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Abstract-An alternative form of the proportional hazard 
model is proposed. It allows one to introduce correlation 
between exit rates at the same (calendar) time for different 
individuals. One can, in the context of this model, still allow 
for, and estimate, duration effects. These should be 
parametrized. These modifications to the original Cox model 
are possible by reversing the roles of duration and calendar 
time. It is argued that flexibility with respect to the effects of 
these macro processes is of particular relevance in economic 
models. An example using Dutch data on labor market transi- 
tions illustrates the idea that to ignore calendar time effects 
may have severe consequences for the estimation of duration 
dependence. 

I. Introduction 

T HE econometric analysis of transition data 
has been the subject of a large and growing 

literature since the late seventies. Many of the 
theoretical concepts in this field, however, are 
borrowed from the biostatistical literature. This 
phenomenon is not restricted to the terminology 
(hazard and survivor functions are the most obvi- 
ous examples), but extends to the models em- 
ployed. One such model is the proportional haz- 
ard specification, proposed by Cox (1972, 1975). 
It allows one to study the effects of regressors on 
transition rates without specifying the form of the 
duration dependence. Econometrics is not bio- 
statistics, however, and the analysis of economic 
issues brings with it special problems that are not 
necessarily satisfactorily dealt with by these mod- 
els. An important econometric innovation was the 
introduction of unobserved heterogeneity in these 
models by Lancaster (1979). (See also Lancaster 
(1990) and Heckman and Singer (1986).) In eco- 
nomics it is often more difficult to control for 
individual differences than in a controlled hospi- 
tal environment, where the data for biomedical 
studies are often obtained. 

In this paper we want to point out a second 
implication of the lack of control in economic 
environments. Not only is it plausible that the 
population is heterogeneous, but it is also likely 
that the environment in which the population 
exists changes over time. In the analysis of panel 
data this has led researchers to introduce time 
dummies as well as individual effects. In the 
analysis of continuous time duration data there is 
no natural time period, and time dummies would 
therefore not constitute an appealing solution. 
We will derive a continuous time analogue where 
instead of a finite dimensional vector of nuisance 
parameters, we have an infinite dimensional nui- 
sance parameter. This semi-parametric technique 
is obtained by reversing the role of duration and 
calendar time in the Cox regression model. In 
addition to the flexibility that the semi-parametric 
specification provides, this estimator can be con- 
siderably less demanding computationally than 
fully parametric procedures. This stems from the 
fact that fully parametric procedures require 
evaluation of the integral of the hazard rate, 
while the Cox regression model only requires 
evaluation of the hazard rate itself, which can be 
significantly easier if the model specification itself 
is in terms of the hazard function. 

The key assumption is that the common calen- 
dar time effects enter the hazard function multi- 
plicatively. This is of course a restrictive assump- 
tion, in the same way the assumption of any 
proportional duration effect is restrictive in the 
original form of the Cox regression model. How- 
ever, one can still allow for time effects that vary 
across the population, as long as one is willing to 
parametrize this variation. 

We also discuss how the common time-effects 
can be estimated in a second stage after the 
parameter vector has been estimated. These time 
effects might be of independent interest if one is 
interested in decomposing variation in the unem- 
ployment rate over time into variation in the 
inflow and variation in the outflow. 

The outline of the paper is as follows: in the 
next section the main ideas are first discussed in 
the simple framework with single spells and 
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time-invariant regressors.1 This basic model is 
general enough to convey the main theoretical 
ideas of the paper. In the third section the analy- 
sis of the preceding sections is applied to a Dutch 
dataset on labor market histories. The results 
suggest that variation of the average rather than 
the conditional hazard explains most of the varia- 
tion in the length of employment and unemploy- 
ment spells. The final section contains the conclu- 
sion and summary of the main findings. 

II. Calendar Time versus Duration Effects 

Consider a world in which individuals experi- 
ence two events in a particular order. The first 
might be labelled entry and the second exit. Ex- 
amples of such events in economics are the begin- 
ning and the end of employment or unemploy- 
ment spells and births and deaths of companies. 
At times we will come back to these examples to 
motivate particular modeling decisions, while at 
other times it might be more expedient to refer to 
the more abstract version of the model. We are 
interested in the timing of the second event, t', 
given the date that the first event occurred, to, 
and given some time-invariant characteristics of 
the individual which are denoted by a vector x. 
The duration of the spell between the first and 
second event will be analyzed primarily in terms 
of the hazard function, or intensity process, de- 
fined as: 

A(t, to, x) 
=lim '4 It1E= [t, t + S)It' > t, to x]/ 

for t > t?. (1) 
It is a function of calendar time t, entry time t0 
and characteristics x. Often it has been assumed 
that the hazard function is a function of duration 
t - t0 and characteristics x alone. A good exam- 
ple of this type of analysis is the paper by Lan- 
caster (1979) that sparked off a whole literature 
on duration models in econometrics. 

One way to analyze models of this type given a 
dataset2 (tl, to, x")nN1 is by specifying a para- 

metric form for the hazard and estimating the 
parameters by maximum likelihood techniques. 
Suppose the hazard function has the following 
form: 

A(t, to,x) = w0(t, t? x; 0) (2) 

with to a known function, and 0 an unknown 
parameter. The likelihood function would, in that 
case, be: 

N 

X exp= H -)( tn n t xn; 0) 
n=l 

X exp [-/ofl) (s1tn Sxn; 0) dsj]. (3) 

Under standard regularity conditions the maxi- 
mum likelihood estimator is consistent and 
asymptotically normal. Ridder (1987), among oth- 
ers, follows this approach. He ignores duration 
dependence and allows for a flexible calendar 
time dependence by introducing dummies for 
two-year intervals. The disadvantage of the model 
is that the functional form of the hazard function 
has to be specified completely. Using dummies 
can to some extent overcome this problem but 
there is no natural time period in these continu- 
ous time models, unlike in panel data analysis. In 
the remainder of section II we will study ways in 
which we can incorporate calendar time depen- 
dence in a more satisfactory way. First we look at 
a technique developed by Cox to allow for a very 
general form of duration dependence. This tech- 
nique will then be adapted to make it flexible 
with respect to calendar time dependence. 

A. The Cox Regression Model 

To overcome the heavy reliance on knowledge 
of the functional form that characterized the haz- 
ard function in (2), Cox (1972, 1975) proposed the 
proportional hazard model, also known as the Cox 
regression model. In his analysis the hazard de- 
pends only on duration t - to and characteristics 
x. Alternatively, one can interpret this as the 
special case of (1) where all to? are identical. Cox 
makes the assumption that the hazard rate can be 
factorized into a function of duration alone and a 
function of characteristics alone: 

A(t, to, x) = Ao(t - to) * w(x; 0) (4) 

1 The assumption of time-invariant regressors is not essen- 
tial. The entire analysis can be done allowing for time varying 
regressors, as long as they are predictable. In order to simplify 
notation we do not introduce this complication. 

