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Abstract

This paper examines the choice between subsidizing investment and subsidizing output

to promote socially desirable production. We exploit a natural experiment to estimate

the impact of subsidy margin on the productivity of wind farms. Using instrumental

variable and matching estimators, we find that investment subsidy claimants produce

10 to 12 percent less power than they would have under the output subsidy. Accounting

for extensive margin effects, we show that output subsidies are more cost-effective than

investment subsidies over a large range of output targets.
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1 Introduction

Governments subsidize investment for a variety of reasons. When economic output falls

well below potential output, policymakers subsidize investment to stimulate the economy.

To address the market failure of innovation spillovers, governments subsidize research and

development spending. To increase the supply of affordable housing, governments subsidize

low-income housing development. To spur the replacement of pollution-intensive facilities,

policymakers subsidize the construction of low-emission power plants. In each of these

examples, the social benefits of subsidized investments are tied to the eventual output they

produce, not just the investment itself. Given this, it is noteworthy that governments also

often directly subsidize output in each of these settings, through government procurement,

research prizes, housing vouchers, and tax credits for clean energy production.

Is it better to subsidize investment or output? If the government’s objective is to minimize

the public expenditure necessary to meet an output target, the answer is theoretically

ambiguous. Whether investment subsidies are more or less cost-effective than output subsidies

depends on how intensively investment goods are used on the margin, compared to on average,

and how substitutable they are with other unsubsidized inputs (Parish and McLaren, 1982).

Despite the ubiquity of both types of subsidies, there is little empirical evidence comparing

their cost-effectiveness in practice.

In this paper, we provide the first direct empirical evidence on this topic. We focus on the

U.S. wind power industry, where a unique policy innovation introduced through the American

Recovery and Reinvestment Act of 2009 temporarily allowed project developers to choose

between investment and output subsidies. Before January 1, 2009, wind farm developers

could only claim the Production Tax Credit (PTC), equal to $23 per megawatt-hour (MWh)

for the first ten years of output. From 2009 to 2012, developers could choose between the

PTC and the Section 1603 grant, an upfront cash payment equal to 30 percent of investment

costs. We leverage this natural experiment to compare the relative cost-effectiveness of these

investment and output subsidies using three sets of complementary analyses.

First, we focus on the intensive margin and find that plants claiming the investment

subsidy were 10 to 12 percent less productive than they would have been under the output

subsidy. These estimates reflect two empirical strategies that rely on different identifying

assumptions. Since there is no within-plant variation in subsidy type, we compare the output

of plants that selected the investment subsidy with those that selected the output subsidy.

As one approach to address concerns about this selection, we restrict the sample to wind

farms placed into service within 12 months of the January 1, 2009 policy change. Within

this window, the long lead time of wind farm development ensures that all siting and capital
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decisions would have been fixed well before the 1603 program was even conceived. To estimate

the effect of replacing output with investment subsidies, we instrument for investment subsidy

selection with an indicator for whether a plant was eligible for the 1603 grant. For our second

approach, we use a matched difference-in-differences estimator on the full population of wind

farms placed into service between 2005 and 2012. We employ matching to identify those

plants in the pre-2009 period that would have selected the investment subsidy had the 1603

grant been available. We then compare output between plants that, based on observables,

appear to prefer output subsidies to those that appear to prefer investment subsidies before

and after investment subsidies were made available.

Second, we evaluate the extensive margin gains associated with the introduction of the

1603 grant program and assess whether they could offset these intensive margin production

losses. Long project lead times coupled with the short duration of the program limited

the set of potential entrants to projects already in the development process when Congress

unexpectedly legislated the program. Using more than a decade of data on wind farm

proposals, we find little change in the probability that a proposed plant comes to fruition

during the 1603 grant program period. In order to estimate how many proposed wind

farms were “saved” by the grant program following the financial crisis, we use plant-specific

investment cost and marginal revenue data to construct each plant’s expected discounted

lifetime profits, and find that only three percent of the 1603 recipients appear marginal to

the investment subsidy. Accounting for both intensive and extensive margin impacts, we

estimate that the 1603 program reduced total wind output among recipients by 4 percent,

while increasing the total public cost by 3 percent.

Third, we use these analyses to generate commensurable estimates of the public expenditure

required to achieve a given quantitative renewable energy target under each regime. This

allows us to make direct comparisons of investment and output subsidies over a large range

of output targets. For example, focusing solely on the population of plants selecting the 1603

grant, we find that the amount of wind power produced by a 30 percent investment subsidy

could have been achieved at 29 percent lower cost using an output subsidy. We then extend

the analysis to include all wind farms entering between 2009 and 2012, and remove the ability

for wind developers to choose between subsidies. This further strengthens the case for an

output subsidy, as costs are now lower than the investment subsidy at most quantity targets

even if the intensive margin productivity response is ignored.

Although this paper is primarily focused on subsidy cost-effectiveness, we also discuss

the welfare implications of our results in Section 5.1. As we explain in Section 2.3, one

way that output subsidies could increase wind farm productivity is by encouraging firms to

exert more effort on operations and management. However, wind output subsidies could also
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increase the quantity of wind power demanded, conditional on effort, by displacing previously

inframarginal substitutes. The welfare effect of a 10 percent increase in wind production

due to the output subsidy depends on the share of that increase that comes from displacing

previously inframarginal sources, and the difference in social costs between these sources

and wind power.1 Although we lack the data to decompose our productivity estimates along

these lines, we discuss evidence from other research which suggests that displaced generators

likely have higher social costs than wind generators, on average. Thus, we conclude that

output subsidies appear preferable to investment subsidies in this setting, regardless of the

mechanism through which they increase output.

Despite extensive research on both optimal taxation and instrument choice, there is little

research on the relative performance of input and output subsidies.2 There is a large literature

on the effects of investment tax incentives across industries (e.g., Goolsbee, 1998, 2004; House

and Shapiro, 2008), but these papers do not compare investment incentives to alternative

instruments that target output. A few relevant papers estimate dynamic structural models of

adoption in the solar industry (Burr, 2016; De Groote and Verboven, 2019) or ethanol plant

entry (Yi et al., 2018) in the presence of one of the two subsidies, and assess the impact of

the other subsidy using counterfactual simulations. In contrast, we observe firms exposed

to both types of subsidy simultaneously in the data, and exploit a natural experiment to

directly compare outcomes across them.

This paper also contributes to a growing literature on renewable energy policy. Several

papers focus on estimating the environmental benefits of renewable electricity generation

(e.g., Cullen, 2013; Novan, 2015; Callaway et al., 2018; Fell et al., forthcoming). While we are

primarily concerned with cost-effectiveness, we discuss the efficiency implications of different

subsidy margins in section 5.1. Metcalf (2010) relates the PTC to the user cost of capital

and finds that wind investment is highly responsive to changes in tax policy. Schmalensee

(2012) compares U.S. renewable subsidies to policy alternatives such as a feed-in tariff or a

cap-and-trade program to limit emissions. Our paper is the first to study the impact of the

incentives created by renewable subsidies on firm productivity. As such, we build upon prior

work that showed electricity restructuring incentivized fossil fuel and nuclear power plants to

1Since the instantaneous marginal cost of wind power is zero, output subsidies can cause wind farms to bid
at prices below zero in electricity markets. As such, the points in time and space where output differences are
driven entirely by displacing inframarginal substitutes coincide with negative or zero spot prices for electricity.
While negative prices are rare in other settings, we discuss in Section 5.1 why their presence does not warrant
explicit consideration from a welfare perspective. What matters is the social cost of displaced plants, which
can be positive even when private bids are negative.

2The question was qualitatively discussed in several contexts in the 1980s. For example, Stiglitz (1987)
compares and contrasts crop price supports and fertilizer subsidies. Schmalensee (1980) considers the
conceptual merits of government policy to increase energy production generally, and concludes that input
subsidies build in “potentially huge inefficiencies” relative to an output subsidy.
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operate more efficiently (e.g., Fabrizio et al., 2007; Davis and Wolfram, 2012; Cicala, 2015).

Finally, Johnston (2019) also studies the 1603 grant program. Johnston focuses on the

non-fungibility of the PTC and asks whether replacing it with a refundable tax credit or

grant would increase wind power investment. Leveraging an identification approach similar

to our IV strategy, Johnston finds that wind farm developers value each PTC dollar at $0.85.

Crucially, the estimation approach used in that paper assumes the difference in marginal

incentives between the PTC and 1603 grant has no impact on wind farm productivity. In

contrast, we estimate the impact of these marginal incentives and find that they are large.

The rest of this paper proceeds as follows. Section 2 provides a brief introduction to

the economics of wind energy, a summary of the policy environment, and a discussion of

how production incentives differ under investment and output subsidies. Section 3 describes

the data. Section 4 summarizes the empirical strategy and results for our intensive margin

analysis. Section 5 discusses our extensive margin and cost-effectiveness analyses as well as

efficiency implications. Section 6 concludes.

2 Background

2.1 The Economics of Wind Power

A wind turbine consists of a rotor with three long blades connected to a gearbox and generator

atop a large tower. As wind passes through the blades, the rotor spins a drive shaft connected

through a series of gears to a generator that converts this kinetic energy to electrical energy.

The amount of power generated by a wind turbine is determined primarily by the design of

the turbine and the velocity of the wind. Nameplate capacity, denominated in megawatts

(MW), is the maximum rated output of a turbine operating in ideal conditions. Wind turbines

typically operate at rated capacity at wind speeds of 33 miles per hour (15 meters/second),

and shut down when the wind speed exceeds 45-55 miles per hour (20-25 meters/second)

to prevent damage. Figure A.1 presents the marketed power curves for two common wind

turbine models in our sample, demonstrating the nonlinear relationship between wind speed

and output.

Building a wind farm involves large upfront costs. The average implied investment cost

for plants receiving a 1603 grant in our data is $165 million. Wind farm development also

requires long lead times. Developers first have to survey and secure access to land that is both

sufficiently windy and close to existing transmission lines. They then have to obtain financing

and siting permits, as well as negotiate any power purchase agreements. The construction

phase of a wind farm takes 9 to 12 months, with site permitting and turbine lead times
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often double that (Brown and Sherlock, 2011). Turbines are ordered up to 24 months before

ground is broken, and, at that point, the size and location of a project is essentially fixed.3

For wind farms coming online in 2009 and 2010 in the Midcontinent Independent System

Operator (MISO), an average of 2.7 and 3.5 years passed between when the wind farms began

the process of connecting to the grid and when they actually began supplying electricity.4

Although wind operators do not incur fuel costs, there are a number of variable costs

associated with running a wind farm efficiently once it is installed. Turbines need to

be monitored and serviced regularly to operate at peak efficiency (Wiser and Bolinger,

2014). Placing more emphasis on routine maintenance can reduce the probability of failure,

and, conditional on failure, service arrangements and crane availability induce variation in

turnaround times across operators. The gearbox, in particular, contains a complicated set of

parts that, if not serviced, can reduce the fraction of wind power harnessed or cause the unit

to be taken offline entirely. In 2013, operations and maintenance (O&M) costs at U.S. wind

farms were on the order of $5 to $20 per MWh, with a few plants with O&M costs in excess

of $60 per MWh (Wiser and Bolinger, 2014).

2.2 Wind Power Policies

The United States has implemented policies to promote investment in wind power at the

Federal, state, and local levels. Since 1992, the leading Federal subsidy for wind farm

developers has been the PTC. The PTC is a tax credit for electricity generated by qualified

energy resources and sold to an unrelated party during the tax year. A qualifying generation

source can claim the PTC for the first ten years of generation after the plant is placed into

service. Congress initially set the PTC at $15/MWh, but automatic inflation adjustments

made it worth $23/MWh in 2014. Prior to the 2008 financial crisis, wind farm developers

typically monetized tax credits by partnering with a financial firm in the tax equity market.

During the financial crisis, more than half of the suppliers of tax equity exited this market.

This introduced financing challenges for wind farm developers without sufficient tax liability

to monetize the tax credits on their own (U.S. PREF, 2010).

In this financial context, wind farm developers sought new ways to realize the value of

the PTC. In early January 2009, Congressional staffers and Presidential Transition Team

members discussed for the first time the possibility of allowing large-scale wind power sources

3Even during normal times, there is a natural lag between turbine contract signing and installation. But
turbine lead times approached two years during the peak demand period in the first half of 2008 (Lantz et al.,
2012, p. 12).

