
Aquarium: Cassiopea and Alewife Languages
(Prerelease Version of 20191119)

David A. Holland
Harvard University

dholland@eecs.harvard.edu

Jingmei Hu
Harvard University

jingmei_hu@g.harvard.edu

Ming Kawaguchi
Harvard University

ming@seas.harvard.edu

Eric Lu
Harvard University

ericlu01@g.harvard.edu

Stephen Chong
Harvard University

chong@seas.harvard.edu

Margo I. Seltzer
University of British Columbia

seltzer@cs.ubc.ca

Abstract
This technical report describes two of the domain specific lan-
guages used in the Aquarium kernel code synthesis project.
It presents the language cores in terms of abstract syntax.
Cassiopea is a machine description language for describ-
ing the semantics of processor instruction sets. Alewife is
a specification language that can be used to write machine-
independent specifications for assembly-level instruction
blocks. An Alewife specification can be used to verify and
synthesize code for any machine described in Cassiopea,
given a machine-specific translation for abstractions used
in the specification. This article does not include an intro-
duction to either the Aquarium system or the use of the
languages. In addition to this version of the article being a
draft, the Aquarium project and the languages are work in
progress. This article cannot currently be considered either
final or complete.

1 Introduction
The Aquarium project’s goal is to synthesize the machine-
dependent parts of an operating system. This has the poten-
tial to greatly reduce the amount of work needed to port
an operating system to a new machine architecture. It also
potentially reduces the depth of knowledge needed to do that
work – currently an OS port requires deep expert knowledge
of both the OS and the new machine architecture – and with
luck the overall amount of time involved as well.
This document does not discuss either code synthesis or

OS porting in any detail. It is intended as a supplement to
other project publications, which should in general be read
first. While this document includes discussions of and ratio-
nales for language features (as well as absence of language
features) these discussions assume familiarity with the sur-
rounding context.

The two languages described in this document are Cassio-
pea, which is a register-transfer-list-style machine descrip-
tion language used for writing down the semantics of pro-
cessor instruction sets, and Alewife, which is a specifica-
tion or modeling language used for writing down machine-
independent specifications for assembly language code
blocks to be synthesized.

Cassiopea also includes material for writing machine-
dependent specifications (this is the target for the Alewife
translator), a concept of mapping modules used by the Ale-
wife translator, and a simple representation of basic blocks
in assembly language. These are described in this document.
This document does not, however, describe any of the

other languages or file formats used in the Aquarium project
or any of the Aquarium tools.

The document is structured with six parts:

• The Cassiopea language and abstract syntax (Sec. 3)
• Cassiopea types (Section 4)
• Cassiopea semantics (Section 5)
• The Alewife language and abstract syntax (Section 6)
• Alewife types and semantics (Section 7)
• Alewife translation to Cassiopea (Section 8)

2 Notation
In the abstract syntax, type judgments, and semantics judg-
ments we use italics for metavariables (e.g. v) and also for
words corresponding to types in the abstract syntax (e.g.
declaration. We use typewriter font for words that corre-
spond to language keywords. The notation αi means “a se-
quence one or more α , each to be referred to elsewhere as αi ”.
If there are no references outside the overbar, the i subscript
may be left off. Epsilon (ϵ) appearing in syntax represents
an empty production. The notation ". . ." represents a string
literal with arbitrary contents.
Bitvectors (aka machine integers) may be any width

greater than zero. Bitvector constants are represented as 0bC,
which can be thought of as an explicit sequence of zeros and
ones. The number of bits in a bitvector constant (that is, the
number of digits) gives its type. Thus, 0b00 and 0b0000 are
different. In the concrete syntax, bitvector constants whose
size is a multiple of 4 can also be written in the form 0xC.
These are desugared in the parser and not shown further in
this document.
The Cassiopea and Alewife syntax should be considered

disjoint. (Some elements are the same in each, but these are
specified separately regardless.) They use the same metavari-
ables as well, which should not be mixed; any language

ar
X

iv
:1

90
8.

00
09

3v
3

 [
cs

.P
L

]
 1

9
N

ov
 2

01
9

(Cassiopea Types)
τ F τbase | τmem | τfunc

τbase F () | int | bool | string | xτ | C bit

| τreg | τregs | τlabel
τreg F C reg

τregs F C reg set

τlabel F C label

τmem F C1 bit C2 len C3 ref

τfunc F τbasei → τbase

construct in a judgment should be all Cassiopea or all Ale-
wife. In a few places mixing is needed, in which case the
translation defined in Section 8 is applied to allow inserting
Alewife fragments into Cassiopea terms. The Alewife rules
in Section 7 do use the same environments as the Cassiopea
rules. These should be construed as holding only Cassiopea
elements. Further details can be found in Section 7.
We have attempted as much as possible to use standard

notation in as many places as possible.

3 Cassiopea Overview
This section covers the abstract syntax for Cassiopea.

As mentioned above, Cassiopea is a register-transfer-
list style language: it models instructions as non-Turing-
complete procedures that update a machine state. (This gives
it an executable semantics, which is covered in Section 5.)
Because of our operating domain (which is similar to a

compiler, but requires access to all the dusty corners of an
architecture compilers can normally ignore) we model the
machine from the assembly-language programmer’s perspec-
tive. In particular, we do not treat memory as a huge block of
address space but handle it in small chunks passed in from
somewhere else. We also need to model control registers
as well as general-purpose registers, and machine state like
whether interrupts are enabled.

Furthermore, we need to handle assembler labels: these
are like pointers, but they are not themselves pointers; they
have addresses, but those addresses are not resolved until
after programs are compiled and linked and must be treated
as abstract.

Notation. We use the following metavariables:

x, y, z Program variables (binders)
r Registers (abstract)
C Integer constants (written in decimal)
0bC Bitvector constants (written in binary)
τ Types
v Values
e Expressions
S Statements
i, j Rule-level integers
(Other constructions are referred to with longer names.)
A number of constructions are lists written out in long-

hand (with a null case and a cons case) – these are written
out in longhand so that typing and semantic judgments can
be applied explicitly to each case, in order to, for example,
thread environment updates through correctly.

Identifiers and variables. Identifiers are divided syntac-
tically into eight categories.

xmem are identifiers bound to memory regions, which are
second-class; xlabel are identifiers that are assembler labels.

xfunc and xproc are identifiers bound to functions and pro-
cedures, respectively, which are also second-class. xop are
identifiers bound to instructions (“operations”), which are
akin to procedures but distinguished from them.

xτ are identifiers for type aliases, which are bound to base
types in declarations.

xmodule are the names of “modules”, which are used to
select among many possible groups of mapping elements.
Other identifiers x are used for other things, and should

be assumed to not range over the above elements.
Note that all identifiers live in the same namespace and

rebinding or shadowing them is not allowed.
All these identifiers can be thought of as variables, in the

sense that they are names that stand for other things. All
of them are immutable once defined, including the ordinary
variables x that contain plain values.

Types. Types are divided syntactically into base types (in-
tegers, booleans, strings, bitvectors, etc.) and others (memory
regions and functions). User functions may handle only base
types. Furthermore, memory regions and functions are in-
tended to be second-class for reasons discussed below, and
are excluded in various places in the syntax and the typing
rules. We use index typing to capture the bit width of values.

Registers. Registers are represented in the specification
with the metavariable r , which stands for the underlying
abstract identity of a register. Declaring a register, e.g. with
letstate x : C reg, allocates a fresh register r and binds
the variable x to it. A subsequent declaration of the form
let y : C reg = x creates another variable y that refers to
the same underlying register. One might think of registers as
numbered internally. (This is different from another possible
world, where the initial declaration creates a register named
x, and then the second declaration creates a variable that
ranges over registers, and the identifiers x and y are different
kinds of things. That is, however, not how Cassiopea works.)

2

(Cassiopea Values)
ṽ F v | fail
v F true | false | C | 0bC | ". . ."
| r | (xmem, C)

Registers, or at least some registers, have associated with
them a text form, which is declared separately and is the form
an assembler for the machine expects to see. This is used
when our internal representation of a program is extracted
to an assembly source file. It is referred to by attaching the
suffix .txt to the/a register variable. Note that because on
some machines some registers may not be directly address-
able by the assembler (they might be subfields of some larger
addressable unit, or nonaddressable internal state), not all
registers necessarily have a text form. And because of the
way registers are referenced, we cannot readily check stati-
cally whether a given reference with .txt is valid or not, or
at least without introducing additional machinery, so if not
the failure happens at extraction time.
The type of a register is C reg, which is a register that

holds a C-bit bitvector. The bitvector value in question can
be updated by assigning a new value; this is a statement
(e1 : = e2) and can only happen in places where statements
are allowed. The construction ∗e reads a register.

The reader will note that the semantics rules for machines
and declarations do not provide initial values for registers.
Instead, executions are defined in terms of some initial reg-
ister state (and also some memory state), which is required
to have the right registers to match the machine definition.
This allows reasoning about the execution of programs and
program fragments in terms of many or all possible initial
states. (These issues are discussed further below.)

Memory. A memory region has the type
C1 bit C2 len C3 ref. This refers to a memory re-
gion that has C2 cells, each of which stores a bitvector of
width C1. This memory region is addressed with pointers of
width C3.

Note that we assume byte-addressed machines, and for the
purposes of both this specification and our implementation,
we assume bytes are 8 bits wide. (This restriction could be
relaxed if we wanted to model various historic machines.)
Thus a memory region of type 32 bit 4 len 32 ref has 4
32-bit values in it, which can be addressed at byte offsets 0, 4,
8, and 12. These values can of course be changed, like values
in registers.

Memory regions are named with identifiers. These names,
and memory regions themselves, are not first class; variables
are not allowed to range over them.

Also note that memory regions are a property of programs
(and thus are declared in specifications) and not a property
of the machine as a whole.

