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Abstract
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1 Introduction

Consider a binary collective choice problem: a society must choose one of two alternatives.

Which alternative is socially preferable depends on the normative principles we have in

mind. Political philosophers such as Locke (1689) argue that society should follow majority

rule, disregarding the intensity of individual preferences. Alternatively, society might be

utilitarian (Mill 1863) —thus, paying attention both to the number of supporters of each

alternative and their preference intensities—or it could choose according to the desire of the

individual with the most intense preference. These three rules are only examples within a

wide class of choice rules that take into account the number of supporters of each alternative

and/or their preference intensities. Each society may weigh individual preference intensities

differently, and hence each society may wish to follow a different choice rule from this class.

If society wishes to fully disregard intensity of preferences, it can reach a decision by ma-

jority rule. Otherwise, an optimal mechanism needs to weigh more heavily the preferences

of agents with more intense preferences. However, practical constraints may influence which

mechanism is used: some collective entities may have adopted majority rule not because

they wish to ignore preference intensities, but because “one-person one-vote”majority rule

is easier to run than more sophisticated mechanisms. If so, to the extent that technological

advances in the field of encryption and data management (e.g. blockchain voting1) make it

easier to use more flexible forms of democracy, we expect calls for institutional innovation

to enhance the opportunities to express preference intensities. Indeed, a number of organi-

zations such as Google (Hardt and Lopes 2015) and some political parties in Europe (Blum

and Zuber 2016) have recently experimented with procedures that endogenously redistribute

political power among the concerned agents. Theoretical results ought to anticipate these

developments —or at least, to anticipate their expansion into the public arena—in order to

inform any decisions on institutional reform.

A recent literature on preference aggregation has shown that preference intensities can be

1See for instance, Yermack (2017).
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taken into account in an extreme way via decentralized markets for votes: such mechanisms

lead to the redistribution of political power and implement the alternative that is preferred

by the agent who cares most about the outcome (Casella, Llorente-Saguer and Palfrey 2012).

We turn attention to centralized vote markets and in particular to vote-buying mechanisms:

each agent can express her intensity of preference by acquiring any quantity of votes x for

either alternative, at a pre-announced monetary amount c(x) that is evenly distributed to

the rest of the players, and the social choice is determined by the total number of votes cast

for each alternative.

We show that for any weight that the society assigns to preference intensities relative to

the number of supporters for each alternative, there exists a vote-buying mechanisms that

implements the desired social choice rule. Moreover, we establish that well-behaved vote-

buying mechanisms only implement choice rules that are optimal with respect to some weight

on intensity of preferences. These results establish a complete two-way mapping between a

simple kind of centralized vote markets and an intuitive class of choice rules, which differ

in the weight that they assign to individuals’preference intensities. To our knowledge this

is the first general class of mechanisms that allows preference intensities to be expressed in

every possible degree.

To gain an intuition over our results, consider the following formalization. Suppose that

each subject i would trade vi units of real wealth to change the social decision from a random

coin toss to A with certainty; that is, the valuation vi measures how intensely subject i cares

that society chooses A and not B (agents who prefer B have a negative valuation). Then,

a possible normative choice rule for a given ρ ∈ R++, is to declare A a better choice if
n∑
i=1

sgn(vi)|vi|ρ > 0, and B if
n∑
i=1

sgn(vi)|vi|ρ < 0; where sgn(vi) is the sign (positive or

negative) of the valuation vi. The class, indexed by ρ ∈ R++, of all such choice rules is

characterized by a collection of appealing axioms (Burk 1936; Roberts 1986; Moulin 1988;

Eguia and Xefteris 2018a).2

2The axioms are: anonymity, neutrality, monotonicity, continuity, separability, and scale-invariance. See
as well Miller’s (2018) characterization of polynomial majority rules.
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Majority rule is the lower limit of this class, ρ = 0. Utilitarianism corresponds to para-

meter ρ = 1: it declares alternative A socially preferred if
n∑
i=1

vi > 0. At the higher limit of

the class, the alternative socially preferred given ρ = ∞ is the alternative preferred by the

agent whose valuation has the highest absolute value. Throughout the class of choice rules,

the social preference according to a small ρ is highly influenced by the number of agents who

support each alternative, and less so by their intensity, while if ρ is large the social preference

better reflects the preferences of the individuals whose well-being is greatly affected by the

decision.

We prove that every vote-buying mechanism with limit cost elasticity limx→0
c′(x)x
c(x)

=

1 + 1/ρ asymptotically implements the choice rule with intensity parameter ρ in the above

class; and that no choice rule outside this class is asymptotically implementable by any vote-

buying mechanism.3 That is, we fully characterize the class of social choice rules that can be

implemented by vote-buying mechanisms. This class is rich, yet neatly characterized by a

single parameter. Indeed, we allow for arbitrary vote-buying costs, c(x), which may not even

scale like power or other polynomial functions, and we still find that the welfare optima that

they implement are in the class we describe. Moreover, we observe that individual equilibrium

transfers converge to zero as the society grows large. That is, centralized vote markets

converge toward functioning like a simpler mechanism without transfers, such as a standard

voting mechanism. This feature mitigates concerns about the role of individual budgets in

social choice, and it is in stark contrast to decentralized vote markets, which require certain

individuals to make substantial payments (Casella, Llorente-Saguer and Palfrey 2012).

Overall, our work contributes to the understanding of centralized markets for votes by

pinning down: a) what determines how much weight will be given to intensity of preferences

and how much weight will be attributed to the popularity of each alternative (i.e. the elas-

ticity of the vote-buying costs near zero), and b) how these weights relate to a specific social

3A mechanism asymptotically implements a given choice rule if the probability that the mechanism
chooses the alternative socially preferred according to this rule is arbitrarily close to one in suffi ciently large
societies.
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choice rule.4 The mechanisms we consider are detail-free in the sense that at the time she

designs the mechanism, the designer does not need to know the particular features of the so-

ciety, such as the number of individuals, the exact distribution of types from which individual

preferences are drawn, or the importance of the choice under consideration. Hence, we inter-

pret the proposed vote-buying mechanisms as institutions which asymptotically implement

the society’s choice rule, regardless of changes in distributional parameters.

Literature Review

Our question of interest has deep roots in classic mechanism design. This literature aims

to design mechanisms that allow a society to choose the utilitarian optimum. All suggested

mechanisms involve transfers. The VCG mechanism (Vickrey 1961, Clarke 1971 and Groves

1973) satisfies utilitarian effi ciency, but is not budget-balanced and may involve substantial

transfers. We would prefer a budget-balanced mechanism that requires minimal transfers, so

that budget-constrained agents can signal their true preference intensity. The mechanisms by

Arrow (1979) and AGV (D’Aspremont and Gerard-Varet 1979) are budget-balanced, require

minimal transfers when the society is large, and attain utilitarian effi ciency by requiring each

agent to pay the expected externality of her choices.

A demanding feature of the AGV mechanism is that to compute the expected externality,

the designer must know population parameters such the distribution from which individual

preferences are drawn. We would prefer mechanisms that can be run even if the designer

does not know this distribution. Fortunately, the dependence of the AGV mechanism on

population parameters becomes less of a problem as the size of the society increases. Actually,

if the distribution of preferences does not favor any alternative, as society becomes large,

the expected externality attains a quadratic functional form.

This asymptotic behavior of the AGV mechanism suggests that in large societies, detail-

4We derive our main result under the assumption —standard in the literature—that agents are risk neutral.
If agents’ utility over wealth is instead concave, rich agents acquire more votes, so if the distribution of
preferences over the social choice is wealth-specific, the preferences of the poor end up under-represented.
Optimality can be restored by allowing for richer mechanisms that condition the cost of voting on individual
wealth (we discuss this extension in Section 4).
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free vote-buying mechanisms with a quadratic cost function c(x) = αx2 may inherit the

effi ciency properties of the AGV mechanism, while relaxing the information requirements on

the planner. Indeed, Lalley and Weyl (2016) show that a vote buying mechanism with a

quadratic cost function (i.e. “quadratic voting”) approximates the utilitarian optimum in

all equilibria in large societies, while Goeree and Zhang (2017) complement the theoretical

arguments with experimental evidence that vote-buying mechanisms with quadratic cost are

relevant in settings of applied interest. Several papers followed studying additional aspects of

quadratic voting, such as agenda-setting (Patty and Penn 2017), heuristic behavior (Lalley

and Weyl 2018), and turnout (Kaplov and Kominers 2017).

Like this literature, we study detail-free vote-buying mechanisms in the context of bi-

nary collective choice problems. Unlike it, we look beyond quadratic voting: we consider a

whole class of vote-buying mechanisms and we show that they implement a large —but neatly

packaged—class of normative choice rules axiomatized by Roberts (1980) and Moulin (1988).5

Related approaches to gauge intensity of preferences through voting involve majority voting

with heterogenous turnout costs, storable votes, or vote trading in a competitive market for

votes. Voluntary majority voting with costly turnout (Börgers 2004; Krishna and Morgan

2015) and the possibility to store votes for future use (Casella 2005) are superior to compul-

sory majority voting from a utilitarian perspective. Whereas, a competitive equilibrium in

a decentralized market for votes is very similar to our special case with parameter ρ = ∞ :

the cost of votes is linear, and the agent who cares most about the decision buys most votes

(Dekel, Jackson and Wolinski 2008; Casella, Llorente-Saguer and Palfrey 2012).

We follow traditional Bayesian implementation (Jackson 1991) to assume that citizens

share a common prior about the society they live in, but we also assume, as in robust

implementation (Bergemann and Morris 2013), that the planner does not know this prior.

The planner’s goal, and ours, is to design a mechanism such that given the planner’s choice

5While our results generalize the finding of Lalley and Weyl (2016) that all equilibria of quadratic voting
lead to utilitarian effi ciency, the two models are not nested: to obtain simpler and shorter proofs, we make
assumptions on the payoff function that are substantially similar, but technically distinct.
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rule, for any realization of individual preferences, in any equilibrium of the mechanism, and

in any society with any common prior, the equilibrium outcome coincides with the desired

social choice.

2 The Formal Framework

Summary. A set of agents must make a binary social choice. The decision is made via

a vote-buying mechanism: agents purchase votes, and the alternative with the most votes

is chosen. We characterize the set of social choice correspondences that are asymptotically

implementable by these vote-buying mechanisms.

Social choice problem. A society Nn of size n ∈ N\{1} must make a binary choice over

{A,B}. Let the social decision d ∈ {A,B} denote the alternative chosen.

Individual preferences. Each agent i ∈ Nn has preferences over real wealth and over

the social decision, and also over lotteries over wealth profiles paired with a social decision.

Under standard conditions (detailed in the working paper version Eguia and Xefteris 2018b),

each agent i′s preference relation is representable by a quasilinear expected utility function

that depends only on agent i′s valuation of the alternatives, on the social decision, and on

the net transfer of wealth received by the agent. For ease of exposition, here we work directly

with the quasilinear utility representation.6

Agent i′s valuation of alternative A, denoted γθi, is the amount of real wealth that i

would be willing to trade in order to assure that d = A, instead of letting d be randomly

drawn. Parameter γ ∈ R++ is the importance of the social decision, and θi ∈ [−1, 1] as

the attitude of agent i; agents with a negative attitude prefer B to A, and those with a

positive attitude prefer A to B. We refer to γθNn ≡ γ(θ1, ..., θn) as a valuation profile of A,

or simply “valuation profile,” and to −γθNn as the valuation profile of B. Let θ−i denote

6The key conditions are separability over wealth and the social decision, and risk neutrality. It is standard
in the literature to implicitly assume that preferences satisfy these conditions, and to treat the quasilinear
utility function as a primitive (see, for instance, Krishna and Morgan 2015 or Lalley and Weyl 2016).
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(θ1, ..., θi−1, θi+1, ..., θn).