4Authors’ estimate based on MISO interconnection queue data. New electricity generators enter the
interconnection queue to request the ability to connect to the electricity grid and supply electricity once
construction is complete.
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to receive an upfront cash grant worth 30 percent of investment costs in lieu of the PTC as

part of what would become the American Recovery and Reinvestment Act of 2009 (“The

Recovery Act”).5 When the bill became law the following month, Congress made this Section

1603 grant option available retroactively to projects placed into service on or after January 1,

2009. A wind project could claim a 1603 grant if it was placed into service between January

1, 2009 and December 31, 2012.6 Wind farms remained eligible for the PTC under existing

law, and the Recovery Act extended the wind PTC until December 31, 2012 (before it was

extended again by subsequent legislation). The Recovery Act thus provided wind power

developers with a new, mutually exclusive subsidy choice: they could claim the PTC over 10

years or they could claim an upfront cash payment equal to 30 percent of eligible investment

costs.7 In total, the Treasury made about 400 Section 1603 grant awards to large wind farms,

disbursing over $12 billion.

These two Federal subsidies were not the only policies affecting wind farms during the

time period we study. There were other, overlapping regulatory and fiscal policy instruments

focused on wind power development at the state and Federal levels, including accelerated

depreciation and loan guarantees (Aldy, 2013; Metcalf, 2010; Schmalensee, 2012). Many

states also have a renewable portfolio standard (RPS) that mandates a minimum share

of the state’s power comes from renewable sources, resulting in a price premium for wind

power. Under some state RPS programs, renewable energy certificates (RECs) for wind

power generation have been worth more than $50/MWh, or more than twice the value of

the PTC (Schmalensee, 2012). States also provide subsidies through state tax credits and

property tax exemptions. For purposes of the statistical analyses below, it is important to

recognize that these policy instruments generally did not change contemporaneously with the

introduction of the Section 1603 grants.8

5One of the authors served as one of two staff who negotiated the energy provisions of the Recovery Act
representing the Obama Presidential Transition Team. He met regularly with staff to the House Ways and
Means and Senate Finance Committees in December 2008 and January 2009, as well as with career Treasury
staff in the Office of Tax Policy. In January 2009, upon agreement with Congressional negotiators of what
became the Section 1603 grant in the Recovery Act, the author briefed a large meeting of the renewables
industry at the Presidential Transition Team offices where the unexpected, novel nature of this policy was
evident in the meeting participants’ reactions.

6Technically, the December 2010 tax law extended the 1603 grant sunset date from December 31, 2010 to
December 31, 2012.

7While the Recovery Act also provided developers with the option of taking the ITC, in practice, they
chose between the PTC and the Section 1603 grant. The annual Internal Revenue Service Estimated Data
Line Counts reports show that not one corporation claimed the ITC for a wind power project over 2009-2011.

8In the few cases we are aware of where states changed their policies, they only modified RPS targets ten
or more years in the future without changing their near-term targets.
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2.3 Output Subsidies and Wind Farm Productivity

There are two channels through which an output subsidy could increase production, conditional

on a plant being built. One channel is by increasing the “availability” of wind turbines.

Turbines are large, mechanical devices, periodically placed under extreme stress. From time

to time, one component breaks and the turbine needs to shut down as a safety precaution.

Operators need to identify such failures and send a technician to scale the device and fix the

problem. Wind farms that receive a higher price for their output have a higher opportunity

cost of foregone production, and thus a greater incentive to prevent and minimize the

downtime associated with turbine failures. On a more continual basis, wind farm operators

perform costly maintenance activities to ensure their turbines operate efficiently. As the

industry has grown, a robust turbine service consulting market has developed, with providers

purporting to optimize operations and boost output.9 Wind farm operators’ willingness

to pay for such productivity-boosting services is increasing in their marginal revenue, and,

during our sample, the PTC represented an approximately 40 percent increase in marginal

revenue for the average wind farm.

A second channel through which an output subsidy can increase production is by increasing

the probability that a wind farm will be selected by the grid operator to produce power at a

given point in time, or “dispatched,” conditional on being available. In real time, electricity

demand is perfectly inelastic. Firms bid the minimum price at which they agree to provide

power, and the system operator dispatches firms in ascending order until demand is satisfied.

As the marginal cost of wind generation at any moment is zero, a wind farm should bid zero

(absent any other constraints, contractual obligations, or payments for output outside the

wholesale electricity market). Under an output subsidy, the wind farm should be willing to

pay up to the value of the subsidy in order to supply electricity in a given hour. Thus, the

PTC could have boosted output by moving wind farms up in the dispatch order, increasing

the chance they are selected to produce during low demand hours.

To conceptualize the net effect of these two mechanisms on wind farm production,

consider an electricity market in which the lowest cost power plants are dispatched first.10

Let MCnonwind in Figure 1 be the dispatch curve for all non-wind powered plants. Absent

any output subsidy, W units of wind capacity are available at a marginal cost of MCwind.

Combining wind and non-wind capacity by horizontal summation gives the aggregate supply

9For example, Uptake, an analytics firm that brings artificial intelligence to industrial devices including
wind farms claims that it can significantly increase wind production without installing new turbines by
“predicting and preventing problems before they occur, by maximizing the time turbines are available, and by
ensuring they’re capable of generating as much energy as possible” (See Uptake (2019), ”New Report Shows
Untapped Energy in the US Wind Fleet).

10Realized dispatch curves deviate from this order for a variety of reasons (see, for example, Cicala, 2017).
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curve S. The amount of wind dispatched will vary based on the level of demand D. For low

levels of demand (e.g., D1), no wind will be dispatched. Only the lowest-cost non-wind power

plants will generate electricity. For intermediate levels of demand (e.g., D2), a fraction of

wind capacity will be dispatched. At levels of demand above D3, all wind capacity will be

dispatched.

Figure 1: Dispatch Curve (Illustrative Example)

An output subsidy of φ per MWh of wind generation moves wind to the left in the

dispatch curve, displacing some previously inframarginal non-wind capacity. This is because

wind farms dispatched at a price of MCwind−φ will have net zero private marginal profits

after accounting for the subsidy. The output subsidy also increases the availability of wind

farms for the reasons discussed above. This boost in available capacity is represented by ∆A.

The resulting aggregate supply curve, which includes both wind and non-wind, is SPTC.

Comparing S and SPTC shows how, conditional on installed capacity, the net change

in wind power generated, and the mechanism behind that change, depend on the level of

demand. For very low levels of demand, below D1, there is no difference in wind generation

under the two subsidies because no wind is dispatched in either case. For demand between

D1 and D2, the output subsidy increases wind generation via the dispatch effect. For demand

between D2 and D3, the difference is due to both the dispatch and availability effects. Finally,

for levels of demand above D3, any difference in output across the two subsidy types comes

entirely from the availability effect.

9



3 Data

In this section, we concisely summarize our data sources and sample restrictions. Additional

detail is provided in Appendix A. We compiled data on wind farm characteristics and output

from two publicly available Energy Information Administration (EIA) surveys covering all

utility-scale wind farms in the United States. The EIA-860 database, which reflects an annual

survey of power plants, contains: first date of commercial operation, operator, location,

nameplate capacity, number of turbines, predominant turbine model, average annual wind

speed,11 wind quality class,12 regulatory status of the plant, entity type13 of the principle owner,

and operation within a regional transmission organization (RTO) or independent system

operator (ISO). We combine this annual plant-level information with monthly electricity

generation data collected through the Form EIA-923 survey of power plants.

We supplement these EIA data with proprietary data from the American Wind Energy

Association (AWEA), 3TIER, and turbine manufacturers. The AWEA database contains

additional cross-sectional information on each wind farm, including the wind turbine model

and whether projects contract output through long-term power purchase agreements (PPAs)

or sell on spot markets. We use the former to corroborate turbine data in the EIA-860 and the

latter to construct “offtake type” indicator variables which control for potentially differential

contracting arrangements across 1603 and PTC recipients in the estimated regression models.

3TIER uses global wind and weather monitor data to interpolate hourly wind speed,

wind direction, air pressure, and temperature for the entire continental United States at a

spatial resolution of approximately 5 kilometers.14 We combine these high frequency wind

data with power curves from turbine manufacturers for each turbine make and model in the

EIA data.15 Using this information, we compute an “engineering” estimate of the potential

output for each plant-month that accounts for the site-specific, nonlinear relationship between

wind speeds and electricity generation. Further detail on this variable and its construction is

11We also refer to EIA’s average annual wind speed as “design wind speed” to distinguish it from wind
speed data from 3TIER.

12Wind quality class takes one of four categories defined by the International Electrotechnical Commission.
13The entity types recorded on Form EIA-860 are: cooperative, investor-owned utility, independent

power producer, municipally-owned utility, political subdivision, federally-owned utility, state-owned utility,
industrial, and commercial. We use this information to restrict our sample as described in the text. We also
use it to construct a dummy variable for independent power producer (IPP) that we include in our analysis
in order to capture variation in ownership structure conditional on regulatory status, as some non-regulated
plants are owned by investor-owned utilities.

14For more information on how this dataset is constructed, see: http://www.3tier.com/en/support/wind-
prospecting-tools/how-was-data-behind-your-prospecting-map-created/ (Accessed 2/14/2017).

15Power curves were primarily obtained from http://www.wind-power-program.com/ (last accessed
2/14/2017), and supplemented with information obtained directly from turbine manufacturer marketing
materials (generously provided to us by Joern Huenteler).
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provided in Appendix A.2.

The final dataset comes from the U.S. Department of Treasury. The dataset provides

information on every large wind project recipient of a 1603 grant, including the amount

awarded (equal to 30 percent of eligible investment costs), the date of the award, and the

date placed in service.16 We assume that all developers of non-1603 recipient wind farms

claimed the PTC based on both guidance provided by staff at the American Wind Energy

Association and Internal Revenue Service data. Specifically, we confirmed that no corporation

claimed the ITC for PTC-eligible projects (i.e., wind) in 2009, 2010, and 2011 in the annual

Internal Revenue Service Estimated Data Line Counts reports for corporation tax returns.

We do not have plant-specific tax data on the PTC claims, although we observe all power

related data for presumed PTC-claimants through the EIA data described above.

Appendix table D.1 presents an annual summary of these data for plants entering service

between 2002 and 2014.17 In our empirical analysis, we restrict attention to plants with owners

classified as either independent power producers or investor-owned utilities. Commercial

and industrial facilities are excluded, as are plants that are publicly owned (e.g., municipal

power plants), as these plants are not eligible for the PTC. We also exclude a small number

of plants that appear to have claimed the PTC for some turbines that came online before

2009 and the Section 1603 grant for some turbines that came online in 2009 or later (see

Appendix A for further details).

Table 1 compares projects placed into service during the 1603 grant eligibility period by

subsidy type. Although the overall project sizes are comparable—both in terms of total size

(i.e., nameplate capacity) and turbine size—1603 recipients are located in areas with slightly

lower average wind speeds, are less likely to operate in a regulated market, and are more

likely to contract output through PPAs. Figure D.1 presents a map of plant locations coded

by subsidy choice. Although there is considerable spatial overlap in many parts of the U.S.,

some regions show a clear preference among developers for one subsidy type. Together, these

differences are suggestive of selection.

16The Department of the Treasury distinguished between “large” wind projects, which are eligible for the
PTC, and “small” wind projects, which must have nameplate capacity no greater than 100 kilowatts and are
eligible for investment tax credits. All utility-scale wind projects and all wind farms in the data compiled
from the EIA fall into the “large” wind project category.

17There are two potential ways to define online date based on the EIA data. One is the date that the
survey respondent reports to EIA that the plant began commercial operation on Form EIA-860; the other
is the first date that its generation appears in the EIA-923 production data. Although these by and large
coincide, discrepancies can appear due to “pre-commercial” plant testing (923 date < 860 date) or due to
the delay with which EIA begins tracking new plants (860 date < 923 date). This is important because the
online date determines 1603 grant eligibility (our instrument). We use the 860 date, as we were told by an
EIA expert that this date would be more accurate for our purposes. Nevertheless, IV results are robust to
using the 923 date instead. In all specifications, plants with conflicting 923 and 860 dates around the 2009
eligibility cutoff are excluded from the sample.
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Projects selecting the 1603 grant also have lower potential and realized capacity factors.18

A capacity factor is the ratio of output to the maximum attainable output of a plant if it

continuously produces electricity at its nameplate capacity. Here, the potential capacity

factor is an engineering-based prediction of the capacity factor computed using each plant’s

wind turbine and wind speed data. The realized capacity factor (henceforth simply “capacity

factor”) is constructed using the plant’s actual output. Thus, the final row of Table 1 shows

that 1603 recipients produce less electricity than PTC recipients on average, relative to their

total potential output. In the next section, we describe our strategy for identifying the

portion of this observed difference in productivity attributable to the subsidy rather than

selection.

