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1 Introduction

There is a large and growing literature on peer effects in economics. In the current paper

we focus on the linear-in-means model that has proved to be popular in empirical work.

In the context of data on friendship networks from the Add Health data where we are

interested in peer effects on high school grades we examine some aspects of the model.

Specifically we focus on three aspects.

First, we explore the possible endogeneity of the network. This issue has been raised

in the econometric literature, and is often mentioned as a potential concern in the inter-

pretation of estimates in empirical work. This is a particular concern in settings where

the peer effects are hypothesized to arise through networks that are formed by indi-

viduals making choices to establish links. The specific concern is that individuals have

unobserved characteristics that are correlated with their outcomes, and that these charac-

teristics also affect the formation of links. Often the precise mechanism that is articulated

is that individuals exhibit homophily in these unobserved characteristics, making it more

likely that individuals who have common or similar values for these characteristcs form

links. If these characteristics are also correlated with the outcomes, researchers will find

that individuals who are connected have correlated outcomes even though there are no

peer effects. In this paper we explore evidence for the presence of endogeneity. We de-

velop a specific model for network formation that can incorporate this specific form of

endogeneity.

Second, in settings where the peer groups are self-reported, are the result of choices

by the individuals and do not form a partitioning of the population, there is likely to be

measurement error in the links. Moreover, links may be of different strengths. The linear-

in-means model restricts the influence of other individuals to be identical for all peers and

zero for all peers, and assumes peer relationships are measured without error. Here we

explore the implications of these restrictions. We find that outcomes for individuals who

are not reported to be in one’s peer group may still have direct effects on an individual’s

outcome in the context of a generalization of the linear-in-means model. Moreover, within

peer groups some individuals may have stronger influences than others.

In the third part of this paper we explore another aspect of the linear-in-means model.

This model implies that although individuals who are not part of particular individual’s
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peer group have no direct effect on that individual’s outcomes, there are indirect effects

through common friends. This implies that changing covariate values for individuals

not in one’s peer group may still change that individual’s outcome. Here we investigate

whether there is direct evidence on these effects. This issue can partly be understood in

the context of the connection between networks and peer effects and the spatial statistics

literature. In the spatial statistics literature the researcher has units that are located in

some space, with associated with each pair of units a distance between them. In the peer

effects literature this distance between pairs of units is integer-valued, equal to the number

of links one needs to travel to find a connection between two units. In the spatial literature

researchers have used both autoregressive type models, where correlations decrease slowly

with the distance without ever completely disappearing, as well as moving average type

models where the correlations vanish at some finite distance. The linear-in-means model

fits in with the autoregressive structure. In this paper we explore moving average type

correlation structures and compare them to autoregressive type structures.

2 Set Up and Notation

We have data on N = 534 individuals in a single high school in the United States

from the Add Health data. For these individuals we know their academic performance

(grade point average) at two points in time. For each pair of individuals we know at two

points in time whether they list each other as friends. Friendships here are interpreted

as symmetric relationships: the pair i and j are coded as being friends if either i lists j

as a friend, or j lists i as a friend, or both.

The outcome of interest is denoted by Yi. In our application this is the grade point

average (gpa) for a student at the end of the observation period. The vector of outcomes

is denoted by Y with typical element Yi. For each individual we also observe a K−vector

of exogenous covariates, Xi, with X the N × K matrix with ith row equal to X ′
i. In

our application Xi is a scalar, the initial grade point average. The network in the final

period is captured by the symmetric adjacency matrix D, with typical element Dij equal

to one if i and j are friends and zero otherwise. The links are not directed, so Dij = Dji.

The diagonal elements elements of D are zero. We also observe the network in the

previous period, with adjacency matrix D0. For individual i the number of friends is

2



Mi =
∑N

j=1 Dij, with M the N vector with ith element equal to Mi. It is also convenient

to have a notation for the row-normalized adjacency matrix G = diag(M)−1D with

Gij =

{

Dij/Mi if Mi > 0,
0 otherwise.

Note that although D is symmetric, the row-normalized G is not in general symmetric.

We drop from our analysis all students with no friends in the sample.

We observe the vector of outcomes Y, the covariate matrix X, and the networks D

and D0 for a given sample size N . We assume these can be viewed as a draw from

joint distribution f(Y,X,D,D0). For identification questions we assume we know this

distribution. This is not as straightforward as it is in other settings where identification

questions are studied. In many settings it is assumed that unit level responses can be

viewed as independent and identically distributed random variables, so that in a large

sample the joint distribution of these variables can be assumed to be known. Here the

responses for pairs of individuals are not independent, and so we cannot simply refer to

large sample arguments to claim that the joint distribution of the variables is known.

Without giving formal arguments here, the motivation for focusing on this question can

take two different forms.

The simplest case is one where we have a large number of networks. In that case

we can estimate the joint distribution of (Y,X,D) from that sample and proceed from

there.