2 In the discussion in this section the complication of cen- 
sored observations will be ignored for expository reasons. 
However, the formal results towards the end of the section do 
allow for censoring. 
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The first factor, Ao, the baseline hazard, is un- 
known to the researcher, but the second factor, 
w(*), is known up to a finite dimensional parame- 
ter 0. This parameter can be estimated using 
Cox's partial likelihood approach. This procedure 
will be discussed here in some detail as it pro- 
vides insights in the way we can avoid specifica- 
tion of part of the model as long as other parts 
are parametrically specified. Later we will use the 
same procedure with different parts of the model 
unspecified. For a fuller discussion of the princi- 
ple of partial likelihood see Cox and Oakes (1984) 
or Lancaster (1990). The basic idea is that we 
condition on the durations which are mainly de- 
termined by the baseline hazard, and look at the 
order of the observations, which is mainly deter- 
mined by the explanatory variables. Let sn = 

tl - to be the duration for the nth individual and 
let t(n) be the index of the person with the nth 
shortest duration. In other words, for all n < m 
we have 

1i 0t 1 0 
t(n) t(n) = SL(n) < sL(m) = tL(m) - tL(m) 

The partial likelihood is developed in the fol- 
lowing way: consider the probability of individual 
i being the one with the shortest duration given 
that the shortest duration lasted t months and 
given the regressors x: 

=lSL(1)= X1, X21 . . . . XN] 

o(xi; 0) 

En =l0)( Xn; 0) 

This does not depend on the value of the baseline 
hazard function A0 at s,(1)* The next step is to 
calculate the probability of individual j being the 
one with the second shortest duration given the 
length of the second shortest duration, the re- 
gressors x and given that individual i had the 

shortest duration: 

,41 [ (2) = j1SL(2), X1, I .. , XN, 

co(xj; 0) 

En=l *(l)(J)( Xn; 0) 

If we proceed in this fashion until all durations 
are exhausted and multiply the probabilities we 
can rewrite the result as 

o = co(x ;0) (5) 
n=1 Em E R(sn)W ( Xm; 0) 

where the risk set R at t consists of those people 
who have durations no shorter than t: 

R(t) = {n = 1,2 ...,N NIS t}. (6) 

Figure 1 might give some intuition on the de- 
velopment of the likelihood function. The dura- 
tions are ordered and then at each duration we 
consider the risk of exit for the person corre- 
sponding to that duration, relative to the people 
with durations exceeding that one. 

Consistency and asymptotic normality of this 
estimator has been proven for various forms of 
this model. The most popular functional form for 
to is log linear: 

co(x; 0) = exp(0'x). (7) 

Tsiatis (1981) considered this case and gave a 
proof of the asymptotic properties based on con- 
vergence of the average score to a nonstochastic 
function. The complication in proofs of asymp- 
totic normality lies in the fact that the scores are 
uncorrelated but not independent. Andersen and 
Gill (1982) extend the proof to the case where the 
characteristics x are allowed to vary over time. 
They give a proof in the context of counting 
processes. The main restriction on the covariate 
processes x is that they are predictable and lo- 
cally of bounded variation. A sufficient condition 

FIGURE 1.-RISK SETS FOR THE COX MODEL 
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for this to hold is that the covariate processes are 
continuous and have bounded first derivatives. 

At this point another model deserves mention 
as it will later facilitate both the interpretation of 
the models with calendar-time dependence and 
the comparison with panel data analysis. In the 
fully parametric as well as the semi-parametric 
version of the models discussed so far, econome- 
tricians, Lancaster (1979), Heckman and Singer 
(1984), Meyer (1986), and Honore (1990) among 
them, have been looking at the consequences of 
not observing some of the heterogeneity in the 
hazard function. The particular specification 
studied has been one where the unobserved het- 
erogeneity enters multiplicatively. The hazard 
function for individual n, An(t) is assumed to be 

An(t) = vn * AO(t - tn) o(Xn; 0) (8) 
with the unobserved vn independent of xn and 
AO(-) parametrically specified or not. This mod- 
elling strategy is similar to the individual (ran- 
dom) effects approach in panel data analysis. 

B. Calendar-time Effects 

In this section the main ideas of the paper will 
be discussed. We will modify the Cox Regression 
Model introduced in the previous section in such 
a way that it allows for a flexible form of calen- 
dar-time dependence, at the expense of restrict- 
ing the duration dependence to be parametrically 
specified. We will start by looking at alternative 
ways of incorporating dependence of the hazard 
on calendar time. The first possibility we look at 
is to add it as a time-varying regressor or covari- 
ate in the specification of the systematic part of 
the hazard rate: 

A(t, t - to, x) = AO(t - to) * w0(t, x; 0). (9) 
If we specify 

K 

to(t, x; 0) = exp E Okhk(t, x) (10) 
k=1 

with all functions hk known, we are back in the 
log linear framework analyzed by Andersen and 
Gill (1982). Examples of such specifications are 
h1(t, x) = x, h2(t, x) = log(t) or h2(t, x) = t. An- 
other, more flexible, specification in the spirit 
of Ridder (1987) would be to define some 
hk(t, X) = I[Ck < t < Ck+1]. If Ck+1 - Ck were 

equal to one year, this would amount to introduc- 
ing yearly dummies in the hazard function. 

The second approach is to have as one of the 
regressors an indicator for the macroeconomic 
forces behind the nonstationarity of the model. In 
the case of employment and unemployment dura- 
tions one might think of the national unemploy- 
ment rate, the growth rate of GNP or a different 
indicator for the business cycle. In terms of the 
hazard function An(-) for individual n: 

An( t ) = cto( U( t t ,ttno , Xn ; 0 ) ( 11) 

or 

An(t) = AO(t - tn) C((t) xn; 0) (12) 

where u(t) can be any variable that satisfies the 
regularity conditions for time-varying regressors, 
as given in Andersen and Gill (1982). In practice, 
these imply that u(t) has to be a function of 
information available (just) before t. It does not, 
however, have to be strongly exogenous. Note 
that this type of covariate is different from the 
usual time-varying regressor. In this case the co- 
variate is not individual-specific, and identifica- 
tion of its coefficients stems from the non-degen- 
erate distribution of the entry date to in the 
population. Flinn and Heckman (1983) follow this 
approach and use the national unemployment 
rate as the common, time-varying regressor. Lynch 
(1989) uses the local unemployment raie as a 
time-varying, but region-specific, regressor. 

The above models, (4), (9), and (12), do not 
have all the disadvantages of the first, fully para- 
metric model in (2). Nevertheless, they require 
the researcher to specify the dependence of the 
hazard on calendar time completely. The argu- 
ment why this is difficult in practice is related to 
the reason behind including calendar time in the 
first place. The general justification for inclusion 
is that there might be forces behind the events 
that are both equal for everybody in the popula- 
tion as well as changing over time. An example is 
the life span of companies. Irrespective of their 
characteristics and the date the companies were 
set up, they might have correlated risks of going 
bankrupt at the same time via the phase of the 
business cycle, or seasonal fluctuations in de- 
mand. A similar story can be told for unemploy- 
ment spells. If the general outlook is bad, the 
chances of finding a job might be slim for every- 
body, relative to the chances in good times. If this 

3I[.] is an indicator function, equal to one if the expression 
between the brackets is true, equal to zero otherwise. 
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is the case, one would ideally model these macro 
processes jointly with the individual behaviour or 
condition on their paths. However, this requires 
knowledge and observability of the exact pro- 
cesses that influence the hazard function. Be- 
cause these processes might be characterized by 
high frequency movements (seasonals), low fre- 
quency movements (business cycles), as well as 
breaks (law changes), they might be difficult to 
approximate by low order polynomials. If not all 
these processes are observed, one should not 
restrict the time effect to a particular form. Tech- 
niques that do not require such a form are to be 
preferred. 