Table 1: Comparison of 2009-2012 Projects by Policy Choice

PTC 1603 Difference p-value

Nameplate Capacity (MW) 102.27 92.03 10.24 0.30
Turbine Size (MW) 1.84 1.91 -0.07 0.20
Design Wind Speed (MPH) 17.81 17.33 0.48 0.27
Regulated 0.23 0.03 0.20 0.00
IPP 0.68 0.89 -0.21 0.00
PPA 0.67 0.86 -0.19 0.00
Potential Capacity Factor 39.59 34.83 4.76 0.00
Capacity Factor 36.76 30.61 6.15 0.00

New Wind Farms 107 192

Each row contains a two-sample t-test for a difference in means between recipients of the PTC and the
Section 1603 grant that came online in 2009-2012 and are in the restricted sample described in Section 3.
Regulated, IPP, and PPA are binary variables. Potential Capacity Factor and Capacity Factor are ratios
(scaled by 100), both of which are computed using data from 2013 and 2014.

4 Empirical Strategy and Productivity Results

Motivated by the previous discussion of the potential for output subsidies to increase wind

farm productivity, we quantify the magnitude of this effect by estimating following regression

under several different assumptions and sample restrictions:

qit = δDi + βXit + νit (1)

18Capacity factors, which effectively measure power plant capacity utilization, are a commonly used metric
of operational activity in the electric power sector (see, for example, Davis and Wolfram, 2012). Additional
detail provided in Appendix A.2.
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where qit is plant i’s capacity factor (in percentage points) in month-year t; X is a vector of

controls, such as engineering-based potential capacity factor, regulatory regime, presence of a

power purchase agreement, and location dummies; and D is an indicator for whether wind

farm i took the 1603 grant. The coefficient of interest, δ, reflects the effect of removing output

subsidies. Given the preceding discussion of two channels through which output subsidies

can increase production, we expect δ to be negative.

Estimating equation 1 using OLS is problematic due to the fact that wind farms had to

opt in to the 1603 program, so Di was chosen. Intuitively, plants that expect to have high

output relative to their investment costs will prefer the PTC, while plants with relatively

high investment costs per unit of expected output will prefer the Section 1603 grant. Thus,

OLS estimates could confound the response to reducing marginal production incentives with

the fact that less productive plants are likely to have selected into the 1603 grant program.

To address this concern, we employ two complementary empirical approaches to identify

the causal effect of the Section 1603 grant on wind farm output: an instrumental variables

estimator and a matching estimator.

4.1 Instrumental Variable Estimation

Our primary empirical strategy harnesses the natural experiment created by the 1603 grant

program by comparing wind farms that came online just before and just after the program

went into effect. While the Section 1603 grant was not randomly assigned, its creation came

as a plausibly exogenous shock to the industry. We exploit this shock by using a binary

indicator for whether the project came online after January 1, 2009 as an instrument for

cash grant recipient status. We use this instrument along with wind farms’ monthly output

data over 2010-2014 to estimate equation 1 via two-stage least squares. This IV approach is

similar to a fuzzy regression discontinuity design with time as the running variable, which we

implement as a sensitivity analysis in Appendix Table D.2.

Identification and interpretation of δ relies on two key assumptions: (1) that ineligible

firms cannot manipulate the date they came online to receive the subsidy, and (2) that the

instrument (subsidy eligibility) only affects outcomes through its effect on the endogenous

variable (subsidy choice).19 The first assumption is supported by institutional details. Wind

farms could not strategically adjust when they came online in anticipation of the policy, as

the policy had not even been proposed until after the January 1, 2009 eligibility date (see

19Identification and interpretation as a local average treatment effect also relies on three other restric-
tions/assumptions. First, we know from the data that the first stage is non-zero. Second, the monotonicity
assumption holds by virtue of the policy environment: firms cannot “defy” treatment assignment because the
1603 grant is only available from the Federal government. Finally, we assume homogeneous treatment effects.

13



Section 2.2).

To assuage concerns about the exclusion restriction, our main IV specification uses a

bandwidth of one year on either side of the start date of the policy, relying only on a

comparison of projects that came online in 2008 and 2009. This has two main advantages.

First, long-run trends in wind turbine technology and electricity markets are less likely to

influence our results. For example, 82 percent of the new projects in our 2008-2009 sample

use turbine models that were used in both years. Second, projects that came online in early

2009 were planned and began construction in 2008 (or earlier), which implies that these plants

were originally designed for the PTC (Bolinger et al., 2010). This helps mitigate concern

that 1603 grant recipients are fundamentally different, as may be the case in later periods.

Table 2 compares projects coming online in 2008 with those coming online in 2009 using

two-sample t-tests. In contrast to the comparison of PTC and 1603 plants over the full life of

the policy (Table 1), the two groups in Table 2 are statistically indistinguishable in terms of

several pre-treatment characteristics including turbine size, wind speed, regulatory status, and

whether a wind farm has entered into a PPA. Similarly, despite small differences in subsidy

preference across regions in 2009, Figure D.2 shows that both subsidy types have strong

spatial overlap with PTC plants that came online in 2008, which is the relevant comparison

in this analysis. Nonetheless, capacity and the probability of being an independent power

producer are statistically different in Table 2 across these two years. To account for this, we

condition on these variables in our regressions.

Table 2: Projects Entering One Year Before and After the Policy

2008 2009 Difference p-value

Nameplate Capacity (MW) 85.97 110.73 -24.77 0.05
Turbine Size (MW) 1.82 1.81 0.00 0.95
Design Wind Speed (MPH) 18.01 17.50 0.52 0.29
Regulated 0.13 0.12 0.01 0.81
IPP 0.58 0.79 -0.21 0.01
PPA 0.75 0.74 0.01 0.85
Potential Capacity Factor 37.50 37.24 0.27 0.84
Capacity Factor 34.47 31.85 2.62 0.01

New Wind Farms 69 77
1603 Recipients 0 51

Each row contains a two-sample t-test for a difference in means between wind farms that came online in
2008 and in 2009 and that are in the restricted sample described in Section 3. Regulated, IPP, and PPA are
binary variables. Potential Capacity Factor and Capacity Factor are ratios (scaled by 100), both of which are
computed using data from 2013 and 2014.
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Most importantly, the plants in these two years have remarkably similar engineering-based

potential capacity factors. However, our outcome variable, realized capacity factor, is lower

(and statistically distinguishable) for projects coming online in 2009 than for projects coming

online in 2008. This difference in observed productivity, despite the lack of difference in

potential productivity, provides an (unscaled) preview of the main IV results.

Results

Table 3 reports the instrumental variable results. The sample is restricted to a balanced

panel of monthly generation from 2010 to 2014 at wind farms that came online in 2008 or

2009. The dependent variable in each regression is the capacity factor in percentage points.

Table 3: Instrumental Variables Estimates

(1) (2) (3) (4) (5) (6)

1603 Grant -5.148∗∗∗ -3.626∗∗∗ -2.842∗∗∗ -3.697∗∗∗ -2.893∗∗ -3.156∗∗∗

(0.915) (0.899) (0.829) (1.351) (1.238) (1.170)

Regulated -1.562 -5.439∗∗∗ -1.371 -5.446∗∗∗

(1.712) (1.979) (1.685) (1.970)

PPA -0.648 -2.608∗∗∗ -0.600 -2.618∗∗∗

(1.048) (0.927) (1.056) (0.925)

IPP -1.350 -2.554∗ -1.408 -2.514∗

(1.333) (1.351) (1.305) (1.307)

Potential Capacity Factor 0.501∗∗∗ 0.551∗∗∗ 0.503∗∗∗ 0.553∗∗∗

(0.0366) (0.0391) (0.0368) (0.0386)

Var(Wind Speed) 0.0400 -0.426∗∗∗ 0.0637 -0.432∗∗∗

(0.148) (0.103) (0.155) (0.107)

log(Capacity) -0.567 0.571 -0.605 0.580
(0.429) (0.471) (0.430) (0.470)

Regression Type OLS OLS OLS 2SLS 2SLS 2SLS
Controls N Y Y N Y Y
State FE N N Y N N Y
R-sq. 0.372 0.557 0.660 - - -
N 8752 8752 8752 8752 8752 8752
First-stage F-stat. 148 169 113

The dependent variable is the capacity factor in percentage points. Data include a balanced panel of monthly
observations from 2010 to 2014 for all wind farms. All models contain year-month dummies. Standard errors
clustered by wind farm reported in parentheses.

The primary coefficient of interest (δ) appears in the first row of the table, labeled 1603

Grant. The first three columns present OLS estimates of equation 1. Column 1 includes only

time (month-year) dummies. The interpretation is that plants receiving output subsidies
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operated at 5 percentage points lower capacity factor compared to PTC recipients coming

online between 2008 and 2009. Column 2 adds controls for plant size and monthly wind

quality, as well as dummies for whether the plant is regulated, whether it is owned by an

independent power producer, and presence of a power purchase agreement.20 Consistent with

the descriptive evidence above, 1603 and PTC plants differ on observable dimensions, and

controlling for these differences reduces the estimated productivity gap. Column 3 adds state

fixed effects to account for other unobserved differences in markets and renewable policies

across states, which attenuates the relationship further.

Columns 4-6 present IV estimates using the same covariates, instrumenting for 1603 receipt

with an indicator for whether the wind farm was eligible for the 1603 program. Conditioning

only on month of sample, 1603 plants are 3.7 percentage points less productive than their

PTC counterparts. This difference is considerably smaller than the OLS estimate in column 1.

Adding controls results in a modestly lower estimated 1603 effect of 2.9 percentage points, and

is our preferred specification. Column 6 adds state fixed effects, which effectively discards 25

percent of the sample for which there is no within-state subsidy variation. The estimate splits

the difference between the previous two, leaving a 3.2 percentage point gap in productivity

across plants choosing the two subsidy types. Our preferred estimate of 2.89 implies that

1603 grant recipients would have produced roughly 10 percent more power had they claimed

the PTC.21 To provide context for the magnitude of this estimate, note that it is in line with

industry claims for how post-construction wind farm optimization services could increase

output (see discussion in Section 2). The marginal incentive of the PTC is quite substantial

during this time period, providing a premium of roughly 40 percent over the average price of

power sold by wind farms to the grid. As such, the estimate in column 5 implies a supply

elasticity of around 0.25.

Robustness Analysis

We assess the sensitivity of our results to the assumed sample bandwidth. The primary

motivation for doing this is concern about violations of the exclusion restriction. Since our

instrument is based on time, we implicitly assume that the time a plant was placed into

operation only affects productivity through the change in subsidy margin. This assumption

could fail if there were changes between 2008 and 2009 in the way plants were initially set up

that had persistent effects on productivity. Although we believe it is highly unlikely that

wind farm developers could have made significant changes to projects that began operations

20Unless otherwise noted, the same controls appear in every model throughout the paper. Additional
discussion of the potential capacity factor and wind speed variables is provided in Appendix A.2.

21This 10 percent reduction is computed by dividing the estimated 2.89 percentage point reduction in
capacity factor by the average capacity factor for all 1603 grant recipients of 30.32 percentage points.
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in 2009 after first learning about the policy, that possibility becomes more remote as we

shorten the sample around the policy introduction. Of course, smaller bandwidths generate

smaller samples, lessening the statistical precision of our estimates.

Figure 2 presents coefficients from the preferred specification in column 5 in graphical

form using alternative bandwidths ranging from three months to 24 months on each side of

the policy change. Although the confidence intervals are large for the very small bandwidths,

the results are consistent and reinforce our baseline findings: all specifications suggest receipt

of the 1603 grant leads firms to produce less electricity than they would have if they had

received the PTC. Moreover, the fact that the point estimates remain remarkably stable

between nine and 24 months assuages concerns that the results are driven by time trends.22

Figure 2: IV Estimates using Alternative Bandwidths

Coefficient estimates from 2SLS regressions of capacity factor on a binary indicator for 1603 grant receipt,
instrumented with a binary indicator for grant eligibility. Regressions also include year-month dummies,
controls for plant size and wind quality, as well as dummies for whether the plant is regulated, is owned by an
IPP, and has a PPA. Data are a panel of monthly observations from 2010 to 2014. Each point corresponds
to a sample defined by its bandwidth around January 1, 2009, so that the leftmost model includes plants
that came online between October 2008 and March 2009, and the rightmost model includes plants that came
online between January 2007 and December 2010. A bandwidth of 12 months corresponds to column 5 of
Table 3. Spikes denote 95% confidence intervals based on standard errors clustered by wind farm.

