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RANDOM EFFECTS ESTIMATORS 
WITH MANY INSTRUMENTAL VARIABLES 

BY GARY CHAMBERLAIN AND GUIDO IMBENS1 

In this paper we propose a new estimator for a model with one endogenous regres- 
sor and many instrumental variables. Our motivation comes from the recent literature 
on the poor properties of standard instrumental variables estimators when the instru- 
mental variables are weakly correlated with the endogenous regressor. Our proposed 
estimator puts a random coefficients structure on the relation between the endoge- 
nous regressor and the instruments. The variance of the random coefficients is mod- 
elled as an unknown parameter. In addition to proposing a new estimator, our analysis 
yields new insights into the properties of the standard two-stage least squares (TSLS) 
and limited-information maximum likelihood (LIML) estimators in the case with many 
weak instruments. We show that in some interesting cases, TSLS and LIML can be 
approximated by maximizing the random effects likelihood subject to particular con- 
straints. We show that statistics based on comparisons of the unconstrained estimates 
of these parameters to the implicit TSLS and LIML restrictions can be used to identify 
settings when standard large sample approximations to the distributions of TSLS and 
LIML are likely to perform poorly. We also show that with many weak instruments, 
LIML confidence intervals are likely to have under-coverage, even though its finite 
sample distribution is approximately centered at the true value of the parameter. In an 
application with real data and simulations around this data set, the proposed estimator 
performs markedly better than TSLS and LIML, both in terms of coverage rate and in 
terms of risk. 

KEYWORDS: Instrumental variables, random effects, quasi-likelihood, two-stage 
least squares, risk function, returns to schooling. 

1. INTRODUCTION 

IN THIS PAPER we propose a new estimator for a model with a single endogenous re- 

gressor and many instrumental variables. Our motivation comes from the recent liter- 
ature on the poor properties of standard instrumental variables estimators when the 
instrumental variables are weakly correlated with the endogenous regressor. The start- 

ing point of this literature is a paper by Angrist and Krueger (1991), henceforth AK, 
who report two-stage least squares (TSLS) estimates from a data set characterized by a 
combination of a large number of observations and a large number of weak instrumen- 
tal variables. Bound, Jaeger, and Baker (1995), henceforth BJB, show that even with 
such large samples TSLS can lead to extremely misleading confidence intervals. Sub- 

sequently researchers have focused on improving inference in these settings. Bekker 

(1994) and Staiger and Stock (1997) develop alternative asymptotic distributions for 
TSLS and the limited-information maximum likelihood (LIML) estimator. Bekker's 

approach is based on increasing the number of instrumental variables along with the 

sample size, whereas Staiger and Stock's approach is based on a vanishing correlation 
between the instrumental variables and the endogenous variables. Kleibergen (2002) 

1The authors thank Joshua Angrist, Susan Athey, Jinyong Hahn, Tony Lancaster, James Pow- 
ell, Peter Rossi, and James Stock for helpful comments, and thank Alan Krueger for making his 
data available to us. Financial support was provided by the National Science Foundation. 
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and Moreira (2003) develop new tests for the structural coefficients with improved fi- 
nite sample properties. 

Our proposed estimator puts a random coefficients structure on the relation be- 
tween the endogenous regressor and the instruments. The variance of the random 
coefficients is modelled as an unknown parameter. We refer to this estimator as the 
random-effects quasi-maximum likelihood estimator (REQML).2 Using standard as- 
ymptotics (with the number of observations going to infinity, keeping the number of in- 
strumental variables fixed), the estimator has the same limiting normal distribution as 
LIML and TSLS. However, its finite sample properties will differ especially in settings 
with many weak instruments. Because REQML is a maximum likelihood estimator in 
a model with few parameters, inference based on it is likely to be accurate if the model 
is correctly specified. Even when the instruments are (almost) independent of the en- 
dogenous regressor, and the model is (close to) not identified, REQML confidence 
intervals are unlikely to be misleading. Although in that case asymptotic normality of 
the structural coefficient need not be a good approximation to the finite sample distri- 
bution, the likelihood function will be flat around the true value of the parameter, and 
thus the confidence intervals will be wide.3 