(Cassiopea Operators)
unop F − | b− | ¬ | bnot
binop F = | , | + | − | ∗ | / | < | <= | > | >=
| ∨ | ∧ | ⊕
| >> | >>S |<< | band | bor | bxor
| b+ | b− | b∗ | b/
| b< | b<= | b> | b>=
| bs< | bs<= | bs> | bs>=
| ∪ | ∩ |⊆| \

(Cassiopea Expressions)
e F ṽ | x
| e.txt

| xfunc (e)
| unop e

| e1 binop e2
| e[C] | e[C1, C2]
| let x : τbase = e1 in e2
| if e1 then e2 else e3
| (xmem, e) | xlabel
| ∗e | fetch(e,C)
| {x1, . . . , xk }
| ∥e∥ | e1 ∈e2

Pointers. A pointer literal has the form (xmem, C), in
which xmem is the region name and C is the offset. Because
memory regions are second-class, xmem must be specifically
one of the available declared memory regions.
Pointer literals exist in the abstract syntax, but are not

allowed in the concrete syntax except in specifications. The
only way to get a pointer value is to look up a label (discussed
immediately below) or have it provided in a register as part
of the initial machine state.

A pointer literal is treated as a bitvector of the same width,
so one can appear in a register or in memory. However, we
enforce a restriction (not captured in the semantics rules so
far) that no value in the initial machine state, whether in a
register or in memory, is a pointer unless required to be so
by the precondition part of the specification. All other values
are restricted to be plain bitector values.
Addition and subtraction are allowed on pointers (this

changes the offset) but other bitvector operations (e.g. mul-
tiply) are disallowed and fail. Similarly, attempting to fetch
from or store to a plain bitvector that is not a pointer fails.

Note however that we do not statically distinguish point-
ers and plain bitvectors. (We could have used flow-sensitive

3

(Cassiopea Statements)
S F S; S
| xproc (e)
| let x : τbase = e in S

| for x ∈ (C1 . . .C2) do S
| if e then S1 else S2
| e1 : = e2
| store(e1,C) ← e2
| assert(e)
| skip

| crash

typing to reason about when registers and memory cells con-
tain pointers and when they do not; but this adds substantial
complexity and for our problem domain does not buy much
in return.) Instead, we step to failure at runtime. This can be
seen in the semantics rules.

Fetching from a pointer takes the form fetch (e,C). Storing
to a pointer takes the form store(e1,C) ← e2. The extra
constant C specifies the width of the cell pointed to. (This is
not an offset.) Because we do not check pointers statically,
we do not know the memory region being pointed to and
cannot look up its cell size; thus we need the width explicitly
for typing. It is checked at runtime.

Labels. As mentioned above, by “label” we mean an as-
sembler label or linker symbol. These have addresses (or
depending on how one looks at them, they are addresses)
and those addresses are constants, but the constants are not
known at assembly time, so we must model them abstractly.
When one declares a memory region, one may attach a

label to it, which is an additional identifier. This identifier is
created as a variable of type C label. The value is a pointer
to the first entry in the region, and a single type subsumption
rule allows this value to be accessed and placed in an ordinary
register or variable of suitable bitvector type.
The intended mechanism is that for each machine the

preferred instruction on that machine for loading assembler
symbols into a register can be defined to take an operand
of type C label, and then value can be just assigned to the
destination register. The type restriction on the operand is
sufficient to synthesize programs that use labels correctly.

Register sets. Register sets are second-class elements
intended to exist only as literals and only as the result of
lowering machine-independent specifications that cannot
directly talk about specific registers.

Currently they do not exist in the implementation and so
everything about them is a bit fuzzy.

Register sets are not allowed to be operands to instructions
to avoid state explosions when synthesizing. This restriction

(Cassiopea Declarations)
decls F ϵ | decl; decls

decl F type xτ = τbase
| let x : τbase = e

| let x .txt = e

| def xfunc xi : τbasei → τbase = e

| proc xproc xi : τbasei → () = S

| letstate x : τreg
| letstate xmem : τmem

| letstate xmem : τmem with xlabel

defops F ϵ | defop; defops
defop F defop xop {txt = e, sem = S}
| defop xop xi : τbasei {txt = e, sem = S}

is currently not captured in the abstract syntax or typing
rules.

Functions and procedures. Functions, defined with def,
are pure functions whose bodies are expressions. They pro-
duce values. They can access registers and memory, and
can fail, but cannot update anything. Procedures, defined
with proc, are on the other hand impure and their bodies
are statements. They do not produce values, but they may
update the machine state.

They are otherwise similar, and are intended to be used to
abstract out common chunks of functionality shared among
multiple instructions in machine descriptions. Functions can
also be used for state hiding in specifications.
Functions and procedures are second-class; they may be

only called by their own name and may not be bound to vari-
ables or passed around. Furthermore, they are only allowed
to handle base types: higher-order functions are explicitly
not supported.

Operations. Operations (defined with defop) are essen-
tially instructions, and we refer to these interchangeably.
An operation takes zero or more operands and does some
transform on the machine state defined by one or more state-
ments.
Operands are currently defined as expressions, but are

restricted as follows:
• They may be values, but not string values, and not
fail.
• They may be variables of register type.
• They may be variables of label type.

This restriction affects what the synthesizer tries to generate;
a broader set of expressions may be accepted for verification
or concrete execution and simply evaluated in place.

4

(Cassiopea Machines)
machine F decls; defops

(Cassiopea Mappings)
modules F ϵ | module; modules

module F module xmodule {decls; frame}

(Cassiopea Specifications)
frame F ϵ | reg-modify : xregi
| mem-modify : (xmemi , ei)
pre F e
post F e

spec F decls; frame; pre; post

(Cassiopea Programs)
inst F xop | xop e
insts F ϵ | inst; insts
programF insts

There is an important distinction between “operations”
and “instructions”. Operations are the units in which Cassio-
pea thinks about machine operations, and the units in which
Cassiopea generates programs and code fragments, but they
do not necessarily need to be single instructions. The text
output to the assembler is arbitrary and can be computed
on the fly based on the operand value. On some platforms
the assembler defines so-called “synthetic instructions” that
are potentially multiple real instructions. This facility takes
that a step further by allowing the writer of the machine
description to define their own synthetics.

Other Constructs. e[C] and e[C1, C2] extract a single bit
and a slice, respectively, from a bitvector. The offsets are
constants; a shift can be used beforehand if variable offsets
are needed. The width of the slice must be constant for static
typing.

Machines, Mappings, Specs, and Programs.
A machine is a complete description of a machine archi-

tecture; it includes declarations (including types, constants,
registers, functions and procedures) and also instructions.
This is typically a standalone file, or possibly several via
include.
A (single) mapping is a collection of declarations used

to instantiate elements in Alewife translations. These are
placed into a module, with multiple modules per file, so that
the mappings associated with multiple related Alewife spec-
ifications can be kept together. The module name is selected
by using the Alewife block name.

A spec is a precondition and postcondition, which are
boolean expressions, along with optional permission to de-
stroy additional registers. (The latter is a frame.) Cassiopea
specs are produced by compiling Alewife specs. Note that a
module can also include frame declarations; these are added
to any provided in the Alewife spec. A code block is permit-
ted to destroy any register that is either explicitly listed in
the frame declarations or mentioned in the postcondition.
(This restriction is currently not adequately captured in the
semantics rules.)

A program is a sequence of instruction invocations. There
are no labels bound in these because currently we only not
support a single basic block at a time.

Built-in functions. Here is a partial list of the built-in
functions in Cassiopea.

• empty (int C → C reg set) produces an empty regis-
ter set of the requested bit size.
• hex (int|C bit → string) prints numbers in hexa-
decimal.
• bin (int|C bit→ string) prints numbers in binary.
• dec (int|C bit→ string) prints numbers in decimal.
• lbl (C label→ string) prints labels (it returns the
label identifier as a string).
• format (string → string . . .→ string) formats
strings. The first argument is a format string; the re-
mainder of the arguments are substituted into the for-
mat string where a dollar sign appears followed by
the argument number (1-based). (A literal dollar sign
can be inserted by using $$.) The number of additional
arguments expected is deduced from the contents of
the format string.
• bv_to_len (C1 → C2 bit → C1 bit) returns a new
bitvector of size C1 with the same value up to the
ability of the new size to represent that value.
• bv_to_uint (C1 bit → int) converts a bitvector to
unsigned int.
• uint_to_bv_l (int C1 → int C2 → C1 bit) converts
an unsigned int C2 into a bitvector of size C1.
• isptr (C bit→ bool) tests at runtime if a bitvector
value is a pointer or not.

Note that some of these functions have their own typing
rules, some of which are polymorphic in bitvector size. We
have not complicated the typing rules presented by including
all of these as special cases.

Concrete Syntax. As noted earlier we do not describe
the concrete syntax here; however, it does not stray very far
from the abstract syntax. The operator precedence and most
of the operator spellings are taken from C (to avoid violating
the principle of least surprise) but most of the rest of the
concrete syntax is ML-style.
There are also a few things desugared in the parser and

not shown in the abstract syntax. As already mentioned,
5

(Type Well-Formedness)

∆ ⊢wf ()

∆ ⊢wf int

∆ ⊢wf bool

∆ ⊢wf string

∆(x) = τ ∆ ⊢wf τ
∆ ⊢wf x

∀i,∆ ⊢wf τi ∆ ⊢wf τr
∆ ⊢wf τi → τr

C > 0
∆ ⊢wf C bit

C > 0
∆ ⊢wf C reg

C > 0
∆ ⊢wf C label

C > 0
∆ ⊢wf C reg set

C1 > 0, C2 > 0, C3 > 0
∆ ⊢wf C1 bit C2 len C3 ref

bitvector constants whose size is a multiple of 4 can also be
written in the form 0xC.

Syntax of the form e .hex, e .bin, and e .dec is converted
to the built-in functions hex, bin, dec respectively. These
print either integers or bitvectors as strings in hexadecimal,
binary, or decimal respectively.

The syntax xlabel .lbl is similarly converted to the built-in
function lbl. This produces the label (that is, the identifier
naming the label) as a string.
Further the concrete syntax supports include files via a

include directive, which is useful for sharing common ele-
ments.

4 Cassiopea Static Typing
This section describes the Cassiopea type system.

Environments. The type system uses two environments:
∆ maps type alias names to the types they represent, and Γ
maps variables to the types assigned to them. Recall from
the syntax that only base types may have alias names, so
alias names can be treated as base types.