The more complicated case is that where we observe data from a single network. We

need to impose some structure that limits the dependencies between observations, so

that in a large sample we can construct subsamples of size N that are approximately

independent. Suppose there is a covariate Zi such that if Zi and Zj are far apart, then

the probability of a link between individuals i and j is very small. This could arise if the

individuals exhibit homophily in this variable Zi, and its support is large. Then, if we

think of large samples such where the distribution of Zi is indexed by i, with the location

of that distribution increasing in i, it may under some conditions be possible to view

blocks of observations as essentially independent. That in turn may allow us to view the

data as similar to data based on samples of networks rather than as a single network. This

is similar in spirit to domain-increasing asymptotics in timeseries analyses where large

sample arguments are based on increasing the sample size by adding observations further

3



and further away in time, as opposed to the infill asymptotics where the large sample

arguments are based on increasing the number of observations within the time range of

the current sample. The same issues arise in spatial statistics, where this choice between

infill and domain-increasing asymptotics is also important. Formal conditions that lead

to consistency for estimators in such settings have not been established, although in many

cases researchers proceed as if consistency and asymptotic normality holds. See

3 Friendship Networks and High School Grades

To illustrate the methods and models developed in this paper we use data from the Add

Health survey. Here we use 534 individuals from a single high school. We observe their

grade point average at two points in time, as well as their friendship links at the same

two points in time. Table 1 presents some summary statistics for this sample. On average

the students have 5 friends in their school.

Table 2 gives the distribution of the degree of separation. There are 142,311 pairs of

students. Out of this set there are 1374 pairs of friends, and 5215 pairs of students who

are not friends but who do have friends in common. For 8,892 pairs of students there are

no links that connect them.

4 The Linear-In-Means Model for Peer Effects

The starting point is a linear-in-means model of the type studied by Manski (1993). Here

we focus on the specification

Yi = β0 + βxXi + βyY (i) + βxX (i) + ηi, (4.1)

also used in Bramoullé, Djebbaria and Fortin (2009). Here the peer effects are based on

averages over the peer groups, excluding the own outcome or covariate:

Y (i) =
1

Mi

N
∑

j=1

DijYj =
N

∑

j=1

GijYj , X(i) =
1

Mi

N
∑

j=1

DijXj =
N

∑

j=1

GijXj .

The main object of interest is the effect of peer’s outcomes on own outcomes, βy, the

endogenous peer effect in Manski’s terminology. Also of interest is the exogenous peer

effect βx. Here we interpret the endogenous effect as the average change we would see
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inan individual’s outcome if we changed their peer’s outcomes directly. In some cases

this may be difficult to envision. Here we will think of this as some along the lines of

the direct effect of providing special tutoring to one’s peers on one’s own outcome. The

exogenous effect is interpreted as the causal effect of changing the peer’s covariate values.

For some covariates this thought experiment may be difficult, but for others, especially

lagged values of choices, it may be feasible to consider interventions that would change

those values for the peers.

It is useful to write the linear-in-means model in matrix notation. First, using the

definition of the row-normalized adjacency matrix G, we have

GY =







Y (1)
...

Y (N)






, GX =







X (1)
...

X (N)






,

so that the model can be written as

Y = β0ιN + βxX + βyGY + βxGX + η.

Initially we assume that the η are independent of the exogenous covariates and the

peer groups:

η ⊥ X,D. (4.2)

Because G is a deterministic function of D, it follows that also η ⊥ G. We also assume

normality:

η
∣

∣X,D ∼ N (0, σ2IN).

This is mainly for convenience and can be relaxed. The independence assumption is a

critical assumption. Manski (1993) raises the concern that the residual is correlated with

the network. In his setting one can define a group indicator Ci associated with each

individual, so that having a link between i and j, or Dij = 1, is equivalent to the con-

dition that Ci = Cj. In that case Manski formulates the concern with the independence

assumption as the concern that E[ηi|Ci = c] may depend on c. In the next section we

return to this issue, where we will explicity view this as a concern with the exogeneity of

the network.
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Although under Assumption (4.2) η is independent of G and X, it is not independent,

or even uncorrelated, with Y and therefore not independent of GY. Hence we cannot

simply regress Y on a constant, X, GY and GX to get unbiased estimators for β. Manski

(1993) and Bramoullé, Djebbaria and Fortin (2009) study identification in a setting close

to this one. Manski focuses on the case where the peer groups partition the population,

and highlights the identification problems that arise in that case. Bramoullé, Djebbaria

and Fortin (2009) focus on the identifying power of peer groups that do not partition the

population, and in particular on the assumption that GG 6= G.