In addition to proposing a new estimator, our analysis yields new insights into the 
properties of TSLS and LIML in the case with many weak instruments. We show that 
in some interesting cases TSLS and LIML can be approximated by maximizing the 
random effects likelihood subject to particular constraints. When the variance of the 
first stage coefficients is fixed at a large number, REQML and its standard error are 
approximately equal to TSLS and its standard error. When a particular transforma- 
tion of this variance (involving the structural coefficients and the reduced-form error 
covariance matrix) is fixed at a large value, we recover LIML and its standard error. 
Since we argued that inference based on REQML is likely to be accurate in these set- 
tings, this approximation of TSLS and LIML by restricted REQML implies that any 
inaccuracies in asymptotic approximations of TSLS and LIML must be due to vio- 
lations of the restrictions. Thus statistics based on comparisons of the unconstrained 
estimates of these parameters to the implicit TSLS and LIML restrictions can be used 
to identify settings when standard large sample approximations to the distributions of 
TSLS and LIML are likely to perform poorly. For TSLS this statistic is closely related 
to the concentration parameter suggested by BJB and Staiger and Stock (1997) as a 
valuable diagnostic. For LIML the diagnostic is new. Our results also imply that with 
many weak instruments LIML confidence intervals are likely to have under-coverage. 
For TSLS we provide a simple calculation for the approximate bias of its standard 
error. 

We apply the proposed REQML estimator to data previously analyzed by AK in 
their study of the effect of years of schooling on earnings using quarter of birth, on its 

2The estimator can also be interpreted as the posterior mode in a hierarchical Bayes set up 
with a hierarchical structure for the coefficients on the instrumental variables and a flat prior 
distribution on the hierarchical parameter (the variance of the coefficients on the instrumental 
variables). In that perspective, the problem with TSLS is that of a flat prior distribution in a 
high-dimensional parameter space being very informative. 

3Note that this argument does not necessarily apply to LIML in our setting, because although 
LIML is maximum likelihood, it is so in a setting with many parameters. 
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own and interacted with year and state of birth, as an instrumental variable. Our analy- 
sis uses 162,515 observations and 505 instrumental variables. The LIML and REQML 
estimates of the returns to schooling are similar for the AK data, and somewhat larger 
than the TSLS estimate. The REQML confidence interval is somewhat wider than the 
LIML interval; both of these are considerably wider than the TSLS interval. Following 
BJB, we also apply the estimator to a modified version of the AK data with randomly 
generated instrumental variables. In that case the REQML confidence interval is ex- 
tremely wide, correctly indicating the lack of information in the data. The LIML inter- 
val, although wider than the TSLS interval, is still misleadingly informative. Consistent 
with our theoretical discussion, the restricted REQML estimates and their standard 
errors are very close to TSLS and LIML in both settings. We also evaluate risk func- 
tions under data generated according to the fixed-effects model using parameter values 
similar to those estimated on the AK data. The risk for the REQML estimator is gen- 
erally less than the risk of the LIML estimator. The risk improvement is substantial 
when the coefficients on the doubtful instrumental variables are all zero. The risk of 
the TSLS estimator is very large for some parameter values. Coverage rates of the 
REQML intervals are very close to the nominal value of .95 in all cases. The coverage 
rates of the TSLS intervals are extremely poor, as low as .00. The LIML intervals have 
better coverage rates than the TSLS intervals, but the coverage rate can still be as low 
as .40. 