Well-Formedness. Since types include alias names, we
need to check that a proposed alias name is actually a type
name. At the same timewe insist that the widths of bitvectors
be greater than zero. The judgment for this has the form
∆ ⊢wf τ .

There is an intended invariant that only well-formed types
may be entered into the variable typing environment Γ, so
that types taken out of it do not need to be checked for
well-formedness again.

In a typing environment comprised of ∆ mapping user-
defined type names (type aliases) to types and Γ mapping
program binders (variables) to types, we say that a type is
well formed when all type names are well-formed and all
indices are of type int.

Expressions. Expressions produce values that have types.
Because types appear explicitly in some expressions (e.g.
let), we need both environments, so the form of an expres-
sion typing judgment is ∆, Γ ⊢ e : τ . This means that we
conclude e has type τ .

Note that the .txt form is restricted to registers; it is specif-
ically for extracting the assembly text form of a register.
We have not written out a separate rule for each unary

and binary operator. The types of operators are as follows.
(Note that the bitvector operators are polymorphic in bit
size.)
− int→ int
b− ∀C,C bit→ C bit
¬ bool→ bool
bnot ∀C,C bit→ C bit

= , ∀τbase, τbase → τbase → bool
+ − ∗ / int→ int→ int
< <= > >= int→ int→ bool
∨ ∧ ⊕ bool→ bool→ bool
>> >>S << ∀C,C bit→ C bit→ C bit
band bor bxor ∀C,C bit→ C bit→ C bit
b+ b− b∗ b/ ∀C,C bit→ C bit→ C bit
b< b<= b> b>= ∀C,C bit→ C bit→ bool
bs< bs<= bs> bs>= ∀C,C bit→ C bit→ bool
∪ ∩ \ ∀C,C reg set→ C reg set→ C reg set
⊆ ∀C,C reg set→ C reg set→ bool

Arguably the right hand argument of the shift operators
should be allowed to be a different width.
There is one rule for pointer literals that covers both the

expression and the value form.
There is no rule (either in the typing or in the semantics)

that allows taking a subrange of a memory region as a new
smaller region. We have not needed this for our use cases,

6

(Expression Typing)

∆, Γ ⊢ C : int

∆, Γ ⊢ true : bool

∆, Γ ⊢ false : bool

∆, Γ ⊢ ". . ." : string

C = {0, 1}k

∆, Γ ⊢ 0bC : k bit

∆ ⊢wf τ
∆, Γ ⊢ fail : τ

Γ(x) = τ ∆ ⊢wf τ
∆, Γ ⊢ x : τ

∆, Γ ⊢ e : τreg
∆, Γ ⊢ e.txt : string

∆, Γ ⊢ xfunc :
(
τbasei → τbase

) ∀i, ∆, Γ ⊢ ei : τbasei
∆, Γ ⊢ xfunc (ei) : τbase

∆, Γ ⊢ e : τbase1 ⊨ unop : τbase1 → τbase2

∆, Γ ⊢ unop e : τbase2

∆, Γ ⊢ e1 : τbase1
∆, Γ ⊢ e2 : τbase1 ⊨ binop : τbase1 → τbase1 → τbase2

∆, Γ ⊢ e1 binop e2 : τbase2

∆, Γ ⊢ e : C2 bit 0 ≤ C1 < C2

∆, Γ ⊢ e[C1] : 1 bit

∆, Γ ⊢ e : C3 bit 0 ≤ C1 < C2 ≤ C3 k = C2 − C1

∆, Γ ⊢ e[C1, C2] : k bit

∆, Γ ⊢ e1 : τbase x < ∆, Γ ∆, Γ[x 7→ τbase] ⊢ e2 : τ2
∆, Γ ⊢ let x : τbase = e1 in e2 : τ2

∆, Γ ⊢ b : bool ∆, Γ ⊢ e1 : τ ∆, Γ ⊢ e2 : τ
∆, Γ ⊢ if b then e1 else e2 : τ

(More Expression Typing)

∆, Γ ⊢ e : int ∆, Γ ⊢ xmem : _ bit _ len C ref

∆, Γ ⊢ (xmem, e) : C bit

∆, Γ ⊢ e : _ bit
∆, Γ ⊢ fetch(e,C) : C bit

∆, Γ ⊢ xlabel : C label

∆, Γ ⊢ xlabel : C bit

∆, Γ ⊢ e : C reg

∆, Γ ⊢ ∗e : C bit

∀i ∈ (1 . . . k), ∆, Γ ⊢ xi : C reg

∆, Γ ⊢ {x1, . . . , xk } : C reg set

∆, Γ ⊢ e : C reg set

∆, Γ ⊢ ∥e∥ : int

∆, Γ ⊢ e1 : C reg ∆, Γ ⊢ e2 : C reg set

∆, Γ ⊢ e1 ∈e2 : bool

and keeping the set of possible regions fixed simplifies a
number of things.

Statements. Statements do not produce values. We still
need both environments, though, so the form of a typing
judgment for a statement is ∆, Γ ⊢ S. This means that S is
well typed.

Declarations. Declarations update the environment. The
form of a typing judgment for a declaration is ∆, Γ ⊢ decl ▷
∆′, Γ′, and a judgment for a list of declarations has the same
form. This means that the declaration (or list) is well typed
and produces the new environment on the right. One can
think of the ⊢ ▷ as the tail and head of an arrow with the
element transforming the environments labeling the body.
We impose an additional syntactic restriction on decla-

rations found in a machine description (as opposed to the
additional declarations that may appear in a spec): they may
not use the expression forms that refer to machine state
(registers or memory). This is because when defining the
machine there is no specific machine state to refer to; any
references would need to be quantified. (And that in turn is
not allowed to avoid feeding quantifiers to the solver.)

Machines. A machine is some declarations followed by
some defops, so the typing rule is just sequencing, but there’s
a wrinkle: the initial environment for the machine is not
an input. ∆builtin is the (fixed) environment describing the

7

(Statement Typing)

∆, Γ ⊢ S1 ∆, Γ ⊢ S2
∆, Γ ⊢ S1; S2

∆, Γ ⊢ xproc :
(
τbasei → ()

) ∀i, ∆, Γ ⊢ ei : τbasei
∆, Γ ⊢ xproc (ei)

∆, Γ ⊢ e : τbase x < ∆, Γ ∆, Γ[x 7→ τbase] ⊢ S
∆, Γ ⊢ let x : τbase = e in S

∆, Γ[x 7→ int] ⊢ S
∆, Γ ⊢ for x ∈ (C1 . . .C2) do S

∆, Γ ⊢ e : bool ∆, Γ ⊢ S1 ∆, Γ ⊢ S2
∆, Γ ⊢ if e then S1 else S2

∆, Γ ⊢ e1 : C reg ∆, Γ ⊢ e2 : C bit

∆, Γ ⊢ e1 : = e2

∆, Γ ⊢ e1 : C1 bit ∆, Γ ⊢ e2 : C2 bit

∆, Γ ⊢ store(e1,C2) ← e2

∆, Γ ⊢ e : bool
∆, Γ ⊢ assert(e)

∆, Γ ⊢ skip

∆, Γ ⊢ crash

built-in type aliases. (Currently there are none.) Γbuiltin is the
environment describing the types of built-in variables. This
notionally includes the built-in functions. (But as mentioned
earlier some of them actually have their own typing rules.)
The form of a typing judgment for a machine is ⊢

machine ▷ ∆, Γ. This means that the machine description
is well typed and provides the environment on the right for
use of other constructs that depend on the machine. (Specs
and programs are only valid relative to a given machine.)

Specs. For specifications we need two helper rules, one
that applies an additional list of declarations to a machine,
which has the same form as the judgment on a machine, and
one that says that a frame (modifies list) is well typed, which
has the form ∆, Γ ⊢ frame. This lets us write the real rule,
which has the form machine ⊢ spec and means that the spec
is well typed under the machine description.

(Declaration Typing)

∆, Γ ⊢ ϵ ▷ ∆, Γ

∆, Γ ⊢ decl ▷ ∆′, Γ′ ∆′, Γ′ ⊢ decls ▷ ∆′′, Γ′′

∆, Γ ⊢ decl; decls ▷ ∆′′, Γ′′

∆ ⊢wf τbase xτ < ∆, Γ ∆′ = ∆[xτ → τbase]
∆, Γ ⊢ type xτ = τbase ▷ ∆′, Γ

∆ ⊢wf τbase
x < ∆, Γ ∆, Γ ⊢ e : τbase Γ′ = Γ[x 7→ τbase]

∆, Γ ⊢ let x : τbase = e ▷ ∆, Γ′

∆, Γ ⊢ x : τreg ∆, Γ ⊢ e : string
∆, Γ ⊢ let x .txt = e ▷ ∆, Γ

∆ ⊢wf
(
τbasei → τbase

)
xfunc < ∆, Γ Γ′ = Γ[∀i, xi 7→ τbasei]

∆, Γ′ ⊢ e : τbase Γ′′ = Γ[xfunc 7→
(
xi : τbasei → τbase

)
]

∆, Γ ⊢ def xfunc xi : τbasei → τbase = e ▷ ∆, Γ′′

∆ ⊢wf
(
τbasei → ()

)
xproc < ∆, Γ Γ′ = Γ[∀i, xi 7→ τbasei]

∆, Γ′ ⊢ S Γ′′ = Γ[xproc 7→
(
xi : τbasei → ()

)
]

∆, Γ ⊢ proc xproc xi : τbasei → () = S ▷ ∆, Γ′′

∆ ⊢wf C reg x < ∆, Γ Γ′ = Γ[x 7→ C reg]
∆, Γ ⊢ letstate x : C reg ▷ ∆, Γ′

∆ ⊢wf C1 bit C2 len C3 ref
xmem < ∆, Γ Γ′ = Γ[xmem 7→ C1 bit C2 len C3 ref]
∆, Γ ⊢ letstate xmem : C1 bit C2 len C3 ref ▷ ∆, Γ

′

∆ ⊢wf C1 bit C2 len C3 ref
∆ ⊢wf C3 label xmem < ∆, Γ xlabel < ∆, Γ

Γ′ = Γ[xmem 7→ C1 bit C2 len C3 ref]
Γ′′ = Γ′[xlabel 7→ C3 label]

