(t I&x) = p;dlp;dzexp{ - p;‘T, - p;iTz}. (19) 

Here 

d1 = number of 1 + 2 transitions, 

d2 = number of 2 + 1 transitions, (20) 

and T, is the total time spent in state s, j = L2.s The log-likelihood is therefore 

Z,,(p) = - dlx’P1 - d2x’P2 - Tle-x’al - Tze-x’B2. (21) 

Let w, = T,e-“‘Ps for s = 1,2 and set w’ = (w1,w2), d’ = (d,,d,). Then the 
score vector is 

t,b4=(w-d)@x. (22) 

The zero mean property of scores tells us that 

E( Tje-““1) = E(dj), j = 1,2. (23) 

A second differentiation gives the Hessian as the block-diagonal matrix 

a2L2 
-= - WQXX’, 
aaap 

(24) 

where W = diag{ w,}. The information matrix is therefore 

,P, = d(D @ xx’1 i,x), 

where D = diag(d,). 

(25) 

A comparison of the information in the panel and in the cross-section may be 
made in that part of the parameter space in which the covariates have no effect 
on the process - the zero slopes set. In this set the information becomes 

Y2 = &‘(D 1 i) 0 xx’. 

To make the comparison we need the information unconditional on initial state 
and covariate. This gives 

$2 =D@Z. (26) 

8( 19) is just the density function for a right censored sequence of alternating indepenent exponential 

distributions. 
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Here, 

The slope covariance matrix is the appropriate submatrix of the inverse in- 
formation, namely 

V, = D-1 @ ,P, (27) 

which may be compared to the corresponding result for the cross-sectional 
information, (17), which was V1 = E7-l 0 Z22. 

In the last section we were able to determine an optimal stock/flow sampling 
scheme using only the cross-sectional information in the special case in which 
the true covariate effects were zero. Let us examine this question for the panel 
likelihood under the same hypothesis. In order to make this calculation we need 
to find b(d,) and 6(d,), the expected numbers of transitions in an interval of 
length s. 

The expected numbers of 1 -+ 2 and 2 --t 1 transitions in an interval of length 
s, which are the diagonal elements of 6, depend upon the probability distribu- 
tion of the initial states. These in turn depend upon the probabilities Hj. For 
example, an observation from subgroup j = 2 implies that state 2 was the initial 
state. We find I(dj) by first conditioning on the initial state and then averaging 
over the distribution of initial states implied by the stock/flow sampling scheme. 
We find9 

E(dl 1 i = 1) = O(S) + (&/A)(1 - e-“), 

EC4 

Et4 

E(dz 

1 i = 2) = o(s), 

1 i = 1) = o(s), 

) i = 2) = o(s) + (A,/A)(l - e-Is). (28) 

Here, i indicates the initial state, ~j = p,~’ is the transition intensity out of state j, 
and 

o(s) = (AiA,/A’) [eCAS + Is - 11, A = Ai + AZ* 

Stock/flow sampling strata 01 and 1 imply initial state 1, strata 02 and 2 imply 
initial state 2. Thus the distribution of initial states is 

P(i = 1) = Hi + HoI, P(i = 2) = H2 + H02. 

‘Appendix 1 describes these calculations 



338 T. Lancaster, G. Imbens/Journal of Econometrics 66 (1995) 325-348 

In consequence, the unconditional expected transition counts, under zero slopes, 
are 

E(d,) = o(s) + (Hi + H,,)(3.,/1,)(1 -e-l’), 

E(d,) = w(s) + (Hz + H,,)(i,/A)(l -eels). (29) 

As s + CCI and the panel becomes longer the dependence of the E(dj) on the 
probability distribution on the initial states, and hence on the Hj, becomes 
negligible. This is because U(S) becomes linear in s while the component 
involving Hj becomes constant. So for long panels it does not matter what 
stock/flow sampling scheme was used. On the other hand for small s - short 
panels - w(s) is O(s*) as s + 0 and 

E(d,)= p&s + 0(s2), 

E(d,) = (1 - p)&s + O(s*), 

wherep = HI + HoI. Thus, for small s, 161 cc ~(1 - p) and optimal stock/flow 
sampling is any choice of the Hj such that HI + HoI = 0.5. An equal shares 
stock/flow scheme Hj = 4, j = 1,2, and HoI = H,, = i satisfies this condition. 

