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Abstract

In this section we give an introduction to optimal transport (OT), where we present
an operator over discrete and/or continuous measures that fulfill all distance properties
(positivity, symmetry and triangularity). For historical reasons, the OT distance is
also referred as Earth mover’s distance (EMD) in the computer science literature, or
Wasserstein distance. Compared to standard divergences such as Kulback-Leibler,
OT is well defined when comparing measures of non-overlapping supports, or different
number of samples corresponding to empirical measures. We will present the different
formulations of OT for discrete and continuous measures, show the metric properties
of the operator, and discuss two applications that exploit its properties. The first
application considers adding a Wasserstein loss to a classifier to measure semantic
relations between classes. The second application discusses the framework of learning
a classifier in a target domain where there are no labels available by transporting labels
from a source domain where this information is available.

1 Historical overview

The original idea of transport was described by Gaspard Monge in 1781, when he presented
his investigations in [1]. He considered the problem of moving dirt from one place (d’eblais)
to another (remblais) with minimal effort, by minimizing a displacement cost. In his original
formulation, the transported mass from the original source had to match a predefined target
mass at destination, requiring non-splitting of the original elements. Figure 1 shows the
Monge-assignment problem. In the first case it simply consists of an assignment and two
solutions are possible. In the second case the assignment problem is unique.

However, his initial formulation led to a combinatorial problem which was hard to solve,
so other authors after him considered more tractable problems. Frank Lauren Hitchcock
formulated in 1941 his idea of a transportation problem by enunciating a the factories and
warehouses problem (sometimes explained with mines and factories instead). There are n
factories that manufacture some product, and m wharehouses, each with some finite capacity
that store the product before selling it to the public. There are associated transport costs for
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Figure 1: Monge original assignment problem.

Figure 2: Bipartite graph for the transportation problem.
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moving the product from factories to warehouses, and the goal of the problem is to minimize
the transportation costs satisfying the constraints.

This formulation leads to a linear program (LP), which can be solved efficiently with
specialized techniques such as the simplex methods, or more general, such as interior point
methods. Note that the simplex method was proposed by George Dantzig in 1946.

Two of the key ideas of optimal transport distance (which we haven’t enunciate yet) is
mass conservation and mass tranportation cost. The first one refers to the idea that the
goods produce by the factories is not lost or created, which we can enunciate with linear
constraints. The second one corresponds to every possible combination of source factory and
target warehouse times the transported mass.

As an introductory example, consider 3 factories, each with 5, 4 and 6 units of products;
4 warehouses, with 5, 3, 5 and 2 units of capacity; and a tranportation cost given by

W1 W2 W3 W4

F1 5 4 7 6
F2 2 5 3 5
F3 6 3 4 4

The problem can be represented by a bipartite graph in Figure 2, where a conserving
tranport plan is depicted (not the optimal plan).
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Accouting for this constraints, the transportation problem can be formulated as follows:

min
xij≥0

5x11 + 4x12 + 7x13 + 6x14 + 2x21 + 5x22

+3x23 + 2x24 + 6x31 + 3x32 + 4x33 + 4x34

s.t. x11 + x12 + x13 + x14 = 5

x21 + x22 + x23 + x24 = 4

x31 + x32 + x33 + x34 = 6

x11 + x21 + x31 ≤ 5

x12 + x22 + x32 ≤ 3

x13 + x23 + x33 ≤ 5

x14 + x24 + x34 ≤ 2

(1)

Here, if xij belong to the non-negative real numbers, one factory may transport its product
to multiple warehouses, and split its mass as well. The solution in that case need not be an
integer value.