∆, Γ ⊢ letstate xmem : C1 bit C2 len C3 ref
with xlabel ▷ ∆, Γ′′

Programs. A program is a sequence of calls to instruc-
tions. We need judgments of the form ∆, Γ ⊢ inst for a single
instruction and also ∆, Γ ⊢ insts for the sequence.
There are two cases for a single instruction because of a

minor glitch in formulation: because the overbar notation
means “one or more”, there are two cases in the syntax for

8

(More Declaration Typing)

∆, Γ ⊢ ϵ ▷ ∆, Γ

∆, Γ ⊢ defop ▷ ∆′, Γ′ ∆′, Γ′ ⊢ defops ▷ ∆′′, Γ′′

∆, Γ ⊢ defop; defops ▷ ∆′′, Γ′′

xop < ∆, Γ
∆, Γ ⊢ e : string ∆, Γ ⊢ S Γ′ = Γ[xop 7→ () → ()]

∆, Γ ⊢ defop xop {txt = e, sem = S} ▷ ∆, Γ′

∆ ⊢wf
(
τbasei → ()

)
xop < ∆, Γ

∀i,τbasei , string ∧ τbasei , () ∧ τbasei , τregs
Γ′ = Γ[∀i, xi 7→ τbasei] ∆, Γ′ ⊢ e : string
∆, Γ′ ⊢ S Γ′′ = Γ[xop 7→

(
xi : τbasei → ()

)
]

∆, Γ ⊢ defop xop xi : τbasei {txt = e, sem = S} ▷ ∆, Γ′′

(Machine Typing)

∆builtin, Γbuiltin ⊢ decls ▷ ∆, Γ ∆, Γ ⊢ defops ▷ ∆′, Γ′

⊢ decls; defops ▷ ∆′, Γ′

(Spec Typing)

⊢ machine ▷ ∆, Γ ∆, Γ ⊢ decls ▷ ∆′, Γ′

⊢ machine; decls ▷ ∆′, Γ′

∀i, ∆, Γ ⊢ xregi : Ci reg
∆, Γ ⊢ reg-modify : xregi

∀i, ∆, Γ ⊢ ei : int ∀i, ∆, Γ ⊢ xmemi : τmem

∆, Γ ⊢ mem-modify : (xmemi , ei)

⊢ machine; decls ▷ ∆, Γ
∆, Γ ⊢ frame ∆, Γ ⊢ pre : bool ∆, Γ ⊢ post : bool

machine ⊢ decls; frame; pre; post

instructions, one for zero operands and one for one or more
operands; we need typing rules for both cases. Meanwhile
the type entered into Γ for a zero-operand instruction is
unit to unit, not ϵ to unit, to avoid needing an additional
form for types just for this case. (Notice that a one-operand
instruction may not have type unit to unit because unit is
not allowed as an instruction operand, so the type is not
ambiguous.)

(Program Typing)

∆, Γ ⊢ xop : (() → ())
∆, Γ ⊢ xop

∆, Γ ⊢ xop :
(
τbasei → ()

) ∀i, ∆, Γ ⊢ ei : τbasei
∆, Γ ⊢ xop ei

∆, Γ ⊢ ϵ

∆, Γ ⊢ inst ∆, Γ ⊢ insts
∆, Γ ⊢ inst; insts

⊢ machine ▷ ∆, Γ ∆, Γ ⊢ program
machine ⊢ program

These rules let us write a judgment for a program, which
has the formmachine ⊢ program andmeans that the program
is well typed relative to the machine.

Soundness. Note that even though we do not check cer-
tain things statically, the type system remains sound: we
include the necessary checks and failure states in the seman-
tics so that evaluation does not get stuck.

We have a partial but largely complete mechanized proof
of soundness for an old version of Cassiopea. We intend to
update and release it when and if time permits.

5 Cassiopea Semantics
This section defines the semantics of Cassiopea.

Environment. The execution environment Λ maps Cass-
iopea variables x to values v. However, we take advantage
of/abuse the polymorphism and dynamic typing of paper
rules to also store the following in the same environment:

• xlabel (label names) map to values; specifically each
label maps to a pointer that points to the base (offset
0) of the region associated with the label.
• xfunc (function names) map to pairs {xi , e}, which give
the list of argument names and the body for functions.
• xproc (procedure names) map to pairs {xi , S}, which
give the list of argument names and the body for pro-
cedures.
• xop (operation/instruction names) map to triples
{xi , e, S}, which give the list of argument names, the
expression for the text form, and the body for opera-
tions.
• r .txt (the form for the text version of a register) maps
to a value.

9

(Expression Semantics)

Λ(x) = v

Λ ⊢ (ρ,σ , x) ⇓ v

Λ(xlabel) = v

Λ ⊢ (ρ,σ , xlabel) ⇓ v

Λ ⊢ (ρ,σ , e) ⇓ r Λ(r .txt) = v

Λ ⊢ (ρ,σ , e.txt) ⇓ v

Λ ⊢ (ρ,σ , e) ⇓ r r .txt < Λ

Λ ⊢ (ρ,σ , e.txt) ⇓ fail

∀i,Λ ⊢ (ρ,σ , ei) ⇓ vi
Λ(xfunc) = {xi , e} Λ[∀i, xi 7→ vi] ⊢ (ρ,σ , e) ⇓ ṽ

Λ ⊢ (ρ,σ , xfunc (ei)) ⇓ ṽ

Λ ⊢ (ρ,σ , e) ⇓ v1 ṽ2 = unop v1
Λ ⊢ (ρ,σ , unop e) ⇓ ṽ2

Λ ⊢ (ρ,σ , e1) ⇓ v1
Λ ⊢ (ρ,σ , e2) ⇓ v2 ṽ3 = v1 binop v2

Λ ⊢ (ρ,σ , e1 binop e2) ⇓ ṽ3

Λ ⊢ (ρ,σ , e) ⇓ 0bC C = b0 . . . bCi . . . bn
Λ ⊢ (ρ,σ , e[Ci]) ⇓ bCi

Λ ⊢ (ρ,σ , e) ⇓ 0bC C = b0 . . . bCi . . . bCj . . . bn
Λ ⊢ (ρ,σ , e[Ci , Cj]) ⇓ bCi . . . bCj

Λ ⊢ (ρ,σ , e) ⇓ (xmem, C)
Λ ⊢ (ρ,σ , e[_]) ⇓ fail

Λ ⊢ (ρ,σ , e) ⇓ (xmem, C)
Λ ⊢ (ρ,σ , e[_, _]) ⇓ fail

Λ ⊢ (ρ,σ , e1) ⇓ v1 Λ[x 7→ v1] ⊢ (ρ,σ , e2) ⇓ ṽ2
Λ ⊢ (ρ,σ , let x : τbase = e1 in e2) ⇓ ṽ2

Λ ⊢ (ρ,σ , e) ⇓ true Λ ⊢ (ρ,σ , et) ⇓ ṽt
Λ ⊢ (ρ,σ , if e then et else _) ⇓ ṽt

Λ ⊢ (ρ,σ , e) ⇓ false Λ ⊢ (ρ,σ , ef) ⇓ ṽf
Λ ⊢ (ρ,σ , if e then _ else ef) ⇓ ṽf

Since identifiers are not allowed to overlap in well-typed
programs, and register identities are not strings at all, this
usage creates no conflicts.

Note that xmem, xτ , and xmodule do not appear in Λ as these
require no translation at runtime.

Machine state. In addition to the execution environment
we also need a representation of machine state. We define
two stores, one for registers and one formemory. The register
store ρ maps registers r to values v. The memory store σ is
more complicated: it maps pairs (xmem, C) (that is, pointer
literals) to pairs (v,Cl), where v is the value stored at that
location and Cl is the bit width.
The bit widths of memory regions are invariant, both

across the region (this is the only way they can be declared)
and also over time. They are used to check the access widths
appearing in fetch and store operations. Also note that new
entries cannot be created in either the register store or the
memory store, as real hardware does not permit such actions.
The values stored in registers and memory regions are re-
stricted by the typing rules to bitvectors (whether constants
or pointers) of the appropriate width.
Notice that stepping through the declarations does not

initialize the machine state. We want to reason about exe-
cutions over ranges of possible starting machine states; so
instead we provide a judgment that uses the typing envi-
ronments to restricts the stores to forms consistent with the
declarations. This is discussed further below.

Expressions. We describe expressions with a big-step
operational semantics. The form of an expression semantic
judgment is: Λ ⊢ (ρ,σ , e) ⇓ v, which means that given the
environment Λ and the machine state ρ,σ , the expression
e evaluates to the value v. Expressions may refer to the
machine state, but not modify it.
Expressions can fail; in addition to the explicit failure

cases seen, some of the operators and built-in functions can
fail. For example, as mentioned earlier, attempting bitvector
arithmetic other than addition and subtraction on pointers
will fail. Furthermore, division by zero fails.

Note that we currently do not statically check (in the typ-
ing rules) that the .txt form is present for every register, or
that it is defined for registers on which it is used. Thus we
have an explicit failure rule for when no matching declara-
tion has been seen. We also have failure rules for bad fetch
operations: if the length annotation is wrong, if the pointer
is not in the machine state (this covers both unaligned ac-
cesses and out of bounds accesses), or if the value used is
not a pointer. Similarly, we have failure rules for when bit
indexing/slicing a pointer. (We do not, conversely, need ex-
plicit failure checks or rules for the bit indexes in the bit
extraction/slicing constructs as they are statically checked.)
Also note that we include in the semantics the obvious

failure propagation rules for when subexpressions fail. We
do not show these explicitly as they are not particularly
interesting or informative.