Let F be a continuously differentiable cumulative distribution function over [−1, 1] with

strictly positive density f over its domain, and no mass at any point. Let F be the set of

all cumulative distributions. Let θ̄ be a random variable with cumulative distribution F.We

assume that each attitude θi is an independent draw of θ̄. Let θ̄Nn denote the random vector

composed of n independent draws of θ̄, so the profile of attitudes θNn is a realization of θ̄Nn .

Vote-buying mechanisms. A vote-buying mechanism is defined by a cost function c :

R −→ R+. The mechanism invites each agent i ∈ Nn to choose any action ai ∈ R. For any

a ∈ R, and any agent i ∈ Nn, if agent i chooses action ai = x, then i pays a cost c(x).

All payments are redistributed equally among all other agents, so given a vector of actions

aNn ∈ Rn, each agent i ∈ Nn obtains a net nominal wealth transfer −c(ai) +
∑

j∈Nn\{i}

c(aj)

n−1
.

Since agents care about real, not nominal, wealth, their incentives are affected by the price

index in society. However, we show in the working paper version (Eguia and Xefteris 2018b)

that our results hold for any price index; therefore, for ease of presentation, we fix the price

index to one and thereafter omit the distinction between nominal and real wealth.

Let C denote the set of all possible vote-buying mechanisms (all cost functions from R

to R+). A perfect execution of a mechanism c ∈ C would entail society choosing d = A

if
∑
j∈Nn

aj > 0 and d = B if
∑
j∈Nn

aj < 0. However, we assume that the execution of any

mechanism entails some element of uncertainty, so that the mapping from actions to outcomes

is stochastic: while the probability that d = A is increasing in
∑
j∈Nn

aj, it is not a step function.

Formally, we assume that there exists an outcome function G : R −→ [0, 1] such that for

any n ∈ N\{1} and any aNn ∈ Rn, the probability that d = A is G

( ∑
j∈Nn

aj

)
. Let G be the

class of strictly increasing, twice continuously differentiable functions from R −→ [0, 1] such

that for any G̃ ∈ G with density g̃ and derivative of the density g̃′ :

i) G̃(x)− 1
2

= 1
2
− G̃(−x) for any x ∈ R++;

ii) lim
x−→−∞

G̃(x) = 0 and lim
x−→−∞

g̃(x) = 0;

iii) ∃ε̂ ∈ R++ such that limx→∞
g̃′(x+ε)
g̃(x)

∈ R ∀ε ∈ (−ε̂, ε̂).
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Condition (i) is neutrality. Condition (ii) is a responsiveness condition: if the vote mar-

gin is suffi ciently large, the outcome is the one with the vote advantage with probability

arbitrarily close to one. Condition iii) requires the tails of the density not to drop to zero

too steeply.7 The set G contains, among others, all Logistic and Student-t distributions.

We assume that G ∈ G, but G is not known to the mechanism designer, and hence we

will propose mechanisms whose results are robust for any G ∈ G, including those that are

arbitrarily close to a step function with discontinuity at zero, as in Figure 1.

Figure 1: An outcome function G.

This —minimally- stochastic element of the outcome as a function of the equilibrium strate-

gies can be interpreted literally as a probabilistic outcome function given the vote tally.

Alternatively, with a deterministic outcome function (the alternative with a greater tallied

vote total is chosen with certainty), we can interpret G to capture some aggregate noise

in agents’behavior, or in the tallying and recording of the votes cast so that a number of

votes is assigned stochastically in addition to those cast by agents. In any of these cases, the

objective function of a voter is identical, and hence the equilibrium behavior is identical as
7These assumptions make it easier to derive equilibrium properties that are known to hold but harder to

prove in alternative frameworks (e.g. Lalley and Weyl 2016). They do not affect the main characterization
result.
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well. Notice that G can be arbitrarily close to the deterministic outcome function and hence

the stochastic element can be arbitrarily small.

Admissible vote-buying mechanisms. We specify the set of admissible vote-buying

mechanisms CA ⊂ C. Let Ĉ ⊂ C be the set of continuously differentiable non-negative func-

tions defined over R that are twice continuously differentiable over R\{0}. For any c ∈ Ĉ,

define κ(c) ≡ lim
a−→0

ac′(a)
c(a)

as the limit of the elasticity of c at zero (if it exists). Let CA ≡ {

c ∈ Ĉ : c(0) = 0, c′(0) = 0, κ(c) ∈ (1,∞), c′(a) > 0 for any a ∈ R++, lim
a−→∞

c(a) = ∞, and

c(a) = c(−a) for any a ∈ R}. The intuition on CA is that, in addition to continuity and

differentiability, an admissible cost functions has the following properties:

i) abstention (acquiring no votes) is free;

ii) to encourage positive participation, the marginal cost of votes at zero is zero, so for

any strictly positive willingness to pay per vote, some strictly positive quantity of votes can

be acquired at that price;

iii) but the elasticity of the cost function near zero is greater than one (so c is strictly

convex) near zero, and thus the marginal cost of votes becomes positive immediately;

iv) and while elsewhere the cost function need not be convex, this marginal cost is always

positive for all positive quantities;

v) and very high quantities of votes are prohibitively expensive; and

vi) neutrality: votes for A cost the same as votes against A.

Note that CP ⊂ CA, i.e. all power functions with exponent greater than one are admissible

vote-buying mechanisms.

Strategies. Each agent i in society Nn with size n ∈ N\{1} , facing a social choice problem

of importance γ ∈ R++ to be decided according to mechanism c ∈ C under uncertainty

G ∈ G, and taking into account that the ex-ante distribution of attitudes toward the decision

is given by distribution F ∈ F , chooses an action ai ∈ R as a function of the realization θi ∈

[−1, 1] of her own attitude toward the decision. We assume actions are taken simultaneously,

that the tuple (n, F, γ, c, G) is common knowledge, and that each attitude θi is private
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information to agent i. Therefore, for any given tuple (n, F, γ, c, G), a pure strategy is a

mapping s : [−1, 1] −→ R. Let S be the set of all feasible pure strategies. For each s ∈ S

and each θ ∈ [−1, 1], let s(θ) ∈ R be the action taken given θ according to strategy s, always

given (n, F, γ, c, G). For each s ∈ S, for each n ∈ N\{1}, and for each i ∈ Nn, let si = s

denote that agent i chooses strategy s. We say that a strategy s is monotone if ∂s
∂θ
≥ 0.

Utilities. Given a society Nn with (n, γ, F,G) ∈ N\{1} × R++ × F × G and given a

mechanism c ∈ C, for any agent i ∈ Nn, we can compute the expected utility of agent i as a

function of her attitude θi, her strategy si and the strategy profile of every other player s−i.

Let EUi : [−1, 1]×Sn −→ R denote the expected utility of agent i. Then, for any θi ∈ [−1, 1]

and sNn ∈ Sn, EUi[θi, sNn ] is equal to the expected utility from the social decision plus the

expected wealth transfer. For any sNn ∈ Sn and any θi ∈ [−1, 1], let d̄(sNn , θi, θ̄−i) denote

the social decision given that agents play the strategy profile sNn , and agent i has attitude θi.

Note that d̄(sNn , θi, θ̄−i) is a random variable that depends on the realization of the attitude

profile θ−i, and on the realization of the outcome given G
(

n∑
k=1

sk(θk)

)
. Then EUi[θi, sNn ]

is equal to

γθi
(
Pr[d̄(sNn , θi, θ̄−i)=A]-Pr[d̄(sNn , θi, θ̄Nn)=B]

)
-c(si(θi)) +

1

n-1

∑
j∈Nn\{i}

1∫
−1

f(x)c(sj(x))dx,

(1)

where

Pr[d̄(sNn , θi, θ̄−i) = A] =

∫
θ−i∈[−1,1]n−1

 ∏
j∈Nn\{i}

f(θj)

G

si(θi) +
∑

j∈Nn\{i}

sj(θj)

 dθ−i,

and Pr[d̄(sNn , θi, θ̄−i) = B] = 1− Pr[d̄(sNn , θi, θ̄−i) = A].

Game. For each tuple (n, γ, F, c,G) ∈ N\{1}×R++×F ×C×G , let Γ(n,γ,F,c,G) denote the

game played by the n players in society Nn, with strategy set S for each agent, and expected
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utility given by EUi in Expression (1) for each n ∈ N\{1} and each i ∈ Nn.

Equilibrium. For any tuple (n, γ, F, c,G) ∈ N\{1}×R++×F×C×G , let BNE(n,γ,F,c,G) ⊆

Sn denote the set of pure Bayes Nash Equilibria of game Γ(n,γ,F,c,G). We are interested in

the subset of symmetric pure BNE, in which each player plays the same pure, monotone

strategy. Let E(n,γ,F,c,G) ⊆ S denote the set of pure and monotone strategies that constitute a

symmetric Bayes Nash equilibrium of game Γ(n,γ,F,c,G). Hereafter, an “equilibrium”is always

a strategy s ∈ E(n,γ,F,c,G).

Sequence of societies. We consider a sequence of societies {Nn}∞n=2. We will establish

results for suffi ciently large societies. Note that aside from size n ∈ N\{1}, (γ, F,G) are

the characteristics that identify a particular social choice problem. These characteristics

are common knowledge among members of the society, but they are unobserved by the

mechanism designer, who only knows that γ ∈ R++, F ∈ F and G ∈ G. The problem we

address is to design a mechanism that has desirable properties for any (γ, F,G) ∈ R++×F×G,

for any suffi ciently large n.

Social preferences. For each n ∈ N\{1}, let Rn denote a complete and transitive re-

lation over Rn, interpreted as a preference over valuation profiles: for any γ ∈ R++ and

for any θNn , θ̃Nn ∈ [−1, 1]n, we interpret (γθNn)Rn(γθ̃Nn) to mean that according to pref-

erence Rn, valuation profile γθNn is preferable to valuation profile γθ̃Nn . We can interpret

this preference as a preference held by the mechanism designer, or as an abstract prefer-

ence relation over valuation profiles. Let R ≡ {Rn}∞n=2 denote an infinite sequence of such

preferences over valuation profiles. For each n ∈ N\{1}, define as well the strict preference

P n by γθNnP n(γθ̃Nn) ⇐⇒ ¬(γθ̃Nn)Rn (γθNn) , where ¬ denotes the negation of a logical

statement.

A sequence R of preferences over valuation profiles determines a social preference over

{A,B} as a function of n, γ and θNn .

Definition 1 For any (n, γ, θNn) ∈ N\{1}×R++×Rn++, and any preference over valuation
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profiles Rn, alternative A is socially weakly preferred to B if and only if (γθNn)Rn (−γθNn) ,

and is socially strictly preferred if (γθNn)P n (−γθNn).

Alternative B is socially weakly [strictly] preferred given Rn if A is not socially strictly

[weakly] preferred.

Welfare representation. If the preference relation over valuation profiles Rn is con-

tinuous, then it can be represented by a continuous function (Debreu 1954). We refer

to this utility representation as a “welfare” function.8 We say that a welfare function

W : R++×
∞⋃
n=2

[−1, 1]n −→ R represents a sequence {Rn}∞n=1 if for any n ∈ N, for any γ ∈ R+,

and for any θNn , θ̃Nn ∈ [−1, 1]n, W (γ, θNn) ≥ W (γ, θ̃Nn) if and only if γθNnRnγθ̃Nn .

Let sgn : R −→ {−1, 0, 1} be the sign function, defined by sgn(x) = −1 if x < 0,

sgn(x) = 0 and sgn(x) = 1 if x > 0. For each ρ ∈ R++, define the Bergson welfare function

Wρ (Burk 1936) by

Wρ(γ, θNn) ≡
∑
i∈Nn

sgn(θi)|γθi|ρ,

and let Rn
ρ denote the preference relation over valuation profiles in Rn represented byWρ.We

refer to the set
⋃

ρ∈R++
{Rn

ρ} as the set of Bergson preference relations. Bergson preference rela-

tions are the only ones that satisfy the following collection of axioms: continuity, anonymity,

neutrality, monotonicity, separability, and scale invariance.9 These axioms, together with a

particular value ρ ∈ R++, uniquely identifies a particular preference relation Rn
ρ over Rn.