2 Definitions and notation

Optimal tranport defines a distance between histograms (or measures), and as such, proba-
bility mass sums to one. We define the probability simplex as follows:

∆n =

{
ai ∈ Rn

+

∣∣∣ n∑
i=1

ai = 1

}
(2)

We refer to a histogram, or a discrete probability distribution, with bold lower case letter,
i.e., p = (p1, p2, . . . , pn) ∈ ∆n. We also consider the space of locations X such that x =
(x1, x2, . . . , xn) ∈ X . We extend the notion of a discrete probability distribution to discrete
measure defining

α =
∑
i

piδxi , (3)

where δxi refers to the Dirac delta function at location xi.
We use the set of Radon measures M(X ), which requires that X is equipped with a

distance, which one can integrate against continuous functions f . In the case of a probability
density function integrable in the Lebesgue sense, we get for a measure α that∫

X
f(x)dα(x) =

∫
X
f(x)ρα(x)dx, (4)

where ρα(x) refers to the pdf of the random variable.
We refer to the set of set of positive measures with M+, such that∫

X
f(x)dα(x)→ R+, (5)

and to the set of probability measures withM1
+, such that

∫
X dα(x) = 1. Figure 3 illustrates

these ideas.
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Figure 3: Discrete and continuous measures for 1 and 2 dimensional X .

3 Assignment and Monge problems

Consider a slightly different problem as the one discussed for the transportation problem
by Hitchcock. We have n source elements (agents) and m = n destinations (tasks), and we
can to assign each agent to a single task. Of course, there is a cost associated to such an
assigment and we are intereseted in minimized such cost. We are looking for a permutation
of the set of source elements, such that the cost is minimal:

min
σ∈Perm(n)

1

n

n∑
i=1

Ci,σ(i). (6)

This is a difficult problem because there are n! possible permutations, and we need a
good strategy to find an optimal solution (for n=70, there are approximately 10100 possible
permuations). This is called the assignment problem, but we will see it is in fact a special
case of the more general optimal transport problem.

We will skip the formal definition of the Monge problem, but it can be checked in Remark
2.4 of [2]. In summary, it searches for a transport plan such that a source positive measure α
transports all of its mass to a destination positive measure β of same mass, while minimizing
cost parametrized by a cost function c(x, y). In the following we will restrict ourselves to
probabilistic measures of mass 1.

4 Kantorovich relaxation

The core formulation of the optimal transport distance, is to solve the Kantorovich relaxation
problem (sometimes called Monge-Kantorovich problem). Assume we have two discrete
probability distributions p ∈ ∆n and q ∈ ∆n and we want to minimize the transportation
cost of p onto q.

We define a matrix F ∈ Rn×n, of positive elements, where each of its components describes
the portion of mass that is transported from component i of p to component j of q. This
matrix is called the transport plan, and has identical meaning as the one we introduced for
the Hitchcock problem regarding the transportation problem.

Next, we know that the rows of F represent the amount of goods that are transported
from the original sources (factories). Therefore, because of mass conservation, rows have
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to add up to the marginal p. Similarly, the columns of F represent the amount of goods
that are transported to the destination nodes (warehouses), and have to sum up to their
total capacity (we impose equality in this problem). The first constraint is written F1 = p
and the second FT1 = q. Note that it is easy to check that F itself corresponds to a joint
probability distribution of P (p, q) (all of its elements sum up to 1). We define the set of
transport plans that satisfy these constraints with U(p,q):

F ∈ U(p,q) = {F ∈ Rn×n
+ | F1 = p and FT1 = q } . (7)

U(p,q) is convex because it’s the intersection of affine equalities, and the intersection of the
non-negative orthant.

The transportation cost is the same as in the transportation problem given by the objec-
tive funtion of (1), and can be written in short with tr(FC). This results into the discrete
Kantorovich problem:

LC(p,q) = min
F≥0

tr(FC)

F1 = p, FT1 = q
(8)

Note that C is at least a symmetric matrix of positive values, but we will discuss its
requirements later when we analyze the metric properties of the Kantorovich problem.

Problem (8) is an LP, and can be solved using general techniques such as the simplex
method, interior point methods, or dual descent algorithms. The problem is convex. Solvers
include Clp, Gurobi, Mosek, SeDuMi, CPLEX, ECOS, etc. However, specialized solvers for
bipartite graphs also exist, which are much more efficient. For instance, there are opensource
C implementations for the network simplex, as well as in CPLEX, which have been ported
to Python (in the POT library), or Julia.