10

(More Expression Semantics)

Λ ⊢ (ρ,σ , e) ⇓ r ρ(r) = v

Λ ⊢ (ρ,σ , ∗e) ⇓ v

Λ ⊢ (ρ,σ , e) ⇓ (xmem, C) σ (xmem,C) = (v,Cl)
Λ ⊢ (ρ,σ , fetch(e,Cl)) ⇓ v

Λ ⊢ (ρ,σ , e) ⇓ (xmem, C)
σ (xmem,C) = (_,Cm) Cm , Cl
Λ ⊢ (ρ,σ , fetch(e,Cl)) ⇓ fail

Λ ⊢ (ρ,σ , e) ⇓ (xmem, C) (xmem, C) < σ
Λ ⊢ (ρ,σ , fetch(e,Cl)) ⇓ fail

Λ ⊢ (ρ,σ , e) ⇓ 0bC
Λ ⊢ (ρ,σ , fetch(e,Cl)) ⇓ fail

Λ ⊢ (ρ,σ , e) ⇓ C
Λ ⊢ (ρ,σ , (xmem, e)) ⇓ (xmem, C)

Λ(xlabel) = (xmem, 0)
Λ ⊢ (ρ,σ , xlabel) ⇓ (xmem, 0)

∀i ∈ (1 . . . k), Λ(xi) = ri
Λ ⊢ (ρ,σ , {x1, . . . , xk }) ⇓ {r1, . . . , rk }

Λ ⊢ (ρ,σ , e) ⇓ {r1, . . . , rC}
Λ ⊢ (ρ,σ , ∥e∥) ⇓ C

Λ ⊢ (ρ,σ , e1) ⇓ r
Λ ⊢ (ρ,σ , e2) ⇓ {r1, . . . , rk } ∃i ∈ (1 . . . k), ri = r

Λ ⊢ (ρ,σ , e1 ∈e2) ⇓ true

Λ ⊢ (ρ,σ , e1) ⇓ r
Λ ⊢ (ρ,σ , e2) ⇓ {r1, . . . , rk } ∀i ∈ (1 . . . k), ri , r

Λ ⊢ (ρ,σ , e1 ∈e2) ⇓ false

Statements. Unlike expressions, statements can change
machine state. Thus, the form of a machine state semantics
judgment (also large step) is Λ ⊢ (ρ,σ , S) ⇓ (ρ ′,σ ′, S′). This
means that the statement S evaluates to the irreducible state-
ment S’ (which must be either skip or crash) and in the
course of doing so changes the machine state from ρ,σ to
ρ ′,σ ′.

(Statement Semantics)

Λ ⊢ (ρ,σ , S1) ⇓ (ρ ′,σ ′, skip)
Λ ⊢ (ρ ′,σ ′, S2) ⇓ (ρ ′′,σ ′′, S′2)
Λ ⊢ (ρ,σ , S1; S2) ⇓ (ρ ′′,σ ′′, S′2)

∀i,Λ ⊢ (ρ,σ , ei) ⇓ vi Λ(xproc) = {xi , S}
Λ[∀i, xi 7→ vi] ⊢ (ρ,σ , S) ⇓ (ρ ′,σ ′, S′)

Λ ⊢ (ρ,σ , xproc (ei)) ⇓ (ρ ′,σ ′, S′)

Λ ⊢ (ρ,σ , e) ⇓ v Λ[x 7→ v] ⊢ (ρ,σ , S) ⇓ (ρ ′,σ ′, S′)
Λ ⊢ (ρ,σ , let x : τbase = e in S) ⇓ (ρ ′,σ ′, S′)

∀i ∈ (C1,C1 + 1, . . . ,C2),
Λ[x 7→ i] ⊢ (ρi ,σi , S) ⇓ (ρi+1,σi+1, skip)

Λ ⊢ (ρC1 ,σC1 , for x ∈ (C1 . . .C2) do S) ⇓ (ρC2+1,σC2+1, skip)

Λ ⊢ (ρ,σ , e) ⇓ true Λ ⊢ (ρ,σ , S) ⇓ (ρt ,σt , St)
Λ ⊢ (ρ,σ , if e then S else _) ⇓ (ρt ,σt , St)

Λ ⊢ (ρ,σ , e) ⇓ false Λ ⊢ (ρ,σ , S) ⇓ (ρf ,σf , Sf)
Λ ⊢ (ρ,σ , if e then _ else S) ⇓ (ρf ,σf , Sf)

Λ ⊢ (ρ,σ , e1) ⇓ r
r ∈ ρ Λ ⊢ (ρ,σ , e2) ⇓ v ρ ′ = ρ[r 7→ v]

Λ ⊢ (ρ,σ , e1 : = e2) ⇓ (ρ ′,σ , skip)

Λ ⊢ (ρ,σ , e1) ⇓ (xmem, C) σ (xmem,C) = (_,Cl)
Λ ⊢ (ρ,σ , e2) ⇓ v σ ′ = σ [(xmem, C) 7→ (v,Cl)]
Λ ⊢ (ρ,σ , store(e1,Cl) ← e2) ⇓ (ρ,σ ′, skip)

Λ ⊢ (ρ,σ , e1) ⇓ (xmem, C)
σ (xmem,C) = (_,Cm) Cm , Cl

Λ ⊢ (ρ,σ , store(e1,Cl) ← e2) ⇓ (ρ,σ , crash)

Λ ⊢ (ρ,σ , e1) ⇓ (xmem, C) (xmem, C) < σ
Λ ⊢ (ρ,σ , store(e1,Cl) ← e2) ⇓ (ρ,σ , crash)

Λ ⊢ (ρ,σ , e1) ⇓ 0bC
Λ ⊢ (ρ,σ , store(e1,Cl) ← e2) ⇓ (ρ,σ , crash)

Λ ⊢ (ρ,σ , e) ⇓ true
Λ ⊢ (ρ,σ , assert(e)) ⇓ (ρ,σ , skip)

Λ ⊢ (ρ,σ , e) ⇓ false
Λ ⊢ (ρ,σ , assert(e)) ⇓ (ρ,σ , crash)

11

As with expressions, statements can fail. Explicit failure
rules are shown for bad stores (corresponding to the cases
for bad fetches) and for a failed assertions. We also similarly
include, but do not show, the obvious failure propagation
rules for cases where sub-statements, or expressions within
statements, fail.

Declarations. The semantics for declarations have judg-
ments of the form Λ, (ρ,σ) ⊢ decl ▷ Λ′. This means that the
given declaration updates Λ as shown.
As stated above, we do not initialize the machine state

while handling declarations; this instead allows us to work
with arbitrary (or universally quantified) machine states
afterwards. However, because the let-binding declaration
evaluates an expression, it potentially needs access to a ma-
chine state. Consequently we write the rules so they accept
a machine state as input, but do not update it. In the case
of machine descriptions, where there is no machine state,
we pass empty environments; let declarations in machine
descriptions are not allowed to reference machine state. In
the case of the additional declarations that accompany a
specification, we pass in the initial machine state; this allows
values from the initial machine state to be globally bound so
they can be referred to in the postcondition.
We give first the rules for a list of declarations (which

chain in the obvious way), then the rules for the various
declarations, then the rules for a list of operation definitions
(which chain in the same way) and a rule for a single opera-
tion definition.

Note that several of the declarations do not update Λ, and
nothing is placed inΛ for memory regions. (And for registers,
only the mapping of the identifier to its underlying register
r is entered; nothing for r is inserted.)

Machines. Like with the typing rules, the semantics rule
for a whole machine description bakes in the initial environ-
ment and gives a judgment of the form ⊢ machine ▷ Λ′.

We also include a comparable form that includes additional
declarations, as it will be used below.

Programs. Instructions update the machine state, and
we chose to represent programs as lists of instructions
(rather than having dummy instruction forms for skip and
sequence) so the form of the judgments is slightly differ-
ent: Λ ⊢ (ρ,σ , inst) → (ρ ′,σ ′) means that the instruction
executes and updates the machine state ρ,σ to ρ ′,σ ′. The
judgments for lists of programs has the same form.
There are two versions of the judgment for instructions

because instructions with no arguments are declared as tak-
ing unit, but invoked with empty operands (not with unit) to
correspond to the way assembly languages normally work.
We include a final judgment of the form machine ⊢
(ρ,σ , program) → (ρ ′,σ ′) that puts the machine on the
left-hand side of the turnstile. It means that under a given
machine the program maps ρ,σ to ρ ′,σ ′.
There is a limitation in the way we have formulated pro-

grams and the rules for programs, which is that there is no

(Declaration Semantics)

Λ, (ρ,σ) ⊢ ϵ ▷ Λ

Λ, (ρ,σ) ⊢ decl ▷ Λ′ Λ′, (ρ,σ) ⊢ decls ▷ Λ′′

Λ, (ρ,σ) ⊢ decl; decls ▷ Λ′′

Λ, (ρ,σ) ⊢ type xτ = τbase ▷ Λ

Λ ⊢ (ρ,σ , e) ⇓ v
Λ, (ρ,σ) ⊢ let x : τbase = e ▷ Λ[x 7→ v]

Λ ⊢ (ρ,σ , x) ⇓ r Λ ⊢ (ρ,σ , e) ⇓ v
Λ, (ρ,σ) ⊢ let x .txt = e ▷ Λ[r .txt 7→ v]

Λ′ = Λ[xfunc 7→ {xi , e}]
Λ, (ρ,σ) ⊢ def xfunc xi : τbasei → τbase = e ▷ Λ′

Λ′ = Λ[xproc 7→ {xi , S}]
Λ, (ρ,σ) ⊢ proc xproc xi : τbasei → () = S ▷ Λ′

Λ′ = Λ[x 7→ r] r fresh
Λ, (ρ,σ) ⊢ letstate x : τreg ▷ Λ′

Λ, (ρ,σ) ⊢ letstate xmem : τmem ▷ Λ

Λ′ = Λ[xlabel 7→ (xmem, 0)]
Λ, (ρ,σ) ⊢ letstate xmem : τmem with xlabel ▷ Λ′

Λ, (ρ,σ) ⊢ ϵ ▷ Λ

Λ, (ρ,σ) ⊢ defop ▷ Λ′ Λ′, (ρ,σ) ⊢ defops ▷ Λ′′

Λ, (ρ,σ) ⊢ defop; defops ▷ Λ′

Λ′ = Λ[xop 7→ {[], e, S}]
Λ, (ρ,σ) ⊢ defop xop {txt = e, sem = S} ▷ Λ′

Λ′ = Λ[xop 7→ {xi , e, S}]
Λ, (ρ,σ) ⊢ defop xop xi : τbasei {txt = e, sem = S} ▷ Λ′