Duration dependence, on the other hand, is an 
effect that can potentially be explained within 
economic models. Miller (1984), Jovanovic (1979), 
and Van Den Berg (1990) have studied models in 
which optimizing behaviour by individuals leads 
to hazard functions with particular forms of dura- 
tion dependence. In the model studied by Van 
Den Berg, unemployed individual will lower their 
reservation wage over the unemployment spell in 
anticipation of a decline in benefit levels. This 
causes the hazard function to be an increasing 
function of duration. Jovanovic studies, among 
others, job-to-job transitions. He finds that the 
hazard should increase initially, when employee 
and employer learn about the quality (or the lack 
of quality) of the match, and then decrease, once 
the match has been found to be a successful one. 
These examples suggest that it is easier to model 
duration dependence than calendar time depen- 
dence. Specifically, they indicate that low order 
polynomials could capture most of the qualitative 
features of the duration dependence. In contrast, 
there is little reason to believe that low order 
polynomials could capture most of the high and 
low frequency changes in the time pattern of the 
hazard rate. 

This is one of the reasons to propose reversing 
the roles of calendar time and duration in (9) as 
the third way to incorporate calendar time de- 
pendence. Instead of parametrizing the depen- 
dence on calendar time and leaving the depen- 
dence on duration free, one could specify the 
hazard in the following way: 

A(t,t - t, x) = Ao(t) w(t - t, x; 0) (13) 

with AO an unknown function of time, and C a 
known function. A second argument to prefer the 

semi-parametric specification (13) rather than any 
fully parametric specification is that we will still 
be able to utilize Cox's partial likelihood ap- 
proach. Because this estimator requires only eval- 
uation of the hazard rate, rather than evaluations 
of the integral of the hazard rate which are 
required by fully parametric procedures as exem- 
plified in the likelihood function in (3), it can be 
computationally considerably easier. To under- 
line the computational advantages of the estima- 
tor proposed in this paper, we will in the ap- 
pendix outline how the estimates can be obtained 
using standard computer programs that estimate 
the conventional form of the Cox regression 
model with time-varying regressors. 

Since (13) is the key equation we will discuss it 
in some detail before going on to the question of 
inference. Ao(-) can represent trends in the haz- 
ard function, seasonals or business cycle effects. 
Its form can be of independent interest, depend- 
ing on the particular application. Crucial is the 
assumption that its effect is proportional to that 
of the other variables. 

The individual spells can now be correlated via 
the (potentially unobserved) common process 
Ao(t). They do not even have to be independent 
conditional on the realisation of this process, as 
long as (13) is the correct transition intensity if 
we condition on the realisations of the other 
histories up to t. 

So far the similarity with the Cox Regression 
Model has been stressed. This similarity will also 
be used to derive an estimator for the proposed 
model. However, (13) can also be obtained via a 
different approach. Suppose we let the error term 
in the hazard specification (8) vary over time as 
well as vary over the population:4 

An(t) = Vt * c(t - tn, xn; 0). (14) 

One needs more structure on this specification to 
be able to estimate parameters of interest. One 
way of providing such structure is to go back to 
(8) by restricting the error term to be constant 
over time: vnt = vn. Another possible way is to 
assume that the error term is not individual spe- 
cific: vnt = AO(t). That would get us back to (13). 

4Lancaster (1979) and later Heckman and Singer (1986) 
start from this general model, before making the assumption 
that the error term is constant over time (which in their case 
coincides with duration). 
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Another way of thinking about (13) might also 
provide some insights. The difference between 
(13) and (4) is one of time origins. In the original 
Cox model one uses the entry date as the time 
origin. In (13) we use a fixed calendar date as the 
time origin. The question of time origins has been 
posed before by Cox in a discussion of Oakes 
(1984). Kay (1982) applies a similar model to a 
multistage disease process. The time origin in his 
model is the start of the first stage. This implies 
that for the first stage duration and time coincide 
but for subsequent stages they are no longer the 
same. In his model duration is not used as an 
explanatory variable. A fixed calendar date and 
date of entry are two of the possible time origins. 
This does not exhaust the possibilities. If the 
hazard function also depends on age, one could 
use the birth date t b as the time origin. An 
alternative model would in that case be: 

A(t, to, tb, X) = AO(t - tb) * w(t, t - t, X; 0) 
(15) 

For analyzing retirement decisions this might well 
be the appropriate time origin. This is also true in 
some medical applications, but there one would 
often interpret the birth date as the entry date, in 
which case age dependence would coincide with 
duration dependence. The following approach to 
inference for model (13) would go through in a 
similar way if one concentrated on age depen- 
dence. 

Finally, it is worth remarking on the restriction 
embodied in (13). The time effect is assumed to 
be the same for everybody, multiplying the haz- 
ard function. One could relax this assumption by 
redefining some of the regressors and allowing 
them to be time dependent. For instance, if one 
wants to allow the effect of x to change over 
time, one could have two regressors, x and x 
ln t, or x and x * t. As long as the time depen- 
dence of the effects of regressors is parametrized, 
one can partial out the time dependence of the 
intercept, or the baseline hazard, AO(t). 

Going on to inference for the proportional 
hazards model (13), we start by assuming linearity 
of the logarithm of to: 

t)(t - to, x; 0) = exp[0'h(t - to, x)] 
K 

= exp E Okhk(t - t? x). 
k=1 

(16) 

Consider the ordered exit times t,L(1) < ttl(2) < 
< tL(N1) <tL(N), where t(i) gives the iden- 

tity of the ith individual to exit. Conditional on all 
the regressors x, the entry dates to and the first 
exist time t(l), the probability of individual n 
being the first to exit is 

( = fltL(l), X11 X21 ... XN, t?, t 2. N*tN] 

= if t? 2 t 1 =0 if~~~~~ ~~~ -f tL(l) 

exp[ oh(t 1(l) - nx] 

EmE R(thl )) exp[O0h(tL(l) - tm Xm)] 

if to? < t, 

with the risk set R(t) consisting of the people 
who entered but not exited before t. 

R(t) = {n = 1,2, ...,Nlt? < t < t'}. (17) 

In the same manner we calculate the probability 
of individual m being the second to exit, given 
the identity of the first individual to exit, the 
regressors and entry times. If we proceed in this 
way until all the exit times are accounted for, we 
obtain the partial likelihood by multiplying all the 
probabilities: 

N 

P7(=) [7l 9[(i)It,( X11 X2,. ... , XN, 

tl0 st 0 St N(L(j), j <i) 

N exp[O'h(t,l(e ) - t (i), xt(i))] 

j 1 EmE R(t1(,)) p[ lh ( t(i) m A 

N exp[O'h(t' ~ 4 

N= 
exp [ O'h (t 

tn - tn 0 xn) 
n-1 Em E R(tn )exP[h(tn - tm,Xm)] 

(18) 

where the risk set is that defined in (17). In figure 
2 the development of the likelihood function is 
given in such a way as to contrast it with that of 
the Cox likelihood function given in figure 1. 
Here the risk set varies over time whereas before 
it varied over duration. 

To interpret the difference between the two 
versions of the Cox model, (4) and (13), which is 
at the core of this paper, in a different way, 
consider the following model that incorporates 
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FIGURE 2.-RISK SETS IN THE TIME-VARYING MODEL 
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_ _ _ time 

R(t) = {2,3} R(t) = {2} 

both as special cases: 

A(t, t?, x) = AO(t) AP(t - t) * w0(x; 0). 
(19) 

By conditioning on the (ordered) durations t1 - 

t?, one at a time, we can get around specifying 
Al( ) and be flexible with respect to the duration 
dependence. If, on the other hand, we condition 
on the (ordered) exit times t 1, one at a time, we 
can avoid specification of AO(-) and be flexible 
with respect to calendar time dependence. 
Whichever we choose, if we want to exploit the 
computational advantages of the partial likeli- 
hood approach, we can be flexible with respect to 
only one of the two forms of time dependence,' 
at the expense of specifying the other up to a 
finite dimensional parameter vector. This is not 
to say that a completely non-parametric approach 
is not possible. From the data we can learn the 
distribution function F(tlx, to) of t1 given x and 
to as long as there is enough variation in to and 
x. From that we can calculate the hazard rate as a 
function of time, entry date and regressors as 
minus the derivative of the logarithm of one 
minus the distribution function: 

at A(t, t?, x) = -ay ln[1 -F(tIt?, x)] . 