22We also estimate models that allow for the possibility of trends within the 2008-2009 time period in
technology, site quality, and other factors that have persistent effects on output. Table D.2 presents results
from a parametric fuzzy regression discontinuity model that includes piecewise linear trends. Unfortunately,
given the small sample size, these results are quite noisy. In models 4 and 5, the point estimates are larger in
magnitude than the IV estimates, while in model 6 the results are smaller and not statistically distinguishable
from either the IV estimates or zero. The variability in these estimates may be the result of weak instruments,
as they have relatively small first-stage F-statistics.
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4.2 Matched Differencing

Our second empirical strategy uses a combination of matching and differencing to infer

counterfactual outcomes for 1603 grant recipients. Assume the unobserved component of

production takes the form νit = Ai+εit, where Ai denotes the unobserved quality of wind farm i.

Selection in our context would manifest itself as a correlation between Ai and Di. Conditioning

on Ai would eliminate this bias, as E[qit|Xit, Ai, Di = 1]=E[qit|Xit, Ai, Di = 0] + δ. Under

the assumption that Ai is time-invariant, the use of plant fixed effects with panel data would

remove this bias.

Since subsidies are irreversibly chosen at the commencement of operations, we do not

observe subsidy variation within a plant, and thus cannot include plant fixed effects. Instead,

we adopt the additional assumption that unobserved heterogeneity takes the following form,

Ai = g(Xi)+γPosti, where g() is an unknown function of observable wind farm characteristics,

and γ is a wind farm vintage fixed effect for plants entering post-ARRA. Although g() is

unknown, including a dummy variable for each unique combination of characteristics Xi

would fit any g(). The difference in productivity between two wind farms with the same

characteristics that entered in different policy periods would then simply be γ.

While we cannot fit g() exactly given that Xi contains continuous covariates and our

sample is finite, we approximate g() by matching wind farms with similar characteristics

across different vintages. We divide our sample into two groups corresponding to two policy

regimes: wind farms that entered between 2005 and 2008 (“pre” plants), when there was no

subsidy choice, and wind farms that entered between 2009 and 2012 (“post” plants), which

could choose either the PTC or the 1603 grant. We then match pre and post wind farms on

observable characteristics using coarsened exact matching.23 Let g index a group of pre and

post plants that are matched together. Equation 1 becomes,

qit = δDi + βXit + Ag + γPosti + εit, (2)

where Posti is an indicator for whether a plant came online after the 1603 program was

introduced. Intuitively, the estimator takes the average difference between 1603 recipients

and their pre-period matched counterparts, and subtracts the difference between post-period

PTC plants and matched pre-plants within their group. To see this, let Dg indicate the

observed subsidy choice of the post-period plants in group g. Then

E[qit|Dg = 0, Posti = 1]− E[qit|Dg = 0, Posti = 0] = γ

23Iacus et al. (2012) outline the algorithm and derive its statistical properties. More information and
implementation packages can be found at http://gking.harvard.edu/cem.
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E[qit|Dg = 1, Posti = 1]− E[qit|Dg = 1, Posti = 0] = γ + δ

In practice, we replace γ with fixed effects for cohort (i.e., the first year each wind farm

generated electricity), and allow group-level unobservables to vary by time.

Matching requires us to drop plants that do not lie within the common support of pre

and post period entrants on key observable dimensions. Within the set of plants that remain,

identification requires assuming there are no unobservables that affect both production

changes across pre and post plants and subsidy choice (i.e., unconfoundedness). We also

assume the covariates used for matching are unaffected by the availability of the 1603 grant.

While we cannot directly assess this assumption, the long development timeline of wind

farms reduces concern over any large responses on this dimension. Moreover, the IV analysis

addresses precisely this concern.

The primary concern with the IV estimator is that the instrument, time, may be picking

up other trending factors that affect productivity. Our matching estimator relaxes this by

allowing unobservable dimensions of wind farm entry cohorts to evolve over time. The key

assumption is parallel trends in these unobservable factors across the types of plants that

choose each subsidy in the post period.

Results

We match exactly on several categorical variables (geography, wind quality class, regulatory

status, and entity type) and two coarsened continuous variables (capacity and design wind

speed).24 This procedure selects all pre-period wind farms within the same coarsened cell in

the covariate space as each post-period wind farm.

Table 4 compares pre- and post-period entrants after using coarsened exact matching with

state as the geography. Of the 465 wind farms in our sample entering between 2005 and 2012,

204 lie within the common support of these variables across the two policy periods.25 The

number of post-period 1603 matches is about double the number of PTC matches, which is in

line with their underlying population probabilities. T-tests confirm that this restricted sample

24In this analysis, we match on two wind quality measures collected by the EIA, design wind speed and
wind class. An alternative would be to match on the realized potential capacity factor, which we construct
and use as a control at the month level, averaged over the sample. We prefer the EIA measures because
they are directly reported to the EIA, and likely more accurate in the cross section. These two measures are
also widely used in the industry, with wind class (a categorization of site wind variability) used as a critical
determinant of which turbines can safely be placed at a location. Moreover, the conceptual exercise here is to
match similar sites in the pre and post policy period, while the potential capacity factor combines both site
and time-varying technology changes. With that said, the results are qualitatively similar when we match on
potential capacity factor instead. These are presented in appendix Table D.3.

25The number of post-period matches is higher than pre-period matches because more post-period plants
fall within the same coarsened cell than do pre-period plants.
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is in fact balanced across the two time periods on the matched dimensions. In particular, the

two dimensions that were imbalanced in the IV sample, capacity and IPP status, are now

statistically equivalent across the pre and post periods in this sample by construction.

Table 4: Matching Balance

Pre Post Difference p-value

Nameplate Capacity (MW) 101.91 105.39 3.48 0.74
Turbine Size (MW) 1.78 1.89 0.11 0.05
Design Wind Speed (MPH) 17.92 17.46 -0.45 0.14
Regulated 0.09 0.09 0.00 1.00
IPP 0.89 0.89 0.00 1.00
PPA 0.82 0.77 -0.05 0.42
Potential Capacity Factor 36.76 37.39 0.63 0.53
Capacity Factor 34.01 32.80 -1.21 0.14

Wind Farms 86 118
1603 Recipients 83

Each row contains a two-sample t-test for a difference in means between wind farms that came online before
versus after January 1, 2009 that meet sample restrictions described in Section 3 and are selected using
coarsened exact matching. See text for more details on the matching procedure. Regulated and IPP are
identical across samples by construction. Regulated, IPP, and PPA are binary variables. Potential Capacity
Factor and Capacity Factor are ratios (scaled by 100), both of which are computed using data from 2013 and
2014.

Table 5 reports the results from regressions estimated through variations of this matching

strategy with an unbalanced panel of monthly wind farm production data from 2009 to

2014. As before, the dependent variable in each regression is the capacity factor measured in

percentage points. All models include the same controls as our preferred IV regressions as

well as dummies for cohort (i.e., the first year each wind farm generated electricity). Column

1 presents estimates from estimating OLS on the full sample including all 465 wind farms

entering during the pre- or post-period. Column 2 restricts the sample to plants matched

across periods. Column 3 includes matched group fixed effects. Column 4 interacts those

group fixed effects with year of sample, allowing for unobserved factors that affect specific

groups and vary over time. Column 5 includes group-year-month fixed effects.

Simply restricting the sample to observably similar plants across periods increases the

estimated impact of the 1603 grant from 2.9 to 4 percentage points. This suggests that

there are low productivity PTC plants and/or high productivity 1603 plants that do not

lie in the common support across periods. Allowing for increasingly time-varying group

level unobservables has remarkably little effect on the estimates. The estimated productivity

reduction in column 4 of 3.72 percentage points (12 percent) is similar to our preferred IV
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estimate, despite relying on different identifying assumptions.

Table 5: Matching Estimates

(1) (2) (3) (4) (5)

1603 Grant -2.942∗∗∗ -3.975∗∗∗ -3.862∗∗∗ -3.716∗∗∗ -3.633∗∗∗

(0.719) (1.063) (1.019) (1.033) (1.159)

Sample All Matched Matched Matched Matched
FEs State State Group Group*Y Group*Y*M
R-sq. 0.615 0.623 0.632 0.642 0.762
N 21303 10106 10106 10106 10106

The matched sample was constructed using coarsened exact matching on state, wind quality class, regulatory
status, entity type, capacity, and design wind speed. All models include the controls listed in the IV models
in Table 3: log capacity, potential capacity factor, and wind speed variance, as well as dummies for whether
the plant is regulated, whether it is an IPP, the presence of a PPA, and month of sample. All models also
include cohort dummies. Models are estimated using an unbalanced panel of monthly wind farm production
data from 2009 to 2014. Standard errors, clustered at the plant level, are reported in parentheses.

Robustness Analysis

The most restrictive matching criteria in the previous exercise is the requirement that pre

and post plants be in the same state. In order to explore the impact of this assumption, and

to incorporate more plants into the analysis, we re-estimate the model from column 4 under

different geographic restrictions (Table 6). As above, all models use coarsened exact matching

on geography, wind quality class, regulatory status, entity type, capacity, and design wind

speed. In addition, column 1 matches on NERC region as well as an indicator for whether the

plant is in an ISO. Column 2 matches on the specific ISO a plant participates in, and column

3 matches on both NERC region and ISO. Finally, column 4 matches on state, repeating

column 4 from the previous table. In addition to controls, month of sample dummies, and

matched group-year dummies, each of the first three models also include state fixed effects to

account for differences in state-level renewable policies. As in the previous table, the results

increase slightly as increasing restrictions are placed on the matching procedure. However,

we cannot statistically distinguish among the coefficient estimates.
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Table 6: Sensitivity of Matching Estimates to Geographic Restrictions

(1) (2) (3) (4)

1603 Grant -2.989∗∗∗ -3.362∗∗∗ -3.472∗∗∗ -3.716∗∗∗

(0.918) (0.961) (1.032) (1.033)

# Pre-PTC 108 100 90 86
# Post-PTC 54 51 44 35
# Post-1603 116 87 78 83
Region Nerc-1(ISO) ISO Nerc*ISO State
R-sq. 0.634 0.677 0.661 0.642
N 13439 11724 10577 10106

Matched samples constructed using coarsened exact matching on geographies listed in the table, wind quality
class, regulatory status, entity type, capacity, and design wind speed. All models include the controls listed
in the IV models in Table 3: log capacity, potential capacity factor, and wind speed variance, as well as
dummies for whether the plant is regulated, whether it is an IPP, the presence of a PPA, and month of
sample. All models also include cohort dummies, matched group-year fixed effects, and state fixed effects.
Models are estimated using an unbalanced panel of monthly wind farm production data from 2009 to 2014.
Standard errors, clustered at the plant level, are reported in parentheses.

5 Discussion

5.1 Mechanism and Interpretation

We estimate that selecting the 1603 grant, an investment subsidy, caused wind farms to

produce about 10 percent less output than they would have under the PTC, an output subsidy.

The discussion in Section 2.3 presents two mechanisms through which this might occur: a

“dispatch” effect, causing wind to displace some previously inframarginal generation at low

demand levels, and an “availability” effect, causing wind to displace marginal generation

at all other demand levels. How much of the estimated difference in output across PTC

and 1603 plants can be attributed to each channel? Since we only observe monthly plant

production, we cannot answer this question directly.26

Does it matter how much of the estimated output increase comes from dispatch versus

26In Appendix B, we compile statistics on the frequency of negative prices, which are an indictor that wind
might be near the margin. While the frequency varies considerably across time and space, monthly shares
exceeding our estimated productivity effect are not uncommon. This suggests that it’s possible that increased
dispatch alone could explain the output effect of the 1603 grant. We do not have any statistics to similarly
judge the plausible magnitude of the availability affect. However, many consulting companies tout wind farm
services which promise increases in productivity of this magnitude. For example, General Electric offers
a product called “PowerUp”, which it describes as “a customized suite of software and hardware-enabled
technologies created to increase a wind farm’s output by up to 10%, taking into account environmental
conditions.” Source: General Electric website (accessed 1/29/2018).
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availability? While this paper is primarily focused on cost-effectiveness, the two mechanisms

have different efficiency implications. An output subsidy that moves wind up in the dispatch

order can generate social benefits by reducing externalities from plants that were previously

inframarginal to wind during low demand hours. However, this also generates social costs by

raising the (private) production cost of electricity during these hours. The net effect depends

on whether marginal damages are larger than the production cost differences. In contrast,

the availability effect displaces production from plants with higher private production costs

than wind. This generates benefits equal to the avoided social costs from these displaced

units, including both electricity production cost savings and external damages avoided.27

Figure 3 presents a graphical representation of these forces, based on the illustrative

dispatch curve in Figure 1. The top row presents the social marginal cost of each unit of

generation, ordered by their subsidy-inclusive private marginal costs, with and without the

PTC subsidy of φ to wind generators. For comparison, the dashed line decomposes the PTC

line into a case where the PTC affects dispatch but has no effect on availability. Under

the standard assumption that electricity demand in any hour is perfectly inelastic, the net

benefits of the PTC, relative to no PTC, can be computed as the integral of the difference

between the PTC and No PTC cost curves in the corresponding top panel. The bottom

panel presents these net benefits at every level of demand.