To study identification of this model in the Bramoullé, Djebbaria and Fortin (2009)

case it is useful to look at the conditional distribution of Y given X and D:

Y = (I − βyG)−1β0ιN + (I − βyG)−1(βx + βxG)X + (I − βyG)−1η,

where ιN is the N -vector with all elements equal to one. Now, under the normality

assumption,

Y|X,G ∼ N (µY , ΣY )

where

µY = (I − βyG)−1β0ιN + (I − βyG)−1(βx + βxG)X,

and

ΣY = σ2(I − βyG)−1(I − βyG
′)−1.

Manski(2003) shows that identification of βy is difficult in settings where the the peer

groups partition the population. Under conditions described in Bramoullé, Djebbaria

and Fortin (2009) we can identify the parameters β0, βx, βx, and βy from the conditional

distribution of Y given X and G even without normality. A key condition is that the

network D does not partition the population, and therefore GG 6= G. It must be the

case, at least for some individuals, that their friends’ friends are not their friends.

Exploiting the normality assumption we can estimate this model using maximum

likelihood methods. Establishing large sample properties of the maximum likelihood

estimator is difficult however. In order to establish large sample properties we need to
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make assumptions concerning the sequence of adjacency matrices D as the sample size

grows. The most appropriate sequences of adjacency matrices would appear preserve

the marginal distribution of the number of friends. This rules out settings with a large,

infinite, population and random sampling of nodes and their associated links. Such

sequences would lead to all individuals having increasing numbers of links. Instead

a more appropriate sequence may shift the distribution of the covariates so that the

probability of links between individuals far away in covariate space goes to zero.

We therefore use Bayesian methods for estimating the models. There are two main

reasons for this. One is that the posterior distributions given the model and given the

prior distributions have clear interpretations. In contrast, maximum likelihood estimates

are difficult to interpret. There is no well-developed theory for the properties of max-

imum likelihood estimates, even in large samples. Although there is evidence that the

logarithm of the likelihood is approximately quadratic around its maximum, there have

been no formal properties established for these estimators and for confidence intervals

based on maximum likelihood estimators and the information matrix. Second, for some

of the models we consider here maximum likelihood estimators are difficult to calculate.

In contrast, obtaining draws from the posterior distribution is relatively straightforward,

although computationally intensive in many cases. These advantages of Bayesian meth-

ods have been noted before, and many researchers use Bayesian computational methods,

often suggesting classical (frequentist) interpretations of the resulting estimators may be

appropriate, without formal justification. Here we follow a fully Bayesian approach and

focus on the posterior distributions.

First, we estimate the model assuming exogeneity of the network. We use normal

independent prior distributions for the parameters β0, βx, βy and βx, and an inverse

chi-squared distribution for σ2. Some summary statistics for posterior distributions are

reported in the first panel of Table 3. The model for the outcomes exhibits evidence of

substantial peer effects. The posterior mean for the endogenous peer effect is 0.16, and

the posterior mean for the exogenous effect is 0.11. The posterior standard deviations are

0.05 and 0.07 respectively. Having current friends with good past academic performance,

or friends with good current academic performance is associated with better performance

for the individual.
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5 Network Formation

In the setting where the peer groups are non-overlapping, a key issue is how the networks

are formed, and how they might have been different. As a result we may need to worry

about peer effects not merely through the direct effect of the peer groups characteristics

and outcomes on an individual’s outcomes, but also on the effects of outcomes and

covariates on the peer group itself.

Currently βx measures the effect of changing the average characteristics of one’s peer

group on an individual’s outcome, keeping fixed the peer group itself. It is possible

that changing these covariates may change the peer group, even under the exogeneity

condition η ⊥ (D,X). Suppose that Xi is the grade point average of student i at the

beginning of the period. Now suppose that we could have changed this by giving some

of the students special tutoring. The effect of such a change would be to raise Xj for

the affected students. This in turn would affect the gpa in the final period of their

peers/friends. That in turn would affect their friends’ friends, and so on. However, it

may also affect whom the tutored students form friendships with. In order to find the

total effect of the change in the covariates we would need to model the effect of the

covariates on the outcome as well as the effect of the covariates on the network.

We start by modelling the network formation. The first assumption we make is that

the decision to form a link is the result of two choices. Both individuals need to agree

to form the link, and will do so if they view the net utility from the link as positive.

Formally,

Dij = 1Ui(j)>0 · 1Uj(i)>0,

where Ui(j) is the utility for individual i of forming a link with individual j. Following

Jackson (2008) we refer to this type of model as strategic network formation models. In

the sociological literature they are also referred to as Network Evolution Models (Toivo-

nen, Kovanen, Kivelä, Onnela, Saramäki, and K. Kaski, 2009), or Actor Based Models