Writing it as a function of duration and time 
rather than entry date and time amounts to an 
innocuous change of variable. The hazard func- 
tion is therefore clearly identified non-parametri- 
cally, and it can be estimated by smoothing meth- 
ods as kernel estimation. This leads to different 
rates of convergence and given that there are 

dim(x) + 2 arguments in the hazard function such 
an approach would require a very large dataset. 

Another approach would be to estimate a 
model such as (19) with both duration and time 
dependence free as a single index model. Such 
models typically require the potentially quite re- 
strictive assumption that there is at least one 
regressor that varies continuously over the real 
line. In addition single index models would have 
to be adapted to allow for time-varying regressors 
and censoring that depends on regressors. 

The above derivation of the partial likelihood 
based on specification (13) can easily be adapted 
to allow for censoring. Let the typical observation 
be (t0, t', d, x), where d = 1 if t' is an exit or 
failure time, and d = 0 if the observation is cen- 
sored at t' and exit is known to have not oc- 
curred at or before t'. The appropriate partial 
likelihood function is obtained by multiplying the 
probabilities only for the proper exit times: 

N 

/p( ) F1,6J--[wti)1t,(i), X, to, wti), i < i)] 

N exp[O'h(tl - t4, x,;)] 1 
n..i EmeR(tl) exp[O'h(tl - t?, xm)] j 

(20) 

with the definition of the risk set R(t) unchanged 
from (18). Its interpretation is now the set of 
people known to be at risk at t, i.e., people who 
have not exited or been censored before t. In the 
appendix sufficient conditions are given for the 
following result. They mainly involve regularity 
assumptions. 

THEOREM 1: Suppose that the hazard function for 
the individual with characteristics x whose entry 
date is to is equal to Ao(t) * .[O*'h(t - to, x)]. 
Suppose furthermore that assumptions 1-4 are sat- 
isfied. Let 0 be the maximand of _4(0), with 

SIf we treat age dependence as a third form of time depen- 
dence, this should read "we can be flexible with respect to 
only one of the three forms of time dependence." 
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_4(0) given in (20). Then, as N -x 00, 

1. 0 - 0* 
2. (A( - 0*) A IV(0, E(0*)-l) where >2(0*) 

can consistently be estimated by 

l;IO0) =P- @ 0 ( 0)] 
LNdO ao'] 

evaluated at 0 = 0. 

Proof: see appendix. 

Later we will be interested not only in the value 
of 0* but also in that of the baseline hazard, 
AO(t). It is difficult to estimate this directly. How- 
ever, an estimator for the integrated baseline 
hazard can be constructed in the same way as 
proposed by Breslow (1972, 1974) for the original 
Cox model. Define: 

A(t,t) = JA0(s) ds. 
t 

This integrated hazard has an interpretation that 
is different from its counterpart in the Cox model. 
There it is the integrated hazard for the typical 
individual with x = 0. Here- there is no individual 
for whom it is the integrated hazard since it 
leaves out the duration dependence which cannot 
be kept constant. It does have an interpretation 
though, as an indicator for the hazard an individ- 
ual faces if he enters at that particular date. 

The Breslow estimator for A(t, t) is 

A(t%, t) 

t<t<tj EmER(t )exp[Oh (tn - tm SXm)] 

(21) 

for j = 1, 2,. .., N, and linear interpolation for 
values of t in between two exit times. 

The partial likelihood approach outlined above 
formally requires continuous time data. In prac- 
tice, data are always discrete. This causes compli- 
cations only if the grid is so coarse that there are 
a large number of ties. To deal with ties we use 
one of the approximations proposed by Cox and 
Oakes (1984), which is consistent with the last 
representation of the partial likelihood function 
in (18). If t' = t' for two observations m 0 n, 

the likelihood contribution of observations n and 
m is 

exp[O'h(tn - tn, xn)] 

EliR(ti) exp[O h(tn - tl , xi)] 

exp[O'h(t' -to, xm)] 

ElE R(t l)exp [ Oh (t' - t?, xi)] 

exp [ O'h(tn - t, xn ) +O'h(t' -to, xm)] 

LCR(t,l) exp[o'h(t' - to, x1)] 

because t = t 1 implies that R(t1) = R(t ). If 
the number of spells is very large relative to the 
number of periods, one might want to deal with 
the problem of ties in a more direct way. In that 
case one could specify the hazard in discrete time 
as 

A(t, to, x) = AO, * exp[O'h(t - to, x)] 

forte [ci1,ci), forl= 1,2,...,L 

with c, known for 1 = 0, 1, 2,.. ., L, and treat the 

AO, as a set of L + 1 unknown parameters which 
have to be estimated jointly with the K dimen- 
sional parameter 0. Such a procedure is computa- 
tionally more demanding than the partial likeli- 
hood approach because it requires maximization 
over a L + 1 + K dimensional space (84 + 3 in 
the application in the next section if we use 
monthly intervals) where the partial likelihood 
estimator only requires maximization over a K 
dimensional (3 in the application in the next 
section) space. The discrete time estimator has 
the advantage of immediately providing estimates 
of the baseline hazard. The discrete time ap- 
proach is similar to the probit models with struc- 
tural group effects studied by Borjas and Sueyoshi 
(1991). The appropriateness of the discrete time 
versus the continuous time approach depends on 
the relative number of spells versus the number 
of periods. In particular if there are no ties, and 
the number of spells is smaller than the number 
of periods, only the partial likelihood estimator is 
feasible. 

III. An Application 

In this section the methodological analysis of 
section II will be applied to a Dutch dataset on 
labor market histories. In section IIIA the dataset 
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will be described and some summary statistics 
given. In the second subsection we will first ana- 
lyze the employment to unemployment transition 
using the various models of section II and subse- 
quently we will look at the other transitions. 

A. The Data 

The dataset used in this paper was a part of 
the ORIN (Onderzoek naar Relatievormen in 
Nederland) dataset. It was setup by NIDI (Neder- 
lands Interuniversitair Demografisch Instituut) in 
cooperation with the Universities of Tilburg, Am- 
sterdam and Wageningen.6 The part of the 
dataset with which we are concerned contains 
labor market histories for at least seven years. A 
random sample of Dutch men (in this analysis we 
will only look at the labor market histories of 
men) were asked in 1984 to reconstruct their 
labor market histories going back to the last 
change in labor market status before January 
1977. Three labor market states are identified: 
working full time, working part-time and not 
working. No distinction was made in the dataset 
between being unemployed while actively seeking 
work and being out of the labor force. Flinn and 
Heckman (1983) have shown that this distinction 
is potentially important. To avoid complications 
arising from the inability to distinguish between 
being unemployed and being engaged in full-time 
education or that between being unemployed and 
being retired, only the observations on people 
between 23 and 50 years of age in January 1977 
were used. This leaves us with 372 labor market 
histories. For males in this age group part-time 
employment is a relatively rare phenomenon and 
for the purpose of this study the two categories of 
employment have been aggregated into one. 