We conclude that for short panels an equal shares stock/flow scheme is 
optimal when the regression slopes are at, or close to, zero. How short is short? 
And how close is close? In Section 7 we report some calculations on real data 
(though with a rather unreal model). 

6. The total information 

We may pool the panel and cross-section information in a method of mo- 
ments procedure which uses the cross-section moments, $i and I,+~, of (13) and 
(14) together with the panel likelihood scores. (22) as a third moment set, e4. Let 
II/ = ( t+bl, $3, t,b4). The covariance matrix of $ is block-diagonal because $_, has 
mean zero conditional on j, x while $, , $3 depend only upon j, x. The efficient 
pooled estimator has asymptotic covariance matrix 

V = (dii + T;d,;‘T, + .Y*)-i, (30) 

where Y2 is the panel information matrix for j?, (26) and T2 = 8(R 0 x’). 
Inverting and taking the limit as the slope coefficients approach zero gives the 
zero slope covariance matrix, 

v=(A+D)-‘@(Z-l -J). (31) 

The slope estimator covariance matrix is 

I/, = (R + 6)-i 0 ,P*, (32) 

which may be compared with (17) and (26). 



T. Lancaster, G. Imbens/Journal of Econometrics 66 (1995) 325-348 339 

We may compare these results with the precision of random cross-section 
sampling, i.e., a random sample of the population at an instant of time taken 
without regard to the state people occupy. Under this scheme the distribution of 
initial states is 

P(i = 1) = &/A, P(i = 2) = Al/i. (33) 

Substituting these into (5.11) in place of HI + HoI and H2 + Ho2 gives 

B(d,) = Co(&) = (&I.J;>)s = s//l. (34) 

The likelihood for a random panel is the product of the likelihood given the 
initial state, (19), and the probability distribution of the initial state, given x. 
Under random sampling x is exogenous and its distribution uninformative 
about /L A routine calculation then provides the information matrix in the zero 
slopes set as 

,a,=(R,+IJ,)_‘OZ, (35) 

where 

and the diagonal elements of B, are both equal to s//c. The matrix RR is got from 
R by putting HI = AX/R = flrjcc, H, = ,?J,I = pcl/p, Ho = 0. This reflects the 
fact that a random sample is equivalent to a stock/flow sample in which no 
observations are taken from the flow and the stocks are sampled in the same 
proportions as those stocks occupy in the population. The singularity of R, 
reflects the fact that when no observations are taken from the flow, the model 
reduces to a binary logit from which two coefficient vectors, fir and fiZ, cannot be 
identified. 

The slope estimator covariance matrix at zero slopes is 

V, = (17, + II,))’ @ Z22. (36) 

This is to be compared with the corresponding matrix for general stock/flow 
sampling, (32). We shall report such a comparison in the next section. 

7. Some numerical calculations 

We shall use some data from the Dutch labor market lo in order to get an idea 
of the practical relevance of our results. A sample of 372 men were observed over 

“Appendix 2 gives further details about the data. 
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Table 1 
Numbers of transitions in each direction in seven years 

Transitions 

0 
1 
2 
3 

Total 

Frequency Frequency 
I +2 2+1 

338 268 
29 98 
4 5 
1 1 

372 372 

the 84 months from January 1977 to December 1983. They were observed to 
move between the two states not employed, state 1, and employed, state 2. 
A single covariate, age - 35 years, was also observed. This was approximately 
uniformly distributed from - 15 to 15 with variance o2 = 75. The matrix C was 
therefore 

1 0 

== 0 75 ( ) 
Modelling the process as a conditional alternating Poisson process the ML 
estimates of the regression functions were 

ccl(x) = exp(4.0 + 0.043~)) p2(x) = exp{ 5.6 + 0.030x). (37) 

Thus PI,, = 4.0, @I 1 = 0.043, etc. The numbers of transitions in this sample had 
the frequency distribution given in Table 1. 

Thus 338 men had no transitions into employment; 268 had no transitions out 
of employment, etc. A total of 138 transitions were observed in the 84 months, or 
about 1 transition for every 3 men. This is therefore a group displaying little 
movement between states. The average number of 1 -+ 2 transitions is 0.017; the 
average number of 2 + 1 transitions is 0.298. 

We shall report two sets of calculations. 