The left column of Figure 3 presents the case where there are no external marginal

damages (md) associated with non-wind generation (for example, if wind displaces nuclear

or hydro). Given that there are no unpriced externalities, the PTC generates welfare losses

whenever wind is dispatched and cheaper resources are not. If the PTC increases availability,

the net benefits are positive and increasing at high demand levels, because additional wind

power displaces marginal plants with high production costs. The right column presents the

opposite extreme, where the marginal damages from non-wind generation are larger than

the subsidy.28 If the PTC affects dispatch but not availability, any net benefits from the

PTC come entirely during low demand hours. If the PTC also increases availability, net

benefits continue to rise at high demand levels, always at a higher level than the md = 0

case. Intermediate cases where 0 ≤ md ≤ φ generate net benefits which lie between these

extremes.29

27Increasing availability may involve fixed costs, which we omit here for ease of exposition. In the profit
calculations used in Sections 5.2 and 5.3, we approximate these fixed costs by assuming that the marginal
gains in availability are linear in these costs.

28If wind displaces coal-based power, then the avoided marginal damages from climate change alone would
be about $50/MWh – double the PTC (IAWG, 2016).

29The short run marginal cost of wind generation is zero (MCwind = 0). Thus, during the hours where the
dispatch effect alone operates, prices will be negative under the PTC. While much has been made of the rise
in the frequency of negative prices, and this has been attributed to the PTC, Figure 3 makes it clear that
there is nothing economically significant about MCwind = 0. Even if MCwind were positive, the net benefits
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Figure 3: Mechanism and Net Benefits

Several recent papers provide empirical estimates of marginal damages which suggest our

second extreme case – φ < md – holds on average for most regions and time periods across

the United States. For example, Holland et al. (2016) estimate average marginal damages

and find that they are higher than the PTC in most regions and at almost all hours of the

day (see appendix Figure B.2). Fell et al. (forthcoming) focus on the environmental benefits

of wind electricity and find that annual average marginal damages avoided in MISO and

ERCOT are higher than the PTC every hour of the day. As the preceding discussion makes

clear, if the entirety of our estimated output effect comes from the dispatch effect, then

net benefits depend critically on marginal emission rates during very low demand periods.

Callaway et al. (2018) estimate the marginal operating emission rates (MOERs) for six large

ISOs. In Appendix B we show that these MOERs are generally highest during the hours of

the day and seasons when demand is lowest. The most relevant empirical evidence comes

from an econometric study of the marginal emissions impacts of wind power at different

levels of demand in Texas, which, conveniently, is also the modal state in our sample. Novan

(2015) finds the marginal external benefits from wind are actually highest during periods of

low demand because they are most likely to offset non-wind generators that impose large

external costs. Based on this evidence, we conclude that the increased wind output generated

by the PTC likely increases net benefits on average regardless of the mechanism.

would be negative if md = 0. Conversely, net benefits can clearly be positive at MCwind = 0 if md > φ.

24



5.2 Extensive Margin

So far, we have focused on estimating how much more output 1603 recipients would have

produced had they received the PTC, conditional on operating. In this section we consider

whether the 1603 program had any effect on the number of plants we observe operating in the

first place. This is important because, while our IV and matching estimators address concerns

about selection between subsidies, both strategies leverage the fact that plants that entered

before 2009 did not have access to the 1603 program. If the 1603 grant encouraged more

entry, and if these marginal plants were (unobservably) less productive, then extensive margin

selection may confound our estimate of the intensive margin response to output subsidies.

The abrupt introduction of the 1603 program, combined with its short duration relative

to project lead times, make it highly unlikely that new wind projects would be conceived

entirely in response to the output subsidy. However, at any given point in time, there are

many potential projects in various stages of planning, some of which will never come to

fruition, and the 1603 grant may have screened in a higher share of these potential projects

than in previous years. To assess this, we look for evidence of a change in plant cancellations

using the EIA’s annual proposed plants list. Figure 4 presents the share of plants that are

completed within one year of their original expected completion year, plotted by expected

completion year. The policy period, 2009-2012, is shaded. The completion rates look very

similar during the policy period and the years preceding it, and, importantly, the share of

plants that are completed does not appear to increase in response to the investment subsidy.30

It thus appears unlikely that productivity estimates will be confounded by low productivity

plants being differentially screened in during the policy period.

We now consider whether the rate at which projects were completed from 2009 to 2012

would have been even lower than previous years absent the 1603 grant program. This program

was created in response to the concern that many projects already under development in late

2008 could be rendered unprofitable under the PTC by the widespread financial collapse, as

discussed in Section 2.2. Therefore, while we show that 1603-claiming plants produce less

output than they would have under the PTC, we must weigh these inframarginal output

losses against any extensive margin gains to compute the net aggregate effect of the program

on wind output. Unfortunately, we are unable to estimate the extensive margin effect as

30We also graph the share of plants that are ever completed by year of initial proposal in Appendix
Figure D.3. Completion rates remain similar before and during the policy period under this alternative
metric. This graph also shows that the large drop in on-time completions in 2013 in Figure 4 indicates delay,
not termination, of these post 1603 projects. When Congress extended the PTC for 2013, it made a major
change to the eligibility for the tax credit: a wind farm had to begun construction in 2013 to be eligible for
the tax credit for its first ten years of generation, in lieu of the previous requirement that a wind farm had to
be placed into service.
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Figure 4: Share of Plants Completed on Time, Plotted by Year of Initial Expected Completion

The initial expected completion year is the year the generator was first scheduled to start operation. Completion
is determined based on whether each plant entered into the EIA-860 operable data. Plots are based on the
subset of plants that last appeared in the EIA-860 proposed data prior to 2016. Shading indicates the years
during which new plants were eligible for the 1603 grant (2009 to 2012).

rigorously as the intensive margin effect due to the small number of plants entering each

period and the time series nature of the policy variation. In lieu of a formal entry model or

tests for a time-series break, we instead perform a simple accounting calculation to identify

“marginal” plants – i.e., power plants claiming the 1603 grant that appear profitable under

the investment subsidy but not the PTC.31

For each 1603 recipient, we construct an estimate of discounted lifetime profits under the

program:

π1603
i =

t=25∑
t=1

(
pit

(1 + r)t

)
Qit −

cit
(1 + r)t

− (1− s)Fi (3)

Plant-specific output prices (pit) are obtained from resale revenues reported on EIA Form

923 and power purchase agreements from AWEA and Bloomberg New Energy Finance

(BNEF). We also include in pit estimated marginal revenue from the sale of RECs under

state-level renewable portfolio standards using data from Marex Spectron and Lawrence

Berkeley National Laboratory. Plants are assumed to remain in service for 25 years (t), and

right censored prices and quantities are imputed with the observed (real) averages for each

31We describe this calculation briefly here and provide additional details in Appendix C.
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plant. Annual net revenue is obtained by subtracting operations and maintenance costs (cit)

of $29/kW/year (Wiser and Bolinger, 2019), and these flows are discounted at an assumed

five percent real interest rate (r). Fixed investment costs (Fi) are obtained by dividing the

observed 1603 grant award amount from Treasury by the fraction of investment costs covered

by the program (s = 0.3).

To compute “counterfactual” profits under the PTC we make two modifications to the

discounted profit function:

πPTC
i =

t=25∑
t=1

(
pit

(1 + r)t
+

φit

(1 + rtax)t

)
Qit(φit)−

cit
(1 + r)t

− Fi (4)

Under the PTC, firms forego the investment subsidy s, but gain φ additional dollars per unit

output for the first ten years of operation. During this period, the PTC was equal to $23 per

MWh in tax credits. However, these tax credits need to monetized, and are thus less valuable

than cash. In order to account for this additional cost of monetizing tax equity, we discount

the PTC revenue streams by an assumed eight percent tax equity yield,32 which is the modal

value of the tax equity yield over 2009-2012 presented in Bolinger (2014).33 Output under

the PTC (Qit(φit)) is constructed by increasing the observed capacity factor for each plant

by 3.3 percentage points (reflecting the average of our preferred IV and matching results) for

the first ten years of operation.

Figure 5 presents a scatter plot of these two profit measures for plants selecting the 1603

grant. The 45-degree line reflects parity between the two, and, unsurprisingly, most plants

selecting the investment subsidy earn less money under the output subsidy. Despite this, the

graph also makes clear that the difference in profitability across plants within subsidy type is

an order of magnitude larger than the difference across subsidies within a plant. And, since

the distribution of plants is not particularly dense near the origin, very few plants appear

marginal to the 1603 grant program. Of the 211 1603 recipients included in this figure, only

6 lie in the lower right quadrant.34

Estimating the full effect of the 1603 program on output requires taking a stand on the

32This approach to modeling the PTC differs conceptually from Johnston (2019), who assumes that all
revenue streams are discounted at the same rate, and estimates that firms appear to “value” PTC flow
payments at 85 cents on the dollar. A 10 year annuity discounted at rtax = .08 is worth 87% of the same
payment stream discounted at r = .05. Thus, using the observed tax equity yield to discount PTC payments
generates essentially the same implicit valuation.

33Modeling how changes in firms’ subsidy choices might affect equilibrium tax equity yields is beyond
the scope of this paper. However, we present sensitivity analysis using the maximum observed yield of 10.5
percent in Appendix C.1.

34This sample differs slightly from the sample used in Section 4 because we exclude plants with no price
data and include plants who were omitted from the regression analysis due to missing wind speed data.
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Figure 5: PTC Profits vs 1603 Profits for 1603 Recipients

counterfactual entry status of the twenty-nine plants in the lower left quadrant, which do not

appear profitable under either subsidy. One possibility is to assume that these plants are

in fact marginal, and would not have entered without the 1603 grant program. Under this

assumption, the 1603 program increased lifetime wind production by 85 million MWh, or 14

percent. In our view, this assumption is unlikely, given the graphical evidence on entry rates

presented in Figure 4. Instead, it seems more plausible that the apparent lack of profitability

for these plants implies a policy-invariant unobservable (possibly in expectation) that would

have encouraged these wind farms to enter with or without the 1603 grant.35 Under this

assumption, the 1603 grant program reduced production by 25 million MWh. Additional

results and sensitivity analysis are presented in Appendix C.1.

5.3 Cost-Effectiveness

This paper addresses the question of cost-effectiveness of wind power subsidies: given some

target level of wind energy, do input or output subsidies achieve it at lower cost? While the

35There are many potential reasons why plants may appear unprofitable using this approach. We only
observe a handful of years of output data, so our approach could understate the profits of wind farms that
had low output realizations during the years we observe. We may have also underestimated state and local
subsidies or overestimated O&M costs and discount rates for some plants. However, even if we had perfectly
accounted for all of these factors, it is likely that some plants that appeared profitable ex ante will be
unprofitable ex post due to low price and wind realizations.
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previous section compares output and entry under the 1603 grant program and the PTC,

institutional details limit the ability of those analyses to provide a generic answer to this

question. First, there are idiosyncratic tax code differences between the two policies. The

PTC was implemented as a tax credit, which was more difficult to monetize, while accepting

the 1603 grant precluded some accelerated depreciation (Johnston, 2019). Second, wind

developers were able to select between subsidy options, which, given the zero sum nature

of the transfer, must raise the public cost for some plants. Finally, given the significant

heterogeneity in wind quality across locations, the marginal public cost likely varies across

different output targets. In this section, we compute the total public cost per MWh of wind

production over a range of output levels for each subsidy type, absent subsidy choice and

differential tax treatment.

Our starting point is the discounted profit functions under investment subsidy s (equation

3) and output subsidy φ (equation 4). To gain intuition for which margin is more cost-effective,

consider the case where all plants i have the same output prices and investment costs, but

differ in their productivity. Let Q̄i be plant i’s discounted lifetime production, and, for

the moment, assume output subsidies do not affect production, Q̄i(φ) = Q̄i, conditional

on operating. Plants enter if profits are positive, and, under these assumptions, the most

productive plants enter first. We can arrange firms into an aggregate supply curve indexed

by entry order j with Q̄1 ≥ Q̄2 ≥ ... ≥ Q̄N . Each plant has a breakeven investment subsidy

s∗j and a breakeven output subsidy φ∗
j .