We will treat the dataset as if it were con- 
structed by taking a random sample in January 
1977 from the population of males between 23 
and 50 years of age at that time, and following 
them till January 1984. This would be valid if the 
population of males between 23 and 50 years of 
age in January 1977 would coincide with the 
population of males between 30 and 57 years of 
age in January 1984. This is of course not exactly 
true. Mortality and emigration lead to an outflow 
on the one hand and immigration leads to an 

inflow on the other hand. In the application in 
this paper we ignore these effects, which are 
arguably small for males in this age group in the 
years 1977-1983 in the Netherlands. We condi- 
tion on the labor market histories up to January 
1977. In principle, there is information in the 
labor market histories before January 1977, but 
because the length of the observed labor market 
histories before January 1977 varies across the 
population, we would need stationarity assump- 
tions to extract this for all the estimators, and 
even stronger assumptions for the partial likeli- 
hood estimator. We therefore do not use this 
information and condition on events before Jan- 
uary 1977. The dataset contains monthly data, 
whereas we have been assuming continuous data 
in the preceding part of the paper. However, due 
to the relatively small number of ties we did not 
think this would lead to a serious bias in the 
results. Using monthly dummies is in principle 
possible, but since there are many months with- 
out any transition, there would be serious doubts 
about the accuracy of such estimates. 

Given the two states, employed (E) and not 
employed (U) (or unemployed as both terms will 
be used interchangeably in the remainder of this 
paper), three transitions are distinguished. Some- 
one who is unemployed can move into employ- 
ment. Someone who is employed can either 
change jobs, which will be considered an employ- 
ment to employment transition or he can move 
into unemployment. The three transition types 
will be denoted by UE, EE and EU, respectively. 

Two explanatory variables are used. The first 
one is an individual's age in 1977. For ease of 
computation age is not used as a time-varying 
regressor. Theoretically there is no problem with 
treating it either way. The second explanatory 
variable is an index for education. It ranges from 
1 to 5. The higher values indicate higher levels of 
education. In table 1 summary statistics are given 
for the regressors in the sample of 372 men. 

The power to estimate transition rates obvi- 
ously comes from the occurrence of transitions in 
the sample. Table 2 gives the marginal distribu- 

6 I wish to thank the NIDI for making these data available 
to me. 

TABLE 1.-SUMMARY STATISTICS EXPLANATORY VARIABLES 

Variable Mean S.D. 

Age 34.9 7.2 
Education 2.8 1.1 
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TABLE 2.-FREQUENCIES OF TRANSITIONS 

Type UE EU EE All 

0 321 246 164 101 
1 46 117 159 147 
2 3 8 39 80 
3 2 1 9 27 

2 4 0 0 1 17 

tion of the number of transitions of the different 
types. 

It shows, for example, that there are 321 men 
with no transitions from unemployment into em- 
ployment. There are 46 men with one such transi- 
tion, 3 with two transitions from unemployment 
into employment, 2 with three such transitions, 
and nobody with four or more transitions from 
unemployment into employment. 

The total number of unemployment to employ- 
ment transitions is 51. The total number of em- 
ployment to unemployment transitions is 126, 
leaving a net flow into unemployment of 75. Partly 
this is a reflection of the aggregate conditions in 
the Dutch economy in those years, and this is of 
course the effect we are trying to incorporate in 
our analysis. Partly it might also be due to the 
fact that as a group, the sample grows seven years 
older, leading to a higher expected proportion of 
non-employed for various reasons (early retire- 
ment,7 permanent sick leave). 

First we look at estimates of the hazard by year 
to investigate whether there are obvious trends 
and patterns over time in the hazard rates. Sup- 
pose the hazard function for the transition from 
state i to state j, given that state i was entered at 
to has the form: 

AXI(t, t?, x) = Akj for Ck-1 < t < Ck, 

k = 192, ...,9K 

where c0 = 0 and CK = oo, for the transition from 
state i to state j. This model is very close to the 
piecewise constant hazard discussed by Cox and 
Oakes (1984) and Lancaster (1990). The differ- 
ence is in the time scale that is calendar time 
here, and duration in their models. Ridder (1987) 
gives comparable summary statistics. Table 3 

gives the estimates of A'j for yearly intervals 
(Ck - Ck-l = 1 year) for the three transitions. 

The transition rates are not very precisely esti- 
mated. Nevertheless, there is some information in 
the table. If we look at the last column, where the 
national unemployment rate' is given, one can 
see that the four highest unemployment figures 
occurred in the last four years. This coincides 
with the four highest EU transition rates and the 
four lowest EE transition rates. More formally, if 
we look at the Spearman rank correlation coef- 
ficients, we find 0.70, 0.21, and -0.68 for the 
correlation between the national unemployment 
rate and the EU, UE and EE transition rates, 
respectively.9 

B. The Results 

In this subsection we will apply the techniques 
developed in section II to the dataset described 
in section IVA. Initially we will concentrate on 
the employment to unemployment transition to 
show the full force of the techniques. In the 
second half of this section we will turn to the 
other two transitions. Before this we will give 
the full likelihood function on which the estima- 
tions are based, either directly, or indirectly via 
the associated partial likelihood function. Let 
YV(t) = 1 - Yun(t) be equal to 1 if individual n is 
in state E (is employed) at t and 0 when he is in 
state U (not employed) at t, for t E [0, 84], where 
t is in months from January 1977 onwards. Let 

Aq = {t E [0,84]IYi(t) = 1) 

be the union of all spells in state i, for i = E, U 
by individual n. Let NiJ(t) be the number of i to 
j transitions between January 1977 and t for this 
individual, for t E [0, 84], for ij E {EU, UE, EE}. 
sn(t) is equal to t minus the date of the last 

7We expect to have reduced this to a minimum by restrict- 
ing the sample to under fifty year olds. 

8 Registered male unemployment, as a percentage of the 
dependent labor force, from the SociaalEconomische Maand- 
statistiek, a Central Bureau of Statistics publication. 

9 The definition of the unemployment rate in table 3 does 
not correspond exactly to the definition of not employed in 
our sample. The main reason is that being not employed does 
not imply being registered unemployed. The latter is neces- 
sary in order to qualify for benefits but not otherwise compul- 
sory. Even though the levels of sample non-employment rate 
and population unemployment rate do not match closely, the 
correlation is high (0.92 for levels and 0.89 for logarithm), and 
we will use the national registered unemployment rate as a 
proxy for the national equivalent of the proportion of not 
employed in the sample. 
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TABLE 3.-YEARLY TRANSITION AND UNEMPLOYMENT RATES 

Year EU UE EE U-rate 

1977 .030 (.010) .052 (.040) .052 (.012) 4.6 
1978 .022 (.008) .121 (.054)) .049 (.012) 4.3 
1979 .028 (.010) .041 (.029) .043 (.012) 4.1 
1980 .071 (.016) .065 (.032) .025 (.010) 5.1 
1981 .083 (.017) .037 (.022) .031 (.011) 8.2 
1982 .080 (.017) .094 (.031) .036 (.012) 11.6 
1983 .053 (.014) .102 (.031) .026 (.010) 16.6 

transition before t, or the time spent in the 
current spell. At t = 0 this equals time spent in 
the initial state, since we do have information on 
that. 

The likelihood function is now: 

_(19) =_EE( oE) ._Z2EU(oEU) *ZUE(oUE) 

with, for ij E {EE, EU, UE}, 

N N,J(84) 

o 9ii( oij) = H H AAoij(tn,k) 

X ()(Sn ( t;Xk ) I Xn; fvi j) 

x exp |nAoij(u) 

X to(sn(U) IXn; fvij) du] 

We estimate three parametrizations of the transi- 
tion model. The first one does not allow for 
calendar time dependence. The second one al- 
lows for a parametrized form of time depen- 
dence, where the parametrization uses a common 
time varying regressor. The third model uses the 
modified Cox regression model where the time 
dependence is not parametrically specified. The 
three models are nested which allows one to see 
clearly how the results change with the level of 
sophistication in the time dependence specifica- 
tion. The functional form of the ct part of the 
hazard function is the same for all three specifi- 
cations: 

W(S, X; Oij) = .ol * exp(x101i2 + X2'Oij3). 