(Machine Semantics)

Λbuiltin, ({}, {}) ⊢ decls ▷ Λ Λ ⊢ defops ▷ Λ′

⊢ decls; defops ▷ Λ′

12

(Program Semantics)

Λ(xop) = {[], _, S)} Λ ⊢ (ρ,σ , S) ⇓ (ρ ′,σ ′, skip)
Λ ⊢ (ρ,σ , xop) → (ρ ′,σ ′)

∀i,Λ ⊢ (ρ,σ , ei) ⇓ vi Λ(xop) = {xi , _, S}
Λ′ = Λ[∀i, xi 7→ vi] Λ′ ⊢ (ρ,σ , S) ⇓ (ρ ′,σ ′, skip)

Λ ⊢ (ρ,σ , xop ei) → (ρ ′,σ ′)

Λ ⊢ (ρ,σ , ϵ) → (ρ,σ)

Λ ⊢ (ρ,σ , inst) → (ρ ′,σ ′)
Λ ⊢ (ρ ′,σ ′, insts) → (ρ ′′,σ ′′)

Λ ⊢ (ρ,σ , inst; insts) → (ρ ′′,σ ′′)

⊢ machine ▷ Λ Λ ⊢ (ρ,σ , program) → (ρ ′,σ ′)
machine ⊢ (ρ,σ , program) → (ρ ′,σ ′)

easy way to represent failure. (Failure in this might represent
triggering an exception and stopping execution, which we
do not model, or invoking “unpredictable” or “undefined”
behavior in the processor and transitioning to an arbitrary
unknown machine state.)

The intended behavior is that a program that fails during
execution (that is, the body of one of its instructions steps to
crash) enters a state where no postcondition can evaluate
to true. We have decided for the moment that working
this explicitly into the formalism would result in a lot of
complication and obscuration without providing any useful
information.

Specifications. For specifications we need three judg-
ments: the first two state what the reg-modify and
mem-modify clauses mean, respectively (they are properties
on initial and final register and memory states), and the last
one says what it means for a program to satisfy a specifica-
tion.

Note that the reg-modify and mem-modify rule as shown
is slightly misleading, because the register and pointer list
actually written in the input file is implicitly augmented with
all registers and pointers mentioned in the postcondition
before it gets to this point.

Machine state validity. As discussed above we do not
initialize the machine state while processing declarations.
Instead we treat the starting machine state as an input (e.g. in
the final judgment about programs) or quantify it universally
(as in the specification judgment). In order to do this wemust,
however, have a predicate to reject machine states that do
not match the machine description.

The validity judgment has the form ∆, Γ,Λ ⊢ ρ, and corre-
spondingly for σ (except without Λ) and then for ρ,σ (both

(Spec Semantics)

∀i,Λ ⊢ (ρ,σ , xregi) ⇓ ri ∀r < {ri }, ρ(r) = ρ ′(r)
Λ, ρ, ρ ′ ⊢ reg-modify : xregi

∀i,Λ ⊢ (ρ,σ , (xmemi , ei)) ⇓ (xmemi , Ci)
∀xmem,C, (xmem, C) < {(xmemi , Ci)},

σ ((xmem, C)) = σ ′((xmem, C))
Λ,σ ,σ ′ ⊢ mem-modify : (xmemi , ei)

⊢ machine; decls ▷ ∆, Γ
⊢ machine ▷ Λ ∀ρ,σ , (∆, Γ,Λ ⊢ ρ,σ) =⇒

Λ, (ρ,σ) ⊢ decls ▷ Λ′ =⇒
Λ′ ⊢ (ρ,σ , pre) ⇓ true =⇒

∀ρ ′,σ ′, (Λ′ ⊢ (ρ,σ , program) → (ρ ′,σ ′)) =⇒
(Λ′ ⊢ (ρ ′,σ ′, post) ⇓ true ∧

Λ′, ρ, ρ ′ ⊢ frame ∧ Λ′,σ ,σ ′ ⊢ frame)
machine, (decls; frame; pre; post) ⊢ program

(Machine State Validity)

(∀x, ∆, Γ ⊢ x : C reg ∧ Λ(x) = r) ⇔
(∃v, ρ(r) = v ∧ ∆, Γ ⊢ v : C bit)

∆, Γ,Λ ⊢ ρ

∀xmem, ∆, Γ ⊢ xmem : C1 bit C2 len C3 ref⇔
(∀i ∈ {0,C1/8, . . . , (C2 − 1) ∗ C1/8},

∃v, σ (xmem, i) = (v,C1) ∧ ∆, Γ ⊢ v : C1 bit)
∆, Γ ⊢ σ

∆, Γ,Λ ⊢ ρ ∆, Γ ⊢ σ
∆, Γ,Λ ⊢ ρ,σ

stores at once). It means that the given stores match the
given environments.

We will use this with the typing environments that come
from both the machine description and the additional dec-
larations arising from a specification. (Recall that memory
regions are normally defined by specifications and not by
machines.)
In the case of registers we need access to Λ in order to

handle the names of registers. We do not use the Λ generated
from the additional declarations in a specification; this avoids
circularity. We can get away with this because specifications
are not allowed to define new registers.
For memory regions we need to enumerate the valid off-

sets for the region (note the literal 8 that hardwires 8-bit
bytes) and check the cell width.

13

(Alewife Symbolic Constants)
N F C | x

6 Alewife Overview
This section describes Alewife, our specification language
for writing abstracted machine-independent specifications
of low-level code.
Alewife specifications are abstractions of machine-level

Cassiopea specifications; we say that Cassiopea constructs
are lifted into Alewife and Alewife constructs are lowered
into Cassiopea.
Alewife is only for specifications, so there are no state-

ments, no updates, and no notion of instructions or programs.
Notation. We use the following metavariables:
x, y, z Program variables (binders)
r Registers (abstract)
C Integer constants (written in decimal)
0bC Bitvector constants (written in binary)
N Symbolic integer constants
τ Types
v Values
e Expressions
i, j Rule-level integers
(Other constructions are referred to with longer names.)
As noted previously, Alewife types and expressions should

be considered distinct from Cassiopea ones (even where they
correspond directly). We use the same letters in the hopes
that this will cause less confusion (even in the definition
of the translation) than picking an entirely different set of
letters for Alewife.

Identifiers and variables. In Alewife there are six syn-
tactic categories of identifiers:
Like in Cassiopea, xmem name memory regions and xlabel

are assembler labels. xfunc name functions, and xτ are type
aliases.

xblock are the names given to blocks of code to be synthe-
sized, which are used to match up with the module names
in Cassiopea mappings.

Other x are ordinary variables that range over other things,
and may be presumed to not range over the above reserved
categories.

All variables are immutable, in the sense that they do not
change once bound.

Symbolic Constants. In some places in Alewife symbolic
constants N are permitted to occur in places where only in-
teger constants are allowed in the corresponding Cassiopea
constructions. In particular, the bit sizes associated with
types (and the lengths of memory regions, which are func-
tionally similar) may be given as symbolic values x instead of
integer constants. These must be bound to integer constants

(Alewife Types)
τ F τbase | τmem | τfunc

τbase F int | bool | xτ
| N vec | N ptr | N reg | N label | τregs
τregs F N reg set

τmem F N1 bit N2 len N3 ref

τfunc F τbasei → τbase

(Alewife Values)
v F true | false | C | 0bC | (xmem, C)
| fail

either directly in the Alewife spec, in the Cassiopea map-
ping, or by the Cassiopea machine description. This allows
the concrete sizes of bitvectors to vary depending on the
machine architecture.
Note: for compatibility with older versions of Alewife

the symbolic constant word is recognized and replaced with
wordsize. New specifications should not use word as a sym-
bolic constant, as it is properly expected to be a type name.

Types. Like in Cassiopea, Alewife types are divided syn-
tactically into base types and others. The chief difference
from Cassiopea is that bit widths (and the lengths of memory
regions) can be symbolic constants. However, an additional
difference is that pointers (ptr) are distinguished from plain
bitvectors (vec). This is reasonably possible in Alewife be-
cause it need not reason about the progression of values
through machine registers (only before and after states)...
but also currently pointless as we do not define a static type-
check for Alewife.
Strings and unit are also absent, as they are not needed

for specifications.
As syntactic sugar and for compatbility with an earlier

version of Alewife, if no size is given wordsize is implicitly
inserted. This applies to all the base types but not τmem, which
worked differently then.

Values and expressions. The values in Alewife corre-
spond directly to the values in Cassiopea. Likewise for oper-
ators and most expressions. Note that the width argument
of fetch can be a symbolic size.

The notable change is the addition of bounded quantifica-
tion. forall and exists are allowed to quantify over finite
sets of whatever type; these are expanded to logical and/or
expressions (respectively) in Cassiopea. This is useful when
the set is abstract at the Alewife level and provided by the

14

(Alewife Operators)
unop F − | b− | ¬ | bnot
binop F = | , | + | − | ∗ | / | < | <= | > | >=
| ∨ | ∧ | ⊕
| >> | >>S |<< | band | bor | bxor
| b+ | b− | b∗ | b/
| b< | b<= | b> | b>=
| bs< | bs<= | bs> | bs>=
| ∪ | ∩ |⊆| \

(Alewife Expressions)
e F v | x
| xfunc (e)
| unop e

| e1 binop e2
| e[C] | e[C1, C2]
| let x : τbase = e1 in e2
| if e1 then e2 else e3
| (xmem, e) | xlabel
| ∗e | fetch(e,N)
| {x1, . . . , xk }
| ∥e∥ | e1 ∈e2
| forall x ∈ e1.e2
| exists x ∈ e2.e2

(Alewife Declarations)
decls F ϵ | decl; decls

decl F require type xτ
| require value x : τbase
| require func xfunc : τfunc
| provide type xτ = τ

| provide value x : τbase = e

| provide func xfunc : xi : τbasei → τbase = e

| region xmem : τmem

| region xmem : τmem with xlabel

mapping definitions or the machine descriptions. (For ex-
ample, the set of callee-save registers might often appear
here.)