Which subsidy is more cost-effective under these assumptions? Consider an output target

that requires the first J plants to enter. This can be achieved with breakeven s∗J or φ∗
J . Since

subsidies work at the margin, the total public subsidy paid to the Jth firm must be the same

across the two policies. However, since subsidies pay out across all inframarginal plants, the

total subsidy paid across all J firms will differ. The average output subsidy paid is greater

than the marginal subsidy paid since inframarginal plants are more productive. Conversely,

the average investment subsidy paid per plant is the same as the marginal subsidy paid,

since all plants have the same investment costs. This is the insight of Parish and McLaren

(1982): since investment is used more intensively at the margin than on average (it takes

more investment per unit of output on the margin), investment subsidies will be cheaper.

This result can be reversed by relaxing some of the assumptions made for ease of illustration.

If other factors that positively affect entry, such as high output prices or low operating costs,

are negatively correlated with plant productivity, then the marginal output per private

dollar of investment need not decline as public subsidies increase. All else equal, the public

cost-effectiveness of output subsidies (relative to investment subsidies) will improve if subsidy

recipients produce more output when incentivized on the margin, as was estimated above.
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To calculate the net effect of these forces, we employ the accounting-based framework

from the previous section. Starting with the no subsidy case, we determine the number of

profitable entrants. We then incrementally increase subsidies up to the observed level of the

1603 and PTC subsidies, s = 0.3 and φ = $23 per MWh. In the case of the output subsidy,

we need to estimate the output firms would have produced under marginal incentives that

are smaller than those observed in the data. Since the level of the PTC does not vary in

our sample, it is not possible to directly estimate how output varies with the subsidy level.

Instead, to approximate output under intermediate levels of the output subsidy, we scale our

estimated output effect linearly. For example, the effect of an output subsidy of $11.50 per

MWh, half the value of the PTC, would be half our estimated output effect. As a result,

changing the level of the subsidy affects plant profitability through both the level of the

subsidy and the quantity of output. For each subsidy level, we compute total discounted

output, government expenditures, and the public levelized cost of energy (LCOE) for plants

that are profitable at that subsidy level. This allows a direct comparison of the alternative

subsidies: to minimize the public expenditure needed to reach a certain quantity of output,

the government can choose whichever subsidy achieves that level of output at lower public

LCOE.

We begin by restricting our analysis to plants that selected the 1603 grant, as in the

previous section. Figure 6a presents the public cost per MWh of wind subsidized by subsidy

type. Over 500 million MWh of wind enter without any subsidy.36 To increase wind

production, the public cost under investment subsidies rises faster than the cost of output

subsidies. An output subsidy of φ = $20.7/MWh results in the same total quantity of wind

power as the 1603 investment subsidy rate of s = 0.3. At this level, the public LCOEs

are $16.76/MWh and $11.82/MWh, for a 29 percent reduction in cost per MWh under the

PTC.37 To unpack this result, we also include public LCOE under the assumption that plant

output is not affected by the subsidy margin. Here the two policies appear equally costly,

highlighting that it is really the intensive margin response, rather than selection, driving the

previous result. It is also noteworthy that the relative gains from output subsidies increase

as the policy becomes more ambitious. As output subsidies grow to screen in increasingly

less productive plants, they also induce greater effort at inframarginal plants.

Next we consider the cost-effectiveness of input and output subsidies without subsidy

choice, incorporating plants that selected the PTC as well.38 Figure 6b presents the public

36This includes 1603 plants that are classified as never profitable.
37Note that these public LCOEs are lower than Table C.1, which includes accelerated depreciation.
38Estimating profits for PTC recipients is complicated by the fact that the government does not track

investment costs for these firms. We compile cost information from a variety of sources, including SNL
Energy, Bloomberg New Energy Finance (BNEF), state tax filings, regulatory filings and press releases. For
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Figure 6: Public LCOE vs Output by Subsidy Type

(a) 1603 Recipients (b) All Plants

Each line plots the average public subsidy per unit of wind generation (LCOE) as a function of the total
amount of wind generation subsidized. These are constructed by gradually increasing the subsidy from zero
to the observed subsidy rates of the 1603 grant (investment) and PTC (output) subsidies. For output subsidy
levels inframarginal to the PTC, we scale the estimated impact of the PTC on production linearly. For
comparison, the “Output - Fixed Q” line plots the LCOE under the assumption that output is subsidized,
but that this increase in marginal incentives does not affect plant productivity, conditional on operating.
Panel (a) restricts the set of potential entrants to those selecting the 1603 grant, while panel (b) includes
all wind farms entering between 2009 and 2012. In both figures, plants which are not marginal to either
subsidy over the relevant range are assumed to always enter. The total output of these plants is reflected in
the X-intercept of each figure.
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LCOE over the range of output observed under inframarginal subsidies. The pattern is

similar to the 1603 only sample, although the cost is noticeably lower under output subsidies

even without any sort of productivity response. For this full sample, an output subsidy of

φ = $19.78/MWh results in the same total quantity of wind power as the 1603 investment

subsidy rate of s = 0.3. At this level, the public LCOEs are $15.75/MWh and $11.26/MWh,

which is also a 29 percent reduction.

In addition to all of the assumptions embedded in this accounting approach, it is important

to acknowledge a few caveats. First, it’s possible that achieving a more ambitious target

or implementing the policy in future years could result in a positive correlation between

productivity and other factors that positively affect entry, reversing the cost-effectiveness

ordering. Furthermore, if investment subsidies were made permanent, project characteristics

(which we have conditioned on) could respond. Investment subsidies like the 1603 grant

are an example of a non-uniform input subsidy. Certain capital inputs, most notably wind

turbines, were subsidized, while other inputs, like land, were not. When faced with a shift

in the relative price of inputs, firms will likely alter their input mix, either by employing

relatively more subsidized inputs or by selecting higher quality subsidized inputs (as found

for other industries in Goolsbee, 2004). Whether this input response increases or decreases

public cost-effectiveness depends on the substitutability of inputs and the elasticity of output

with respect to inputs at the margin (Parish and McLaren, 1982). However, such distortions

are clearly socially inefficient. Unfortunately, the short lifetime of the 1603 program limits

our ability to draw conclusions about how the capital stock would adjust to a permanent

policy change.

6 Conclusion

The economically efficient response to the problem of pollution externalities from energy gen-

eration is to impose a Pigouvian tax on emissions, not to subsidize emissions-free production.

Nevertheless, the use of both investment and output subsidies for green energy is widespread.

For example, in the United States, the Federal government subsidizes solar energy through

the Investment Tax Credit. At the same time, 33 states offer residential solar adopters

some form of “performance-based incentive” (PBI), which pays above private marginal value

for each unit of solar output.39 In the European Union, 21 countries subsidized qualifying

renewables using feed-in tariffs (payments per unit energy delivered to the grid), while seven

the remaining plants, we predict missing costs using regression. Additional details provided in Appendix C.2.
39Source: https://www.solarpowerrocks.com/affordable-solar/what-are-solar-performance-payments-srec-

pbi/, accessed 7/10/2019. These take the form of feed-in tariffs, performance premiums, and solar renewable
energy certificates.
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offered investment grants or tax credits (Jenner et al., 2013).

In this paper, we exploit a natural experiment to directly estimate the relative cost-

effectiveness of using output versus input subsidies to promote wind energy. We find that by

removing subsidies for output on the margin, the Section 1603 grant program caused wind

farms to generate 10 to 12 percent less power than they would have under the PTC. Using

firm-specific data on production, output prices, and investment costs, we find that very few

plants appear profitable under one subsidy type but not the other. After standardizing the

tax treatment of these subsidies and accounting for extensive margin effects, we show that

output subsidies are more cost-effective over a large range of output targets. As an example,

we find that the amount of wind power procured by a 30 percent investment subsidy could

be achieved at 29 percent lower cost using an equivalently tax advantaged output subsidy.

What are the lessons for subsidies outside of energy policy? Investment subsidies are

observed in several important settings where the social benefits of investment appear to

be tied to output, such as affordable housing and research and development. The relative

cost-effectiveness of output subsidies in these settings will depend on the production primitives

of those markets, and we make no claim that our results are informative about optimal

targeting in those domains. Nevertheless, the fact that investment subsidies appear poorly

targeted in this setting should motivate future empirical work in other settings.
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Appendix A Data Appendix

A.1 Additional Information on Data Sources and Cleaning

Information on how to obtain each data source, along with code for replication is available

on https://github.com/rlsweeney/public ags output subsidies.

Additional Information on the Primary Data Sources

• Survey Form EIA-860 collects generator-specific information on an annual basis about

existing and planned generators and associated environmental equipment at electric

power plants with 1 megawatt or greater of combined nameplate capacity.

• Survey Form EIA-923 collects detailed electric power data—with both monthly and

annual frequency—on electricity generation, fuel consumption, fossil fuel stocks, and

receipts at the power plant and prime mover level.

• The American Wind Energy Association (AWEA) collects detailed information about

all of its members and makes these data available as part of its membership subscription.

The database includes more than 60 fields. We use the data to determine the presence

and terms of any power purchase agreements and to construct a measure of the footprint

of each wind farm.

• 3TIER windspeed data provides hourly estimated wind speed data from 2000 to 2014

for every wind farm in the EIA database. We use these hourly data to compute the

variance and a polynomial in observed wind speed, as well as the potential capacity

factor, for each month.40

• The Department of the Treasury reports data on Section 1603 grant claims. We matched

Treasury Section 1603 grant projects to EIA data based on business name, plant name,

county and state identifiers, and date placed in service. For 152 Section 1603 grants,

we could not identify a match in the EIA data. One of these is a Puerto Rico project,

which is excluded due to geography from the EIA databases. The other 151 projects

received very small grants, indicating that these projects were too small to be covered

by EIA’s EIA-860 and EIA-923 surveys. In aggregate, they represent one-half of one

percent of 1603 grant outlays for large wind projects.

40These data were provided by Joern Huenteler, Gabe Chan, Tian Tang, and Laura Diaz Anadon, collected
as part of their research summarized in Huenteler et al. (2018). A handful of EIA plant locations were either
entered erroneously or downloaded improperly, and are excluded from the sample.

37

https://github.com/rlsweeney/public_ags_output_subsidies
https://www.eia.gov/electricity/data/eia860/
https://www.eia.gov/electricity/data/eia923/
https://www.awea.org/windiq
https://www.vaisala.com/en/industries-innovation/renewable-energy-and-weather
https://www.treasury.gov/initiatives/recovery/Pages/1603.aspx


A grant could be submitted for a single wind turbine, a set of turbines, or an entire

wind farm. This created two data issues. First, a wind farm could receive multiple

Section 1603 grants. In these cases, we aggregated 1603 grants to the wind farm level

(the level of observation in the EIA databases). For example, the large Alta wind farm

in California came online in phases starting in late 2010 and its developers submitted

more than twenty 1603 grants. Second, a wind farm could be built with N turbines

that come online before 2009, for which it claims the PTC. It may then expand with

M turbines in 2009 and claim a 1603 grant for these new turbines. The EIA-observed

output for that wind farm after 2009 would reflect the aggregate production of the

N+M turbines. Since we cannot distinguish the output between the N PTC-claiming

turbines and the M 1603 grant-claiming turbines at such a wind farm, we drop the

wind farm from our sample. We identified such cases as wind farms that claimed a 1603

grant over 2009-2012, but had either substantial pre-2009 generation or a significant

change in installed capacity post-2012. Using these decision rules, we dropped thirteen

wind farms that represent less than four percent of total 1603 grant outlays for large

wind farms.

Additional Sample Restrictions There are 941 wind farms in the continental U.S. in the

EIA data. We restrict attention to plants that are private and operate as either independent

power producers or part of an investor-owned utility based on subsidy eligibility, which reduces

the sample to 817 wind farms. We also restrict the sample to plants entering before the end

of the 1603 grant period (end of 2012). There are two ways of determining when a plant is

placed into service using the EIA data: we could use either the date a plant submits to the

EIA as their first date of commercial operation or the month that a plant’s production first

appears in the production data. Conversations with EIA staff confirm that the former should

be used for determining 1603 grant eligibility. However, to avoid concerns about potential

misclassification, we exclude plants whose two entry dates suggest conflicting 1603 eligibility

status. Finally, we exclude plants that we were unable to locate in the AWEA database,

plants for which we did not have site-specific wind and turbine power curve information, and

plants for which the ratio of observed capacity factor to potential capacity factor was further

than two standard deviations from the median. This final sample of 512 plants represents

our population.

A.2 Potential Capacity Factor Construction

As described in Section 2.1, wind farm production is a nonlinear function of wind speed. This

nonlinear function is turbine-specific, as some turbines are engineered to perform particularly
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well at low wind speeds, while others are optimized for high wind speeds. Wind turbine

manufacturers provide power curves for each turbine that summarize how much electricity it

should generate at a given wind speed. Figure A.1 presents example power curves for two

of the most common wind turbines in the U.S. The Vestas turbine has a higher maximum

capacity, but the GE turbine is rated to produce power at higher wind speeds. Other turbines

are designed to generate more electricity at lower wind speeds at the expense of generating

less electricity at higher speeds.