This functional form allows the duration depen- 
dence to be negative or positive. Like the effect 
of the time invariant regressors, it is restricted to 
be monotone. The three models differ in the way 

the time dependence is treated: 
Model 1. No time dependence: 

Aoij(t) = exp(oijO). 

This model assumes that the durations have a 
Weibull distribution. This is a fairly flexible distri- 
bution that has widely been used in econometrics 
since Lancaster (1979). It will serve here as a 
benchmark case against which we can judge the 
more complicated models. 

Model 2. Parametric time dependence: 

Aoij(t) = exp(oij0 + 0ij4 Ig(t)) 

where g(t) = ln(u(t)/(1 - u(t))) with u(t) the 
national unemployment rate at t. The second 
model attempts to capture the variation over time 
by putting in a time varying regressor. The choice 
of the particular regressor can be motivated as 
follows: suppose the transition rates from unem- 
ployment to employment and vice versa can be 
written as 

AEU(t) = exp[p0 + .l h(t)] 

and 

AUE(t) = exp[a0 + a1 h(t)] 

for some possibly unknown or unobserved macro 
process h(t). The equilibrium unemployment rate 
u* associated with h is that level of unemploy- 
ment for which the flows into and out of employ- 
ment are equal: 

AEU(h) * (1 - u*(h)) = AUE(h) * u*(h). 

Over time there is a one-to-one correspondence 
between h(t) and u*(t): 

h(t) = 1 - *a [ao - go + ln l _ U(t)b 

Hence, AEU and AUE are also loglinear in 
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ln[u*/(1 - u*)]. If the actual unemployment rate 
is a good approximation for the equilibrium one, 
using the first as a regressor might be a good 
alternative to using h(t) if the latter is hard to 
pin down or measure. The coefficient on this 
regressor should not be given too much interpre- 
tation. We are not trying to explain the individual 
transition probabilities with the average or na- 
tional one. What we are trying to achieve by 
putting in this regressor is to control for changes 
in the average transition rate when estimating the 
effect of individual specific explanatory variables. 
Because we do not have the national proportion 
of not employed we use the national rate of 
registered unemployment. Flinn and Heckman 
(1983) estimate almost the same model. Their 
specification for wt(-) is the same as ours, and the 
logarithm of Aoij is assumed to be linear in the 
national unemployment rate (rather than in the 
logarithm of u(t)/[1 - u(t)] as in our specifica- 
tion). 

Model 3. Semiparametric time dependence: 
Aoij(t) is not specified. The third model finally 
estimates the effect of duration and explanatory 
variables while leaving the time dependence free. 
In nests the preceding two models. The coeffi- 
cient on any macro process (like the unemploy- 
ment rate in the second model) is no longer 
identified. This is an important aspect of the 
distinction between individual time varying re- 
gressors and common time varying regressors, 
alluded to earlier in section IIB. 

There is a difference in the interpretation of 
the coefficient for duration, OijQ between model 1 
and models 2 and 3. In model 1, the conventional 
interpretation of this coefficient is that it indi- 
cates how the transition rate would change if 
someone remained in his current state for a longer 
period of time. Formally, it is the logarithm of the 
ratio of the hazard he would face (e - 1) x 
(t - t0) time units from now and the hazard he 
currently faces. This comparison of risks faced by 

the same person at different times does not work 
in models 2 and 3 because the hazard rate changes 
with time and duration. In that case Oij0 has to be 
interpreted as an indicator of the difference be- 
tween the risks faced at the same time by people 
who have the same time invariant characteristics, 
one of whom has been in his current state for a 
longer period than the other. This interpretation 
does work in all three models and is therefore the 
preferred one for comparisons of the three mod- 
els. 

Table 4 gives the estimation results for models 
1-3 for the employment to unemployment transi- 
tion. 

A couple of remarks on the results will be 
made. The log likelihood of the third model is 
not comparable to that of the other two models 
because it is based on a partial likelihood. In 
general one can evaluate models like this where 
one has a series of nested models in two ways. 
One can either look at that part of the model 
with is common to all, or one can look at that 
part of the model which is different for every 
model. The first, common, part of the models is 
that relating the hazard to duration and time 
invariant regressors. The coefficients on the static 
regressors do not change very much with the level 
of sophistication with which we treat the time 
dependence. The coefficient on duration, how- 
ever, does change considerably. In the most gen- 
eral model, the effect is significantly different 
from zero at the 90% level. Going from model 1 
to 2 it is clear that there is time dependence. The 
coefficient on the unemployment rate is signifi- 
cantly different from zero, and the log likelihood 
goes up considerably. A test for the time invari- 
ance of the parameters in Model 1 was per- 
formed. An extra regressor t was added. The 
score function for this case is 

/'(t1, tog x; 0) = t' - f's co(s - to, x; 0) ds. 

TABLE 4.-THE EU TRANSITION 

Variable Model 1 Model 2 Model 3 

Intercept - 5.07 (0.46) - 5.38 (0.49) 
Log Duration -0.07 (0.11) -0.09 (0.11) -0.17 (0.10) 
Age 0.03 (0.01) 0.03 (0.01) 0.02 (0.01) 
Education - 0.17 (0.10) -0.18 (0.10) -0.19 (0.10) 
Unempl. rate 0.47 (0.18) 
Log Likelihood - 688.0 -685.1 - 604.3 
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The value of the test statistic was 16.2. As the 
95% quantile of the appropriate X2(1) distribu- 
tion is 3.6, it is clear that we can reject the null 
hypothesis of no time dependence. 

One way to evaluate Model 2 versus Model 3 is 
to perform a Hausman test on the common pa- 
rameters. This is a test of the hypothesis that 
AO(t) = exp(04 ln(u(t)/(1 - u(t))) for some pa- 
rameter 04. Since the two models are nested, and 
since the estimates for Model 2 are efficient if the 
null hypothesis is correct, the difference in the 
parameter estimates asymptotically has a normal 
distribution with mean zero and variance equal to 
the difference in the variances. Under the null 
hypothesis the variance of the coefficients should 
be larger under Model 3 than under Model 2. 
One can see immediately from table 4 that this is 
not true for the coefficient on log duration. This 
is evidence against the null hypothesis. 

The second way of evaluating the relative per- 
formance of the three models is by looking at 
part where they differ, the baseline hazard, AO(t), 
or equivalently, the integrated baseline hazard, 
A(t, 0). For the three models this is estimated as 

Model 1. No time dependence: 

A(t, O) = t exp 0)0 

Model 2. Parametric time dependence: 

A(t,O) = exp(o+ 04 

xln[u(s)/(1 - u(s))] ds). 

Model 3. Semi-parametric time dependence: 
N Nn(t) 

A(t, O) =E E E eXp 0 s(tn) 
n=1 k=1 mERE( tn) 

+02Xlm + 03X2m] 

The solid, dotted and dashed lines in figure 3 
correspond to models 1, 2, and 3, respectively. It 
clearly shows that the slope of the integrated 
hazard is not constant over time. It increases 
markedly during 1980. This figure makes the in- 
terpretation of the bias in the duration depen- 
dence easier. Over time the average hazard in- 
creases. If one, incorrectly, does not take this into 
account, it appears that the hazard does not 
decrease very rapidly with duration. The increase 
with calendar time and the decrease with dura- 

tion partially cancel each other out if they are not 
both incorporated in the model. 