(Snijders, 2009; Snijders, Koskinen, and Schweinberger, 2010). These models differ in

the utility the agents associate with links given the characteristics of the other agents,

and given the current state of the network, and in the opportunities the agents have for

establishing or changing the status of their links.
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Here we focus on a particular version of these models, exploiting the presence of data

on the network at two points in time. At the same point in time each pair of agents

evaluates the utility of a link between them. This utility depends on the characteristics

of the two agents, and on the status of the network at the beginning of the period. Unlike,

for example, Christakis, Fowler, Imbens and Kalyanaraman (2010) this utility does not

depend on the decisions of the other pairs of agents. Conditional on the network at the

beginning of the period D0, the utility for i of forming a link with j depends on Xi,

Xj , on whether the two were friends in the previous period, D0,ij, and whether they had

friends in common in the previous period, F0ij:

Ui(j) = α0 + αx|Xi − Xj | + αdD0ij + αfF0,ij + εij. (5.1)

Initially let us assume that the εij are independent accross all i and j and have a logistic

distribution. The covariates enter in a specific way, reflecting homophily: the utility

of a friendship goes down with the distance in covariate space. This implies that the

probability of a link between i and j, given the previous version of the network, and

given the covariates, is

pr(Dij = 1|D0,X) = pij · pji,

where the probability that i values the link with j is the same as the probability that j

values the link with i:

pij = pji =
exp (α0 + αx|Xi − Xj | + αdD0ij + αfF0,ij)

1 + exp (α0 + αx|Xi −Xj | + αdD0ij + αfF0,ij)
.

More general models are possible here. Such models need not have the implication that

pij = pji. For example, the utility associated with a friendship link may depend on the

number of friends the potential friend had in the initial period, or on the level of the

attribute Xi for the potential friend rather than solely on the difference |Xi − Xj |.

Again we use Bayesian methods for inference. The prior distributions for α0, αx,

αd and αf are also independent normal. The normal prior distributions are centered

at zero with prior standard deviation equal to one. Results are not sensitive to these

assumptions about the prior distributions. Some summary statistics for posterior distri-

butions are reported in the second panel of Table 3. The network model suggests that

there is substantial sorting on academic performance, with the utility of a friendship link
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decreasing in the difference in past academic performance. The utility increases with the

presence of past friendships, and with having in friends in common in the past.

6 Assessing Endogeneity of Networks

A major concern with a causal interpretation of estimates of the parameters in equation

(4.1) is that the peer groups themselves may be endogenous. Correlations in outcomes

between peers need not be the (causal) effect of peers. Instead, because peers are partly

the result of individual choices, these correlations may reflect prior similarities between

individuals, what Manski (1993) calls correlated effects. Individuals who are peers may

be similar in terms of unobserved characteristics that also affect the outcomes. As a

result there is a correlation in outcomes between peers. This is not the endogenous

peer effect in Manski’s terminology that stems from a simultaneity problem, but it is a

correlated effect arising from omitted variable bias. Such omitted variable problems are

traditionally in econometrics also referred to as endogenity problems (e.g., the ability

bias in regression estimates of the returns to education).

In the setting Manski studies peer groups partition the sample. Thus we can assign

each individual a cluster or group indicator Ci, so that Dij = 1 if Ci = Cj. In this

setting we can conceptualize the effect in Manski’s terminology as a correlated effect

defined as E[ηi|Ci = c] = δc, with δc varying with the group c. In the case we study here,

with the peer groups individual specific, we need a generalization of this notion. What we

wish to capture is that the N−vector of unobserved components of the outcome, η, is not

independent of the N×N adjacency matrix D and the matrix of covariates X. We model

this potential dependence through the presence of unobserved individual characteristics.

Let ξi be a individual-specific unobserved component that enters the outcome equation.

We generalize the outcome equation to

Yi = β0 + βxXi + βyY (i) + βxX (i) + βξξi + ηi. (6.1)

We also modify the network formation process by generalizing the utility associated with

equation governing the network formation. The utility associated with a link between

individuals i and j now depends also on the distance between these two individuals in
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terms of the unobserved characteristic ξi:

Ui(j) = α0 + αx|Xi − Xj | + αξ|ξi − ξj| + αdD0ij + αfF0,ij + εij. (6.2)

Individuals with similar values for ξi are more likely to form links (if αξ is negative), and

if βξ is differs from zero, this covariate has a direct effect on the outcome.

The question we wish to address in this section is whether the endogeneity is testable

given knowledge of the joint distribution of X, D and Y, or, in other words, whether there

is a basis for estimating the model with endogeneity. The answer is that endogeneity,

within the context of the model with exchangeability of peers within the peer groups

has some testable implications, and thus there is some basis for estimating models with

network endogeneity. Given the model without endogeneity, (4.1) and (5.1), suppose we

have the parameter values for β and α. Then we can calculate for each pair of individuals

the probability of being friends,

P ∗
ij = pr(Ui(j) > 0, Uj(i) > 0|X) = Pij · Pji,

where Pij is the probability that i attaches net positive utility to a link with j conditional

on characteristics and the past value of the network:

Pij =
exp (α0 + αx|Xi − Xj |+ αdD0ij + αfF0,ij)

1 + exp (α0 + αx|Xi − Xj | + αdD0ij + αfF0,ij)
,

and similarly for Pji. We can also calculate the residuals ηi:

ηi = Yi − β0 − βxXi − βyY (i) − βxX(i).