2. THEORY 

2.1. The Model 

In this section we set up the basic model and define TSLS and LIML. We shall work 
with the following reduced form model: 

Y1 = X1 1 + X2 Tl + U1, 

Y2 = XI 62 + X2 72 + U2, 

Ul ) - A^(O, g)In) ) 
(1)UU 

where Y1 (n x 1) is the endogenous regressor, Y2 (n x 1) is the primary outcome, 
X1 (n x j) is a set of exogenous regressors, X2 (n x k) is a set of instruments, and 
X = (X1 X2) is n x (j + k) with full column rank. All the analysis will be done con- 
ditional on X. The regression coefficients on the instrumental variables X2 satisfy a 
proportionality restriction: 

7T1 = f, 7T2 = fy, 

where ,f is k x 1 and y is scalar, so that Y2 = X16 + Y1y + V, with 8 = 62 - y71 and 
V = U2 - yU1, is the structural equation of interest. 

Consider the least-squares regression statistics: 

y = ( 1 2 ) = (X'X)-IXY, S = (Y - XY)'(Y - XY), 
\ T 71 2 / 
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where Y = (Y1 Y2). Rather than use the full likelihood function, we shall base the 
likelihood on the joint distribution of f =- (Tr'1 r2), which is k x 2, and S. This simpli- 
fies the analysis, since the likelihood based on 1 and S does not depend upon (s1, 62). 
it and S are independent with 

,T= (r ), ,T A ( ? , 1 ? (X2(2)), S - Wishart(n - j - k,), 

where ' = (1 y) and X2 = (I, - X1(X'XX)-'X[)X2. 
We divide the set of instrumental variables into two subsets, one (small) set of in- 

strumental variables that are a priori viewed as more important, and one (large) set of 
instrumental variables that are viewed as potentially weak. In applications such as ours 
this distinction may arise when there is a small set of basic instrumental variables, and a 
potentially large number of additional instrumental variables is generated by interact- 
ing this set of basic instrumental variables with functions of the exogenous covariates. 
However, this division merely adds generality, and it is not essential for our discussion 
that the first set is nonempty. We shall only impose the random coefficients structure 
on the second set of instrumental variables. Thus partition X2 and 3: 

X2 =- X2l 1 t+ X22P2, 

where X21 is n x kl, X22 is n x p, /3 is kl x 1, and P2 is p x 1. We are interested in the 
case where p is large relative to kl. Before imposing a random coefficients structure, 
it is convenient to work with a one-to-one function of ~r, denoted by 7r*, so that the 
elements of rT* corresponding to different instruments are independent: 

r* (I2 ( F) r where F = ( F12) 0 F22 

is a nonsingular, k x k matrix with F'F = X2X2. F is partitioned conformably with /. 
~r* and S are independent with 

'r T*-./(O(X*, L @*. ), ]~*=--=( 1 ))=F =-(Flll + F12P2) 
'8P2 \ F228/2 

Let Z = ('r*, S). We shall treat Z as the observation with 

Z ={(zi, Z2): Zi R2k, Z2 E S} 

as the sample space, where S is the set of 2 x 2 positive-definite matrices. The parame- 
ter space is 

So our modl is {P: ;, e :} w R E P for soe RP, / E S 

So our model is {Po: 0 E O} with Z - Po for some 0 = (y, T,/3, 82) e O where 

Po = Jf(f 0 /3*, S 0 Ik) x Wishart(n - j - k, S). 
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The (fixed effect) log likelihood function is 

1 
(2) lfe(,Y *, ') = - (n - j) ln[det(2)] 2 

- tr[-l (S + (1* - 13*/)'(* - *'))] 

where HI* = FHI, suppressing additive terms that do not depend upon (y, 3*, L). Max- 
imizing this over 0 gives LIML.4 We shall also need the log likelihood function with 3* 
concentrated out: 

(3) /;(, )= -2[(n- )ln[det(,)]+tr[ l(S+H*' *)] - '*'I*/I/I r, 

where q, = -' 15 

The TSLS estimator of y and its standard error are 
*1 A* 

Tr12 .2 (yTSLS\ 
sTSLS = ^, 2 K - TS 

) 
(4) 7Ti 7 

se(7TSLs) = [K'(S + fI*'iJ*)K/(nl *7`)]/2. 