The figure also suggests an alternative test of 
the model. One could test whether all coefficients 
change at this point in time where the intercept 
seems to change so dramatically. To implement 
this test we first split the labor market histories 
into two parts, one describing the first three and 
a half years and the second giving the subsequent 
three and a half years. We then estimate model 1 
for the two parts separately without any restric- 
tions. Note that if the only time varying coeffi- 
cient were the intercept, and if this only changes 
in July 1980, then both this split sample estima- 
tion, and the estimates of model 3 would be 
consistent. In table 5 the Weibull model is esti- 
mated for the two subperiods. These coefficients 
are not very precisely estimated. A formal test of 
the hypothesis that all coefficients are the same 
across both periods gives a test statistic of 26.6, 
where the 95% quantile of a x2(4) distribution is 
9.5. If we test the equality of the last three 
coefficients, i.e., all coefficients but the constant 
term, we get a test statistic equal to 1.7. The 95% 
quantile of the appropriate x2(3) distribution is 
7.4. We can therefore not reject the hypothesis 
that only the intercept varies with time. 

Now we will turn to the other two transitions. 
The same three models are estimated with a)(-) 
log linear in age, education and the logarithm of 
duration, and the time dependence going from 
non-existing via parametrically specified to semi- 
parametric. For both transitions the integrated 
baseline hazard was calculated. In table 6 and 
figure 4 the results for the unemployment to 
employment transition are given. 

FIGURE 3.-INTEGRATED BASELINE HAZARD 

FOR THE EU TRANSITION 
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TABLE 5.-WEIBULL MODEL FOR Two SUBPERIODS FOR THE EU TRANSITION 

Jan 1977 to June 1980 July 1980 to Dec 1983 

Variable Coefficient S.D. Coefficient S.D. 

Intercept - 6.73 (1.07) - 4.29 (0.59) 
In Duration 0.11 (0.26) -0.18 (0.14) 
Age 0.06 (0.03) 0.02 (0.02) 
Education -0.19 (0.23) -0.16 (0.11) 
Log Likelihood -166.6 -411.8 

TABLE 6.-THE UE TRANSITION 

Model 1 Model 2 Model 3 

Variable Coefficient S.D. Coefficient S.D. Coefficient S.D. 

Intercept - 3.94 (0.53) - 2.23 (0.82) 
Log duration -0.24 (0.17) -0.27 (0.17) -0.38 (0.17) 
Age - 0.08 (0.02) - 0.09 (0.02) - 0.09 (0.03) 
Education 0.31 (0.15) 0.32 (0.15) 0.31 (0.16) 
Unempl. rate 0.68 (0.31) 
Log likelihood - 206.4 - 203.9 - 141.9 

FIGURE 4.-THE INTEGRATED BASELINE HAZARD 

FOR THE UE TRANSITION 
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The estimates of the coefficients on the time 
invariant regressors are again not much affected 
by the level of sophistication with which the time 
dependence is treated. The duration dependence 
is remarkably negative for the last model. After 6 
months the value of the time invariant part of the 
hazard, c), has decreased to 50% of its level after 
one month. Again this strong duration depen- 
dence is partly obscured in the models with more 
tightly specified dependence or no time depen- 
dence at all. Again a Hausman test leads to 
rejection of Model 2 in favor of Model 3 because 
the difference in variances is not positive definite. 

In table 7 and figure 5 the results for the job to 
job transition are shown. 

For this transition neither the estimates for 
duration dependence nor those for the effects of 
the time invariant regressors are seriously af- 
fected by ignoring the time dependence. From 
figure 5 it can be seen that the increased flexibil- 
ity does not change the estimates considerably. 
This time the Hausman test for equality of the 
coefficients under Models 2 and 3 gives a value of 
2.5. Given that the asymptotic distribution of the 
tests statistic is chi-squared with three degrees of 
freedom, we cannot reject the hypothesis that the 
variation over time is captured by the variation in 
the national unemployment rate. 

Now we will turn to another aspect of the 
models with time dependence. The piecewise 
constant hazard estimates in table 3 can be inter- 
preted as the average hazard over the yearly 
intervals. If we look at this average at a particular 
point in time, we can decompose it into two 
factors: 

Aij(t) = Es,x[AOii(t) 

x(O(s(t ), x; Oi)yi(t) = 1] 
= Aoij(t) * (Oij(t) 

with 

tiij((t) = fo(s, x; Oij) * fi(s, xlt) ds dx 

where fi(s, xlt) is the distribution of (incomplete) 
durations s and characteristics x at time t among 
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TABLE 7.-THE EE TRANSITION 

Model 1 Model 2 Model 3 

Variable Coefficient S.D. Coefficient S.D. Coefficient S.D. 

Intercept - 4.55 (0.52) - 5.22 (0.85) 
Log duration -0.26 (0.13) -0.25 (0.13) -0.29 (0.14) 
Age 0.03 (0.02) 0.03 (0.02) 0.03 (0.02) 
Education - 0.05 (0.10) - 0.05 (0.10) -0.04 (0.10) 
Unempl. rate -0.24 (0.22) 
Log likelihood -532.1 -531.4 - 448.5 

FIGURE 5.-THE INTEGRATED BASELINE HAZARD 
FOR THE EE TRANSITION 
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that part of_the population that is in state i at 
that time. Aij changes over time because the 
baseline hazard Aoij changes or because the dis- 
tribution fi changes. The changes in the baseline 
hazard have been shown in Figures 3, 4, and 5. It 
is interesting to contrast that with the effects of 
the changes in the population distribution of the 
explanatory variables. We can estimate the aiij(t) 

with 
N 

CAEE(t) = E YE(t) 
n=l 

/N WEEXMSnt) YE E/E Et 

n=l 
N 

C)EU(t) = E YE s(t) 
n=l 

/N 

X (n(t), Xn; OEE) YE(t 

n=1 
N 

CtoUE(t) = E Y (t) 
n=1 

N 

X to( n(t), Xn; OEUE) YE(t 

n=1 

In figure 6 the paths of c)EE(t) (the dotted 
line), JEU(t) (the dashed line), and yUE(t) (the 
solid line) are given. It can be seen that a large 
part of the change in the average UE hazard is 
due to the change in the distribution of x and s 
among the unemployed. In the seven years the 
characteristics of the unemployed change consid- 

FIGURE 6.-CHANGES IN THE CONDITIONAL HAZARD OVER TIME 
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erably. Increasingly they are people with low 
chances of finding a job again even in good eco- 
nomic times when the baseline hazard is high. 
They are characterized by having been unem- 
ployed for a considerable period already, and/or 
having low levels of education, and/or being rel- 
atively old. On the other hand, the distribution of 
characteristics among those employed does not 
change much. There the change in the average 
hazard is mainly due to the change in the base- 
line hazard. 

The overall story for the increase in unemploy- 
ment over the years 1977-1983 emerging from 
this analysis can now be summarized as follows: 
the unemployment to employment baseline haz- 
ard was relatively low between 1979 and 1982, 
leading to lower chances for everybody to escape 
from unemployment. After that year the baseline 
hazard increased again, but the positive effect of 
that was countered by two negative effects. The 
employment to unemployment baseline hazard 
had increased sharply in 1980, leading to a higher 
flow into unemployment. Also, the people who 
were unemployed at that time had longer histo- 
ries of being unemployed, leading to lower 
chances of escaping from this situation. These 
two effects more than outweighed the effect of 
the increase in the baseline hazard from unem- 
ployment to employment after 1982, ensuring that 
the unemployment rate continued its upward 
path. 