Finally, a matter of active research is to compute approximate solutions of (8) that scale
to high dimensions, using Sinkhorn regularization or smoothed versions of the problem. We
refer the reader to [2] for such descriptions and references.

There is a general formulation of (8) for arbitrary measures. In such case, equivalent
matrix C is a cost function c(x, y), i.e.,

c(x, y) : X × Y → R+, (9)

that measures the cost of transport between locations in X and Y .
For discrete measures α =

∑
i piδxi and β =

∑
i qiδyi , the Kantorovich relaxation presents

the same form as (8), only that C is obtained by evaluating c(x, y) in the corresponding
locations.

For general probabiliy measures α and β, we define the coupling π ∈ M1
+(X ,Y) as the

joint probability distribution of X and Y . Same as in the discrete case, the marginalizations
of the joint probability measure π has to correspond to α and β. This defines a feasibility
region for the joint probability measure:

U(α, β) =
{
π ∈M1

+(X ,Y)
∣∣∣ PX ]π = α and PY]π = β

}
.

The PX ]π ∈M(Y) is defined as the push operator for a transport plan and marginalizes the
joint probability measure π over Y . For a more formal definition see Definition 2.1 in [2].
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Figure 4: Transport plans for mixed arbitrary measures.

Finally, the Kantorovich problem for arbitrary measures can be expressed as

Lc(α, β) = min
π∈U(α,β)

∫
X×Y

c(x, y)dπ(x, y). (10)

Equivalently, (10) has a probabilistic interpretation where

Lc(α, β) = min
(X,Y )

{
E(X,Y )(c(X, Y ))

∣∣∣X ∼ α, Y ∼ β
}
. (11)

Examples of transport plan problems between discrete, semidiscrete and continuous mea-
sures are given in Figure 4

5 Metric properties of the Kantorovich problem

At this point, we consider the metric properties of the discrete optimal transport problem.
Note that, when the cost matrix satisfies certain properties, the solution of the Kantorovich
problem satisfies positivity, symmetry and triangular inequality and is itself a distance. In
the literature, such distance may be refered as Wasserstein distance, OT distance, or Earth
mover’s distance (EMD).

Theorem 1 (Discrete Wasserstein distance). Consider p,q ∈ ∆n and

C ∈
{

C ∈ Rn×n
+

∣∣∣C = CT ; diag(C) = 0; ∀(i, j, k) Ci,j ≤ Ci,k + Ck,j; Ci,j > 0 for i 6= j
}
.

Then,
Wp(p,q) = LCp(p,q)1/p

defines a p-Wasserstein distance on ∆n.

Recall LC(p,q) from problem (8) for reference.
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Proof. We need to show positivity, symmetry and triangular inequality. Since diag(C) = 0,
Wp(p,p) = 0, and F∗ = diag(p). Because of strict positivity of off-diagonal elements,
Wp(p,q) = tr(CF) > 0 for p 6= q. This shows that Wp(p,q) = 0 iff p 6= q.

Since Wp(p,q) = tr(CF), and C is symmetric, Wp(p,q) = Wp(q,p), which proves
simetry.

For triangularity, we will only consider p = 1. We define for three vectors p, q and t
their optimal tansport maps for two pairs as

F = sol(Wp(p,q)) G = sol(Wp(q, t)).

Now, we propose a third transport plan between W1(p, t). For simplicity, assume q > 0 (a
full proof for general p is available in [2]). Define

S = F diag(1/q)G ∈ Rn×n
+ .

