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ABSTRACT 

Artificial intelligence and data-driven modeling are 

becoming more prominent in the building, and 

construction sectors. Physics-based models usually 

require significant computational power and a 

considerable amount of time to simulate output. 

Therefore, data-driven models for predicting the 

physical properties of buildings are becoming 

increasingly popular. The objective of this research is to 

introduce Artificial Neural Networks (ANNs) methods 

as a means of representing the physical properties of 

buildings. Achieving this goal will illustrate the future 

capacity of integrated neural networks in building 

performance simulations. The Annual Radiation 

Intensity Neural Network (ARINet) demonstrates the 

feasibility of using a 3D convolutional neural network to 

predict the surface radiation received by building 

façades. The structure of ARINet is composed of 3D 

convolution, fully connected, and 3D deconvolution 

layers. In this research, it was trained on 1,692 datasets 

and validated by 424 datasets generated by a physical 

simulator. ARINet showed errors in 0.2% of the 

validation sets.  

INTRODUCTION 

In the present of the Big Data era, it is becoming more 

and more common to employ data-driven models, 

especially when physical models may not fully explain 

the operational environment (Simon, 2019). In building 

physics, models are useful for clarifying a building’s 

physical properties and when making inferences about 

the future, as well as for providing feedback on design 

changes and facilitating optimization. With recent 

increases in computing power and the substantial 

availability of data sources, the combined use of both 

modeling techniques is likely to be essential to the future 

of building performance simulation (BPS). Physics-

based models designed to examine the surface of the 

earth with conservation laws. Unlike conservation laws, 

models used empirical methods are mostly inductive and 

based on observable phenomena (Goldstein & Coco, 

2015). For example, building a physical sky model 

requires a certain empirical model to calculate the local 

impact of diffuse solar radiation on a horizontal surface. 

However, it may also require a number of assumptions 

to predict the surrounding natural phenomena (Han, 

Malkawi, & Gajos, 2019).  

As more data are made available, it is becoming 

increasingly difficult to incorporate all available sources 

and fewer assumptions into a single predictor. It can be 

argued that the empirical parameterization of numerical 

models should be conducted using ANNs methods 

because this type of tool is designed to operate on large, 

multi-dimensional datasets (Goldstein & Coco, 2015).  

Machine learning has attracted attention in predicting 

surface solar radiation (Mohandes et al., 1998; Yadav & 

Chandel, 2014; Voyant et al., 2017) and building energy 

(Goldstein & Coco, 2015; Amasyali & El-Gohary, 

2018). Artificial neural networks (ANNs) can provide 

innovative ways of solving design problems, allowing 

designers to receive instantaneous feedback on the 

effects of proposed changes to a building’s design. 

Unlike computational fluid dynamics, solar radiation 

analysis is scalable but still requires computational 

power to simulate the cumulative radiation values 

received on a building’s surface throughout the year. 

Therefore, an ANN model embedded in the design 

process has the potential to encourage performance 

optimization and design exploration by reducing 

performance simulation time.  

In both practice and academia, physical sky models 

(Bird, 1981; Perez, 1993) have widely been used to 

evaluate daylighting performance and energy 

consumption. However, using ANNs to create virtual 

environments is new to both. The benefits include 

reproducibility and scalability; the former means a 

reduction in the time complexity related to calculating 

optimized design solutions during iterative simulation 

processes, and the latter facilitates the free exploitation 

of local information obtained from sensors to represent 

local conditions in global systems and models.   
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LITERATURE REVIEW 

Surrogate models have been used for decades as high-

performing function approximators. Examples of 

commonly used surrogate modeling techniques in BPS 

include linear regression (Gratia, 2002; Jaffal, Inard, & 

Ghiaus, 2009; Hygh, Decarolis, Hill, & Ranjithan, 2012; 

Catalina, Iordache, & Caracaleanu, 2013; Geyer & 

Schlüter, 2014; Yi, Ritter, 2015), Bayesian networks 

(Heo, Choudhary, & Augenbroe, 2012; Chong & 

Menberg, 2018), evolutionary algorithms (Machairas, 

Tsangrassoulis, & Axarli, 2014), and ANNs (Kalogirou, 

2000; New, Ridge, & Parker, 2017; Ascione, Bianco, 

Stasio, Maria, & Peter, 2017; Singaravel, Suykens, & 

Geyer, 2018). Since currently available research on and 

tools for ANNs are not specifically designed to represent 

architectural geometry and its geometrical relationships, 

a review of different neural network architectures for 

representing building geometry in ANN modeling is 

offered below.  