Under the exogeneity assumption it follows that

η ⊥ P ∗
ij.

However, if the ξi are non-degenerate, and βξ and αξ differ from zero, this no longer

holds. For example, if αξ < 0 and βξ > 0, then the absolute value of the difference in

residuals, |ηi − ηj|, is, in expectation, increasing in the ex ante probability of the link.

Formally,

E

[

|ηi − ηj |
∣

∣

∣P ∗
ij = p, Dij = d

]
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is increasing in p for d = 0, 1.

The intuition goes as follows. Among friend pairs a low value of P ∗
ij implies that

|ξi − ξj| must be relatively close to zero. As a result, the absolute value of the difference

|ηi − ηj| is expected to be relatively low. High values of P ∗
ij do not contain information

regarding |ξi − ξj |, and thus do not predict the value of |ηi − ηj|. A similar argument

goes through for non-friend pairs. If P ∗
ij is high, one would expect for non-friend pairs

that |ξi − ξj | is relatively large, and hence |ηi − ηj| is relatively large.

We can also look at this directly in terms of covariates.

E

[

|ξi − ξj|
∣

∣

∣ |Xi −Xj | = x, Dij = 1
]

is decreasing in x. Hence, under endogeneity,

E

[

|ηi − ηj |
∣

∣

∣ |Xi − Xj | = x, Dij = 1
]

is decreasing in x. Hence we can look, among friend pairs, at the correlation between the

absolute value of the difference in the covariates and compare that to the absolute value

of the difference in residuals in the outcome equations.

One concern with this comparison is that it relies on the influence of all peers being

equal. If on the other hand peers have different effects on an individual depending on

their proximity, one might find that the correlation in residuals ηi is higher for friends

with similar characteristics. Although this is not captured in the linear-in-means model,

one might generalize the model by modifying the weights in the row-normalized adjacency

matrix G. For example, one might model

Gij =
Dij · |Xi − Xj|

∑

k 6=i Dik · |Xi − Xk|
.

A second approach to assessing evidence for or against exogeneity does not rely on

the equality of peer effects among peers. Instead we look at correlations in outcomes

for non-friends. Again we compare within this set the correlation between the absolute

value of the difference in residuals ηi and ηj and the ex ante probability of a link. Pairs

of individual who are not friends, but who had a high probability of a link, have, in

expectation, a larger difference in the absolute value of the difference ξi and ξj , and thus

a larger expected value for the difference in absolute values of the residuals ηi and ηj.

Here the key assumption is that under the null model there is no correlation in residuals

for pairs of individuals who are not friends.
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7 Models with Endogenous Networks

We now turn to an estimable version of the model with network endogeneity. We use the

model in equations (6.1) and (6.2), with an unobserved scalar component that appears

in the outcome equation and the utility associated with links:

Yi = β0 + βxXi + βyY (i) + βxX (i) + βξξi + ηi,

Ui(j) = α0 + αx|Xi − Xj | + αξ|ξi − ξj| + αdD0ij + αfF0,ij + εij.

We make the distributional assumptions

η
∣

∣ξ,X,D ∼ N (0, σ2IN),

and a logistic distribution for εij, independent of η and ξ, and with all εij independent.

Finally, we assume that the unobserved type ξi is binary:

pr(ξi = 1|X,D0) = 1 − pr(ξi = 0|X,D0) = p.

In the empirical analysis we fix p = 1/2. This leads to a parametric distribution for

(Y,G) given (X,D0). First, define the probability of a link conditional on observed and

unobserved covariates:

p(x1, x2, d0, f0, ξ1, ξ2; α0, αx, αξ, αd, αf ) =
exp(α0 + αx|x1 − x2| + αξ|ξ1 − ξ2| + αdd0 + αff0)

1 + exp(α0 + αx|x1 − x2| + αξ|ξ1 − ξ2| + αdd0 + αff0)
.

Then, conditional on ξ, X, and D0, we have the likelihood function for the network,

Lnetwork(α|G; ξ,X,D0) =

∏

i6=j

(p(Xi, Xj , D0,ij, F0,ij, ξi, ξj ; α0, αx, αξ, αd, αf ) × p(Xj , Xi, D0,ji, F0,ji, ξj , ξi; α0, αx, αξ, αd, αf ))
Dij

× (1 − p(Xi, Xj, D0,ij, F0,ij, ξi, ξj; α0, αx, αξ, αd, αf) × p(Xj , Xi, D0,ji, F0,ji, ξj, ξi; α0, αx, αξ, αd, αf))
1−Dij .