Parameter ρ measures how much the preference over valuation profiles responds to intensity

of individual preferences over alternatives. Each value ρ ∈ R++ can be interpreted as a

distinct normative axiom on preferences over valuations, in addition to the collection above.

8Given that this function represents preferences on the social choice only, our approach is in line with the
standard “micro”version of welfarism. See Moulin (2004) for a discussion of the advantages of microwelfarism
over macrowelfarism.

9See the working paper version (Eguia and Xefteris 2018b) for a definition of the axioms, and Eguia and
Xefteris (2018a) for a more detailed explanation. The original axiomatization is due to Roberts (1980) and
Moulin (1988).
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Social Choice correspondences. For any n ∈ N, a social choice correspondence SCn :

R++× [−1, 1]n ⇒ {A,B} maps a pair (γ, θNn) into the subset of normatively desirable social

decisions SC(γ, θNn). Let SC ≡ {SCn}∞n=1 denote a sequence of social choice correspon-

dences. For each ρ ∈ R++, and for each n ∈ N, define the Bergson choice correspondence

SCn
ρ by

SCn
ρ (γ, θNn) ≡


B if

∑
i∈Nn

sgn(θi)|γθi|ρ < 0

{A,B} if
∑
i∈Nn

sgn(θi)|γθi|ρ = 0

A if
∑
i∈Nn

sgn(θi)|γθi|ρ > 0.

Note that SCn
ρ is the social choice correspondence that chooses the alternative(s) that are

socially preferred given the Bergson preference over valuation profiles Rn
ρ (which is repre-

sented by the Bergson welfare function Wρ). Define the sequence of Bergson social choice

correspondences SCρ ≡ {SCn
ρ }∞n=2.

Asymptotically equivalent Social Choice correspondences. We say that two se-

quences of social choice correspondences SC and S̃C are asymptotically equivalent if the

probability that they select the same outcome converges to one, as n −→ ∞. We say a

property holds generically if it holds in an open dense subset of the set under consideration.

To formally define generic asymptotic equivalence of SC and S̃C over F , we need to define

more structure on F .

Let C[−1, 1] denote the set of all continuous functions over [−1, 1] and let d∞ be the sup-

metric over C[−1, 1], so that for any ϕ, ϕ̂ ∈ C[−1, 1], d∞(ϕ, ϕ̂) ≡ sup
θ∈[−1,1]

{|ϕ(θ)− ϕ̂(θ)|}. We

consider the metric space (F , d∞,∞) with distance function d∞,∞ : F × F −→ R+ defined

by d∞,∞(F, F̂ ) ≡ d∞(F, F̂ ) + d∞(f, f̂).10 A subset FD ⊂ F is dense in F if the closure of

FD is equal to F (so any cumulative distribution F ∈ F\FD is the limit of a sequence of

distributions in FD). We can now precisely define the desired asymptotic equivalence notion.

10This is the standard distance to metricize the set of continuously differentiable functions (Ok 2007,
Chapter C, Example 2[3]).
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Definition 2 For any F ∈ F , two sequences of social choice correspondences SC and S̃C

are asymptotically equivalent with respect to F if lim
n−→∞

Pr
[
SC(γ, θ̄Nn) 6= S̃C(γ, θ̄Nn)

]
=

0.

We say that SC and S̃C are generically asymptotically equivalent if they are asymptoti-

cally equivalent for any F in an open dense set FD ⊆ F .

For ease of exposition, and since all our results are asymptotic, we refer to generically

asymptotically equivalent sequences as “generically equivalent.”

Implementability. We say that a vote-buying mechanism c asymptotically implements

a sequence of social choice correspondences SC over a given subdomain F̂ ⊆ F of possible

distribution functions from which attitudes are drawn if two conditions hold: i) an equilibrium

exists for any large society; and ii) in equilibrium, the probability that the social decision

coincides with the alternative chosen by SC converges to one. For any subclass of vote-

buying mechanisms C ⊆ C, we say that a sequence SC ∈ SC is implementable by C over F̂

if there exists c ∈ C that implements SC over F̂ .

For any F ∈ F and any n ∈ N\{1}, let d̄nF (s, θ̄Nn) be the social decision considered as

a random variable that depends on the realization of the attitude profile θNn and on the

realization of the outcome given G(
n∑
i=1

si(θi)), given that si = s for each i ∈ Nn. The formal

definition of implementation is then as follows.

Definition 3 For any F̂ ⊆ F , a vote-buying mechanism c ∈ C asymptotically imple-

ments a sequence of social choice correspondences SC over F̂ if for any (γ, F,G) ∈ R++ ×

F̂ × G,

i) there is n̂ ∈ N such that for any n ≥ n̂, the set of equilibria E(n,γF,c,G) is non empty, and

ii) for any ε ∈ (0, 1) and for any sequence of equilibria {st}∞t=n̂, there exists nε,γ,F,G ∈ N such

that for any n > nε,γ,F,G, Pr[d̄nF (sn, θ̄Nn) = SCn(γ, θ̄Nn)] > 1− ε.

For any subset of vote-buying mechanisms C ⊆ C, we say that a sequence of social choice

correspondences SC is asymptotically implementable by C over F̂ if there exists a mechanism

c ∈ C that asymptotically implements SC over F̂ .
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Since our implementation results are always asymptotic, if a mechanism c asymptotically

implements SC, then we say simply that c “implements SC.”

This implementation notion requires that, if the society is suffi ciently large, the outcome

in every equilibrium of the game induced by the mechanism must be the outcome desired by

the social choice rule with probability arbitrarily close to one, for any distribution parameters.

Depending on the domain of distributions F̂ under consideration, such robustness across

societies may not be attainable. We then seek, as a second best, a mechanism that works

for most societies in the domain under consideration.

We define generic asymptotic implementability accordingly.

Definition 4 A vote-buying mechanism c ∈ C asymptotically implements a sequence of

social choice correspondences SC generically if there exists an open FD dense in F such

that c implements SC over FD.

For any C ⊆ C, we say that a sequence of social choice correspondences SC is generically

asymptotically implementable by C ⊆ C if there exists a mechanism c ∈ C that generically

asymptotically implements SC.

If a mechanism c asymptotically implements a sequence of social choice correspondences

SC generically, we say simply that c “implements SC generically.”

3 Results

We can now state our main result: a complete characterization of the class of sequences of

social choice correspondences that are generically implementable by each admissible vote-

buying mechanism. We show that the set of social choice correspondences implemented by

any given admissible vote-buying mechanism c is entirely determined by the mechanism’s

limit elasticity κ(c).
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Theorem 1 A sequence of social choice correspondences SC is generically implementable

by the class of admissible vote-buying mechanisms if and only if SC is generically equivalent

to a sequence of Bergson correspondences SCρ for some ρ ∈ R++.

Further, each admissible vote-buying mechanism c generically implements any sequence

of social choice correspondences that is generically equivalent to the sequence of Bergson

correspondences SC 1
κ(c)−1

.

That is, only sequences of Bergson choice correspondences and those generically equiv-

alent to them, are generically implementable by admissible vote-buying mechanisms, and

each admissible vote-buying mechanism c with limit elasticity κ(c) implements the Bergson

sequence with importance of intensity of individual preferences ρ equal to 1
κ(c)−1

.

Equivalently, each Bergson sequence SCρ —and any other sequence generically equivalent

to it- are generically implemented by any admissible vote-buying mechanism c with limit

elasticity κ(c) = 1+ρ
ρ
.

A corollary follows: for any k ∈ (1,∞), since κ(c) = k for any power function c(a) =

|a|k, the set of sequences of choice correspondences generically implementable by any given

admissible vote-buying mechanism c with κ(c) = k is exactly the same as the set of sequences

of choice correspondences implementable by vote-buying mechanisms c(a) = |a|k. Therefore,

the set of all sequences of social choice correspondences generically implementable by the

class of admissible vote-buying mechanisms is the same as the set generically implementable

by the subclass of power function vote-buying mechanisms.

Corollary 1 If SC is generically implemented by c ∈ CA, then SC is generically imple-

mented by ĉ(a) = |a|κ(c).

Hence, the class of sequences of correspondences implementable by admissible vote-buying

mechanisms include only Bergson sequences of correspondences, and sequences asymptoti-

cally equivalent to them. That’s all.

Goeree and Zhang (2017) and Lalley and Weyl (2018) provide a heuristic intuition for

the special case of implementing utilitarianism with a quadratic power mechanism: if agents
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Figure 2: A non-polynomial mechanism ĉ that implements utilitarianism.

assume that their marginal benefit of acquiring votes is constant in the quantity of votes

acquired, then agents infer that their marginal benefit of acquiring votes is linear in their

attitude. Given a mechanism c(a) with derivative c′(a) that is linear in a, agents equate per-

ceived marginal benefit and marginal cost by acquiring votes in proportion to their attitude,

which leads to utilitarian effi ciency.

This heuristic intuition is useful as far as other power cost mechanisms are concerned,

but beyond these functions (or those that scale like them), it does not generalize well: what

matters for asymptotic implementation is the limit elasticity κ(c), and not the shape of the

derivative c′(a). Consider, for example, a non-power mechanism such as ĉ ∈ C depicted in

Figure 2, and defined by ĉ(a) = (cos(|a|) − 1)(2 ln(|a|) − 3) for any a ∈ [−1, 1] (and with ĉ

increasing arbitrarily for higher quantities).

Notice that ĉ(a) and c(a) = |a|2 are generically unequal. In fact, lim
a−→0+

ĉ(a)
c(a)

= lim
a−→0+

ĉ′(a)
c′(a)

=

+∞, (c converges to zero arbitrarily faster than ĉ). The marginal cost ĉ′(a) is a (cumber-

some) trigonometric function, suggesting that if the heuristic intuition based on the marginal

cost were correct, perhaps mechanism ĉ would implement a social choice correspondence that

maximized some trigonometric welfare function. But this is not the case: It is easy to check

that κ(ĉ) = 2, so ĉ implements utilitarianism as well. Put differently: quadratic voting im-

plements utilitarianism not because its marginal cost is linear, but rather, because its limit
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elasticity at zero is 2, and any other mechanism with limit elasticity of 2 also implements

utilitarianism.11

We next sketch the most relevant steps of the proof, relegating the formal details, and

all lemmata, to the appendix.

For any admissible vote-buying mechanism, and for any society size, the game satisfies

Reny’s (2011) existence conditions, so an equilibrium exists (Lemma 1).

In any sequence of equilibria, individual vote acquisitions converge to zero: lim
n→∞

sn(θ) = 0

(Lemma 3). As individual acquisitions converge to zero, the ratio of the marginal costs

corresponding, for instance, to two distinct types of alternative A supporters, must converge

to the ratio of the attitudes of these types (Lemma 5). That is, for every (θ, θ̂) ∈ (0, 1]2, we

get:

lim
n→∞

c′(sn(θ))

c′(sn(θ̂))
=
θ

θ̂
⇒ lim

n→∞
ln
c′(sn(θ))

c′(sn(θ̂))
= ln

θ

θ̂
.