2.2. Random Effects Quasi Maximum Likelihood 

In this section we define the REQML estimator. We shall use the following family of 
distributions for the random coefficient /3: {/(0, oalIp) : o-' > 0. See an earlier ver- 
sion of this paper, Chamberlain and Imbens (2001), for a discussion of the invariance 
properties of this choice of distribution. Given a value for o-C, the distribution for /3 im- 
plies a joint distribution for (Z, /P), which implies a marginal distribution for Z, which 
is the basis for the random-effects quasi-likelihood function. Note that in large samples 
the random coefficients specification for P/ will not affect the maximum likelihood es- 
timates for the remaining parameters (y, 2), so that the asymptotic distribution (for 
a fixed number of instruments) of the REQML estimator is identical to that of LIML 
and TSLS. Only in finite samples, and in particular with many instruments, will there 
be a difference between the three estimators. 

Conditional on $P, S is independent of H* and the distribution of S does not depend 
upon Pf. So HI* and S are independent in the marginal distribution of Z, with 

7r* (A / )? A) S - Wishart(n-j-k,), 

where 

A=u>(f+'0(0 I 9)+? )7Ik. 

4Maximizing over (l and 42 in the likelihood function for the full model gives a concentrated 
likelihood. The log likelihood in (2) differs from the log of this concentrated likelihood function 
only by replacing n by (n - j). 

5The derivation for this concentrated likelihood function is given in the working paper version, 
Chamberlain and Imbens (2001). 
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Define 0 = L-1 , T = '2-`' , A = (To-i)- . It is convenient to index the parameter 
space using (y, 3p, A, Y) instead of (y, /37, o-, Y). Then our log-likelihood function is 

(5) lre(y, /3, A, ,) = - (n - ) ln[det(2)] - pln[A/(A + 1)] + tr(2-'S) 

+ * 
' - 

?[ 
- (^ ( ))pX] [ 

- 
( ( )) ]]. 

Concentrating out /3, the log-likelihood function is6 

(6) l ,;(y, A, Z) -1 [(n -j)ln[det(,)] 
- pln[A/(A + 1)] 

+ tr[z -l( s+ f^*)]- ,'i*'P*O/,], 

where 

p_ Ik 0 A 
0 (A+ )-'Ip 

The ML estimate of y given (A, L) is obtained from the corresponding eigenvector: 

(7) bl = argmaxb'Hi*'Pl *b/b'b, (A, (A, ) = e'2b-/ee'bl, 

where el =(1 0) and e' = ( 1). 

2.3. Comparison with LIML 

Here we provide two comparisons with LIML that highlight the role of A. In this dis- 
cussion we assume that the reduced form covariance matrix 2 is known. Even though it 
is rare in practice that X is known, the precision of the reduced form covariance matrix 
is much higher than that of the structural coefficients in settings like ours with large 
samples and many weak instruments, and the following approximations will be seen 
to provide good guidance to finite sample biases in our application and simulations. 
First, consider the constrained REQML given A (and L). As A -O 0, P -- Ik, and the 
constrained REQML equals the LIML estimate of y given L based on maximizing (3). 

Next, consider the case in which the random-effects specification applies to all of 
/3*, so that kl = 0. Then P = (A + 1)- lk. Comparing the fixed and random effects 
concentrated likelihood functions in (3) and (6) respectively, we have lI,(y, A, ) = 
(A + 1)-1 lf (y, ,) + h(A, 2), where the additive term h(A, 2) does not depend upon y. 
So in this case, the REQML estimate of y given (A, L) is identical to the LIML estimate 
of y given S. In addition, the second derivative with respect to y of the random-effects 
log-likelihood function equals (A + 1)-1 times the second derivative with respect to y of 
the fixed-effects concentrated log-likelihood function. Suppose that the standard error 
reported for y is the inverse of the square root of minus the second derivative of the 

6The derivation for this concentrated likelihood function is given in the working paper version, 
Chamberlain and Imbens (2001). 
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concentrated log-likelihood function, evaluated at the ML estimate of y. Then if A and 
L are given, the REQML standard error is (A + 1)1/2 times the LIML standard error. 