The likelihood function for the outcome is

Loutcome(β, σ2|Y;D,X, ξ) =
1

(2π)N/2|ΣY |
exp

(

− (Y − µY )Σ−1
Y (Y − µY ) /2

)

,

where

ΣY = σ2(I − βyG)−1(I − βyG
′)−1,
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and

µY = (I − βyG)−1β0ιN + (I − βyG)−1(βx + βxG) + (I − βyG)−1βξξ.

Finally,

L(β, α, σ2, p|Y,G, ξ;X,D0) = Loutcome(β, σ2|Y;D,X, ξ) × Lnetwork(α|G; ξ,X,D0),

is the conditional likelihood function. Integrating out the ξi we have

L(β, α, σ2, p|Y,G;X,D0) =

We could use alternative parametric distributions for the unobserved component ξi. The

main issues are the flexibility of the distribution and the computational tractibility of

the resulting model.

In this case maximum likelihood estimation is particularly computationally demand-

ing because of the difficulty of integrating out the unobserved ξi. Moreoever, there are

no results for the repeated sampling properties of the maximum likelihood estimators for

this type of model, even in large samples. We therefore again focus on Bayesian methods.

We specify a prior distribution for the parameter θ = (β, σ2, α, p), and use mcmc methods

to obtain draws from the posterior distribution of θ given the data (D,D0,X,Y). This

Bayesian approach allows us to treat the ξi as unobserved random variables, and exploit

the fact that with the ξi known, we would have exogeneity of the network and be able to

obtain draws from the posterior distribution effectively.

The appendix contains details on the mcmc algorithm for the specific case. We use

metropolis-hastings steps separately for α, β, and the ξ, and use exact draws for the

conditional posterior for σ2 given the other parameters and the data. The results are

reported in the second part of Table 4. The unobserved component ξ matters substan-

tially for the network estimation. The coefficient on the difference in the unobserved

characteristics is large and precisely estimated. This appears to allow the model to fit

the observed clustering better than the model without the unobserved component. The

unobserved component does not appear to matter much for the outcome. Its coefficient

is close to zero with the 95% posterior probability interval comfortably including zero.

The posterior distribution for the endogenous peer effect is not much affected by this,

with the posterior mean equal to 0.15, and the posterior standard deviation equal to

0.05, compared to 0.16 and 0.05 in the exogenous network model.
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8 Who are the Peers?

Obviously in order to estimate peer effects we need to know who one’s peers are. In

pratice this is not so easy in the current setting. One specific concern that arises in the

setting with self reported networks such as the friends networks in Add Health is that

the links may be observed with error. This is much less of a problem in settings where

the population is partitioned in peer groups, such as the case where the peer groups

correspond to classes. In the friends networks we rely heavily on individuals consistently

reporting the state of the network where in reality the network is a constantly changing

system.

Here it may be useful to think of the connection between networks and general nota-

tions of spatial correlations. The network literature typically models the distance between

units as integers, one if connected, and two if not connected but with friends in common.

In reality units, individuals in our case, may form stronger links with some individuals

than with others, but be tied to many individuals with weak links. In the spatial statis-

tics literature this would create complications because the distance measure would be

partially unknown.

In this section we look at the implications of this for the estimation and interpretation

of peer effects.

First, let us look at the number of friendships that are only reported by one side

and not the other. We can also see evidence of the fluidity of the concept by looking at

the changes in the network over time. On average each student has 3.5 former friends,

individual who were listed as friends in the first period, but not in the second period.

On average each student has 2.5 long term friends, individuals listed as friends in both

periods.

We study the implications of the uncertainty in the measurement of peers by esti-

mating a generalization of the linear-in-means model where we consider the presence of

two networks side by side, each with their associated peer effects. Let DA denote first

network, and DB the second network. Then let the averages be

Y A,(i) =
1

MA,i

N
∑

j=1

DA,ijYj , XA,(i) =
1

MA,i

N
∑

j=1

DA,ijXj ,

and similarly for Y B,(i) and XB,(i). Then we estimate a linear-in-means model where
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both networks have exogenous and endogenous peer effects:

Yi = β0 + βxXi + βA,yY A,(i) + βA,xXA,(i) + βB,yY B,(i) + βB,xXB,(i) + ηi. (8.1)

We implement this by setting the first network to be that of friends in the second pe-

riod, and the second one to be the network of former friends, where where links imply

friendships in the initial period but not in the second period. Formally,

DA,ij = Dij , DB,ij = (1 −Dij) · D0,ij.

Table 5 reports posterior means and standard deviations for this model under exo-

geneity of the network formation. We find that the peer effects of former friends are

substantial (posterior mean 0.13, posterior standard deviation 0.05), almost the same

as the peer effects for current friends (posterior mean 0.15, posterior standard deviation

0.05). This casts substantial doubt on the notion that relying on self reported friendship

links captures all the connections that matter for correlations in outcomes.