Recurrent neural networks (RNNs) and convolutional 

neural networks (CNNs) are prevalent. DNNs deal with 

vast datasets for real-world problems. RNNs have been 

shown to excel at modelling sequential data if they have 

access to the previous context and any time-

dependencies. However, one current limitation of the 

RNN structure is that input is explicitly required to be 

single-dimensional, meaning any multi-dimensional data 

must be preprocessed and flattened before being fed into 

the RNN model’s architecture (Connor & Atlas, 2002). 

A CNN is an example of a DNN capable of using 

multidimensional data (i.e., images). However, CNNs 

lose the ability to learn from long-term memory and 

involve significant increases in computational cost as the 

input data increase, due to their multi-dimensionality. 

Increasing the dimensionality of the data and network 

architecture of an ANN causes the computational time to 

increase greatly, due to the multitude of layers and 

parameters involved in tuning the proposed architecture. 

One method proposed in the literature is to extend the 

functionality of RNNs to multi-dimensional data 

(Graves et al., 2006). The proposed method extends the 

dimensionality of the data input into the RNN 

architecture, while avoiding the extreme scaling issues 

experienced by CNNs. Multi-dimensional recurrent 

neural networks alter the architecture of conventional 

RNNs to expand the number of recurrent connections 

and forget gates, such that there is only one for each 

dimension. This could be an interesting architecture for 

use in investigating 3D physics-based simulations for 

specific multidimensional spatial and temporal problems 

(e.g., 3D buildings with values that change over time). 

Robotics researchers have also analyzed point cloud 

data, such as in “VoxNet: A 3D Convolutional Neural 

Network for Real-Time Object Recognition” (Maturana 

& Scherer, 2015). Point cloud data are sets of points with 

coordinates within a 3D space measured by LiDAR or an 

RGBD camera. Scherer (2015) proposed that VoxNet, a 

basic 3D convolutional neural network (3DCNN) 

architecture, could be applied to create fast and accurate 

object class detectors for 3D point cloud data. VoxNet is 

composed of an input layer, two 3D convolutional layers, 

a maxpool layer, a fully connected (FC) network, and an 

output layer. In order to cover objects of different scales, 

(e.g., a truck or traffic sign) multiresolution VoxNet can 

be achieved by combining two networks with identical 

VoxNet architectures, each receiving occupancy grids at 

different resolutions. The information from both 

networks can then be fused by concatenating the outputs 

of their respective FC (128) layers. Along with other pre-

processing and training techniques, VoxNet is able to 

achieve surprisingly good results from such a simple 

structure. 

DATA PROCESSING 

The generic workflow in the present research consisted 

of three parts: data generation, preprocessing, and 

modeling and validation. Conventional modeling and 

simulation software were used in all three steps. To make 

the process discrete, Python3 and MATLAB were 

employed at the same time. 

Figure 1 Generic workflow and related software 

Data generation 

For the initial attempts at solving problems with the 

given datasets, sequential information was excluded. 

Thus, RNNs were no longer beneficial. The 3DCNN was 

then chosen to serve as the baseline architecture design, 

in order to predict the annual radiation exposure received 

by a building façade. With regards to data generation, we 

utilized both modeling and simulation tools to collect 

surface radiation values throughout the year. 

Specifically, the parametric modeling tools Grasshopper 

and Rhinoceros were employed. For the physical 

radiation simulation, a plug-in for Rhino called DIVA 

(Jakubiec & Reinhart, 2011) was utilized. In total, 2,044 

datapoints were collected, including height variations for 

multiple target buildings and volume variations for a 

single building. Figure 2 shows the two main types of 

variation in the building geometry and the datasets 

exploited for the modeling and simulation process. 
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Boundary buildings Target buildings 

a. bd1xbd2xbd3
(1,284 inputs)

b.bd4 WxDxH
(760 inputs)

Figure 2 Datasets obtained from physical simulations 

(DIVA) 

The data, including the annual average exposure to 

surface radiation of the building, were initially collected 

on a monthly basis; however, for simplicity, only annual 

values were utilized to model the 3DCNN. The different 

locations of the five boundary buildings were fixed in 

order to simulate a target building with surrounding 

conditions, and the various options for the target 

buildings were evaluated via a radiation simulation for 

the building façades. We split the 2,044 datapoints into 

1,635 training and 408 validation sets to evaluate the 

performance of the proposed 3DCNN. 