Note that F ∈ U(p, t) is feasible, i.e.,

S1 = F diag(1/q) G1︸︷︷︸
q

= F diag(q/q)︸ ︷︷ ︸
1

= F1 = p

ST1 = GT diag(1/q) FT1︸︷︷︸
q

= GT diag(q/q)︸ ︷︷ ︸
1

= GT1 = t

Then, we can write

W1(p, t) =

{
min

F∈U(p,q)
tr(F,C)

}
≤ tr(C,S)

=
∑
ik

Cik
∑
j

FijGjk

qj
≤
∑
ijk

(Cij + Cjk)
FijGjk

qj

=
∑
ijk

Cij
FijGjk

qj
+
∑
ijk

Cjk
FijGjk

qj

=
∑
ij

CijFij
∑
k

Gjk

qj︸ ︷︷ ︸
1

+
∑
jk

CjkFij
∑
i

Fij
qj︸ ︷︷ ︸

1

= tr(CF) + tr(CG) = W (p,q) +W (q, t)

The first inequality comes from suboptimality, and the second from triangular inequality of
the cost matrix C (it is a distance matrix). This concludes the proof.

There is an equivalent definition of p-Wasserstein distance for arbitrary measures which
we give next.

Theorem 2 (Wasserstein distance for arbitrary measures). Consider α(x) ∈M1
+(X ), β(y) ∈

M1
+(Y), X = Y, and for some p ≥ 1,

• c(x, y) = c(y, x) ≥ 0;

• c(x, y) = 0 if and only if x = y;
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• ∀(x, y, z) ∈ X 3, c(x, y) ≤ c(x, z) + c(z, y)

Then,
Wp(α, β) = Lcp(α, β)1/p (12)

defines a p-Wasserstein distance on X .

Recall, that the Kantorovich problem for arbitrary measures is given by (11).

6 Dual problem

We can use duality theory to find the dual formulation of the Kantorovich problem. If the
reader is unfamiliar with duality theory, we provide some brief lecture notes with a basic
description and introduction in the subject to further understand the following concepts.

First, because the LP is a linear program, and is feasible for p ∈ ∆n and q ∈ ∆n, the
dual problem is also feasible and strong duality holds.

Theorem 3 (Dual problem of the discrete Kantorovich formulation). Given p ∈ Rn, q ∈ Rn

and C ∈ Rn×n, the dual of LC(p,q) has the following form:

max
r,s

pT r + qT s

s.t. r1T + 1T s ≤ C
(13)

where r ∈ Rn, s ∈ Rn.

Proof. We first construct the semilagrangian of the primal problem:

J(F; r, s) = tr(CFT ) + rT (p− F1) + sT (q− FT1). (14)

The dual funcion is the minimum of the previous function, and the dual problem is the
maximization of the dual function. This gives the following expression,

max
r,s

rTp + sTq + min
F≥0

tr(CFT )− rTF1︸ ︷︷ ︸
tr(FT r1T )

− sTFT1︸ ︷︷ ︸
FT 1sT

(15)

where Q = C− r1T − 1sT .
The solution to the dual problem can be summarized as follows:

min
F≥0

tr(CFT )− rTF1︸ ︷︷ ︸
tr(FT r1T )

− sTFT1︸ ︷︷ ︸
FT 1sT

=

{
0 if Q ≥ 0

−∞ otherwise,
(16)

which finally yields the previous result.

max
r,s

rTp + sTq

s.t. r1T + 1T s ≤ C.
(17)
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The dual problem can play an important part in devising algorithms to solve the Kan-
torovich problem. For example, the network simplex is an algorithm that iteratively finds
feasible solutions in the primal problem, and updates the dual variables until they become
feasible. Similarly, primal-dual methods exploit the gap between the primal and dual prob-
lems to find optimal solutions.

Furthermore, the dual variables corresponding to the Kantorovich problem also have
an interpretable function, as they can be related to the price payed by the transport plan
to move the goods in p, and to collect the goods in q amounts at the warehouses. This
constitutes an alternative view to the mass transportation explanation that is available from
the primal formulation.

Finally, to conclude this section and for the sake of completeness, we provide the dual
formulation for arbitrary measures.