9 Indirect Peer Effects

The linear-in-means model has strong implications for the correlations in outcomes be-

tween individuals. Peer effects are mediated through friends’ outcomes, but ultimately

outcomes for non-friends can still affects individual’s outcomes indirectly. In this section

we investigate some implicastions of this.

Even though outcomes for individuals who are not friends with i but who have friends

in common with i do not directly affect the outcome for individual i, they do so indirectly

through the common friends. As a result changing the covariates for these second-friends

affects the expected value of the outcome for i.

Taking the matrix version of the linear-in-means model,

Y = β0ιN + βxX + βyGY + βxGX + η.

we can write the outcome in terms of the exogenous variables as

Y = (I − βyG)−1β0ιN + (I − βyG)−1(βx + βxG)X + (I − βyG)−1η.
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Following the arguments in Bramoullé, Djebbaria, and Fortin (2009), we can expand this

to

E [Y|X,G] =
β0

1 − βy
ι + βxX +

∞
∑

k=1

βkG
kX.

Here we estimate an approximation to this conditional expectation based on the first two

terms:

E [Y|X,G] ≈
β0

1 − βy

ιN + βxX + β1GX + β2GGX.

The linear-in-means model suggest that the term on the friends-in-common average co-

variates should be

β1 = βxβy + βx, and β2 = (βxβy + βx)βy.

Two implications emerge. First, if own covariate effect, and the exogenous and endoge-

nous peer effects are positive, the second coefficient in this expansion should be positive.

Second, the ratio of the first and second coefficients in this expansion should equal βy.

Table 6 reports estimation results for this model. We find that the effect of the average

effect of second-friends is posterior 95% probability interval includes zero. The posterior

variance is large, so in fact the data are consistent with wide range of values. The point

though is that we cannot conclusively establish that there is any indirect peer effect of

friends of friends.

The second attempt to establishing whether there are indeed indirect effects for in-

dividuals who are not friends takes a different approach. It adds a moving-average type

component to the linear-in-means model so that it allows for the possibility that there

is no correlation between outcomes for individuals who are not friends, while allowing

for correlations in outcomes between friends. The starting point is the linear in means

model

Y = β0ιN + βxX + βyGY + βxGX + η.

Now we model the unobserved component ηi as

ηi = νi +
∑

j 6=i

Dijεij,
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with the εij independent across i and j, normally distributed with mean zero and variance

σ2
ε . The νi have a normal distribution with mean zero and variance σ2

ν . This leads to the

following covariance matrix for the η, denoted by Ω:

Ωij =







σ2
ν + Mi · σ2

ε , if i = j,
σ2

ε if i 6= j, Dij = 1,
0 if i 6= j, Dij = 0.

In this model if σ2
ε > 0 and βy = 0, there would be no spillovers beyond friends, but

there would be positive correlation between outcomes for friends.

Table 7 presents summary statistics for the posterior distribution for this model. The

posterior mean for the endogenous peer effects, βy goes down from 0.15 in the baseline

model to 0.09 in the model with the additional flexibility in the error-covariance structure.

The posterior standard deviation is 0.06, so there is now considerable uncertainty about

the sign of this effect. The posterior mean for the variance component σ2
ε is 0.102, large

enough to create a substantial correlation between outcomes for friends.

Both exercises carried out in this section show that the evidence for indirect peer

effects, effect not from friends but from their friends, is limited. One explanation may

be that the effects we find in the model with peer effects are relatively modest. The

direct peer effects may simply be too small to generate substantial indirect effects, or the

indirect effects may not be there for outcomes such as grades.

10 Conclusion

In this paper we explore extensions of the linear-in-means model for identifying and

estimating peer effects. We study possible evidence for endogeneity of the network, and

develop models that allow for endogeneity.

In our application to friendship networks in the Add Health data we find that one’s

friends’s grades are correlated with one’s own grades. Whether these are causal peer

effects is more difficult to establish. There is limited evidence that the friendships are

endogenous to the grades. There is evidence that current friendships are not sufficient

for capturing all correlations in outcomes. Correlations in grades with former friends are

almost as strong as those with current friends, casting doubt on causal interpretations of

the correlations between current friends and current grades. We also explore the evidence
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for indirect peer effects, effects of friends of friends. We find that the data are inconclusive

regarding the presence of such effects.
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Appendix: Approximating the Posterior Distribution

Here we provide some details on the evaluation of the posterior distribution. We focus on the
model with endogeneity. The model with exogenous network formation is simpler to estimate.

In particular, we can separately analyse the network formation model and the model for the
primary outcome. We use the results from that model to provide starting values for the model

with endogeneity.
The model with endogenous network formation has four components. The first describes the

conditional distribution of Y given X, G, G0, and the unobserved ξ:

Y|X, G, G0, ξ ∼

N
(

(I − βyG)−1β0ιN + (I − βyG)−1(βx + βxG)X + (I− βyG)−1βξξ,

σ2
(

I − βyG)−1(I − βyG
′
)−1

)

.