Data processing 

The initial problem with converting the extracted data to 

a 3D voxel representation was matching the different 

coordinates to their boundary conditions. Because the 

output of DIVA for Rhino’s grid system cannot evenly 

distribute the local coordinates of the building façades, 

pre-processing was necessary to control the points and 

values representing all radiation values equivalent to 

each sub-cube. Figure 3 shows the uneven distances 

between each pair of datapoints when facing the 

boundary conditions. Therefore, the edge values and 

voxel map created to represent the 3D information for 

the radiation received were ignored.    

Figure 3 Basic unit for preprocessing of the target 

building’s dataset. 

After processing the edge data, the model input, denoted 

with an X, was padded with binary information (i.e., 1s 

and 0s). In our voxel representation of the 3D space, 1 

represented a building and 0 indicated air. The predicted 

values that comprised the model output, denoted with a 

Y, could then be the surface radiation values for every 

coordinate. The structures of X and Y were as follows: 

•X.shape = (number of example, xdim, ydim, zdim)

•Y.shape = (number of example, xdim, ydim, zdim)

 (MINMAX normalized) 

Figure 4 Preprocessing of the combined boundary and 

target buildings 

After processing each voxel shape, the boundary and 

target buildings were combined to serve as the input for 

ARINet. MATLAB was used for this process, due to its 

computational efficiency and the instant visual feedback 

it provides. The MATLAB code output a numpy array, 

allowing Python to normalize the data for the model. 
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MODEL ARCHITECTURE 

This section describes the ARINet structure used to 

predict radiation intensity on a building’s façade. The 

output of the network was the radiation intensity (i.e., a 

numerical value); thus, mean squared error (MSE) was 

preferred as the loss function. However, the simulation 

to generate the dataset could only determine the radiation 

intensity received by the building’s surface. The loss 

function was then modified to account only for the MSE 

on the building’s surface. 

When building ARINet, VoxNet, a 3DCNN for real-time 

object recognition (Maturana & Scherer, 2015), was 

referenced for the baseline architecture. Voxnet is a 

3DCNN that can be applied to create fast and accurate 

object class detectors for 3D point cloud data. Due to the 

simplicity of Voxnet’s architecture, a relevant model was 

obtained from the literature and the dataset was 

generated as voxel points (0s and 1s in space).  

Using ARINet, a latent variable containing the hidden 

information from the input was obtained. By having 

latent variables as a part of the training models, we were 

able to use the autoencoder architecture to map the latent 

variables back to the 3D space in which the results of the 

radiation resided. In order to increase the range of 

captured information (i.e., handle the shadow issue), we 

used more layers in ARINet than in VoxNet. 

ARINet assumed the world to be a 51 x 51 x 51 grid in 

which both the target and boundary buildings existed. 

Based on this assumption, superimposed binary output 

matrices for all of the buildings in the world were 

produced as part of the data processing stage. Figure 5 

illustrates the model architecture of the 3DCNN, 

beginning with the 51 x 51 x 51 voxel grid. The proposed 

ARINet consisted of two 3D convolutional layers before 

the max_pooling layer. The architecture retrieved the 

network by passing two additional 3D deconvolutional 

layers. Basically, 3D image models were mapped onto 

latent spaces and later reshaped by calculating the 

difference values for radiation after passing into loss 

functions in the proposed 3DCNN architecture.  

Figure 5 3DCNN architecture of the project 

RESULTS AND DISCUSSION 

ARINet was trained with a batch_size of 32 and adam 

optimizer; 10 epochs were used to minimize losses. 

Figure 6 shows both the training and validation losses 

after 10 epochs, which reached a 0.002 error on average. 

Figure 6 Loss graph per epoch 

Predictions for validation sets 

To avoid overfitting and estimating the future feasibility 

of the trained model, completely new datasets were used 

for validation and testing. For the validation, the same 

type of building geometry was used. Figure 7 illustrates 

two visualizations of the validation sets: three buildings 

and a single building; these include the original values of 

the radiation (top), predicted radiation values (middle), 

and errors for the given datapoints (bottom) for the 

validation sets, which were never used for training. The 

results were visualized to offer a closer look at the 

predictions for each building. It was determined that 

overall they were quite accurate, but there were 

significant errors in some of the data at the boundaries of 

the three buildings (e.g., around `y = 32.5` and `x = 

22.5`), even for the less complicated building shapes 

where the adjacent buildings were of the same height. It 

can be assumed that ARINet learned some specific rules 

about the boundaries of the buildings, as this type of 

building comprised the majority of the training data.  