2.4. Comparison with TSLS 

Here we discuss a link between REQML and TSLS. Consider the REQML estimate 
given (o-p, ,): 

(o-0, Y) = argmax l*(y, (o)-1, ). 
y 

As o-a -- oc, we have P -- Ik. So 

(8) lim [/l (, (Tr o- ,) + p ln (o))] 

1 1 
= -pln(T) + 2 H' I*I / /I, f + c(X), 

where the additive term c(S) does not depend upon y. The limiting objective function 
in (8) differs from the fixed-effects concentrated log-likelihood function in (3) by the 
term -pln(r)/2 (ignoring additive terms that do not depend upon y). Consider the 
term -p ln(r)/2 = -p ln(' -'I )/2. It is maximized as a function of y at y = 012/0-11, 
which is the population least-squares value corresponding to the coefficient on Y1 in 
the least-squares regression of Y2 on ( Y1 X). The second derivative at this value is 
-Po21/(11 0?22- 012). 

Now consider the case where all elements of 3* are equal to zero. Suppose further- 
more that p is large. With /* = 0 the probability limit of I7*' I*/p as p -- oo is equal 
to X, and the second term in (8) will therefore become flat as a function of y. Thus the 
maximum likelihood estimator for y will tend to the argmax of the first term, -12/011. 
Moreover, its large sample variance will be approximated by minus the inverse of the 
second derivative, (o- 11022 - 122)/(p'11) 

In the same setting, with /3* = 0 and p large, consider TSLS. As p gets large, 
p-Vl Vr2/p- r1'7r1 will converge to 0-12/0-1. Now consider the estimator for the 
variance of the TSLS estimator: K'K/rTT^*'Tl, which will be approximately equal to 
(0-22 - 122/l o- )/(p o-I). Hence the TSLS estimator and variance will be close to the 
constrained REQML and its large sample variance with 2r0 fixed at a large value. Note 
that o-2 is closely related to the concentration parameter /3'X2,X23/(11 = /3*'/3*/(-, 
which in our random effects setup if kl = 0 has expectation equal to poCr/ora-. BJB and 
Staiger and Stock (1997) discuss the value of the concentration parameter as a diag- 
nostic for poor small sample properties of TSLS. 

3. APPLICATION 

3.1. TheAKData 

Our data are a subset of the census data used by AK, containing males born in 
either the first or fourth quarters between 1930 and 1939.7 The sample size is n = 

7For convenience we only use the two quarters with the biggest contrast in the effect of com- 
pulsory schooling laws on age at entry. This is not essential for any of the analysis that follows. 
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TABLE I 

RETURNS TO SCHOOLING USING QUARTER OF BIRTH AS INSTRUMENTAL VARIABLES 

REQML 
- = 103 A = 10-6 

TSLS LIML (Pseudo TSLS) (Pseudo LIML) unrestricted 

Real QOB .073 .094 .073 .094 .096 
(.057,.089) (.061,.129) (.057,.088) (.061,.129) (.056,.139) 

Random QOB .059 -.330 .059 -.330 .220 
(.042, .076) (-.999, -.149) (.041, .076) (-.999, -.149) (-1000, 1000) 

Note. Point estimates with (nominal) .95 confidence intervals in parentheses. LIML = limited information maxi- 
mum likelihood; TSLS = two-stage least squares; REQML = random-effects quasi-maximum-likelihood. The three 

versions of the REQML are (i) Pseudo TSLS with -3 = 103 and S = ,, (ii) Pseudo LIML with A = 10-6 and Z = i, 
and (iii) unrestricted. The instrumental variables are quarter of birth (QOB) (k1 = 1) and interactions of QOB with 
504 indicator variables for state/year cells (p = 504). The data are for males born in either the first or fourth quarters 
between 1930 and 1939; n = 162, 515. 