Moreover, the function J : R2
++ → R given by:

J(x, y) =


yc′′(y)
c′(y)

if x = y

ln
c′(x)
c′(y)

ln x
y

if x 6= y,

converges to κ(c)− 1 as (x, y)→ (0, 0) (Lemma 9). Hence,

lim
n→∞

ln c′(sn(θ))

c′(sn(θ̂))

ln sn(θ)

sn(θ̂)

= κ(c)− 1 =⇒ lim
n→∞

ln

(
c′(sn(θ))

c′(sn(θ̂))

)
= lim

n→∞
ln

(
sn(θ)

sn(θ̂)

)κ(c)−1

,

11Computational analysis shows that convergence toward implementing the desired optimum is often fast.
For instance, if G is the CDF of a Logistic distribution with mean zero and variance one, and F assigns
probability 3

4 to valuations about −1 and probability
1
4 to valuations about 10, then the probability of

implementing the utilitarian optimum is greater than 99.3% for any size n ≥ 1, 000 and greater than 99.9%
for any n ≥ 10, 000 if society uses a vote-buying mechanism with a quadratic cost function, and greater than
97.9% for any n ≥ 1, 000 and greater than 99.5% for any n ≥ 10, 000 if society uses the trigonometric cost
function ĉ; whereas, it is less than 0.01% for any n ≥ 1, 000 under simple majority voting.
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and thus substituting the left hand side according to lim
n→∞

ln c′(sn(θ))

c′(sn(θ̂))
= ln θ

θ̂
, we get

ln
θ

θ̂
= lim

n→∞
ln

(
sn(θ)

sn(θ̂)

)κ(c)−1

⇒ lim
n→∞

sn(θ)

sn(θ̂)
=

(
θ

θ̂

) 1
κ(c)−1

.

That is, the equilibrium vote acquisitions become proportional to the ratio of the at-

titudes raised to a power that depends on the limit cost elasticity; and this leads to the

implementation of the Bergson choice correspondence SC 1
κ(c)−1

, which is SCρ if κ(c) = 1+ρ
ρ
.

Notice, that the above argument does not depend on the nature of the outcome function or

on other particular assumptions that we made. As long as the equilibrium ratio of marginal

costs converges to its intuitive level (i.e. the ratio of valuations), vote acquisitions become

proportional to power functions of the valuations and, hence, the implemented social choice

correspondences cannot substantially differ to the Berson ones.

4 Discussion

We characterize the set of rules that are generically implementable by admissible vote-buying

mechanisms in suffi ciently large societies: a sequence of choice rules is generically imple-

mentable if and only if it asymptotically follows a Bergson rule. In particular, any admissible

mechanism c with limit cost elasticity κ(c) ∈ (1,∞) generically implements the Bergson rule

with parameter ρ = 1
κ(c)−1

.12

Utilitarianism is the Bergson rule with ρ = 1, so it is implemented by any mechanism

with limit elasticity κ(c) = 2, such as a quadratic cost function. Majority rule is equivalent

to the limit ρ = 0: as the limit cost elasticity κ(c) (defined as marginal cost over average cost)

at zero diverges to∞, the marginal cost of votes becomes arbitrarily larger than the average

cost, so everyone converges toward acquiring the same amount of votes.13 A decentralized,

12Note that admissible vote-buying mechanisms are “bounded” in the sense of Jackson (1992), but they
are not “strategically simple” in the sense of Börgers and Li (2017). Nor are they robust to coalitional
deviations (Bierbrauer and Hellwig 2016).
13For instance, if c(a) = |a|∞, any quantity of votes smaller than one is free, while any quantity of votes
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competitive market for votes, similar to the ones proposed for instance by Dekel, Jackson and

Wolinski (2008) and Casella, Llorente-Saguer and Palfrey (2012), implements the opposite

extreme, ρ =∞: as the limit cost elasticity converges to 1, the marginal cost of votes becomes

identical to the average cost —as in a competitive market—and the agent or agents with most

intense preferences purchase most votes and determine the social decision.

Casella, Llorente-Saguer and Palfrey (2012) interpret the outcome with a market for votes

as a utilitarian welfare loss. We interpret the finding differently: the outcome is optimal if the

society aims to choose according to the wishes of whoever has the most intense preference.

If that’s the goal, a centralized market for votes with linear pricing such as ours, or a

decentralized one like Casella, Llorente-Saguer and Palfrey’s (2012), are optimal. If that

is not society’s normative goal, then we should not price votes linearly. Rather, we should

choose the pricing scheme that implements society’s normative goal.

Finally, we address a substantive concern: wealth inequality. A common criticism of vote-

buying mechanisms is that in practice they would favor the rich, effectively disenfranchising

the poor. In our theory, as in previous theories of vote-buying mechanisms, agents are

risk neutral and preferences over wealth are separable and individual transfers converge to

zero, so there are no wealth or budget effects: agents’ actions are independent of their

wealth. Concerns about the effects of wealth inequality arise if agents are risk averse and the

distribution of preferences over the social choice depends on wealth. If so, wealthier agents

acquire more votes, their preferences are overweighed, and the optimality of the mechanisms

is lost: the axiom of anonymity is violated.

Fortunately, if individual wealth is observable and contractible (as it should be in a

company, via payslips, and in a state, via tax reports), then we can restore optimality by using

mechanisms such that the cost function conditions on individual wealth. By compensating

the lower marginal utility of wealth of rich agents with an individualized higher monetary

cost per vote for these agents, a wealth-dependent vote-buying mechanism induces all agents

above one is infinitely expensive, leading all players to acquire exactly one vote.
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to condition their vote acquisitions exclusively on their intensity of preferences over the social

decision, and not on their wealth.

Appendix (for online publication)

In this Appendix, we prove our results. The proof is long. It proceed in nine steps.

One - We note existence of an equilibrium for any parameter tuple (Lemma 1).

Two - We prove that net vote acquisitions for A are strictly increasing in attitude θ

(Lemma 2), and we use this result to write the first order condition of the individual opti-

mization problem (Equation (3)).

Three - We prove that equilibrium vote acquisitions converge to zero (Lemma 3 establishes

the result for most attitudes; later Lemma 8 extends this result to all attitudes).

Four - We prove that the ratio of marginal costs converges to the ratio of attitudes

(Lemma 5).

Five - We prove that the marginal benefit of acquiring votes converges to zero (Lemma 7),

and use this result to prove that the third and fourth steps extend to all attitudes (Lemma

8, Corollary 2).

Six - We prove that the ratio of vote acquisitions converges to a power function of the

ratio of attitudes; first we prove it piecewise (Lemma 10) and then over the whole domain

(Lemma 11).

Seven - After two technical lemmas (Lemma 12 and Lemma 13) we establish a suffi cient

condition for a sequence of social choice correspondences to be implementable over a subset

of distribution functions that is open and dense over the set over all cumulative distribution

functions (Proposition 1).

Eight - We find a necessary condition for such implementation (Proposition 2).

Nine - We show that the necessary condition is suffi cient for generic implementability,

establishing our main result (Theorem 1).
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Lemma 1 For any tuple (n, γ, F, c,G) ∈ N\{1}×R++×F×CA×G, an equilibrium of game

Γ(n,γ,F,c,G) exists.

Proof. For any tuple (n, γ, F, c,G) ∈ N\{1} × R++ × F × CA × G, define Sγ as the set

of all functions with domain [−1, 1] and codomain [−c−1(2γ), c−1(2y)], and let Γ
(n,γ,F,c,G)
R

denote the restricted game played by the n players in society Nn with strategy set Sγ and

the same payoff functions as in the unrestricted game Γ(n,γ,F,c,G). Game Γ
(n,γ,F,c,G)
R satisfies

the nine conditions for existence of a symmetric, pure monotone Bayes-Nash equilibrium

(in our jargon, an “equilibrium”) in Theorem 4.5 in Reny (2011).14 For any i ∈ Nn and

for any θi ∈ [−1, 1], any action ai 6∈ [−c−1(2γ), c−1(2y)] is dominated by ai = 0. Hence the

equilibrium of game Γ
(n,γ,F,c,G)
R is also an equilibrium of game Γ(n,γ,F,c,G).

Lemma 2 For any (n, γ, F, c,G) ∈ N\{1} × R++ × F × CA × G, for any sn ∈ E(n,γ,F,c,G),

sn : [0, 1] −→ R is strictly increasing.

Proof. Fix (γ, F, c, G) ∈ R++ × F × CA × G. Recall X ≡ [−c−1(2γ), c−1(2γ)], and for any

n ∈ N\{1} and any x ∈ (n − 1)X, define ϕn(x) ≡ Pr

[ ∑
k∈Nn\{i}

sn(θ̄k) = x

]
, and define

hn : (n− 1)X −→ R+ as the probability density of Hn such that

∑
x∈(n−1)X

ϕn(x) +

∫
x∈(n−1)X

hn(x)dx = 1.

Then, given any equilibrium sn ∈ E(n,γ,F,c,G), the optimization problem of agent i ∈ Nn with

14We discuss these conditions and explain why they hold in the working paper version (Eguia and Xefteris
2018).
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attitude θi ∈ [−1, 1] is

max
ai∈X

γθi

 ∑
x∈(n−1)X

ϕn(x)G(x+ ai) +

∫
x∈(n−1)X

hn(x)G(x+ ai)dx


−γθi

 ∑
x∈(n−1)X

ϕn(x)(1−G(x+ ai)) +

∫
x∈(n−1)X

hn(x)(1−G(x+ ai))dx

− c(ai),
or equivalently

max
ai∈X

γθi

 ∑
x∈(n−1)X

ϕn(x)(2G(x+ ai)− 1) +

∫
x∈(n−1)X

hn(x)(2G(x+ ai)− 1)dx

− c(ai).
Since G is continuously differentiable and the constraint ai ∈ X is not binding, we obtain a

solution by the First Order Condition

2γθi

 ∑
x∈(n−1)X

ϕn(x)g(x+ ai) +

∫
x∈(n−1)X

hn(x)g(x+ ai)dx

 = c′(ai). (2)

Note that since g is strictly positive in R, and
∑

x∈(n−1)X

ϕn(x) +
∫

x∈(n−1)X

hn(x)dx = 1, it

follows that the summation within the parenthesis on the left-hand side of Equation (2) is

strictly positive for any ai ∈ X, and thus the left hand side is overall strictly increasing

in θi. Assume ai = a ∈ X is a solution to the First Order Condition (2) for agent i with

attitude θi, and for an arbitrary agent j ∈ Nn\{i}, assume θj 6= θi; without loss of generality

assume θj > θi. Then, the left hand side of Equation (2) has a lower value than the left hand

side of the analogous First Order Condition to the optimization problem of agent j. Hence,

aj = a cannot solve j′s first order condition, so it must be sn(θj) 6= sn(θj) and thus for any

θ, θ′ ∈ [−1, 1] such that θ 6= θ′ we obtain sn(θ) 6= sn(θ′), which, since sn is weakly increasing,

implies sn is strictly increasing.
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As an immediate corollary to Lemma 2, Hn does not have a mass point, so for each

n ∈ N\{1}, we can define the probability density function h : (n − 1)X −→ R+ so that
x∫

−(n−1)X

hn(t)dt = Hn(t).

Given any equilibrium sn ∈ E(n,γ,F,c,G), the first order condition for the optimization

problem of player i ∈ Nn with attitude θi ∈ [−1, 1] can be simplified to:

2γθi

∫
x∈(n−1)X

hn(x)g(x+ ai)dx = c′(ai). (3)

Lemma 3 establishes that vote acquisitions converge to zero. We use the Berry-Esseen

theorem (Berry 1941; Esseen 1942).

Lemma 3 For any tuple (γ, F, c, G) ∈ R++ × F × CA × G, and any sequence {sn}∞n=1 such

that sn ∈ E(n,γ,F,c,G) for each n ∈ N\{1}, lim
n→∞

sn(θ) = 0 for each θ ∈ (−1, 1).

Proof. Proof by contradiction. For any tuple (γ, F, c, G) ∈ R++×F ×CA×G, assume that

{sn}∞n=2 is a sequence of monotone, symmetric, pure equilibrium strategies of game Γ(n,γ,F,c,G),

and assume (absurd) that there exists θ′ ∈ (−1, 1) such that lim
n→∞

sn(θ′) 6= 0. Then there

exist a δ ∈ R++ and an infinite subsequence {sn(τ)}∞τ=1 of {sn}∞n=2 with n : N\{1} −→ N

strictly increasing, such that |sn(τ)(θ′)| ≥ δ for every τ ∈ N. Note n(τ) is the size of the

society in the τ − th element of the subsequence. By monotonicity of sn(τ)(θ) with respect

to θ ∈ [−1, 1] for each τ ∈ N, it follows that if θ′ ∈ (−1, 0), then sn(τ)(θ) ≤ −δ for any

θ ∈ [−1, θ′] and for any τ ∈ N, and if θ′ ∈ (0, 1), then sn(τ)(θ) ≥ δ for any θ ∈ [θ′, 1].