The second part describes the network formation given X and the unobserved ξ:

Dij = 1Ui(j)>0 · 1Uj(i)>0,

Ui(j) = α0 + αx|Xi − Xj| + αdD0ij + αfF0,ij + εij . (A.1)

The third component gives the conditional distribution of the ξ given X:

εij ∼
exp(−x)

(1 + exp(−x))2
,

pr(ξi = 1) = 1/2, ξi ⊥ ξ for i 6= j.

This model leads to a likelihood function in terms of θ = (β, α, σ2). The prior distributions for
all parameters are independent. The prior distributions for α, βx are normal with mean zero

and variance equal to one. The prior distribution for σ2 is.
We pick starting values for θ based on the model with exogeneity for all parameters other than

βξ and αξ. We take the starting value for αξ from a normal distribution centered at −1 and a
variance equal to 0.01. The starting values for βξ are drawn from a normal distribution centered

at zero with variance 0.01. Then we draw the ξi from a binomial distribution with mean 1/2,
for i = 2, . . . , N . The first value ξ1 is set equal to 1. Before changing the values for θ we

repeated update the ξ to obtain values more in line with the data. We have found that this
leads to faster convergence. We update the ξi sequentially, given the starting values for θ. Each

time we update a single ξi. We cycle through the full set of ξi 100 times without changing any
of the values for θ.
Next we start cycling through the other parameter values. We divide the updating into three

parts. First we update the β given σ2, α, and ξ. We use a Metropolis step here using for the
candidate distribution a normal distribution centered at the current values, with covariance

matrix the covariance matrix estimated from the exogenous model times 1/16.
The second step updates σ2. Here we use the exact posterior distribution given values for the

other parameters and given the ξ.
The third step involves updating the α given the ξ. Here we use a Metropolis-Hastings step, with

the candidate distribution centered at the current values, and the covariance matrix estimated
on the model with exogenous network.

In the fourth step we update the ξ given all the parameter values.
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We use five starting values. For each of the five chains we drop the first xxx iterations. We

then compute the average value of the elements of θ, and the overall average. We monitor
convergence by comparing for each of the elements of θ the ratio of the overall variance and

the average of the within-chain variances. Following the suggestion in Gelman and Rubin ()
we aim for ratios below 1.1. After xxx iterations the convergence criteria for all elements of θ

were below xxx, with most below xxx.
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Table 1: Summary Statistics Add Health Sample (N = 534)

Average Standard Deviation

GPA1 (Yi) 2.5 (1.0)
GPA0 (Xi) 2.6 (0.8)
Number of Friends 5.2 (3.0)

Table 2: Distribution of Degree of Separation (Number of Pairs 142,311)

Degree of Separation Number of Pairs

1 1374
2 5215
3 15573
4 32019
5 39310
6 25852
7 10283
8 2696
9 487
10 70
11 7
12 0
∞ 8892
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Table 3: Summary Statistics Posterior Distribution: Exogenous Network

Post Mean Post Standard Deviation

Outcome Equation
β0 -0.13 (0.12)
βx 0.74 (0.04)
βy 0.16 (0.05)
βx 0.11 (0.07)

Network Model
α0 -2.56 (0.04)
αx -0.20 (0.03)
αd 2.52 (0.05)
αf 1.20 (0.04)

Table 4: Summary Statistics Posterior Distribution: Endogenous Network

Post Mean Post Standard Deviation

Outcome Equation
β0 -0.10 (0.13)
βx 0.73 (0.04)
βy 0.15 (0.05)
βx 0.11 (0.06)
βξ -0.01 (0.10)
σ2 0.37 (0.02)

Network Model
α0 -2.26 (0.04)
αx -0.21 (0.04)
αξ -1.06 (0.07)
αd 2.63 (0.03)
αf 1.22 (0.04)
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Table 5: Summary Statistics Posterior Distribution: Exogenous Network With Lagged
Network Effects

Post Mean Post Standard Deviation

Outcome Equation
β0 -0.12 (0.12)
βx 0.73 (0.04)
βy 0.15 (0.05)
βx 0.09 (0.06)
β0,y 0.13 (0.05)
β0,x -0.09 (0.06)

Table 6: Summary Statistics Posterior Distribution: Exogenous Network with No En-
dogenous Peer Effects

Post Mean Post Standard Deviation

intercept -0.25 (0.18)
βx 0.73 (0.04)
βx 0.21 (0.08)
βFIC,x 0.10 (0.11)

Table 7: Summary Statistics Posterior Distribution: Exogenous Network with No En-
dogenous Peer Effects

Post Mean Post Standard Deviation

intercept -0.08 (0.12)
βx 0.74 (0.04)
βy 0.09 (0.06)
βx 0.16 (0.07)
σ2 0.582

σ2
ν 0.102
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