However, there is still the potential to train neural 

network models for physics-based phenomena in the real 

world. If the problem with boundary surrounding 

conditions could be fixed, the model would predict the 

radiation received by a building much better than what 

was possible in the current research. Furthermore, more 

options regarding the increments of the training datasets 

would provide more intuitive results and better 

predictions. This is important if the approximation of 

radiation received by a building is to be accurate enough 

to estimate the internal heat gain through the façade.   
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Figure 7 Results plot for four validation options 

Predictions from the test sets 

This section describes the results of the radiation 

received by the building façades in the completely new 

test sets. Three alternative buildings were selected to 

demonstrate the results and serve as the subject of a 

detailed analysis. Figure 8 illustrates three types of 

building geometry: rectangular with a horizontal 

overhang, round, and cube-shaped with an internal 

empty core. 

Figure 8 Reference geometries for the completely new 

buildings with boundaries 

After providing these three options for the test sets, we 

also modified additional options with no boundary 

buildings. Six options were tested for predicting the 

radiation received. As ARINet was fully trained using 

building geometries of a specific type (i.e., box-shaped) 

with boundary buildings, the test sets were not 

anticipated to be perfectly predicted. Figure 9 shows that 

the results for both the shading device and building 

offered relevant visualization output, leading to a low 

error rate (i.e., 0.0309) for the boundary buildings. 

Figure 9 Analysis and comparison results (shading) 
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However, the absence of the boundary buildings resulted 

in a higher error rate (i.e., 0.061) and invalid estimation 

of the radiation intensities received by the buildings. 

Figure 10 Analysis and comparison results (round) 

The model was able to predict the values for the round 

building (see Figure 10). However, a higher error rate 

was observed for the vertical façades on the round 

shapes. This is because there were no options for rotated 

façades in the training sets. Also, given that the model 

was initially trained with boundary buildings, the result 

with no boundary also produced a greater error (i.e., 

0.0702) than did the other option (i.e., 0.0338). 

Therefore, the results did not realistically represent the 

radiation received by the building façades, due to the 

information missing for the hidden properties of the 

surrounding buildings. However, this could be enhanced 

by training with different boundary buildings, which is a 

fixed property in the current training dataset. Increasing 

the rotation options for façades in the training dataset 

may improve the accuracy of predictions regarding 

vertical façades.   

Figure 11 Analysis and comparison results (inner core) 

The last test option was cube-shaped with an internal 

empty core (see Figure 11). This option offered the 

lowest prediction accuracy, even with boundary 

buildings (i.e., 0.0538). In this case, the predictions for 

the horizontal rooftop and internal core surfaces were 

quite different from the expected results. This was 

because our model did not count the radiation bouncing 

off the opposite surface; thus, the model miscalculated 

the rays bouncing from the sun. It can easily be seen that 

the function of the ambient bounce in DIVA was very 

low, Level 1 or 2 for our model, due to the traits of the 

training sets. To fix this problem, radiation prediction for 

internal spaces such as floors with large windows should 

be used in training. In addition, the accuracy for this 

building without boundary buildings was better than for 

the round building (i.e., 0.0637). From the visualization, 

we could see that the vertical facade actually had a high 

level of accuracy, since the buildings for the training set 

included these properties. 
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CONCLUSION 

This research proved the feasibility of converting a 

physics-based model into a data-driven model with some 

limitations. The total training time of 10 epochs took 

only 17 minutes and 30 seconds, which was yielded 

reasonable results for the test sets. Once ARINet was 

trained, the model could easily be utilized to give instant 

solar feedback for building façades. It is more feasible to 

apply instant feedback during the early design decision-

making process, since this requires relatively low 

accuracy but high efficiency. Furthermore, by using this 

model, designers and consultants can practically 

optimize building geometry based on local solar 

information and contextual data such as boundary 

buildings. Early design decision support requires 

manifold design options with relevant performance 

feedback. In such cases, ARINet can be exploited widely 

during the design process.     

Greater data generation and more input that accurately 

represents physical phenomena in real situations are 

recommended for increasing the accuracy of ARINet and 

its usability. Furthermore, the hyperparameters for 

ARINet, such as its optimizer, loss function, etc., should 

be explored. Additionally, the integration of ARINet into 

RNNs for time series-based predictions of radiation 

should be investigated in terms of monthly and daily 

resolutions.  It is highly likely that this new type of 

approach to radiation modeling in buildings and 

architectural modeling environments that utilize ARINet 

could be a unique and prominent research opportunity 

for applied artificial intelligence in architecture. 
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