Theorem 4 (Dual of the Kantorovich problem with arbitrary measures). Given α ∈M(X ),
β ∈M(Y) and c(x, y) a distance function, one has

Lc(α, β) = sup
(f,g)∈R(c)

∫
X
f(x)dα(x) +

∫
Y
g(y)dβ(y) (18)

where the set of admissible dual potentials is

R(c) = { (f, g) ∈ C(X )× C(Y) | ∀(x, y), f(x) + g(y) ≤ c(x, y) } . (19)

In this case we search for a pair of continuous functions f and g that satisfy the cost con-
straint, and maximize the revenue for transporting the α and β masses. The interpretation
of f and g can also be understood from the perspective of transportation prices.

7 Special cases

There are certain special cases where Wassertein has a very clear interpretation, or a closed
form solution.

In the discrete case where C = 11T − I, the solution to the Kantorovich problem reduces
to a l1-norm computation, i.e., LC = ‖p− q‖1.

For discrete measures with equiprobable elements in 1D case, i.e., X = R, and α =
1
n

∑
i δxi and β = 1

n

∑
i δyi , there is also closed form solution. In this case, we can assume

that the locations of the discrete measure elements are ordered, i.e., x1 ≤ x2, . . . ≤ xn and
y1 ≤ y2, . . . ≤ yn. Then, the Wasserstein loss value has the simple formula

Wp(p,q)p =
n∑
i=1

|xi − yi|p, (20)

where p refers to the l-norm of two vectors.
Discrete optimal transport for 1D elements has an interesting application for histogram

equalization. Assume we have two images with different light profiles and we want to inter-
polate an image between both inputs. The idea is as follows, convert the images into vectors,
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Figure 5: Histogram equalization where t parametrizes the displacement interpolation be-
tween the histograms.

where each pixel corresponds to a luminosity value. Then, sort the pixels with a permua-
tion such that they are ordered in increasing values of luminosity, and do this procedure for
both source and target images. Then, create a new vector that is the convex interpolation
between the previous sorted images, and undo the permutation. This will result into a new
image that has transported luminosity from the target image to the source image along the
geodesics defined by the Wasserstein distance. The results of this procedure are presented
in Figure 5.

Transport of color from an image to second one is also possible, and is analyzed in [3].
Shape preservations is more convoluted than in the previous case, where both images are the
same with different illumination patters. Nonetheless, color transfer it can be achieved with
proper weighting and analysis. The authors precompute the images to identify clusters where
there are high and low variations of color and compute a graph of indexes and weights for the
images. Then, they propose a regularized OT problem where they penalize high variations
(through a divergence, similar to a total variation loss), and the pixels transportation cost
is weighted according to the cluster weight they belong to. In that sense, they are able to
transport color, and preserve edges and shapes. We refer the reader to the author’s original
publication to observe their outcome results.

8 Applications

8.1 Classification with Wasserstein loss function

A first application to consider is classification when there exists a semantic relation between
the classes of a classification problem. In such setting, certain classes may be closely related
and in order to learn more appropriately, these classes should not be penalize as strongly
as others withe less semantic relation. The reason is that these related examples may be
confused easily because of their close relationship in the metric space, and the classifier should
not give these examples the same weight as mistakes of more unrelated classes. Wasserstein
loss allows to define these relations on the space of class labels for some metric, and learn
a classifier that weights these relations. We refer the description of the techniques and
employed analysis to the original paper [4].
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Figure 6: Domain adaptation procedure.

8.2 Domain adaptation using optimal transport

In this application we consider a classification task in a target space where there are no
available labels. However, we assume there exists a source domain with a different joint
probability distribution (between features and labels), where such labels are available. The
goal is to learn a transport plan that maps objects from the source space to the target space,
and then train a classifier in the trasported domain.

The idea is described in Figure 6 and we refer the reader to the original publication [5]
to further complete the techniques and ideas presented in class.

8.3 Other problems or applications of interest

1. Approximate methods to scale problem dimensions, such as Sinkhorn or smooth
OT.

2. Ground metric learning allows to learn the cost matrix from data, potentially
improving performance compared to a p-Wasserstein loss as we have seen in examples.

3. Barycenter estimation: for clustering, or interpolation between histograms.

4. Transfer learning.

5. Unbalanced optimal transport.

6. Wasserstein discriminant analysis.

7. Etc.
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