IV. Conclusion 

In this paper an alternative form of the propor- 
tional hazard model is proposed. Instead of leav- 
ing the duration dependence unspecified, we leave 
the calendar time dependence unspecified and 
parametrize the duration dependence. This al- 
lows one to take account of the effects of a 
changing macroeconomic environment on the du- 
rations of jobs. Since most duration data contain 
information about periods covering a number of 
years, the assumption of a stationary environ- 
ment, while often made, is unappealing. This 
model can be viewed as a modification or alterna- 
tive interpretation of the Cox regression model. 
In the conventional form of the Cox model, we 
measure time from the date of entry. In this 
paper we use a fixed calendar date as the time 
origin. Inference proceeds along similar lines as 

that for the original Cox model. When we apply 
this model to Dutch data on labor market histo- 
ries the results change markedly compared to 
those with conventional models. Ignoring calen- 
dar time dependence severely biases the esti- 
mates of duration dependence. Incorporating 
these calendar time effects by means of a com- 
mon, time-varying regressor as the unemployment 
rate is not sufficient to eliminate this bias. Esti- 
mates of the effects of time invariant regressors 
do not seem to be seriously affected. It is shown 
that the variation over time has been a major 
factor in the increase of the unemployment rate 
in the Netherlands in the late seventies and early 
eighties. 

APPENDIX A 

Proof of Theorem 1 

In this appendix we will give sufficient conditions for theo- 
rem 1. First we will change notation slightly. This will enable 
us to use results by Andersen and Gill (1982). 

Define N'(t), Y'(t) and s,(t): 

N-Qt) = I[ti < t] - I[dn = 1] 

yn(t) = I It0? < t ] I i[t < t'] 

sA(t) = t - to if t > to and 0 otherwise. 

N(t) counts the number of events of interest between 0 and t. 
Y(t) indicates whether the individual is at risk at time t. 

We assume 

lim lim 6?[Nn(u + dt) -N n(u) 
u T t dt J 0 

= I {N(v),Y(v)}).? ,,x]/dt 

- Yn(t) *Ao(t) * exp[6*'h(sn(t), x)] 

with Y( ) and s(*) predictable processes. 
The partial likelihood function is: 

N Nn yn(tn) . exp[O'h(sn(tn),xn;O)] 
VJ 

.iA1 E.N=Ym(tn) 
* 

exp[O'h(sm(tZn,xm;60)] 
(22) 

Define ON to be the maximal of (40). 

Assumption 1: Yn(t) = 0 if t < 0 or t > b. x e X, a compact 
subset of 'L. 0 e 0, a compact subset of SK 

Assumption 2: 0 < Ao(t) < c for all t E [0, b]. h(s, x) is con- 
tinuous on (0, b] x X. 

To ensure identification and asymptotic normality one has to 



TRANSITION MODELS IN A NON-STATIONARY ENVIRONMENT 719 

look at the first and second moments of h. Define: 
l N 

S(0)(0,t) = - E Y,(t) - exp[O'h(sn(t),xn)] 
Nn = I 

(0, t) = - N h(Sn(t), Xn) 
Nn=1I 

* Y1(t) - exp[O'h(sn(t), Xn)] 

(,t))- N h(Sn(t), Xn) 
Nn = I 

* h(sn(t), xn)' Yn(t)exp[6'h(Sn(t), xn)] 

and 

i(6) =(b[S(o,t) S(l)(0, t) S(1)(0, t)] 

o lS(o)(O, t) SFO)(O, t) S(?)(6 t) j 
S(O)(0, t)AO(t) dt. 

Assumption 3: S(t), S(1) and S(2) converge to their expectation 
uniformly in 0 and t. Y(0*) is positive definite. 

Assumption 4: For all E > 0: 

sup fb| |h(s, x) I[ N- 112 h(s, x) I > E] 
x 0 

exp[6'h(s, x)] ds P 0. 

The last assumption replaces condition C in Andersen and 
Gill (1982). In both cases it is trivially fulfilled if h is bounded. 
The advantage of the formulation here is that the Weibull 
specification is included. To see this, let h(s, x) = ln(s), and 
assume that the coefficient is 0 > - 1. Then, 

fbII ln(s)II 

I[N- 1/211 ln(s) || > E ]exp[0 ln(s)] ds 

= fa(N) ln(s) * sods 
0 

for a(N) = exp[-N'/2 * e]. This is equal to 

_ a(N) ln(s) - s 1/2 +0/2 * 5 0/2- 1/2 ds 

which is, for N large enough, and therefore a(N) small 
enough, bounded by 

fa(N)so/2- 1/2 ds. 
0 

This goes to zero as a(N) goes to zero, which shows that 
assumption (5) is satisfied. 

Proof of Theorem 1: We check the conditions for lemma 3.1 
and theorem 3.2 in Andersen and Gill with the interval [0, 1] 
replaced by [0, bI. Conditions A, B and D follow trivially from 
our assumptions. Condition C is only necessary to guarantee 
that as N xo, 

- E llhll - I[N1/2* llhll > E]Yn(t)Ao(t) 
Nn=1 

exp[O'h]dt P 0 

for all E. This follows from assumption 4. QED. 

The essence of the proof is that for the purposes of establish- 
ing consistency and asymptotic normality the partial likeli- 

hood function can be treated as a conventional likelihood 
function. Under the assumptions made before, its limit has a 
unique maximum at 6*. Also, the normalized derivative 

N- 1/2(d ln Yp/dO)(6*) 

has in the limit a standard normal distribution. A Taylor 
expansion of the derivative of the log of the partial likelihood 
function can then be used to obtain the asymptotic distribu- 
tion for 0. 

B. Computational Aspects of Partial 
Likelihood Estimation 

A typical computer program for estimation of a Cox regres- 
sion model with time-varying regressors requires as input the 
triple (T, D, X(t), 0 < t < T), with T the duration, D the 
censoring indicator, and X the time path of the regressors. 
The partial likelihood function for this model is, if we order 
the observations by duration: 

N Di1,, 
(o) = >n exp(OX m(tn)) I (23) 

n=1 Em?nexp(6,Xm(T,, 

The calendar time dependence model we are interested in 
consists of observation of the form (to, t', d, x), with to the 
time of entry, ti the time of exit, d the censoring indicator, 
and x the regressors. The partial likelihood function corre- 
sponding to this model is, ordering the observations by exit 
time t': 

P( ) n exp(h(t~~n -n?n d 
Em > n, tt ( < ti ( exp( -'h( tn Xm) ) j 

(24) 

To estimate this as a standard Cox regression model choose a 
time origin To such that tI > To for all observations. Then let 
T = t - To be the (artificial) duration. The censoring indica- 
tor D is equal to d. The vector of time varying regressors 
X(t) consists of two parts. The first is equal to h(t - to, x) for 
t > to and equal to zero for t < to. The second part consists 
of one element and is equal to 1 if t < to and 0 if t > to. The 
partial likelihood corresponding to this specification is, with 
the observations ordered by (artificial) duration T, which is 
the same as the ordering by exit time t1, 

4(6) = 

n m [ E n exp(t'Xm(Tn)) ] 

-d 

6 exp(6'h(tn - to, Xn) + 02 0) 
YP(O)=r 

n=1 Em?n exp(l , < ' [i'h( t o- , Xm) 

+02 . ?] 

+_ to 2%1[01 ?0 + 02]) 

The derivative of the partial likelihood function with respect 
to 62 is always negative, so the coefficient will converge to 
-oo. When 02 gets close to -oo, the partial likelihood func- 
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tion converges to 

-Z4(6) 
I n 

)~~~ ~ [li exp(O'h(t -t?, )) 
to]x 

which is the same as (24). The maximand 01 is therefore 
identical to the maximand ' of (24). 
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