162,515. The outcome variable Y2 is the log of weekly earnings in 1979. The treat- 
ment variable Yl is years of school completed. The predictor variables X1 consist of 
indicator variables based on the individual's state of birth and year of birth. There are 
509 state/year cells (fifty states plus the District of Columbia and ten years minus one 

empty cell); X1st = 1 if individual s is from state/year cell t, and equals 0 otherwise 
(s = 1,..., n; t = 1, ..., 509). X21 consists of a single instrumental variable: X21s equals 
1 if individual s was born in the fourth quarter, and equals 0 otherwise, motivated by 
AK by compulsory schooling laws. The doubtful instrumental variables X22 consist of 
interactions between quarter of birth and the state/year indicators; X22st = X21s Xlst 

(t = 1, ..., 509). Note that the columns of X22 sum to X21. In addition, it turns out that 
four of the state/year cells have no variation in quarter of birth, so that the rank of X 
is 1014. We drop 5 columns of X22 so that the remaining columns give X of full rank.8 
Our specification generalizes the models used by AK, who only interacted quarter of 
birth with state or year dummies. This modification increases the effective number of 
instrumental variables in the fixed-effects model from 180 to 505. 

Table I contains the results for our subset of the AK data. The table also contains 
the results for the same data, but with the actual quarter of birth replaced by randomly 
generated indicators, with probability .5 on the first quarter and .5 on the fourth quar- 
ter. The (nominal) .95 confidence intervals for the LIML and REQML estimators are 
obtained from the concentrated (profile) likelihood. We find lower and upper values 
for y such that the concentrated log-likelihood function differs from its maximum value 

by G-'(.95)/2, where G is the distribution function for a chi-square distribution with 
one degree of freedom.9 The confidence interval for TSLS is formed from the point 
estimate plus or minus 1.96 times the standard error given in (4). With the real data, 
the LIML and REQML estimates of y are somewhat larger than the TSLS estimate. 

8In our application kl = 1 and p = 504. 
9Using confidence intervals based on normal approximations with asymptotic standard errors 

based on the second derivative of the log likelihood function leads to very similar results. The 
confidence interval for the AK data for the LIML estimator is in that case (.061, .128) instead of 
the interval (.061, .129) based on the concentrated log-likelihood function. 
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For comparison with TSLS, we can form standard errors by dividing the width of the 
confidence interval by 2 1.96. This gives .022 for random effects and .017 for fixed 
effects; these standard errors are considerably larger than the .008 for TSLS. 

Consider the restricted REQML estimator when o-p and S are given. We present 
REQML estimates given (o-3 = 103, S = X). (5 is based on the residuals from least- 
squares regression of Y on X and is given below in (9).) Fixing o- at a large value gives 
an estimate and confidence interval that closely match the estimate and confidence 
interval for TSLS. Next, consider the REQML estimator when A and S are given. We 

present REQML estimates given (A = 10-6, L = L). Fixing A at a small value gives 
an estimate and confidence interval that closely match the estimate and confidence 
interval for LIML. 

Finally consider the results from using the randomly generated quarter of birth num- 
bers. The TSLS estimate is .059 with a standard error of .009. The narrow confidence 
interval for TSLS, even though the instrumental variables are independent of the en- 
dogenous variables, is the result found by BJB. The LIML confidence interval is wider 
but still misleading, since it excludes positive values for y. The random-effects interval 
is essentially the whole line.10 The restricted REQML estimators again match the point 
estimate and confidence interval for TSLS and LIML very closely. 

3.2. Risk Calculations 

The results for the AK data suggest that the REQML estimates are more credible 
than those for the other two estimators in this setting with large samples and many in- 
strumental variables. To further investigate this, we shall evaluate risk functions, under 
the fixed-effects model, for these estimators. We fix X at the values for the real data 
used in Table I. Given a value for 0 = (y, /*, L), we generate J independent draws for 
the sufficient statistics: Z(i) = ( S*(i), S(/)), i = 1,..., J. The Monte Carlo approxima- 
tion is R(0, d) = Ei= L(O, d(Z(i'))/J. We shall use bounded loss functions, based on 
truncated absolute error and squared error: 

L1(0, a) = min{y - al, .2}, L2(6, a) = [min{ly - al, .2}]2. 