7.1. Random and equal shares stockjjlow sampling at zero slopes 

In this comparison we shall compare the covariance matrices (32) and (34). 
For the pj we set the slopes in (37) equal to zero giving 

pl = exp{4), p2 = expC5.61, 

with i1 and ,I2 the reciprocals of these. One way of comparing these matrices is 
by calculating the square root of the determinant of R + D and comparing it to 
the square root of IRR + DRI. These quantities are proportional to the square 
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Table 2 
The information in random and equal shares panels 

Panel length Equal shares 
in months panel 

Random 
panel 

1 0.20 0.03 
12 0.26 0.11 
84 0.55 0.37 

roots of the inverse generalised variances for the covariate effects. The compari- 
son is given in Table 2. 

These people, who move between states very infrequently, supply virtually no 
information about the transition intensities when randomly sampled and ob- 
served for only a month. In contrast, there is a good deal of information in the 
cross-section which can be extracted with a stock/flow design. This general 
pattern is confirmed in the second set of comparisons which allow for the effect 
of the covariate. 

7.2. Simulation of alternative sampling schemes 

In this calculation we simulate 50,000 realisations of an alternating Poisson 
process with parameter values as in (37). We then sample these realisations (a) 
according to various stock/flow sampling schemes and (b), for comparison, 
randomly. Averaging over repeated samples we calculate the covariance ma- 

trices of JN(p - fl). W e use three different panel lengths, s, namely 1 month, 
2 months, and 84 months. We use two different stock/flow schemes in both of 
which there are four subgroups or sampling strata, namely 

01 the flow 2 + 1 during (5, 

02 the flow 1 + 2 during 6, 

1 the residents of state 1. 

2 the residents of state 2. (38) 

These groups are sampled with two sets of probabilities; see Table 3. Under 
random sampling the residents of state 1 are sampled with probability equal to 
the fraction of the population resident in state 1. This is calculated to be 0.17. 
Similarly for state 2. The equal shares stock/flow scheme is optimal under zero 
slopes and when the panel observation is brief. 

We shall report asymptotic variances of coefficient estimates under both 
sampling schemes. In our theoretical development we have assumed that the 
marginal stratum probabilities, the { Qj) , are known. This is because the inter- 
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Table 3 

Two stock/flow sampling schemes 

Stratum Random 

01 0.00 

02 0.00 

1 0.17 

2 0.83 

Equal shares 

l/6 

l/6 

l/3 

t/3 

Table 4 

Asymptotic variances of coefficient estimates under alternative sampling schemes and observation 

periods 

Scheme Panel length Q’s known B 10 B 11 P 20 B 11 

Random 84 No 3.03 0.04 2.99 0.04 

12 No 16.14 0.21 16.14 0.21 

12 Yes 1.34 0.21 1.16 0.21 

1 Yes 14.58 2.47 14.37 2.47 

Equal shares 12 No 10.31 0.05 40.70 0.07 

12 Yes 0.23 0.05 0.19 0.07 

1 Yes 0.26 0.08 0.24 0.08 

cept parameters pl0, & are unidentifiable, when regression effects are zero, 
from a stock/flow cross-section without such prior information. The slope 
parameters /I1 1, pz 1 are always identifiable from a stock/flow sample as long as 
some observations are taken from both stocks and the flow and the regressors 
are linearly independent. Panel data allows identifiability of all parameters, so 
this is an essentially minor complication. In our calculations we have estimated 
the parameters both under the assumption that the Q’s are known and under the 
assumption that they are unknown. The nonidentifiability of the intercepts, 
under zero slopes, from a cross-section can be expected to show up in a high 
variance for these parameters when the panel length, s, is short. 

The results are reported in Table 4 and in Figs. 1 and 2. The intercepts are 
indeed poorly determined from short panel data when the Q’s are not known as 
compared to when they are known. By, contrast, the presence or absence of 
knowledge of the Q’s has no effect on the accuracy of the slope estimates. 

Turning to the numerical values of the variances given in the table we can 
make one interesting observation. Consider the variances of the slope coefficient 
estimates for the two stock flow schemes which are 0.08 for the l-month scheme 
and 0.07 for the 12-month scheme. If we refer back to Section 4, we gave there 
the covariance matrix of the equal shares stock/flow sampling scheme with no 
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x 84 months (R) 

x 12 months (R) 

x 1 month (R) 
0 , I I 

0 15 30 

l/var 021 

Fig. 1. Random panels of different lengths. 

