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Research Interests
* Applied image analysis — computer vision/deep learning
* Applied text analysis — topic models, supervised machine learning.

* Experiments and causal inference.



mage as Data: A Computer Vision
-ramework for the Analysis of Political Images

* Development of a framework for political image analysis.

* Exploration of House of Representatives photographic “homestyles” —
how they convey information to their constituents.



mage as Data: A Computer Vision
-ramework for the Analysis of Political Images
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Image Experiment: Does who politicians pose
with affect opinions about them?

Alone Man Woman Af. American




Image Experiment: Does who politicians pose
with affect opinions about them? YES!
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Image Experiment: Does who politicians pose
with affect opinions about them? YES!
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Image Experiment: Does who politicians pose
with affect opinions about them? YES!

Affects
whether
respondents
believe that
politicians
share their
values.

Image with...

Man-

Control (Alone)-

Af-Am-

Stro

ngI)I/ Agree

+
—_
Photo Wilcoxon.P.Values Direction
Woman 0.44 None
Man 0.23 None
L Af-Am 0.01* Agree
Strongly Disagree

...shares my values



Image Experiment: Does who politicians pose
with affect opinions about them? YES!
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Do politicians use the people that they pose
with in photos differently?

» Specifically, do Democrats and Republicans use race in photos differently?



Build convolutional neural network classifier
to identify race in Congressional images

* Avg. cross-validated accuracy rates of 90% for whites, 85% for African-American, 75%
for Asian, 65% for Hispanic.
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Explore strategic use of race in photographs
posted by Democrats and Republicans
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Explore strategic use of race in photographs
posted by Democrats and Republicans
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Text Analysis Projects

* Understanding political events through scalable, multi-mode, social
action identification. (supervised machine learning, naive Bayes)

* Putting your money where your statements are: using topic models to
explore how changes in stated priorities reflect actual budgetary
changes.



Understanding political events through scalable,
multi-mode, social action identification.

* Construct a
framework
for
identifying
four types
of
social/politi
cal action.

SINGULAR

COLLECTIVE

Individual actions/expressions
of actions indicating peaceful
intent. (e.g., expressions of
empathy or support)

Collective actions/expressions
of actions indicating peaceful
intent. (e.g. peaceful activity
among and between groups)

Individual actions/expressions
of actions indicating peaceful
or forceful intent. (e.g.,
violence between individuals)

Collective actions/expressions
of actions indicating peaceful
or forceful intent. (e.g.,
violence among and between

groups)



Understanding political events through scalable,
multi-mode, social action identification.
* Using 600 million + geocoded Tweets

collected between April 15t, 2014 and
April 301, 2015.

e Use Associated Press image metadata to
“filter” protest related Tweets.

* Train “adept” Bayes classifier to identify
different types of social/political actions.



Ferguson protests, 08/11/2014
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NYC climate change protests 05/21/2014
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Hong Kong “occupy” protests 09/28/2014

50

\ Hong Kong, CN: 09/28/2014 11 AM — singular peace

| — collective peace
— collective force
— singular force

il

WANAARIAVY,

40

Posterior presence of action

o\b‘ Q’\b‘
3'1- b
Q 8}
669 OC" OC"
1 #OccupyCentral |
2 [ protestors |
3 T police
4 [ Mong Kok
9 [ tear gas
6 [ #HongKong
7 I protesters
8 [ near
9 [N Protestors
10 [ #hongkongdemocracy
1 [ in
12 [ Central
13 [ the
14 [ Police
15 [ Kowloon
16 [ scene
1 [ #Police
g 18 [ Hong Kong police
219 [ on
£ 20 [ standoff
a2 [ stand off
x 22 [ of
S22 [ streets
24 [ cops
25 I and
26 I HK
27 [ protest
28 IBank of China
29 follow N
30 [ riot
31 [ blocking
321 happy S
33 [ spread
34 [ Causeway Bay
35 [Eriot police
§_6, [ Huge
[ pepper spray
38 [ disperse
39 [ blocks
40 [ outside |
-20 0 20 40 60 80

Relative impact on classification



NYC climate change protests...

Posterior presence of action

300
250
200
150
100

50

New York, NY: 09/21/2014 07 AM

— singular peace
— collective peace
— collective force
— singular force

A
'IQX‘& ,LQ'X
o? il
1
2
3
4
S
6
?
4
9
1¢
1
12
13
1a
15
14
17
¥
£
En
zZ2a
2
z3
23 I ¢ Fire
Pl allegedly
% Marching
27 going down
2 finish EEEEEE
2 on
3 warth S
31| #PeoplesClimate I
3z . <ide
33 [ T
34 I rished
35 news
3% first I
37 N all
3 B Colitmbus Circle
3 R AKING
40 G h
-10 -5 [ 5 10 15 20 F3

Relative impact on classification




