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Research Interests
* Applied image analysis — computer vision/deep learning
* Applied text analysis — topic models, supervised machine learning.

* Experiments and causal inference.



mage as Data: A Computer Vision
-ramework for the Analysis of Political Images

* Development of a framework for political image analysis.

* Exploration of House of Representatives photographic “homestyles” —
how they convey information to their constituents.



mage as Data: A Computer Vision
-ramework for the Analysis of Political Images
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Image Experiment: Does who politicians pose
with affect opinions about them?

Alone Man Woman Af. American




Image Experiment: Does who politicians pose
with affect opinions about them? YES!
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Image Experiment: Does who politicians pose
with affect opinions about them? YES!
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Image Experiment: Does who politicians pose
with affect opinions about them? YES!

Affects
whether
respondents
believe that
politicians
share their
values.
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Image Experiment: Does who politicians pose
with affect opinions about them? YES!
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Do politicians use the people that they pose
with in photos differently?

» Specifically, do Democrats and Republicans use race in photos differently?



Build convolutional neural network classifier
to identify race in Congressional images

* Avg. cross-validated accuracy rates of 90% for whites, 85% for African-American, 75%
for Asian, 65% for Hispanic.
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Explore strategic use of race in photographs
posted by Democrats and Republicans
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Explore strategic use of race in photographs
posted by Democrats and Republicans
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Text Analysis Projects

* Understanding political events through scalable, multi-mode, social
action identification. (supervised machine learning, naive Bayes)

* Putting your money where your statements are: using topic models to
explore how changes in stated priorities reflect actual budgetary
changes.



Understanding political events through scalable,
multi-mode, social action identification.

* Construct a
framework
for
identifying
four types
of
social/politi
cal action.

SINGULAR

COLLECTIVE

Individual actions/expressions
of actions indicating peaceful
intent. (e.g., expressions of
empathy or support)

Collective actions/expressions
of actions indicating peaceful
intent. (e.g. peaceful activity
among and between groups)

Individual actions/expressions
of actions indicating peaceful
or forceful intent. (e.g.,
violence between individuals)

Collective actions/expressions
of actions indicating peaceful
or forceful intent. (e.g.,
violence among and between

groups)



Understanding political events through scalable,
multi-mode, social action identification.
* Using 600 million + geocoded Tweets

collected between April 15t, 2014 and
April 301, 2015.

e Use Associated Press image metadata to
“filter” protest related Tweets.

* Train “adept” Bayes classifier to identify
different types of social/political actions.



Ferguson protests, 08/11/2014
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NYC climate change protests 05/21/2014
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Hong Kong “occupy” protests 09/28/2014
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NYC climate change protests...

Posterior presence of action
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