(Initial State Bindings)
block-lets F ϵ | block-let; block-lets
block-let F let x : τbase = e

(Alewife Blocks)
frame F ϵ | reg-modify : xregi
| mem-modify : (xmemi , ei)
pre F e
post F e

block F block xblock {block-lets; frame; pre; post}

(Alewife Specifications)
spec F decls; block

Declarations. Alewife declarations come in two forms:
require and provide. The second form declares elements
in the ordinary way.

The first form declares an element that must be provided
by the Cassiopea mappings (or the machine description). (So
the type is given, but not the value. This functions as a form
of import, and allows an Alewife file to be checked on its
own separately from any particular machine description or
Cassiopea mappings. However, we do not currently define
or implement such a check.)

Note that it is possible to require functions that implicitly
depend on machine state, or that depend on machine state
on some machines and not others. Such functions can also
depend on constants or other elements that are not visible
in the Alewife specification at all.

The region declarations declare memory regions, like the
memory-typed let state declarations in Cassiopea. (These
are implicitly always provide, because for memory regions
the corresponding require declaration would be entirely
equivalent but require cutpaste in the Cassiopea mapping.)
Note that the parameters of the region can be symbolic con-
stants if abstraction is needed.

Block-lets. While Alewife expressions include let-
bindings, the scope of those let-bindings is conventional:
it lasts until the end of the expression. In order to refer to
values taken from the initial state (that is, the machine state
of which the precondition must be true) we need a way to
bind these values so their scope extends to the postcondition.
The block-lets serve this purpose in Alewife, much like the
additional declarations seen in Cassiopea specs can. These
are found within a block (because a block corresponds to a
synthesis problem, it is meaningful to associate before and
after machine states with it) and the scope is the entire block.

15

(Cassiopea Integer Constant Extraction)

Σ ⊢ ϵ ▷ Σ

Σ ⊢ decl ▷ Σ′ Σ′ ⊢ decls ▷ Σ′′

Σ ⊢ decl; decls ▷ Σ′′

Σ ⊢ type xτ = τbase ▷ Σ

Σ′ = Σ[x 7→ C]
Σ ⊢ let x : int = C ▷ Σ′

e , C

Σ ⊢ let x : τbase = e ▷ Σ

Σ ⊢ let x .txt = e ▷ Σ

Σ ⊢ def xfunc xi : τbasei → τbase = e ▷ Σ

Σ ⊢ proc xproc xi : τbasei → () = S ▷ Σ

Σ ⊢ letstate x : τreg ▷ Σ

Σ ⊢ letstate xmem : τmem ▷ Σ

Σ ⊢ letstate xmem : τmem with xlabel ▷ Σ

Σ ⊢ decls ▷ Σ′

⊢ decls; defops ▷ Σ′

Frames. Frame declarations in Alewife are exactly the
same as in Cassiopea. Because Alewife files are machine-
independent, the registers mentioned must be abstract and
concretized via the Cassiopea mappings.

Blocks and specs. As just noted, a block is a single syn-
thesis problem, and a full spec is that plus a preamble of
declarations. (It used to be possible to place multiple re-
lated blocks together in a single Alewife specification, which
would produce one Cassiopea specification for each block.
This was removed because it caused unspecified problems
in the implementation, as well as complications generating
output because Cassiopea only allows one spec at a time.
Common declarations can now be shared with include.)

As noted elsewhere, the block name is used to look up the
Cassiopea mapping module to apply.

7 Alewife Typing and Semantics
We do not provide (or implement) a full typechecking pass
for Alewife. Instead, when we lower to Cassiopea, we al-
low the Cassiopea typechecker to reject invalid results. (In-
valid results might be caused by invalid Alewife input, or by
bad/mismatched Cassiopea mapping definitions.)

The rules provided here are for doing scans over the decla-
rations sufficient to make the translation to Cassiopea work
and no more.

Environments. We retain the Cassiopea typing environ-
ments, ∆, Γ. We add an additional environment Σ, which
maps identifiers to integer constants. This is a projection of
the Cassiopea execution environment Λ: it holds mappings
only for variables defined as integer constants and excludes
everything else. We include a separate set of rules for extract-
ing these integer constants without doing a full Cassiopea
execution. (Among other things, this avoids involving ma-
chine state or the machine state stores.)

Translation. The translation (lowering) from Alewife
to Cassiopea, defined in the next section, appears cross-
recursively in the rules in this section.

Because ∆, Γ are Cassiopea environments, they map iden-
tifiers to Cassiopea types, not Alewife ones. This means
Alewife types must be lowered on the fly in order to update
them correctly.

Integer constant extraction. The integer constant ex-
traction rules do a simple pass over Cassiopea declarations to
extract the variables defined as integer constants. These pop-
ulate a substitution environment Σ that we use for lowering
Alewife types containing symbolic constants.

These rules are judgments of the form Σ ⊢ decl ▷ Σ′ or
Σ ⊢ decls▷Σ′, plus one of the form ⊢ machine▷Σ for a whole
machine description.

Typing. The declaration typing rules are intended to ac-
cumulate types for all the declarations in an Alewife spec.
They are applied concurrently with the Cassiopea declara-
tion rules to the Alewife specification, the Cassiopeamachine
description, and the Cassiopea mapping. (How this is made
to happen is described below.)

The declaration typing rules have judgments of the form
∆, Γ, Σ ⊢ decl▷∆′, Γ′, Σ′ and ∆, Γ, Σ ⊢ decls▷∆′, Γ′, Σ′. These
mean that the declaration or declarations update the type
environment (and integer constant environment) as shown.
Note that there is a special-case rule for provide value

for when the value is an integer constant; this enters the
constant into Σ. The integer constants are in turn used when
lowering the types of memory regions, which can be seen in
the last two rules.

Block-lets. The rules for block-lets are effectively the
same as the rules for declarations. The ways in which block-
lets are special mostly do not apply here. Note however that
even though we pass through Σ (for consistency of the form
of the rules) there is no rule for loading integer constants

16

(Alewife Declaration Typing)

∆, Γ, Σ ⊢ decl ▷ ∆′, Γ′, Σ′ ∆′, Γ′, Σ ⊢ decls ▷ ∆′′, Γ′′, Σ′′

∆, Γ, Σ ⊢ decl; decls ▷ ∆′′, Γ′′, Σ′′

∆ ⊢wf xτ
∆, Γ, Σ ⊢ require type xτ ▷ ∆, Γ, Σ

∆, Γ, Σ ⊢ AC⟦τbase⟧ = τ Γ(x) = τ
∆, Γ, Σ ⊢ require value x : τbase ▷ ∆, Γ, Σ

∆, Γ, Σ ⊢ AC⟦τfunc⟧ = τ Γ(xfunc) = τ
∆, Γ, Σ ⊢ require func xfunc : τfunc ▷ ∆, Γ, Σ

∆, Γ, Σ ⊢ AC⟦τ⟧ = τ ′ ∆ ⊢wf τ ′ ∆′ = ∆[xτ → τ ′]
∆, Γ, Σ ⊢ provide type xτ = τ ▷ ∆′, Γ, Σ

∆, Γ ⊢ C : int Γ′ = Γ[x 7→ int] Σ′ = Σ[x 7→ C]
∆, Γ, Σ ⊢ provide value x : int = C ▷ ∆, Γ′, Σ′

∆, Γ, Σ ⊢ AC⟦τbase⟧ = τ ∆ ⊢wf τ e , C
∆, Γ, Σ ⊢ AC⟦e⟧ = e′ ∆, Γ ⊢ e′ : τ Γ′ = Γ[x 7→ τ]

∆, Γ, Σ ⊢ provide value x : τbase = e ▷ ∆, Γ′, Σ

∀i, ∆, Γ, Σ ⊢ AC⟦τbasei ⟧ = τi ∧ ∆ ⊢wf τi
∆, Γ, Σ ⊢ AC⟦τbase⟧ = τ ∆ ⊢wf τ

∆, Γ, Σ ⊢ AC⟦e⟧ = e′ Γ′ = Γ[∀i, xi 7→ τi]
∆, Γ′ ⊢ e′ : τ Γ′′ = Γ[xfunc 7→ (xi : τi → τ)]
∆, Γ, Σ ⊢ provide func xfunc : xi : τbasei → τbase

= e ▷ ∆, Γ′′, Σ

∆, Γ, Σ ⊢ AC⟦N1 bit N2 len N3 ref⟧ =
C1 bit C2 len C3 ref
∆ ⊢wf C1 bit C2 len C3 ref

Γ′ = Γ[xmem 7→ C1 bit C2 len C3 ref]
∆, Γ, Σ ⊢ region xmem : N1 bit N2 len N3 ref ▷ ∆, Γ′, Σ

∆, Γ, Σ ⊢ AC⟦N1 bit N2 len N3 ref⟧ =
C1 bit C2 len C3 ref

∆ ⊢wf C1 bit C2 len C3 ref ∆ ⊢wf C3 label
∆, Γ, Σ ⊢ AC⟦N3 label⟧ = C3 label

Γ′ = Γ[xmem 7→ C1 bit C2 len C3 ref; xlabel 7→ C3 label]
∆, Γ, Σ ⊢ region xmem : N1 bit N2 len N3 ref

with xlabel ▷ ∆, Γ′, Σ

(Alewife Block Typing)

∆, Γ, Σ ⊢ ϵ ▷ ∆, Γ, Σ

∆, Γ, Σ ⊢ block-let ▷ ∆′, Γ′, Σ′,
∆′, Γ′, Σ ⊢ block-lets ▷ ∆′′, Γ′′, Σ′′

∆, Γ, Σ ⊢ block-let; block-lets ▷ ∆′′, Γ′′, Σ′′

∆, Γ, Σ ⊢ AC⟦τbase⟧ = τ ∆ ⊢wf τ
∆, Γ, Σ ⊢ AC⟦e⟧ = e′ ∆, Γ ⊢ e′ : τ Γ′ = Γ[x 7→ τ]

∆, Γ, Σ ⊢ let x : τbase = e ▷ ∆, Γ′, Σ

(Alewife Spec Semantics)

module = module xmodule {declsmap; framemap}
spec = declsale; block xblock {block-lets; frameale; pre; post}

xmodule = xblock frame = frameale ∪ framemap
specnew = declsale; block-lets; frame; pre; post

⊢ machine ▷ ∆0, Γ0
⊢ machine ▷ Σ0 (∆0 ⊆ ∆) ∧ (Γ0 ⊆ Γ) ∧ (Σ0 ⊆ Σ)

∆, Γ ⊢ declsmap ▷ ∆, Γ Σ ⊢ declsmap ▷ Σ
∆, Γ, Σ ⊢ declsale ▷ ∆, Γ, Σ ∆, Γ, Σ ⊢ block-lets ▷ ∆, Γ, Σ

∆, Γ, Σ ⊢ AC⟦specnew⟧ = Ω

machine,module, spec ▷ Ω

into Σ from block-lets. Integer constants used in types and
defined in the Alewife spec should be defined with provide
value; block-lets are intended to provide access to machine
state.