30 1 

x 84 months (R) 

x 12 months (ES) 

x 1 month (ES) 

oik---r----- 30 

l/var 321 

Fig. 2. Stock/flow and random panels of different lengths. 
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biographical data when the true slopes were zero. In particular the slope 
variances were equal and given by 3 x 2 = 6 times the lower right element of 
Z-i. But Z is diagonal with 02 = 75. Hence with no biographical information 
and zero true slopes we should find the variance of the slope estimators to be 
both equal to 6/75 = 0.08. This is precisely the value of these variances under 
equal shares stock/flow sampling with one months observation. Hence we can 
argue that (a) l-month observation virtually amounts to not having bio- 
graphical data at all, but, more importantly, (b) zero slope variances can be 
a rather good guide to the asymptotic variances when the true slopes are not 
zero.’ 1 

Comparison of the precision of estimators from an equal shares stock/flow 
panel with those from a random panel is best done graphically. In Figs. 1 and 
2 the axes measure the precision - one over the variance - of the two 

slope coefficients estimates B ii and fizl, or rather of JN(iJji - fijl). In 
each figure, the further a point is from the origin the more precise the estimate. 
If two points fall on the 45” line through the origin and point A is twice 
as far from the origin as point B, then the precision of estimator A could 
be achieved with just twice as many observations using the estimator associated 
with point B. The number next to each point is the length of the panel in months. 
R stands for cross-section random sampling and ES for equal shares stock/flow 
sampling. 

Fig. 1 compares random sampling with biographical information for different 
lengths of time. A lot of precision is lost if we randomly sample and observe only 
for 12 months instead of for 84. Since the point labelled 84 is about four times 
further from the origin as the point labeled 12, we see that observing for seven 
times as long is equivalent to having four times as many observations. 

Fig. 2 compares equal shares panels of 1 and 12 months with a random panel 
observed for 84 months. Compared with Fig. 1 we see a dramatic improvement 
in the precision of the shorter observations schemes. From a comparison of the 
points labelled 1 and 84 we see that the same precision of estimation could be 
achieved with (a) N randomly sampled people observed for 7 years or (b) 2N 
stock/flow sampled people observed for 1 month. This is broadly consistent with 
the figures reported in the last subsection and is a quite remarkable result. The 
explanation is that these people move only slowly between states so that if, as 
with random sampling, a relatively large proportion of the information comes 
from the biographies, long biographies are required before much information is 
obtained. In a more volatile population biographical information may be 
expected to be more informative as compared to the information in the covari- 
ate distribution, i.e., in the cross-section. 

‘I This may be another reflection of the observation that equal shares sampling, which is optimal for 
zero slopes, is often nearly optimal when slopes are not zero. 
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8. Conclusions 

When people move only slowly from state to state, they must be observed for 
a long time before a panel yields much information about the way in which 
covariates modify the speeds of transition. The time series dimension of the data 
is relatively uniformative. The variation in the covariates between people ob- 
served in different states at a moment in time or flowing between states in a short 
interval can, by contrast, yield a good deal of information about these effects. 
Doubtless this qualitative result has been long appreciated but this paper shows, 
using real labor market data, that the quantitative difference can be startlingly 
large. A randomly selected panel observed for 7 years provides about as much 
information as a judiciously designed endogenous cross-section observed for 
less than 1 year. 

A cross-sectional sample of people selected according to the states they 
occupy is a choice-based (endogenous) sample. In this paper we have analysed 
a particular class of endogenous sampling scheme, the stock/flow sample. The 
information about covariate effects in such a sample can be obtained rather 
simply using the recently developed efficient method of moments estimator for 
endogenous samples. This is a way of making inferences from the distribution of 
the covariates given the states without adopting a parametric model for the 
population covariate distribution. 