For each n ∈ N\{1}, and for each k ∈ {1, ..., n}, let E[sn(θ̄)] denote the expectation of

the random variable sn(θ̄k), where we drop the subindex k because the expectation does not

depend on k. For each n ∈ N\{1} and for each k ∈ {1, .., n}, define as well the independent,

identically distributed random variables

qn(θ̄k) ≡ sn(θ̄k)− E[sn(θ̄)] and qn(θ̄) ≡ sn(θ̄)− E[sn(θ̄)];
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let E[qn(θ̄)] and V ar[qn(θ̄)] denote their expectation and variance, which do not depend

on k. Note that for each n ∈ N\{1}, and for each k ∈ {1, .., n}, E[qn(θ̄)] = 0. Since

|sn(τ)(θ)| ≥ δ for every τ ∈ N either for any θ ∈ [θ′, 1] or for any for any θ ∈ [−1, θ′] ,

there exists δ̂ ∈ R++ such that V ar[qn(τ)(θ̄)] > δ̂ for any τ ∈ N\{1]. Note V ar[qn(τ)(θ̄)] ≡

E
[(
qn(τ)(θ̄)

)2
]
−
(
E[qn(τ)(θ̄)]

)2
= E

[(
qn(τ)(θ̄)

)2
]
, so E

[∣∣qn(τ)(θ̄)
∣∣2] > δ̂, which implies

E
[∣∣qn(τ)(θ̄)

∣∣] > 0 and E
[∣∣qn(τ)(θ̄)

∣∣3] > 0. Since E
[∣∣qn(τ)(θ̄k)

∣∣] = E
[∣∣qn(τ)(θ̄)

∣∣] for any
k ∈ {1, ..., n(τ)}, for any τ ∈ N, let E

[∣∣qn(τ)(θ̄)
∣∣2] and E [∣∣qn(τ)(θ̄)

∣∣3] respectively denote
V ar[qn(τ)(θ̄k)] and E

[∣∣qn(τ)(θ̄k)
∣∣3] for any k ∈ {1, ..., n(τ)}, for any τ ∈ N.

For each τ ∈ N, define V τ (θ̄Nn(τ)\{i}) as the cumulative distribution of the random variable∑
k∈Nn(τ)\{i}

qn(τ)(θ̄k)

√
n(τ)−1

√
E[(qn(τ)(θ̄))

2
]
. By the Berry-Esseen theorem (Berry 1941; Esseen 1942), there exists

a κ ∈ R++ such that for any τ ∈ N and any x ∈ R,

|V τ (x)−N [0, 1](x)| ≤
κE[

∣∣qn(τ)(θ̄)
∣∣3](√

n(τ)− 1
)(

E[
(
qn(τ)(θ̄)

)2
]
) 3
2

.

For each τ ∈ N, define Ĥτ (θ̄Nn(τ)\{i}) as the cumulative distribution of the random variable∑
k∈Nn(τ)\{i}

qn(τ)(θ̄k), and let ĥτ (θ̄Nn(τ)\{i}) be its density function. For any z ∈ R++ and any

x ∈ R, let N [0, z](x) denote value at x of the cumulative distribution of a normal distribution

with mean zero and variance z. Then,

∣∣∣Ĥτ (x)−N [0, E[
(
qn(τ)(θ̄)

)2
] (n(τ)− 1)](x)

∣∣∣ < κE[
∣∣qn(τ)(θ̄)

∣∣3](√
n(τ)− 1

)
δ̂
3
2

, (4)

Since {sn(θ̄)}∞n=1 is bounded for any n ∈ N\{1}, both {E[sn(τ)(θ̄)]}∞n=1 and {qn(τ)(θ̄)}∞n=1

are bounded as well for any τ ∈ N, and hence {E[
∣∣qn(τ)(θ̄)

∣∣3]}∞τ=1 is bounded, and the

right hand side of Inequality (4) converges to zero as τ diverges to infinity. Thus, the

random variable
∑

k∈Nn(τ)\{i}
q
n(τ)
k (θ̄) =

∑
k∈Nn(τ)\{i}

(
s
n(τ)
k (θ̄)− E[sn(τ)(θ̄)]

)
with cumulative dis-

tribution Ĥτ (x) converges as τ −→ ∞ to a mean zero Normal distribution with vari-
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ance E[
(
qn(τ)(θ̄)

)2
] (n(τ)− 1) . Since E[

(
qn(τ)(θ̄)

)2
] ≥ δ̂ for any τ ∈ N, it follows that

E[
(
qn(τ)(θ̄)

)2
] (n(τ)− 1) diverges to infinity as τ −→∞. Therefore,

lim
τ−→∞

(
Ĥτ (x)− Ĥτ (−x)

)
= 0 for any x ∈ R++. (5)

Since G is strictly increasing and neutral (G(x) = 1 − G(−x)), and lim
x−→−∞

G(x) = 0,

then for any ε ∈
(
0, 1

2
c(δ)

)
, there exist x̃ ∈ R++ such that for any x ∈ (−∞,−x̃] ∪ [x̃,∞),

[G(x+ c−1(2γ))−G(x)]2γθ′ <
1

2
c(δ)− ε

Since |sn(τ)(θ′)| ≥ δ for every τ ∈ N (first paragraph of this proof), it then follows that

[G(x+ c−1(2γ))−G(x)]2γθ′ <
1

2
c(sn(τ)(θ′))− ε

for any x ∈ (−∞,−x̃] ∪ [x,∞). Further, since
∣∣sn(τ)(θ′)

∣∣ ≤ c−1(2γ) (because
∣∣sn(τ)(θ′)

∣∣ >
c−1(2γ) implies that si = sn(τ) is a strictly dominated strategy), it follows that for any

x ∈ (−∞,−x̃] ∪ [x̃,∞),

[G(x+ sn(τ)(θ′))−G(x)]2γθ′ <
1

2
c(sn(τ)(θ′))− ε. (6)

For each τ ∈ N, and for any arbitrary agent i ∈ Nn(τ) with θi = θ′, the expected utility

of playing ai = sn(τ)(θ′), minus the expected utility of playing ai = 0, is:

2γθ′
(∫ −x̃
−(n−1)c−1(2γ)

(G(x+ sn(τ)(θ′))−G(x))hτ (x)dx+

∫ x̃

−x̃
(G(x+ sn(τ)(θ′))−G(x))hτ (x)dx

)
+2γθ′

∫ (n−1)c−1(2γ)

x̃

(G(x+ sn(τ)(θ′))−G(x))hτ (x)dx− c(sn(τ)(θ′)),
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which is equal to

2γθ′
∫ −x̃
−(n−1)(c−1(2γ)+E[sn(θ̄)])

(G(x+ sn(τ)(θ′))−G(x))ĥτ (x)dx (7)

+2γθ′
∫ x̃

−x̃
(G(x+ sn(τ)(θ′))−G(x))ĥτ (x)dx

+2γθ′
∫ (n−1)(c−1(2γ)−E[sn(θ̄)])

x̃

(G(x+ sn(τ)(θ′))−G(x))ĥτ (x)dx− c(sn(τ)(θ′)).

By Expression (5), lim
τ−→∞

(
Ĥτ (−x̃)− Ĥτ (x̃)

)
= 0, and thus lim

τ−→∞
ĥτ (x) = 0 for any

x ∈ (−x̃, x̃), and hence

lim
τ−→∞

2γθ′
∫ x̃

−x̃
(G(x+ sn(τ)(θ′))−G(x))ĥτ (x)dx = 0.

Therefore, the limit of Expression (7) as τ −→∞ is equal to the limit of

2γθ′
∫ −x̃
−(n−1)(c−1(2γ)+E[sn(θ̄)])

(G(x+ sn(τ)(θ′))−G(x))ĥτ (x)dx

+2γθ′
∫ (n−1)(c−1(2γ)−E[sn(θ̄)])

x̃

(G(x+ sn(τ)(θ′))−G(x))ĥτ (x)dx− c(sn(τ)(θ′)),

which by Expression (6), is strictly smaller than

∫ −x̃
−(n−1)(c−1(2γ)+E[sn(θ̄)])

(
1

2
c(sn(τ)(θ′))− ε

)
ĥτ (x)dx

+

∫ (n−1)(c−1(2γ)−E[sn(θ̄)])

x̃

(
1

2
c(sn(τ)(θ′))− ε

)
ĥτ (x)dx− c(sn(τ)(θ′))

< c(sn(τ)(θ′))− ε− c(sn(τ)(θ′)) < −ε,

so playing ai = 0 is strictly better, and hence si = sn(τ)(θ′) is not a best response, so sn(τ) is

not an equilibrium. Thus, we reach a contradiction. Thus, there does not exist θ′ ∈ (−1, 1)

such that limn→+∞ s
n(θ′) 6= 0, and it must be that lim

n→+∞
sn(θ) = 0 for each θ ∈ (−1, 1).
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The next lemma reformulates the First Order Condition (3) into a form that proves

more convenient for subsequent results. Recall we use the notation X ≡ [−c−1(2γ), c−1(2γ)],

so (n− 1)X = [−(n− 1)c−1(2γ), (n− 1)c−1(2γ)].

Lemma 4 For any tuple (γ, F, c, G) ∈ R++ × F × CA × G, for any sequence {sn}∞n=1 such

that sn ∈ E(n,γ,F,c,G) for each n ∈ N\{1}, for any n ∈ N\{1}, and for each θ ∈ [−1, 1],

there exists zθ : (n − 1)X −→ [sn(θ), 0) ∪ (0, sn(θ)] such that sgn(zθ(x)) = sgn(θ) for any

x ∈ [−(n− 1)X, (n− 1)X], and

c′(sn(θ)) = 2γθ

 ∫
x∈(n−1)X

g(x)hn(x)dx+ sn(θ)

∫
x∈(n−1)X

g′(x+ zθ)hn(x)dx

 . (8)

Proof. For any given n ∈ N\{1}, only a compact subset of the domain of G, namely

[−nX, nX] is relevant, since nsn(θ) ∈ nX for any θ. And G is twice continuously differen-

tiable. Note that by the First Order Condition (3), for each θ ∈ [−1, 1],

c′(sn(θ)) = 2γθ

∫
x∈(n−1)X

g(x+ sn(θ))hn(x)dx.

We want to show that for any x ∈ (n − 1)X, and any θ ∈ [0, 1], there exists a zθ(x) ∈

(0, sn(θ)) such that

g(x+ sn(θ)) = g(x) + sn(θ)g′(x+ zθ(x)). (9)

For each x ∈ (n−1)X, define ymin ≡ arg min
y∈[x,x+sn(θ)]

g′(y) and ymax ≡ arg max
y∈[x,x+sn(θ)]

g′(y).

Then note

(sn(θ))g′(ymin) ≤ g(x+ sn(θ))− g(x) ≤ (sn(θ))g′(ymax)

Since g is continuous, by the Intermediate Value Theorem, there exists some value y(x) ∈

[x, x+ sn(θ)] such that

(sn(θ))g′(y(x)) = g(x+ sn(θ))− g(x).

29



Then, define zθ(x) ≡ y(x)− x and we obtain Equality (9).

An analogous argument, in this instance with y(x) ∈ [x + sn(θ), x], establishes that for

any θ ∈ [−1, 0], there exists a zθ(x) ∈ [sn(θ), 0] such that Equality (9) holds.

The next lemma uses Lemma 4 to establish that the ratio of marginal costs of two agents

converges to their ratio of attitudes.