We set S = S = S/(n - j - k), where S is the matrix of sums of squares and cross 
products of the residuals from the least-squares regression of Y on X: 

_9(10.133 .678k 
( ) - t.678 .448J 

We consider several values for (y, I, II, I Ii).11 They are centered at REQML estimates 
using the AK data as in Table I. This gives y = .096, /T = 30.4, and I\1i\\//P 

- 
= .831. 

We also double these values and set them to 0. In order to clearly display the bias in 
the TSLS estimate, when we double y we also change its sign. 

'0The numerical procedure used to solve for the lower and upper values of y searches over the 
interval [-1000, 1000]; but the concentrated log-likelihood was greater than the maximum value 
minus G- (.95)/2 throughout this interval. 

11In the working paper version, Chamberlain and Imbens (2001) show that the risk only de- 

pends on /3 through 11 PII = / f3j . 
2 2 ti 
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TABLE II 

RISK CALCULATIONS AND COVERAGE RATES 

Risk Based on Risk Based on Coverage Rate 

Absolute Error Loss Squared Error Loss Nominal 95% CI 

y /1 - A REQML LIML TSLS REQML LIML TSLS REQML LIML TSLS 

.096 P3 0-3 14.4 .017 .036 .024 .021 .049 .025 .95 .61 .16 

.000 13 3 13.2 .018 .035 .054 .022 .047 .054 .95 .63 .00 

-.192 /B &f 5.5 .027 .038 .199 .035 .049 .199 .95 .79 .00 

.096 3T 0 oo .017 .050 .025 .022 .067 .026 .95 .54 .15 

.000 37 0 oo .018 .049 .057 .023 .067 .057 .95 .57 .00 

-.192 0 oo .028 .051 .200 .035 .067 .200 .95 .73 .00 

.096 B3 20/3 3.6 .015 .020 .020 .019 .025 .021 .95 .72 .23 

.000 /37 2&o 3.3 .015 .020 .046 .019 .025 .047 .95 .74 .00 

-.192 /3T 20/ 1.4 .022 .024 .178 .028 .030 .179 .95 .85 .00 

.096 0 -/ 14.4 .109 .101 .027 .131 .123 .028 .97 .42 .12 

.000 0 &3 13.2 .108 .101 .063 .129 .122 .063 .96 .44 .00 
-.192 0 &3 5.5 .103 .105 .200 .123 .125 .200 .96 .60 .00 

.096 0 0 oc na na na na na na .98 .38 .09 

.000 0 0 oo na na na na na na .98 .38 .00 
-.192 0 0 o na na na na na na .95 .38 .00 

.096 0 203 3.6 .033 .032 .023 .044 .042 .024 .95 .64 .17 

.000 0 2&- 3.3 .033 .032 .053 .044 .042 .053 .95 .66 .00 
-.192 0 20-/3 1.4 .035 .035 .198 .046 .046 .198 .95 .81 .00 

Note: Absolute Error Loss: R(f, d) with loss function L (0, a) = min ly - al, .2}. Squared Error Loss: /R(0, d) 
with loss function L2(0, a) = [min{ly - al, .2}]2. /3 = 30.4, 3 = .831. We do not report the risk when the parameter 
is not identified (the case with /3 = 0 and 11 t/3II// = 0), as in that case the relative ranking by risk is not meaningful. 