Figure A.1: Reported Power Curves for Two Common Turbines

Rather than try to approximate this function with turbine-specific high order polynomials

of wind speed, we compute an “engineering” estimate of expected output for each turbine in

each month. We begin with estimates of the wind speed every hour at every wind farm in

our sample that come from 3TIER. We combine this with a location-specific power function

based on the wind turbine used at each wind farm to predict hourly electricity generation.

We use the ideal gas law to adjust for variation in air density, which affects the kinetic

energy available to each turbine, using location- and time-specific data on temperature and

pressure from 3TIER. Aggregating hourly predicted output over the month and dividing by

the turbine’s rated output provides us with a measure of “potential capacity factor,” which

we include as a covariate in our primary specifications.

Table A.1 demonstrates that this one-dimensional, time-varying control explains signif-

icantly more of the observed variation in capacity factor than time-invariant, site-specific
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wind quality information. It also fits meaningully better than a third order polynomial in

wind speed.

Table A.1: Explanatory Power of Alternative Measures of Potential Generation

(1) (2) (3) (4) (5)

Design Wind Speed 0.304∗∗∗ -0.0421 -0.0457 0.00542
(0.104) (0.106) (0.105) (0.0908)

Wind Speed (m/s) 0.862 2.163
(3.470) (3.527)

Wind Speed Squared 0.910∗∗ 0.797∗

(0.418) (0.419)

Wind Speed Cubed -0.0456∗∗∗ -0.0444∗∗∗

(0.0151) (0.0150)

Var(Wind Speed) 0.170 -0.156∗

(0.136) (0.0915)

Potential Capacity Factor 0.619∗∗∗ 0.638∗∗∗

(0.0224) (0.0265)

Adjusted R-sq. 0.287 0.504 0.505 0.572 0.572
N 11140 11140 11140 11140 11140

Results from linear regressions of observed capacity factor on functions of wind speed data from EIA and
3TIER, using data on electricity generation in 2013 and 2014 for wind farms that came online between 2005
and 2012.
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Appendix B Negative Prices and Emissions Rates

As was discussed in Section 5.1, there are two possible mechanisms through which an output

subsidy can increase wind production: a dispatch effect when wind is at or near the margin,

and an availability effect when wind is inframarginal. Under the assumption that the true

marginal cost of dispatch in any given hour is zero, the frequency of negative prices provides

an upper bound on the share of hours during which former channel could operate. In this

appendix, we present summary statistics on the prevalence of negative prices during our

sample period. We then correlate these moments with marginal emissions and damages

estimates from the literature to assess whether wind output actually provides positive net

benefits during periods when the dispatch effect operates.

We collect high-frequency price data at multiple locations from six large U.S. electricity

markets: California (CAISO), Texas (ERCOT), the Eastern U.S. (PJM), the Midwest (MISO),

New England (ISONE), and New York (NYISO). Table B.1 summarizes the likelihood of

negatives prices in these six markets. The first panel contains summary statistics for all

nodes (i.e., locations), and the second panel contains summary statistics for the set of nodes

that are closest to each wind farm in our sample. Within the set of nodes near wind farms,

negative prices are more common in California, Texas, and the Midwest. They are also less

common in the summer, when demand is higher, and have generally been coming down over

this sample period. Comparing across the two panels, negative prices are more common

at nodes near wind farms than across all nodes in each ISO, although the difference varies

considerably.

We augment the negative price data with marginal operating emissions rates from Callaway

et al. (2018). Callaway et al. (2018) provide estimates of the average marginal operating

emissions rate of generating resources by hour of day and season for each ISO, which we

replicate in the first panel of Figure B.1. The second panel contains the frequency of negative

prices for the same hours and seasons. Electricity prices typically fall below zero when

demand is lowest, during the middle of the night. However, for four of the six ISOs, marginal

emissions are actually higher at night than during peak hours. This is not surprising due to

the fact that natural gas is likely to be on the margin during the day, whereas coal is more

likely to be on the margin at night. Comparing across the seasons, average emission rates are

fairly constant, compared to the variation in negative price frequency.
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Table B.1: Frequency of Negative Prices in Six ISOs (2011-2014)

CAISO ERCOT ISONE MISO NYISO PJM

All nodes
Mean 3.88 1.41 0.08 3.39 0.65 0.55
Median 2.53 0.00 0.00 1.25 0.40 0.13
95th pctile 16.26 8.21 0.00 14.43 2.02 2.42

Summer(mean) 4.59 0.74 0.01 2.95 0.67 0.69
Post 2012 (mean) 2.24 0.59 0.16 3.18 0.74 0.40
Near wind

Mean 4.07 4.73 0.09 6.12 1.20 0.99
Summer(mean) 2.25 0.31 0.01 3.72 0.83 0.82
Post 2012 (mean) 2.52 1.30 0.18 6.21 1.66 0.84
CO2 MOER

Mean 896 1,378 1,262 1,870 1,312 1,776
Mean(weighted) 873 1,457 1,169 1,916 1,408 1,778
Correlation -0.46 0.60 -0.72 0.69 0.41 0.02

Frequencies (in percentage points) based on hourly nodal price data from the six listed ISOs, collapsed to
the node-month level. Summer months are defined by the NOx regulation season, when begins in May and
ends in October. In the second Section, the sample is restricted to nodes that are the closest node to a wind
farm in the sample. The third Section of the table presents the average marginal operating emissions rate
in pounds of carbon dioxide per MWh estimated for each ISO by Callaway et al. (2018). The second row
re-weights the average by the share of negative prices in each ISO-season-hour. The final row presents the
correlation between negative prices and marginal operating emissions rates across 48 season-hour averages for
each ISO.

Figure B.1: Marginal Emissions and Negative Price Frequency by Hour of Day and Season

Estimates of marginal operating emissions rates by hour of day and season were extracted from the appendix
of Callaway et al. (2018). Figures in the second row plot the mean share of negative price hours by ISO for
the same hours and seasons.
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The third panel of Table B.1 contains average marginal emissions rates for each ISO. These

emissions rates vary across regions, but are still positive and large everywhere, even when

weighted by the negative prices in each ISO-season-hour. Finally, we present the correlation

between negative prices and marginal operating emissions rates in the last row of Table B.1.

In four of the six electricity markets, negative prices are positively correlated with marginal

operating emissions rates, suggesting that the external social value of wind energy during

these hours is at least as high as during other time periods.

Finally, Figure B.2 presents estimates of the average marginal damages from electricity

generation in monetary terms from Holland et al. (2016). These numbers include damages

from both local and global air pollution. These estimates suggest that marginal damages

are equal to or larger than the nominal value of the PTC in most regions and hours when

averaged over all days of the year.

Figure B.2: Marginal Emissions Damages by Hour of Day

Estimates of external marginal damages from electricity generation by hour of day and NERC region are
taken from the replication materials for Holland et al. (2016). The horizontal line is the nominal value of the
PTC ($23/MWh).
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Appendix C Profit Calculation Details

Sections 5.2 and 5.3 approximate plant entry decisions using estimates of projected discounted

profits under both subsidy regimes. These profit calculations require making assumptions

about lifetime production, prices, operating costs, and discount rates. This appendix discusses

each of these assumptions and presents additional sensitivity analysis.

The starting point for these calculations is two estimates of discounted lifetime profits for

each plant given by:

π1603
i =

t=25∑
t=1

(
pit

(1 + r)t

)
Qit −

cit
(1 + r)t

− (1− s)Fi

πPTC
i =

t=25∑
t=1

(
pit

(1 + r)t
+

φit

(1 + rtax)t

)
Qit(φit)−

cit
(1 + r)t

− Fi

Time Horizon Plants are assumed to remain in service for 25 years, and right-censored

prices and quantities are imputed with the observed (real) averages for each plant.

Output Prices Plant-specific output prices (pit) are computed using resale revenues

reported on EIA Form 923, power purchase agreements from AWEA and BNEF, and

estimated revenue from the sale of RECs.

Form EIA-923 began collecting annual resale revenue and quantity for each plant in 2011.

The EIA refers to these data as “resale,” since the purchasing entity resells the power to

end-use consumers. We infer average resale prices by dividing revenue by quantity and use

this price for plants that sell all of their electricity for resale. For plants that report retail

sales, we use average annual retail price information at the state level from Survey EIA 861M.

In cases where firms report both types of sale, we construct a weighted average price. We

exclude plants that are missing data on sales for resale and retail sales. We assume real prices

remain at their current levels in future periods.

We also incorporate PPA data from AWEA and BNEF. Both sources report multiple

prices for some plants, and we use the median price for each plant from each source. We then

take the maximum price derived from EIA resale data, AWEA resale data, and BNEF data

as the price firms receive for their output in the electricity market.

Finally, we include estimated marginal revenue from the sale of RECs under state-level

renewable portfolio standards using data from Marex Spectron and Lawrence Berkeley

National Laboratory. As of 2017, 29 states and Washington D.C. had enacted RPSs. Wind

farms generate certificates for each unit of production, which they then sell to utilities subject
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to the RPSs. Unfortunately, these payments are not observed in the EIA data.

We construct estimates of the RPS payments available to wind farms in a given state-

month using bid-ask data on RECs trades from all active state RECs markets collected by

Marex Spectron through May 2015. To account for the fact that some states allow covered

non-renewable entities to obtain credits from qualifying renewable generators outside the

state, we combine these state level prices with annual estimates of cross-state REC compliance

flows from Lawrence Berkeley National Lab.41 This expected REC payment is added to the

average resale price to get marginal revenue each period.

Output Quantities Output under the 1603 (Qit) is calculated based on the observed

capacity factor. Output under the PTC (Qit(φit)) is constructed by increasing observed

capacity factor for each plant by 3.3 percentage points (reflecting the average of our preferred

IV and matching results) for the first ten years of operation.

O&M Costs Plant-specific operations and maintenance costs (cit) are unobserved, so we

use $29/kW/year (in 2018 dollars) for all plants based on Wiser and Bolinger (2019).

PTC Subsidy and Costs Under the PTC, firms receive φit = $23 additional dollars per

MWh of output for first ten years of operation in the form of tax credits. Plants receive the

full subsidy on inframarginal output that is generated under the 1603 (Qit).

For additional electricity generated under the PTC, Qit(φit) − Qit, O&M costs should

be higher on the margin than on average. Lacking plant-specific O&M costs, we assume

that plants receive half of the PTC subsidy value for marginal units. This is equivalent

to assuming linear marginal costs for producing this marginal output, starting at zero and

increasing to the level of the PTC.

Fixed Costs Fixed investment costs (Fi) are obtained by dividing the observed 1603 grant

award amount from Treasury by the fraction of investment costs covered by the program

(s = 0.3).

Inflation Adjustment We put all revenues and costs in 2014 dollars. The PTC is indexed

to inflation, so we use the 2014 value of $23 per MWh for all PTC revenues. We observe

other output prices (resale prices, PPAs, and RECs) and fixed costs (Fi) at different points

in time for different projects. To put these prices in 2014 dollars, we follow the PTC inflation

41More information on this project tracking cross-state RECs at https://emp.lbl.gov/projects/renewables-
portfolio.
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adjustment by using the GDP implicit price deflator from the U.S. Bureau of Economic

Analysis.

Discounting Output prices (pit) and O&M costs (cit) are discounted at an assumed five

percent real interest rate (r). The PTC subsidy (φit) is discounted at a higher rate to account

for the need to monetize tax credits discussed in Sections 2.2 and 5.2. We use an eight percent

interest rate (rtax) because it is the modal tax equity yield over 2009-2012 presented in

Bolinger (2014). We use the maximum observed tax equity yield of 10.5 percent for sensitivity

analysis in Appendix C.1.

Accelerated Depreciation Wind farms were eligible for accelerated depreciation of fixed

investment costs during the sample period. This can be viewed as an additional subsidy that

may affect plant profitability. In addition, the value of accelerated depreciation depends on

the subsidy firms choose: for 1603 recipients, the cost basis for depreciation is reduced by

half the grant amount. This means that firms can depreciate 85 percent of the fixed cost

under the 1603 versus 100 percent under the PTC.

While our focus is on the economic profits of wind farms rather than their financial structure

and tax payments, the details of accelerated depreciation could affect plant profitability, plant

subsidy choice, and government expenditures. To account for this, we compute the subsidy

value of accelerated depreciation relative to straight line depreciation for each subsidy case.