Lemma 5 For any tuple (γ, F, c, G) ∈ R++ × F × CA × G, for any sequence of equilibria

{sn}∞n=2, for any θ ∈ (−1, 1) and for any θ̂ ∈ (−1, 0) ∪ (−1, 0),

lim
n→∞

c′(sn(θ))

c′(sn(θ̂))
=
θ

θ̂
.

Proof. For any tuple (γ, F, c, G) ∈ R++×F×CA×G, let {sn}∞n=2 be a sequence of equilibria,

that is, sn ∈ E(n,γ,F,c,G) for each n ∈ N\{1}.

From Lemma 4, for each θ ∈ [−1, 1],

c′(sn(θ)) = 2γθ

 ∫
x∈(n−1)X

g(x)hn(x)dx+ sn(θ)

∫
x∈(n−1)X

g′(x+ zθ(x))hn(x)dx

 .

Notice that since g is strictly positive and continuous, and g′ is continuous, for any

x, y ∈ R, g
′(y)
g(x)

is continuous, and over any closed interval of R, it is bounded. Further, by

Condition (iii) of the definition of G, ∃ε̂ ∈ R++ such that for any ε ∈ (0, ε̂),

lim
x→−∞

g′(x+ ε)

g(x)
∈ R and lim

x→∞

g′(x+ ε)

g(x)
∈ R.. (10)

Therefore, there exists λ ∈ R++ such that
g′(x+ε)
g(x)

∈ [−λ, λ], for any ε ∈ (0, ε̄) and for any

x ∈ R. Equivalently,

−λg(x) ≤ g′(x+ ε) ≤ λg(x) ∀ε ∈ (0, ε̄), ∀x ∈ R. (11)
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Since for any sequence {sn}∞n=1 of equilibria lim
n→∞

sn(θ) = 0 for each θ ∈ (−1, 1) (Lemma

3), and since zθ(x) defined in Lemma 4 satisfies zθ(x) ∈ (0, sn(θ)), it follows lim
n→∞

zθ(x) = 0

for each θ ∈ [−1, 1] and for each x ∈ (n − 1)X. Then, it follows from Expression (11), that

that that there exists n̂ ∈ N such that for any n ∈ N such that n > n̂, for each x ∈ (n−1)X,

for any θ ∈ (−1, 0) ∪ (0, 1), and for any equilibrium strategy sn, we have:

−λg(x) < g′(x+ zθ(x)) < λg(x).

Therefore,

g(x)− sn(θ)λg(x) < g(x) + sn(θ)g′(x+ zθ(x)) < g(x) + sn(θ)λg(x);

[1− sn(θ)λ]g(x)θhn(x) < (g(x) + sn(θ)g′(x+ zθ(x)))θhn(x) < (1 + sn(θ)λ)g(x)θhn(x).

Once again since lim
n→∞

sn(θ) = 0 for each θ ∈ (−1, 1) (Lemma 3), there exists ñ such that

1− sn(θ)λ > 0 for every n > ñ.

Then we can integrate x over (n− 1)X on all sides and multiply by 2γ to obtain:

2γ[1− sn(θ)λ]θ

∫
x∈(n−1)X

g(x)hn(x)dx

< 2γθ

∫
x∈(n−1)X

(g(x) + sn(θ)g′(x+ zθ(x)))hn(x)dx

< 2γ(1 + sn(θ)λ)θ

∫
x∈(n−1)X

g(x)hn(x)dx,

and hence, substituting Equality (8), for any θ ∈ (−1, 0) ∪ (0, 1),

c′(sn(θ)) ∈

2γ(1− sn(θ)λ)θ

∫
x∈(n−1)X

g(x)hn(x)dx, 2γ(1 + sn(θ)λ)θ

∫
x∈(n−1)X

g(x)hn(x)dx

 .

(12)
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Then, for any θ, θ̂ ∈ (−1, 0) ∪ (0, 1),

c′(sn(θ))

c′(sn(θ̂))
∈


(1− sn(θ)λ)θ

∫
x∈(n−1)X

g(x)hn(x)dx

(1 + sn(θ̂)λ)θ̂
∫

x∈(n−1)X

g(x)hn(x)dx
,

(1 + sn(θ)λ)θ
∫

x∈(n−1)X

g(x)hn(x)dx

(1− sn(θ)λ)θ̂
∫

x∈(n−1)X

g(x)hn(x)dx


=

(
(1− sn(θ)λ)θ

(1 + sn(θ̂)λ)θ̂
,

(1 + sn(θ)λ)θ

(1− sn(θ)λ)θ̂

)
.

Note that because lim
n−→∞

sn(θ̃) = 0 for any θ̃ ∈ (−1, 0) ∪ (0, 1) (Lemma 3) and sn(0) = 0 for

any n ∈ N, both limit points of the interval converge to θ

θ̂
as n increases to infinity. Hence,

for any (θ, θ̂) ∈ (−1, 1)2, lim
n−→∞

c′(sn(θ))

c′(sn(θ̂))
= θ

θ̂
.

The next lemma proves the following observation: a cost elasticity greater than one near

zero implies that the cost function is convex near zero.

Lemma 6 For any c ∈ CA, there exists λc ∈ R++ such that c′′(a) ∈ R++ for any a ∈ (0, λc].

Proof. By definition of CA, c ∈ CA implies that lim
a−→0

ac′(a)
c(a)
∈ (1,R), c(0) = 0 and lim

a−→0
ac′(a) =

0. Let z ≡ lim
a−→0

ac′(a)
c(a)

. Then lim
a−→0

ac′(a)
c(a)

= 0
0
; applying L’Hopital rule,

z = lim
a−→0

ac′(a)

c(a)
= lim

a−→0

(
1 +

ac′′(a)

c′(a)

)

so

lim
a−→0

ac′′(a)

c′(a)
= z − 1.

Hence, for any ε ∈ R++, there exists λε ∈ R++ such that for any a ∈ (0, λε],

ac′′(a)

c′(a)
∈ (z − 1− ε, z − 1 + ε). (13)

Select ε = z−1
2
, and since z > 1, note that z − 1− ε > 0. Further, for any a ∈

(
0, λ z−1

2

]
, by

assumption c′(a) > 0. Thus, from Expression (13), it follows c′′(a) > c′(a)
a

( z−1
2

) > 0 for any

a ∈
(

0, λ z−1
2

]
.
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Next we establish that the marginal effect of acquiring votes over the outcome converges

to zero (Lemma 7).

Lemma 7 For any tuple (γ, F, c, G) ∈ R++×F ×CA×G, and for any sequence of equilibria

{sn}∞n=2,

lim
n−→∞

∫
x∈(n−1)X

g(x)hn(x)dx = 0.

Proof. By Lemma 6, there exists a λ ∈ R++ such that c′ is strictly increasing in (0, λ].

Therefore, c′ is invertible over (0, λ]. Let (c′)−1 denote the inverse of c′ over (0, λ]. Then, for

any θ ∈ (−1, 1), from Expression (12) in the proof of Lemma 5,

sn(θ) ∈


(c′)−1

(
2γ(1− sn(θ)λ)θ

∫
x∈(n−1)X

g(x)hn(x)dx

)
,

(c′)−1

(
2γ(1 + sn(θ)λ)θ

∫
x∈(n−1)X

g(x)hn(x)dx

)


and, since lim
n−→∞

sn(θ) = 0 for any θ ∈ (−1, 1) (Lemma 3), it follows that

lim
n−→∞

(c′)−1

2γ(1− sn(θ)λ)θ

∫
x∈(n−1)X

g(x)hn(x)dx

 = 0,

which, since c′(0) = 0 and thus (c′)−1(0) = 0, implies

lim
n−→∞

2γ(1− sn(θ)λ)θ

∫
x∈(n−1)X

g(x)hn(x)dx

 = 0,

which, for any θ ∈ (−1, 1)\{0}, implies lim
n−→∞

∫
x∈(n−1)X

g(x)hn(x)dx = 0.

Lemma 7 allows us to more easily strengthen Lemma 3 by showing that vote acquisitions

converge to zero for every realization of attitudes, including θ ∈ {−1, 1}.
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Lemma 8 For any (γ, F, c, G) ∈ R++ × F × CA × G, and any sequence {sn}∞n=1 such that

sn ∈ E(n,γ,F,c,G) for each n ∈ N\{1}, and for any θ ∈ [−1, 1], lim
n→∞

sn(θ) = 0.

Proof. Recall that lim
n→∞

sn(θ) = 0 for any θ ∈ (−1, 1) by Lemma 3. For θi ∈ {−1, 1}, note

that the First Order Condition (3) for agent i is

2γθi

∫
x∈(n−1)X

hn(x)g(x+ ai)dx = c′(ai),

By definition of G, and since G ∈ G, G is strictly increasing and continuously differentiable,

thus g is continuous and strictly positive, and hence g and g(x+ai)
g(x)

are bounded over any

closed interval of R. Further, also by definition of G, ∃ε̂ ∈ R++ such that lim
x→−∞

g′(x+ε)
g(x)

∈ R

and lim
x→∞

g′(x+ε)
g(x)

∈ R for any ε ∈ [0, ε̂). In particular, for ε = 0, g
′(x)
g(x)

is bounded over R, and
g(x)+

∫ x+ai
x g′(t)dt

g(x)
= g(x+ai)

g(x)
is bounded over R as well, so there exists some K ∈ R++ such that

g(x+ ai) ≤ Kg(x) and

∫
x∈(n−1)X

hn(x)g(x+ ai)dx ≤ K

∫
x∈(n−1)X

hn(x)g(x+ ai)dx

and hence, by Lemma 7,

lim
n−→∞

∫
x∈(n−1)X

hn(x)g(x+ ai)dx = 0

so

lim
n−→∞

2γθi

∫
x∈(n−1)X

hn(x)g(x+ ai)dx = lim
n−→∞

c′(ai) = 0,

so lim
n−→∞

ai = 0.

As a corollary of Lemma 8, we can more strengthen Lemma 5 so that it holds for any

pair of types. (θ, θ̂) ∈ [−1, 1]2.
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Corollary 2 For any tuple (γ, F, c, G) ∈ R++ × F × CA × G, for any sequence of equilibria

{sn}∞n=2, for any θ ∈ [−1, 1] and for any θ̂ ∈ [−1, 0) ∪ (0, 1],

lim
n→∞

c′(sn(θ))

c′(sn(θ̂))
=
θ

θ̂
.

The proof follows step-by-step the proof of Lemma 5, noting, where needed, that lim
n→∞

sn(θ) =

0 for θ ∈ {−1, 1} by Lemma 8.

We next define an auxiliary function and prove a lemma related to it. Define J : R2
++ −→

R+ by

J(x, y) =


yc′′(y)
c′(y)

if x = y

ln c′(x)−ln c′(y)
lnx−ln y

otherwise
.

And recall that for any c ∈ CA, κ(c) ≡ lim
a−→0

ac′(a)
c(a)

.

Lemma 9 Let {xn}∞n=1 ∈ R∞++ and {yn}∞n=1 ∈ R∞++ be two converging sequences with lim
n−→∞

xn =

lim
n−→∞

yn = 0. Then lim
n−→∞

J(xn, yn) = κ(c)− 1.

Proof. Note that for any y ∈ R++,

lim
x−→0

J(x, y) =
ln c′(0)− ln c′(y)

ln 0− ln y
=
−∞
−∞ ,

applying L’Hopital rule,

lim
x−→0

J(x, y) = lim
x−→0

c′′(x)
c′(x)

1
x

= lim
x−→0

xc′′(x)

c′(x)
.

Notice that κ(c) ≡ lim
x−→0

xc′(x)
c(x)

= 0
0
, so applying L’Hopital rule,

κ(c) = lim
x−→0

c′(x) + xc′′(x)

c′(x)
= 1 + lim

x−→0

xc′′(x)

c′(x)

κ(c)− 1 = lim
x−→0

xc′′(x)

c′(x)
, (14)
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so lim
x−→0

J(x, y) = κ(c)− 1. Note as well that, using L’Hopital rule

lim
ε−→0

J(x, x+ ε) =
− c′′(x)

c′(x)

− 1
x

=
xc′′(x)

c′(x)

so J is continuous.