To extract the information in the cross-sectional covariate distribution re- 
quires that the investigator supply a model for the conditional probabilities of 
state occupancy and of appearance in the flow, given the covariates. That is, he 
must supply a model explaining why a person with covariate x should be in state 
j at the sampling date, or why she should be moving from i to j during a short 
observational interval. We ‘solved’ this problem in the present paper by the 
assumption that the stochastic process we were observing was in stochastic 
equilibrium. Actually this solution leads to a model that is parametrically 
overidentified. The cross-sectional likelihood is a multinomial logit model with 
four cells, when the flow is separated into its components, but only two 
functionally independent parameter vectors. It is thus possible to develop model 
specification tests. One way to do this might be to allow the two conditional 
flow probabilities to have different parameter vectors and to test for their 
equality. It would also be possible to develop tests for neglected heterogeneity, 
and, indeed, to enlarge the model to allow for such effects. 

It would also be of interest to examine the value and use of repeated, 
balanced, stock/flow cross-sections as an alternative to a single stock/flow panel. 
There are numerous other possibilities, including relaxing our functional form 
restrictions. We have yet to examine these options. 

The model that we have examined makes a number of simplifying assump- 
tions. Even though these are testable, as we have just pointed out, we take the 
view that this particular model is not one that an investigator would want to 
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entertain seriously in a practical study, except perhaps as a preliminary calcu- 

lation. Moreover our conclusions about optimal design are limited in that they 
apply, strictly, only to a particular region of the parameter space. And, of course, 
the optimality criterion, generalised variance, ignores the crucial issue of the 
costs of alternative designs. 

The aim of this paper has been to define a stock/flow panel, to show how 
recent work of inference from choice-based samples solves the problem of 
inference from stock/flow panels, and to examine both theoretically and with 

real data the consequences of alternative designs.12 Our results show that major 
gains can, in principle, be made by gathering panels from balanced stock/flow 
panels and that further research into the use of such panels with other models 

may well be fruitful. 

Appendix 1: Expected numbers of transitions in the APP 

These expectations follow from inversion of the Laplace transform of the 
renewal function H(t) = E(N,) which gives the expected numbers of events in 
a renewal process in an interval of length t. The alternating Poisson process 
starting in state 1 for which events are transitions to state 1 is an ordinary 

renewal process whose interevent distribution is the convolution of two ex- 
ponential distributions, g,(s), g2( s). with means ,LL~, p2. The Laplace transform 
of the renewal function ist3 

H;(s) =’ d(s)g (s) : 
s 1 - gf(s)g;w’ 

(A.11 

where * indicates a Laplace transform. The alternating Poisson process starting 
in state 1 for which events are entrances to state 2 is a modified renewal process 
for which the waiting time to the first event has density gl(s) and whose 
subsequent interevent times have density the convolution of g,, g2. The Laplace 
transform of the renewal function is 

HZ(s) =A g:(s) 
s 1 - g:(s)Y;(s) 

64.2) 

“In its methodological approach our work IS similar to that of de Stavola (1986) who studied the 

effect on parameter estimates of different ways of sampling an alternating process. She also studied 

a very simple process but her general conclusions, like ours, are likely to give useful guidance in more 
complex contexts. 

I3 Cox ( 1962). 
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Since the Laplace transform of the exponential density function with parameter 
2 is g*(s) = i/(1 + s) explicit forms for (A.l) and (A.2) are 

21 A2 
1 3 

H:(s) = 

?(s + i)’ 
H;(s) = ‘“lA2 +$. 

s2(s+A) / 

A partial fraction expansion of the Jirst factor in these expressions gives 

. * ” / 

ILlA AlA2 

s2(s + 2) = 7 
[ 

_I+‘+-- 
1 

si s2 1 R(s + j_) . 

Using this expansion and a table of Laplace transforms gives the results used in 

the body of the paper. 

Appendix 2: Data details 

The data used in Section 4 are from the ORIN data set and form a random 
sample of size 372 from that part of the male population that was between 23 
and 53 years of age in 1977. Their labour market histories have been recorded 

for the 84 months between January 1977 and December 1983. 
The standard errors of the coefficient estimates that have been used as the U*‘s 

in Section 4 are 

p,o = 0.11, p,i = 0.013, p20 = 0.10. fi2i = 0.012. 

The mean age was 34.9 years. The average total time spent in state 1 - not 
employed - was 15.7 months, so the average time spent employed was 68.3 
months. The marginal probability of being in state 1, Qi was calculated to be 

0.17. The marginal probability of a transition per unit time period, Q3, was 
0.0031. A typical individual with age 35 would be expected to complete a cycle 
through the states in about 325 months. 
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