Specs. The spec-level rule is enormous and difficult to
read, so the next few paragraphs walk through it.

The conclusion is that a given machine, mapping module,
and Alewife specification produce a final translation output
Ω.
The first two premises expand the mapping module and

Alewife specification as we’ll need to work with the compo-
nents. Then we require that these match (by name), combine
the frame declarations, and generate a new spec updated
with the additional frame declarations that we’ll feed to the
translation.

The next two premises generate initial environments: the
Cassiopea typing environments induced by the machine
description, and its integer constants.
We then nondeterministically/magically (by the power

of paper rules) choose a final set of environments Γ,∆, Σ
that represents a fixpoint of collecting all the declarations.
These contain at least everything in the initial environments,
but also contain everything needed such that going through,
respectively, the Cassiopea declarations from the mapping

17

file (both types and constants); the Alewife declarations; and
the Alewife block-lets does not add anything additional.

The final environments can then be used to run the trans-
lation on the entire spec and get the final output.
Such an evaluation strategy for declarations is required

because the Alewife declarations rely on the Cassiopea map-
ping file (most notably for resolving symbolic constants)
but the Cassiopea mapping file is in turn also specifically
allowed to refer to objects declared by the Alewife spec, such
as memory regions. In the implementation this circularity
is resolved by lifting both the Cassiopea and Alewife decla-
rations (and block-lets) into a common representation and
topologically sorting them based on identifier references.
(Genuinely circular references among identifiers are prohib-
ited.) From this point they can be handled in order in a more
conventional way.

Complete output. Note that the complete output file in-
cludes the declarations from the Cassiopea mapping module
(declsmap) as well as the translated Alewife spec Ω. Apart
from symbolic constants we do not substitute the definitions
of the mapping elements, as that would make a rather large
mess, especially with functions; instead we include the defi-
nitions and let the translation refer to them. In fact, because
of the declaration ordering issues, in the implementation the
complete output the mapping declarations and translated
Alewife declarations can be arbitrarily interleaved.

Note furthermore that it would not be sufficient to in-
clude only the mapping declarations explicitly imported
with require declarations, as those may refer freely to other
things declared in the mapping module that the Alewife spec
itself may have no cognizance of whatsoever.

Alewife −Cassiopea Type Translation

∆, Γ, Σ ⊢ AC⟦N⟧ =

C N = C
Σ(x) N = x ∧ x ∈ Σ
⊥ N = x ∧ x < Σ

∆, Γ, Σ ⊢ AC⟦xτ ⟧ =
{
∆(xτ) xτ ∈ ∆
⊥ xτ < ∆

AC⟦int⟧ = int

AC⟦bool⟧ = bool

AC⟦N vec⟧ = AC⟦N⟧ bit
AC⟦N ptr⟧ = AC⟦N⟧ bit
AC⟦N reg⟧ = AC⟦N⟧ reg

AC⟦N reg set⟧ = AC⟦N⟧ reg set

AC⟦N1 bit N2 len N3 ref⟧ = AC⟦N1⟧ bit
AC⟦N2⟧ len AC⟦N3⟧ ref

AC⟦τbasei → τbase⟧ = AC⟦τbasei ⟧→ AC⟦τbase⟧

8 Lowering Alewife
The semantics of an Alewife specification depend onmaterial
taken from a Cassiopea mapping and machine description.
This does not preclude defining a semantics for Alewife
in terms of that material, or even some abstracted concept
of what any such Cassiopea material might be. However,
doing so is messy (as can be seen from the material in the
previous section, which does not even attempt to handle
expression evaluation) and not necessarily very rewarding
or illuminating.
So instead, as mentioned already, we write only enough

typing rules to prepare material for writing a translation
(lowering) to Cassiopea, and apply the Cassiopea typing
(and, implicitly, semantics) to the lowered material. That
material goes into the Cassiopea typing environments ∆, Γ,
and as discussed in the previous section, we also maintain
an additional environment Σ of integer constants used for
substituting symbolic constants in types.
This section defines the translation. AC⟦a⟧ defines the

Cassiopea lowering of an Alewife element a. We make the
translation polymorphic over the various kinds of element;
that is, AC⟦τ⟧ is the translation of a type, AC⟦e⟧ is the
translation of an expression, etc. Some of the translation rules
rely on the environments; these are written ∆, Γ, Σ ⊢ AC⟦a⟧.
Some of the translation rules produce ⊥. If these are

reached, the translation fails; this can happen if the Ale-
wife spec was malformed and also potentially if the mapping
module failed to declare elements that were expected of it, or
declared them in an incompatible or inconsistent way. The
rules in the previous section exclude some of these cases,
but we are not (yet) prepared to argue that they rule out all
translation-time failures.

18

Alewife −Cassiopea Expression Translation

∆, Γ, Σ ⊢ AC⟦x⟧ =
{
x x ∈ Γ
⊥ x < Γ

AC⟦true⟧ = true

AC⟦false⟧ = false

AC⟦C⟧ = C

AC⟦0bC⟧ = 0bC

AC⟦fail⟧ = fail

∆, Γ, Σ ⊢ AC⟦xfunc (e)⟧ =
{
xfunc (AC⟦e⟧) xfunc ∈ Γ
⊥ xfunc < Γ

AC⟦unop e⟧ = unop AC⟦e⟧
AC⟦e1 binop e2⟧ = AC⟦e1⟧ binop AC⟦e2⟧

AC⟦e[C]⟧ = AC⟦e⟧[C]
AC⟦e[C1, C2]⟧ = AC⟦e⟧[C1, C2]

AC⟦let x : τbase = e1 in e2⟧ = let x : AC⟦τbase⟧
= AC⟦e1⟧ inAC⟦e2⟧

AC⟦if e1 then e2 else e3⟧ = ifAC⟦e1⟧ thenAC⟦e2⟧
elseAC⟦e3⟧

∆, Γ, Σ ⊢ AC⟦(xmem, e)⟧ =
{
(xmem, AC⟦e⟧) xmem ∈ Γ
⊥ xmem < Γ

∆, Γ, Σ ⊢ AC⟦xlabel⟧ =
{
xlabel xlabel ∈ Γ
⊥ xlabel < Γ

AC⟦ ∗e⟧ = ∗AC⟦e⟧
AC⟦fetch(e,N)⟧ = fetch(AC⟦e⟧,AC⟦N⟧)
AC⟦{x1, . . . , xk }⟧ = {AC⟦x1⟧, . . . ,AC⟦xk⟧}

AC⟦∥e∥⟧ = ∥AC⟦e⟧∥
AC⟦e1 ∈e2⟧ = AC⟦e1⟧ ∈AC⟦e2⟧

Notice that the translations for require declarations are
empty; as mentioned in the previous section, this is because
the declarations from the mapping module are output along
with the translated Alewife specification.

9 Conclusion
In this technical report, we described two domain specific
languages involved in the Aquarium kernel synthesis project.
First, we presented a machine modeling language named
Cassiopea that can be used used to describe the semantics
of many different processor ISAs at the assembly language
level. Then, we presented a specification language named
Alewife that allows stating abstract specifications for blocks
of assembly code, such that these abstract specifications can
be lowered to concrete specifications and used for synthesis
and verification against Cassiopea machine descriptions.
We note that this is work in progress, and does not yet

present a final or complete view of either the Aquarium
system or the languages presented.

References
[1] K. Rustan M. Leino and Greg Nelson. 2002. Data abstraction and infor-

mation hiding. ACM Trans. Program. Lang. Syst. 24, 5 (2002), 491–553.
https://doi.org/10.1145/570886.570888

19

https://doi.org/10.1145/570886.570888

Alewife −Cassiopea Block Translation

AC⟦let x : τbase = e⟧ = let x : AC⟦τbase⟧ = AC⟦e⟧
AC⟦reg-modify : xregi⟧ = reg-modify : AC⟦xregi⟧

AC⟦mem-modify : (xmemi , ei)⟧ = mem-modify : (AC⟦xmemi⟧, AC⟦ei⟧)

Alewife −Cassiopea Declaration Translation

∆, Γ, Σ ⊢ AC⟦require type xτ ⟧ =
{
ϵ xτ ∈ ∆
⊥ xτ < ∆

∆, Γ, Σ ⊢ AC⟦require value x : τbase⟧ =
{
ϵ x ∈ Γ
⊥ x < Γ

∆, Γ, Σ ⊢ AC⟦require func xfunc : τfunc⟧ =
{
ϵ xfunc ∈ Γ
⊥ xfunc < Σ

AC⟦provide type xτ = τ⟧ = type xτ = AC⟦τ⟧
AC⟦provide value x : τbase = e⟧ = let x : AC⟦τbase⟧ = AC⟦e⟧

AC⟦provide func xfunc : xi : τbasei → τbase = e⟧ = def xfunc xi : AC⟦τbasei ⟧→ AC⟦τbase⟧ = AC⟦e⟧
AC⟦region xmem : τmem⟧ = letstate xmem : AC⟦τmem⟧

AC⟦region xmem : τmem with xlabel⟧ = letstate xmem : AC⟦τmem⟧ with xlabel

20

	Abstract
	1 Introduction
	2 Notation
	3 Cassiopea Overview
	4 Cassiopea Static Typing
	5 Cassiopea Semantics
	6 Alewife Overview
	7 Alewife Typing and Semantics
	8 Lowering Alewife
	9 Conclusion
	References