Define the function v : R+ −→ R+ by

v(x) =

 κ(c)− 1 if x = 0

xc′′(x)
c′(x)

if x ∈ R++.

By Equality (14), lim
x−→0

xc′′(x)
c′(x)

= κ(c)− 1 and hence lim
x−→0

v(x) = κ(c)− 1 and v is continuous.

Define the correspondence x+ : R+ ⇒ R+ by x+(w) = arg max
x∈[0,w]

v(x) for each w ∈ R+,

and the correspondence x− : R+ ⇒ R+ by x−(w) = arg min
x∈[0,w]

v(x) for each w ∈ R+, and

define the function v+ : R+ −→ R+ by v+(w) = max
x∈[0,w]

v(x) for each w ∈ R+ and the function

v− : R+ −→ R+ by v−(w) ≡ min
x∈[0,w]

v(x) for each w ∈ R+. Since v is continuous, x+(w) and

x−(w) are non-empty for each w ∈ R+, x+ and x− are upper hemi continuous, and v+ and

v− are continuous (Berge’s maximum theorem). Further, note that v+ is non-decreasing and

v− is non-increasing.

Construct two sequences {xt}∞t=1 ∈ R∞+ and {yt}∞t=1 ∈ R∞+ such that lim
t−→∞

xt = lim
t−→∞

yt =

0. Then

lim
t−→0

xtc
′′(xt)

c′(xt)
= lim

t−→0

ytc
′′(yt)

c′(yt)
= κ(c)− 1.

Note that for any y ∈ R++, and for any x ∈ (0, y), J is differentiable and

∂J

∂x
(x, y) =

c′′(x)
c′(x)

(lnx− ln y)− (ln c′(x)− ln(c′(y)) 1
x

(lnx− ln y)2

=
xc′′(x)(lnx− ln y)− c′(x)(ln c′(x)− ln(c′(y))

xc′(x) (lnx− ln y)2 .
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Hence ∂J
∂x

(x, y) = 0 if and only if

xc′′(x)(lnx− ln y) = c′(x)(ln c′(x)− ln(c′(y))

xc′′(x)

c′(x)
=

ln c′(x)− ln c′(y)

lnx− ln y
,

that is, ∂J
∂x

(x, y) = 0 if and only if J(x, y) = xc′′(x)
c′(x)

.

Since x ∈ arg max
x∈(0,y)

J(x, y) implies ∂J
∂x

(x, y) = 0, it follows that for any y ∈ R++ and any

x ∈ arg max
x∈(0,y)

J(x, y), J(x, y) = v(x), so J(x, y) ≤ v+(x). Since v+ is non-decreasing, it fol-

lows max
x∈(0,y)

J(x, y) ≤ v+(y). If arg max
x∈(0,y)

J(x, y) = ∅, then sup
x∈(0,y)

J(x, y) ∈
{

lim
x−→0

J(x, y), J(y, y)
}

=

{z − 1, v(y)} ≤ v+(y). So sup
x∈(0,y)

J(x, y) ≤ v+(y) for any y ∈ R++. Similarly, it can be shown

that sup
y∈(0,x)

J(x, y) ≤ v+(x) for any x ∈ R++.

Moreover, since x ∈ arg min
x∈(0,y)

J(x, y) implies ∂J
∂x

(x, y) = 0, it follows that for any y ∈

R++ and any x ∈ arg min
x∈(0,y)

J(x, y), J(x, y) = v(x), so J(x, y) ≥ v−(x). Since v− is non-

decreasing, it follows max
x∈(0,y)

J(x, y) ≥ v−(y). If arg min
x∈(0,y)

J(x, y) = ∅, then inf
x∈(0,y)

J(x, y) ∈

{ lim
x−→0

J(x, y), J(y, y)} = {z − 1, v(y)} ≥ v−(y). So inf
x∈(0,y)

J(x, y) ≥ v−(y) for any y ∈ R++.

Similarly, it can be shown that sup
y∈(0,x)

J(x, y) ≥ v−(y) for any x ∈ R++.

From all the above it follows that for any t ∈ N, J(xt, yt) ∈ [v−(wt), v
+(wt)], where wt =

max{xt, yt}. Notice that lim
t−→∞

wt = 0, and thus lim
t−→0

v−(wt) = κ(c) − 1 and lim
t−→0

v+(wt) =

z − 1, and hence lim
n−→∞

J(xn, yn) = κ(c)− 1.

We next establish a key intermediary result: equilibrium actions are asymptotically piece-

wise linear in (θ)ρ .

Lemma 10 For any tuple (γ, F, c, G) ∈ R++ × F × CA × G, for any {sn}∞n=1 such that

sn ∈ E(n,γ,F,c,G) for each n ∈ N\{1}, and for any (θ, θ̂)2 ∈ [−1, 0)2 ∪ (0, 1]2,

lim
n→∞

sn(θ)

sn(θ̂)
=

(
θ

θ̂

) 1
κ(c)−1

.
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Proof. For any (θ, θ̂) ∈ [−1, 0)2 ∪ (0, 1]2, by Lemma 5 and Corollary 2, lim
n→∞

c′(sn(θ))

c′(sn(θ̂))
= θ

θ̂
,

and taking logarithms on both sides,

lim
n→∞

(ln c′(sn(θ))− ln c′(sn(θ̂)) = ln

(
θ

θ̂

)
. (15)

By Lemma 9, for any {xn}∞n=1 ∈ R∞++ with lim
n→∞

xn = 0 and {yn}∞n=1 ∈ R∞++ with lim
n→∞

yn =

0,

lim
n→∞

ln c′(xn)− ln c′(yn)

ln xn
yn

= κ(c)− 1,

thus, in particular,

lim
n→∞

ln c′(sn(θ))− ln c′(sn(θ̂))

ln sn(θ)

sn(θ̂)

= κ(c)− 1,

lim
n→∞

(
ln c′(sn(θ))− ln c′(sn(θ̂))

)
= lim

n→∞
ln

(
sn(θ)

sn(θ̂)

)κ(c)−1

and thus substituting the left hand side according to Equality 15, we obtain

ln
θ

θ̂
= lim

n→∞
ln

(
sn(θ)

sn(θ̂)

)κ(c)−1

,

lim
n→∞

sn(θ)

sn(θ̂)
=

(
θ

θ̂

) 1
κ(c)−1

. (16)

Further, we can strengthen this result, to obtain linearity in (θ)ρ .

Lemma 11 For any tuple (γ, F, c, G) ∈ R++ × F × CA × G, for any {sn}∞n=1 such that

sn ∈ E(n,γ,F,c,G) for each n ∈ N\{1}, and for any (θ, θ̂)2 ∈ [−1, 0)2 ∪ (0, 1]2,

lim
n→∞

sn(θ)

sn(θ̂)
= sgn

(
θ

θ̂

) ∣∣∣∣θθ̂
∣∣∣∣ 1
κ(c)−1

. (17)
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Proof. For any (θ, θ̂) ∈ [−1, 0]2∪ [0, 1]2, Equality (17) reduces to Equality (16), which holds

by Lemma 10. We want to show that Equality (17) holds as well for any (θ, θ̂) ∈ ([−1, 0]×

[0, 1]) ∪ ([0, 1]× [−1, 0]) (that is, if θ and θ̂ have different sign). For any θ ∈ [−1, 0) ∪ (0, 1],

by Lemma 5 and Corollary 2,

lim
n→∞

c′(sn(θ))

c′(sn(−θ)) = −1.

Hence, for any (θ, θ̂) ∈ ([−1, 0]× [0, 1]) ∪ ([0, 1]× [−1, 0]),

lim
n→∞

c′(sn(θ))

c′(sn(θ̂))
= lim

n→∞

−c′(sn(|θ|))
c′(sn(|θ̂|))

,

which, by Lemma 5 and Corollary 2, is equal to − |θ||θ̂| . Thus,

− lim
n→∞

c′(sn(θ))

c′(sn(θ̂))
=
|θ|
|θ̂|
. (18)

Note that the left hand side of Expression (18) is equal to lim
n→∞

c′(|sn(θ)|)
c′(|sn(θ̂)|) ∈ R+, so we can take

logarithms on both side, and obtain

lim
n→∞

(
ln c′(|sn(θ)|)− ln c′(|sn(θ̂)|)

)
= ln

(
|θ|
|θ̂|

)
. (19)

By Lemma 9, for any {xn}∞n=1 ∈ R∞++ with lim
n→∞

xn = 0 and {yn}∞n=1 ∈ R∞++ with lim
n→∞

yn = 0,

lim
n→∞

ln c′(xn)− ln c′(yn)

ln xn
yn

= κ(c)− 1,

thus, in particular,

lim
n→∞

ln c′(|sn(θ)|)− ln c′(|sn(θ̂)|)
ln |s

n(θ)|
|sn(θ̂)|

= κ(c)− 1,

lim
n→∞

(
ln c′(|sn(θ)|)− ln c′(|sn(θ̂)|)

)
= lim

n→∞
ln

∣∣∣∣∣sn(θ)

sn(θ̂)

∣∣∣∣∣
κ(c)−1

,

39



and thus substituting the left hand side according to Equality 19, we obtain

ln

(
|θ|
|θ̂|

)
= lim

n→∞
ln

∣∣∣∣∣sn(θ)

sn(θ̂)

∣∣∣∣∣
κ(c)−1

, so lim
n→∞

∣∣∣∣∣sn(θ)

sn(θ̂)

∣∣∣∣∣ =

∣∣∣∣θθ̂
∣∣∣∣ 1
κ(c)−1

, and

lim
n→∞

sn(θ)

sn(θ̂)
= sgn

(
θ

θ̂

) ∣∣∣∣θθ̂
∣∣∣∣ 1
κ(c)−1

.

So acquisitions of votes converge to linear in a power of valuations.

For any F ∈ F , and for any function ϕ : [−1, 1] −→ R, let EF
[
ϕ(θ̄)

]
denote the

expectation of the random variable ϕ(θ̄), given that θ̄ is distributed according to F. If F

is fixed and unambiguous, we drop the subindex. For any ρ ∈ R++, define Fρ ⊂ F by

Fρ≡ {F ∈ F : EF [sgn(θ̄)|θ̄|ρ] 6= 0}.

Lemma 12 For any ρ ∈ R++, Fρ is open and dense in F .

Proof. Consider an arbitrary F ∈ Fρ. By definition of Fρ, it follows from F ∈ Fρ that

EF [sgn(θ̄)|θ̄|ρ] 6= 0. Without loss of generality, assume EF [sgn(θ̄)|θ̄|ρ] > 0, that is,

∫ 1

0

f(θ)θρdθ −
∫ 0

−1

f(θ)|θ|ρdθ = κ

for some κ ∈ R++. For any ε ∈ R++, let Nε(F ) be the open ε−neighborhood around F, in

the metric space (F , d∞,∞). For any ε ∈ R++, and for any F̂ ∈ Nε(F ),

d∞(F, F̂ ) + d∞(f, f̂) < ε, that is,

sup
θ∈[−1,1]

{∣∣∣F (θ)− F̂ (θ)
∣∣∣}+ sup

θ∈[−1,1]

{∣∣∣f(θ)− f̂(θ)
∣∣∣} < ε,

which implies

sup
θ∈[−1,1]

{∣∣∣f(θ)− f̂(θ)
∣∣∣} < ε, and thus,
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∫ 1

0

f(θ)θρdθ −
∫ 0

−1

f(θ)|θ|ρdθ −
(∫ 1

0

f̂(θ)θρdθ −
∫ 0

−1

f̂(θ)|θ|ρdθ
)

< ε

∫ 1

−1

|θ|ρdθ

= 2ε
1

ρ+ 1
,

so for ε < ρ+1
2
κ, it follows that

∫ 1

0

f(θ)θρdθ −
∫ 0

−1

f(θ)|θ|ρdθ −
(∫ 1

0

f̂(θ)θρdθ −
∫ 0

−1

f̂(θ)|θ|ρdθ
)
< 2ε

1

ρ+ 1
,

0 < κ− 2ε
1

ρ+ 1
<

(∫ 1

0

f̂(θ)θρdθ −
∫ 0

−1

f̂(θ)|θ|ρdθ
)
,

so for any F̂ ∈ Nε(F ), EF̂ [sgn(θ)|θ|ρ] 6= 0, that is, Nε(F ) ⊂ Fρ so Fρ is open in (F , d∞,∞).