For accelerated depreciation, we first account for 50 percent bonus depreciation and then use

the 5-year MACRS depreciation schedule from Table A-1 of the 2012 IRS Publication 946 for

the remaining cost basis. For straight line depreciation, we depreciate the investment cost

over the lifetime of production (assumed to be 25 years) and assume zero scrap value. We

use the appropriate cost basis (85 percent or 100 percent of the investment cost) depending

on the policy case. Depreciation flows are translated into dollars using a marginal tax rate

of 35 percent and then converted to net present value using the assumed discount rate of

five percent. Finally, we compute the subsidy value of accelerated depreciation by taking the

difference between the depreciation “revenues” under these two schedules and adding that

difference to plant profits. We also add that amount to the public expenditure to reflect the

difference in tax receipts under the two subsidies.
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C.1 Section 1603 Program Evaluation

Table C.1 summarizes these two constructed profit measures for 1603 grant recipients.42 The

first two columns of the table report predicted lifetime output along with the total subsidy

paid to 1603 claimants, both discounted using a five percent real interest rate.43 The third

column presents the ratio of total subsidy to total output, which can be interpreted as the

public LCOE. The final three columns present predicted output, subsidy, and public LCOE

for these projects had they claimed the PTC instead of the 1603 grant. Plants are assigned

to one of three groups: an always profitable group (π1603 > 0 & πPTC > 0), a marginal group

(π1603 > 0 & πPTC < 0), and a never profitable group (π1603 < 0 & πPTC < 0).

Estimating the full effect of the 1603 program requires taking a stand on the counterfactual

entry status of the never-profitable group. If these plants are in fact marginal, and would

not have entered without the 1603 grant program, the 1603 program increased lifetime wind

production by 85 million MWh (14 percent) while increasing the average public LCOE by

$2.26/MWh (8 percent). If instead the never-profitable plants would have entered in either

case, the 1603 grant program screened in just 15 million MWh of production (in discounted

terms) at the 6 marginal plants. At the same time, production at inframarginal plants

declined. Under this assumption, our preferred assumption, total wind output would have

been slightly higher without the 1603 program (by 25 million MWh, or 4 percent). This

would also imply that the 1603 grant increased the average public LCOE by $2.04/MWh (7

percent).

Table C.1: Estimated Subsidy by Group

1603 PTC

Group N Output
(MMWh)

Subsidy
($M)

Subsidy
($/MWh)

Output
(MMWh)

Subsidy
($M)

Subsidy
($/MWh)

Always Profitable 176 562 17,564 31.24 596 17,674 29.67
Marginal 6 15 674 43.58 17 599 35.97
Never Profitable 29 103 3,488 34.00 109 3,401 31.07

Estimated electricity generation and subsidy for 1603 recipients, divided into three groups depending on their
estimated profitability under the 1603 grant and the PTC. Output and Subsidy are in net present value terms,
and Subsidy per MWh is constructed by taking the ratio of the sum of discounted subsidy expenditures to the
sum of discounted electricity generation as in the definition of the LCOE. The first set of numbers correspond
to outcomes under the subsidy they chose. The second set presents a counterfactual for the subsidy they did
not choose.

42This sample differs slightly from the sample used in Section 4 because we exclude plants with no price
data and include plants who were omitted from the regression analysis due to missing wind speed data.

43Total government payments include accelerated depreciation benefits under each subsidy.
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Table C.2 summarizes the results of the profitability calculation when using the maximum

observed tax equity yield of 10.5 percent for rtax instead of the median yield of 8 percent.

Under this alternative assumption, the number of always profitable plants decreases from

176 to 175, while the number of marginal plants increases from 6 to 7. As above, estimating

the full effect of the 1603 program requires taking a stand on the counterfactual entry status

of the never-profitable group. Under the assumption that never-profitable plants are in

fact marginal, the 1603 program increased lifetime wind production by 88 million MWh

(15 percent) and increased the public LCOE by $2.28/MWh (8 percent). If instead the

never-profitable plants would have entered in either case, the 1603 grant increased the average

public LCOE by $2.06/MWh (7 percent).

Table C.2: Estimated Subsidy by Group using rtax = 10.5%

1603 PTC

Group N Output
(MMWh)

Subsidy
($M)

Subsidy
($/MWh)

Output
(MMWh)

Subsidy
($M)

Subsidy
($/MWh)

Always Profitable 175 559 17,441 31.19 592 17,560 29.65
Marginal 7 19 797 42.83 20 713 35.59
Never Profitable 29 103 3,488 34.00 109 3,401 31.07

Estimated electricity generation and subsidy for 1603 recipients, divided into three groups depending on their
estimated profitability under the 1603 grant and the PTC. Output and Subsidy are in net present value terms,
and Subsidy per MWh is constructed by taking the ratio of the sum of discounted subsidy expenditures to the
sum of discounted electricity generation as in the definition of the LCOE. The first set of numbers correspond
to outcomes under the subsidy they chose. The second set presents a counterfactual for the subsidy they did
not choose.

C.2 Modifications for Cost-Effectiveness Analysis

For the cost-effectiveness analysis in Section 5.3, we simplify our profitability calculations

to focus on the core economic tradeoffs of input and output subsidies. The most prominent

changes are summarized in the text, and the rest are summarized below.

Fixed Cost Estimation for PTC Recipients Extending this analysis to PTC plants

requires information on the investment costs of these plants. For 1603 plants, investment costs

are observed because they are subsidized. For PTC plants, no such government information

is available. To fill this gap, we collect plant-level investment costs from a variety of sources:

SNL Energy, BNEF, state tax filings and press releases. Of the 97 sample PTC plants

entering between 2009 and 2012, we could not find cost information for 65 of these plants.

We predict missing costs using a linear regression of costs onto plant characheristics for
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the plants whose costs we do observe. The sample is restricted so plants coming online within

one year of the policy period (2008 - 2013). Cost are available for 284 plants during this

period, 79 of which claimed the PTC. Table C.3 presents the results. The dependent variable

in each regression in the cost per unit of capacity (million $/MW), and all models include

plant vintage fixed effects. Model 1 shows that 1603 plants cost $70,000 more per MW of

capacity within cohort, although this estimate is not significantly different from zero. After

controlling for plant size (model 2) and turbine firm and size (model 3), there is effectively

no difference in costs between PTC and 1603 plants. After including state fixed effects in

column 4, the root mean square error is $270,000, which is approximately ten percent of the

sample average cost. This final model is used for imputing missing plant costs in Section 5.3.

Table C.3: Fixed Cost Estimation

(1) (2) (3) (4)

1603 Grant 0.076 0.00056 0.022 0.0074
(0.058) (0.057) (0.055) (0.059)

Log(Capacity) -0.096∗∗∗ -0.11∗∗∗ -0.089∗∗∗

(0.021) (0.019) (0.021)

Turbine Capacity 0.12∗∗ 0.042
(0.061) (0.075)

Manufacturer FE Y Y
State FE Y
adj R-sq. 0.085 0.17 0.39 0.49
N 284 284 284 284
rmse 0.35 0.34 0.29 0.27

The dependent variable in each regression is the upfront investment cost in million $/MW. Sample restricted
to plants entering 2008-2013 with non-missing investment costs. All models contain cohort (year of entry)
dummies. Robust standard errors reported in parentheses.

Omit Accelerated Depreciation We focus on economic profits and omit the subsidy

value of accelerated depreciation described above.

Discounting We abstract from the tax credit nature of the PTC and discount PTC

revenues at the same rate as electricity revenues (i.e., 5 percent).
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Appendix D Additional Tables and Figures

Table D.1: Summary Statistics by Entry Date

Year Plants
(all)

Plants
(sample)

Plants
(1603)

IOU or
IPP

Regulated Capacity Turbine
Size

Wind
Speed

Capacity
Factor

2002 12 9 0 0.75 0.33 48.46 1.21 17.97 29.83
2003 36 29 0 0.86 0.08 44.93 1.33 18.64 31.34
2004 14 9 0 0.86 0.21 26.89 1.49 17.69 32.33
2005 23 17 0 0.74 0.17 92.38 1.50 18.59 35.38
2006 44 36 0 0.93 0.14 43.08 1.44 17.86 34.91
2007 52 44 0 0.94 0.12 105.65 1.77 18.48 35.74
2008 95 69 0 0.95 0.15 84.74 1.80 17.89 34.48
2009 103 77 65 0.84 0.17 91.70 1.81 17.65 31.85
2010 62 49 44 0.89 0.08 67.50 1.76 17.02 32.12
2011 91 64 62 0.80 0.13 74.47 1.92 17.22 31.15
2012 149 109 74 0.93 0.11 87.77 1.99 17.22 34.33
2013 11 0 0 0.73 0.09 71.64 1.75 18.14 34.86
2014 38 0 0 0.84 0.16 92.59 1.82 18.59 31.30

Each row contains summary statistics for the set of wind farms in our sample that were placed into service in
that year. Plants (all) is the number of wind farms placed into service in that year, Plants (sample) is the
number in our restricted sample (see text and Appendix A), and Plants (1603) is the number of Section 1603
grant recipients. All remaining columns are constructed using 2014 data from EIA Forms 860 and 923 except
for Capacity and Turbine Size, which are constructed using the first values reported to the EIA. IOU or
IPP is the share of wind farms that are owned by an investor-owned utility or independent power producer.
Regulated is the share of wind farms that are regulated. Capacity is the average total nameplate capacity in
MW. Turbine Size is the average turbine capacity in MW. Wind Speed is the average annual wind speed in
miles per hour for each wind farm as reported to the EIA. Capacity Factor is the average of net electricity
generation divided by capacity.
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Table D.2: IV Results Sensitivity: Linear RD

(1) (2) (3) (4) (5) (6)

1603 Grant -3.697∗∗∗ -2.893∗∗ -3.156∗∗∗ -6.376∗∗ -4.774∗∗ -1.346
(1.351) (1.238) (1.170) (2.520) (2.241) (2.244)

Regulated -1.371 -5.446∗∗∗ -2.305 -5.980∗∗∗

(1.685) (1.970) (1.881) (1.943)

PPA -0.600 -2.618∗∗∗ -0.465 -2.704∗∗∗

(1.056) (0.925) (1.063) (0.952)

IPP -1.408 -2.514∗ -1.883 -3.105∗∗

(1.305) (1.307) (1.337) (1.364)

Potential Capacity Factor 0.503∗∗∗ 0.553∗∗∗ 0.503∗∗∗ 0.560∗∗∗

(0.0368) (0.0386) (0.0383) (0.0362)

Var(Wind Speed) 0.0637 -0.432∗∗∗ 0.00692 -0.433∗∗∗

(0.155) (0.107) (0.160) (0.108)

log(Capacity) -0.605 0.580 -0.643 0.600
(0.430) (0.470) (0.423) (0.478)

Regression Type 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS
Controls N Y Y N Y Y
State FE N N Y N N Y
Piecewise Trend N N N Y Y Y
N 8752 8752 8752 8752 8752 8752
First-stage F-stat. 148 169 113 38 32 22

Data include a balanced panel of monthly observations from 2010 to 2014 for all wind farms. The first three
columns replicate the IV results in Table 3. For columns 4 - 6, distance to the policy cutoff, and that distance
interacted with the a post-policy indicator are included as controls. All models contain year-month dummies.
Standard errors clustered by wind farm reported in parentheses.
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Table D.3: Matching Results Sensitivity: Matching on Potential Capacity Factor

(1) (2) (3) (4) (5)

1603 Grant -2.942∗∗∗ -3.884∗∗∗ -3.120∗∗∗ -2.712∗∗ -2.780∗∗

(0.719) (1.027) (1.067) (1.098) (1.196)

Sample All Matched Matched Matched Matched
FEs State State Group Group*Y Group*Y*M
R-sq. 0.615 0.633 0.655 0.669 0.789
N 21303 12885 12885 12885 12885

The matched sample was constructed using coarsened exact matching on state, regulatory status, entity type,
capacity, and potential capacity factor. All models include the controls listed in the IV models in Table 3:
log capacity, potential capacity factor, and wind speed variance, as well as dummies for whether the plant is
regulated, whether it is an IPP, the presence of a PPA, and month of sample. All models also include cohort
dummies. Standard errors, clustered at the plant level, are reported in parentheses.
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Figure D.3: Share of Plants Ever Completed, Plotted by Year of Initial Expected Completion

The initial expected completion year is the year the generator was first scheduled to start operation. Completion
is determined based on when each plant entered into the EIA-860 operable data. Plots are based on the
subset of plants that last appeared in the EIA-860 proposed data prior to 2016. Shading indicates the years
during which new plants were eligible for the 1603 grant (2009 to 2012).
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