The risk values for estimating y under absolute error loss, truncated at .2, are shown 
in Table II. For a given value of 0 = (y, /3, )3, 2), the same J = 8,000 samples are 
used to evaluate the risk of each of the three estimators. The risk for the REQML 
estimator is generally less than the risk of the LIML estimator. The risk improvement 
is substantial when 11I /31 = 0; for example, a mean absolute error of .017 versus .050. 
The TSLS risk becomes large as y moves away from the population least-squares value 
of 0-12/0-11 = .067; when y = -.192, the TSLS risk is close to the truncation value of .2. 
The square-root risk comparisons give similar results. Coverage rates correspond to 
1 - R(0, d), with loss function L(0, a) equal to 0 if y E a and 1 otherwise, where a is an 
interval on the line. The decision rule d(z) is an interval estimator. The three interval 
estimators are the ones used in Table I. Table II gives the coverage rates, for the same 
8,000 Monte Carlo samples, of the nominal .95 confidence intervals. The coverage rate 
is the fraction of Monte Carlo samples for which the interval estimate contains the 
population value of y. The coverage rates of the REQML intervals are always very 
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close to the nominal value of .95, and never below .95. The TSLS intervals have poor 
coverage rates, as low as .00 in some designs. The LIML intervals have better coverage 
rates than the TSLS intervals, but the rates for the LIML intervals can still be below .40. 

It is interesting to interpret the difference between the LIML and REQML coverage 
rates in the light of the result in Section 2 that with no important instruments (kl = 0), 
and with X known, the LIML estimator is identical to the REQML estimator but the 
standard error of the latter is higher by a factor of A + 1. The designs with /3 = 0 
correspond most closely to this case (although k1 = 1, this instrument is irrelevant 
so its presence makes little difference). Consider the design with 13 = 0, y = 0.096, 

11:1-/p = - = 0.831, implying that A = ( 2',-1ib /)-1 = 14.4. Hence the standard 
error for LIML should be smaller than the REQML standard error by a factor of 0.255. 
If the REQML standard error is correct, and the distribution of LIML is approximately 
normal and centered at the truth, this should lead to a coverage rate for the LIML 
(nominal 95%) intervals of 0(1.96 x 0.255) - 0(-1.96 x 0.255) = P(.50) - 0(-.50) = 
0.38 (where P is the normal distribution function), close to the coverage rate of 0.42 
we find. Taking the design with /3 = 0, y = 0.096, 11P*I///p = 2&- = 1.662, we find 
A = 3.6. Here the adjustment to the standard errors suggests that the coverage rate of 
the nominal 95% LIML confidence intervals should be 0.64, exactly what we find in our 
Monte Carlo study.12 

4. CONCLUSION 

We have developed a random-effects estimator for instrumental variables analyses 
with many instrumental variables. In addition to leading to a new estimator, this ap- 
proach sheds light on the poor performance of LIML and TSLS with many weak in- 
struments. We show that in interesting cases LIML and TSLS can be approximated 
by restricted versions of our REQML estimator. When these restrictions do not hold, 
LIML and TSLS confidence intervals are likely to have under-coverage. In the Monte 
Carlo analysis, we find that the coverage rates for the LIML intervals can be as low 
as .40, close to what is predicted by our theoretical calculations, whereas the cover- 
age rates for the random-effects intervals are always very close to the nominal value 
of .95. The risk for the REQML estimator is generally less than the risk of the LIML 
estimator, with the risk improvement substantial when the coefficients on the doubtful 
instrumental variables are in fact all equal to zero. In agreement with the earlier lit- 
erature, the TSLS estimator does very poorly in terms of maximum risk and coverage 
rates. An interpretation of this poor performance is that TSLS corresponds to REQML 
with o- fixed at a large value. 

We offer two recommendations to researchers using instrumental variables methods 
in settings with many potentially weak instruments. First, in addition to considering the 
concentration parameter to assess the credibility of TSLS as recommended by BJB and 
Staiger and Stock (1997), one should calculate the A-statistic to assess the potential bias 
in the LIML standard errors. Second, in case these calculations suggest that TSLS and 

12Clearly this adjustment does not work for extreme values of A. For example if o0- = 0, then 
A = oo, and the adjustment would suggest zero coverage rates for the LIML intervals. Similarly, 
consistent with the derivation of the adjustment, it is not as accurate in the case where the first 
set of instruments is powerful. Nevertheless it shows the value of the theoretical calculations 
involving A in understanding the finite sample behavior of the various estimators. 
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LIML confidence intervals are likely to have poor coverage rates, the random-effects 
estimator is a conceptually straightforward way of efficiently combining many weak 
instrumental variables. 
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