To show that Fρ is dense in (F , d∞,∞), let F ∈ F be such that EF [sgn(θ̄)|θ̄|ρ] = 0, and,

for each δ ∈ R++, take a cumulative distribution Fδ ∈ Nδ(F ) such that Fδ(θ) < F (θ) for

any θ ∈ (−1, 1). Note that for each δ ∈ R++, EF [sgn(θ̄)|θ̄|ρ] > 0 and thus Fδ ∈ Fρ, and the

sequence {Fδ} with δ −→ 0 converges to F. Hence, Fρ is dense in F .

We also use the following lemma by Pólya, presented as Exercise 127 in Part II, Chapter

3 of Pólya and Szegő (1978).

Lemma 13 (Pólya) If a sequence of monotone (continuous or discontinuous) functions

converges on a closed interval to a continuous function it converges uniformly.

We can now prove a main proposition.

Proposition 1 For any ρ ∈ R++, the sequence of social choice correspondences SCρ is

implementable over Fρ by any vote-buying mechanism c ∈ CA such that κ(c) = 1+ρ
ρ
.

Proof. Let c be any mechanism in CA such that κ(c) = 1+ρ
ρ
. For any (γ, F,G) ∈ R++×F×G,

let {sn}∞n=1 be a sequence such that s
n ∈ E(n,γ,F,c,G) for each n ∈ N\{1}. Then, by Lemma

11, for any θ ∈ [−1, 1],

lim
n→∞

sn(θ)

sn(1)
= sgn (θ) |θ|ρ . (20)
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For each n ∈ N\{1}, define the function ψn : [−1, 1] −→ [−1, 1] by ψn(θ) = sn(θ)
sn(1)

. For each

n ∈ N\{1}, ψn is a monotone function defined on a closed interval, and by Expression (20),

the sequence {ψn}∞n=1 converges pointwise to the continuous function sgn (θ) |θ|ρ . It follows

from Polya’s lemma (Lemma 13) that {ψn}∞n=2 converges uniformly to function sgn (θ) |θ|ρ .

That is, for any ε ∈ R++, there exists n̂(ε) such that for any θ ∈ [−1, 1] , and for any

n > n̂(ε), ∣∣∣∣sn(θ)

sn(1)
− sgn (θ) |θ|ρ

∣∣∣∣ < ε. (21)

Take any F ∈ Fρ such that EF [sgn(θ̄)|θ̄|ρ] > 0, and any ε̂ ∈
(
0, EF [sgn(θ̄)|θ̄|ρ]

)
. By

the weak law of large numbers, the random variable 1
n

n∑
k=1

sgn
(
θ̄k
) ∣∣θ̄k∣∣ρ − ε̂, where θ̄k is

distributed according to F for each k ∈ {1, ..., n}, converges to its expectation

EF [sgn(θ̄)|θ̄|ρ]− ε̂ > 0;

and therefore,

lim
n−→∞

Pr

[
n∑
k=1

sgn
(
θ̄k
) ∣∣θ̄k∣∣ρ − ε̂ > 0

]
= 1. (22)

Since, by Inequality (21), for any n > n̂(ε̂), sn(θ)
sn(1)

> sgn (θ) |θ|ρ − ε̂, it follows that

Pr
[
sn(θ̄)
sn(1)

> sgn
(
θ̄
) ∣∣θ̄∣∣ρ − ε̂] = 1 and then from Equality (22),

lim
n−→∞

Pr

[
n∑
k=1

sn(θ̄k)

sn(1)
− ε̂ > 0

]
= 1, and thus

lim
n−→∞

Pr

[
n∑
k=1

sn(θ̄k) > 0

]
= lim

n−→∞
Hn(0) = 1. (23)

Note that for any F ∈ Fρ such that EF [sgn(θ̄)|θ̄|ρ] > 0, since SCn
ρ (γ, θNn) = A if and

only if
n∑
k=1

sgn (θk) |θk|ρ > 0, and since lim
n−→∞

Pr

[
n∑
k=1

sgn
(
θ̄k
) ∣∣θ̄k∣∣ρ > 0

]
= 1 (by the weak
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law of large numbers), it follows that

lim
n−→∞

Pr
[
SCn

ρ (γ, θ̄Nn) = A
]

= 1. (24)

From Lemma 7,

lim
n−→∞

∫
x∈(n−1)X

g(x)hn(x)dx = 0, (25)

and since g(x) > 0 for any x ∈ R, from Equality (25) we obtain that for any x̂ ∈ R++,

lim
n−→∞

∫ x̂

−x̂
g(x)hn(x)dx = 0.

Since g is continuous, it attains a minimum in [−x̂, x̂], and this minimum is strictly positive.

Since hn(x) ∈ R+ for any x ∈ R and for any n ∈ N\{1}, it then follows that

lim
n−→∞

∫ x̂

−x̂
hn(x)dx = 0,

which implies

lim
n−→∞

(Hn(x̂)−Hn(−x̂)) = 0. (26)

Note that equalities (23) and (26) together imply that

lim
n−→∞

Pr

[
n∑
k=1

sn(θ̄k) > x̂

]
= lim

n−→∞
Hn(x̂) = 1. (27)

For any εt ∈ R++, and for any x̂t ∈ R++ such that G(x̂t) > 1 − εt, Equality (27) implies

that lim
n−→∞

Pr[dnF (s, θ̄) = A] > 1 − εt, and thus, choosing a sequence {εt}∞t=1 that converges

to zero, lim
n−→∞

Pr[dnF (s, θ̄) = A] = 1, and then, by Equation (24),

lim
n−→∞

Pr[dnF (s, θ̄) = SCn
ρ (γ, θ̄Nn)] = 1,
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so c asymptotically implements the sequence of social choice correspondences SCρ over the

set
{
F ∈ Fρ such that EF [sgn(θ̄)|θ̄|ρ] > 0

}
.

Similarly, for any F ∈ Fρ such that EF [sgn(θ̄)|θ̄|ρ] < 0, lim
n−→∞

Pr

[
n∑
k=1

sn(θ̄k) < 0

]
=

1 and lim
n−→∞

Pr
[
SCn

ρ (γ, θ̄Nn) = B
]

= 1, so c asymptotically implements SCρ over the set{
F ∈ Fρ such that EF [sgn(θ̄)|θ̄|ρ] < 0

}
.

Hence, c asymptotically implements the sequence of social choice correspondences SCρ

over the set of cumulative distributions Fρ.

Noting that for any k ∈ (1,∞), κ(c) = k for c(x) = |x|k, it follows from Proposition 1

that for any ρ ∈ R++, SCρ is implemented over Fρ by the power vote-buying mechanism

c(x) = |x|
1+ρ
ρ , or, equivalently, that for any any k ∈ (1,∞), the power vote-buying mechanism

c(x) = |x|k implements SC 1
k−1
.

After having detailed suffi cient conditions for generic implementability in Proposition 1,

we next prove that these conditions are (almost) also necessary. Let SC denote the set of all

possible sequences of social choice correspondences.

Proposition 2 Any SC ∈ SC that is not generically equivalent to SCρ for any ρ ∈ R++, is

not implementable generically over F by CA.

Proof. We prove the contrapositive. Assume c ∈ CA implements SC generically. We show

that there exists ρ ∈ R++ such that SC is generically equivalent to SCρ.

Recall that for any vote-buying mechanism c ∈ CA, κ(c) ∈ (1,∞). Then note that from

Proposition 1, for any ρ ∈ R++, any vote-buying mechanism c ∈ CA with κ(c) = 1+ρ
ρ

implements SCρ over Fρ, so defining z ≡ 1+ρ
ρ
, and hence ρ = 1

z−1
, for any z ∈ (1,∞),

any vote-buying mechanism c ∈ CA with κ(c) = z implements SC 1
z−1

= SCρ over Fρ.

Since
⋃

z∈(1,∞)

{c ∈ CA : κ(c) = z} = CA, it follows that for any c ∈ CA, ∃ρ ∈ R++ such

that c implements SCρ over Fρ (in particular, ρ = 1
κ(c)−1

). Since Fρ is open and dense

in F (Lemma 12), it follows that for any c ∈ CA, there exists ρ ∈ R++, and there ex-

ists an open FD dense in F such that c implements SCρ over FD, so for any F ∈ FD
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lim
n−→∞

Pr
[
d̄nF (sn, θ̄Nn) = SCρ(γ, θ̄Nn)

]
= 1.

But since c is posited to also implement SC, there exists an open FD′ dense in F such that

c implements SCρ over FD
′
, so for any F ∈ FD′ , lim

n−→∞
Pr
[
d̄F (sn, θ̄Nn) = SC(γ, θ̄Nn)

]
= 1.

It follows that for any F ∈ FD′ ∩ FD, lim
n−→∞

Pr
[
SC(γ, θ̄Nn) 6= SCρ(γ, θ̄Nn)

]
= 0.

Since the intersection of two open dense sets is dense (an implication of Baire’s [2] Cate-

gory Theorem), it follows that FD′ ∩FD is itself an open dense set in F , so SC is generically

equivalent to SCρ.

Proposition 1 and 2 together lead to our main result, the characterization of generically

implementable sequences of social choice correspondences in Theorem 1. We restate the

theorem more formally.

Theorem 1. Any SC ∈ SC is generically implementable by CA if and only if there exists

ρ ∈ R++ such that SC and SCρ are generically equivalent. Further, any c ∈ CA generically

implements SC ∈ SC if and only if SC is generically equivalent to SC 1
κ(c)−1

.

Proof of Theorem 1. By Proposition 1, for any ρ ∈ R++, any vote-buying mechanism

c ∈ CA such that lim
x−→0+

xc′(x)
c(x)

= 1+ρ
ρ
implements SCρ over Fρ, and Fρ is an open dense subset

of F (Lemma 12). Hence, c implements SCρ generically.

For any ρ ∈ R++ and for any SC ∈ SC that is generically equivalent to SCρ, there exists

an open dense set FD ⊆ F such that for any F ∈ FD,

lim
n−→∞

Pr
[
SC(γ, θ̄Nn) 6= SCρ(γ, θ̄Nn)

]
= 0.

Since SC and SCρ are generically equivalent over Fρ ∩ FD, from

lim
n−→∞

Pr
[
SC(γ, θ̄Nn) 6= SCρ(γ, θ̄Nn)

]
= 0 for any F ∈ Fρ ∩ FD, and

lim
n−→∞

Pr
[
d̄nF (sn, θ̄Nn) 6= SCρ(γ, θ̄Nn)

]
= 0 for any F ∈ Fρ ∩ FD,
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it follows that

lim
n−→∞

Pr
[
d̄nF (sn, θ̄Nn) 6= SC(γ, θ̄Nn)

]
= 0 for any F ∈ Fρ ∩ FD.

Since Fρ is open and dense in F (Lemma 12), and since the intersection of two open dense

sets is open dense (an implication of the Category Theorem by Baire (1899)), it follows that

Fρ ∩ FD is itself an open dense set in F , and thus c implements SC generically.

For any SC ∈ SC that is not generically equivalent to SCρ for any ρ ∈ R++, SC is not

implementable generically by CA over F , by Proposition 2.
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