
ProvBuild: Improving Data Scientist Efficiency with Provenance
(An Extended Abstract)

Jingmei Hu
Harvard University
Cambridge, MA, USA

Jiwon Joung
University of Michigan
Ann Arbor, MI, USA

Maia Jacobs
Harvard University
Cambridge, MA, USA

Krzysztof Z. Gajos
Harvard University
Cambridge, MA, USA

Margo I. Seltzer
University of British Columbia

Vancouver, BC, Canada

ACM Reference Format:
Jingmei Hu, Jiwon Joung, Maia Jacobs, Krzysztof Z. Gajos, and Margo I.
Seltzer. 2020. ProvBuild: Improving Data Scientist Efficiency with Prove-
nance (An Extended Abstract). In 42nd International Conference on Software
Engineering Companion (ICSE ’20 Companion), October 5–11, 2020, Seoul,
Republic of Korea. ACM, New York, NY, USA, 2 pages. https://doi.org/10.
1145/3377812.3390912

1 THE PROBLEM
Data scientists frequently analyze data by writing scripts. We con-
ducted a contextual inquiry with interdisciplinary researchers,
which revealed that parameter tuning is a highly iterative process
and that debugging is time-consuming. As analysis scripts evolve
and become more complex, analysts have difficulty conceptualizing
their workflow. In particular, after editing a script, it becomes diffi-
cult to determine precisely which code blocks depend on the edit.
Consequently, scientists frequently re-run entire scripts instead
of re-running only the necessary parts. We present ProvBuild, a
data analysis environment that uses change impact analysis [1]
to improve the iterative debugging process in script-based work-
flow pipelines. ProvBuild is a tool that leverages language-level
provenance [2] to streamline the debugging process by reducing
programmer cognitive load and decreasing subsequent runtimes,
leading to an overall reduction in elapsed debugging time. ProvBuild
uses provenance to track dependencies in a script. When an analyst
debugs a script, ProvBuild generates a simplified script that contains
only the information necessary to debug a particular problem. We
demonstrate that debugging the simplified script lowers a program-
mer’s cognitive load and permits faster re-execution when testing
changes. The combination of reduced cognitive load and shorter
runtime reduces the time necessary to debug a script. We quantita-
tively and qualitatively show that even though ProvBuild introduces
overhead during a script’s first execution, it is a more efficient way
for users to debug and tune complex workflows. ProvBuild demon-
strates a novel use of language-level provenance, in which it is
used to proactively improve programmer productively rather than
merely providing a way to retroactively gain insight into a body of

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’20 Companion, October 5–11, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7122-3/20/05.
https://doi.org/10.1145/3377812.3390912

Script

Merge back to produce the new debugged script

noWorkflow

Definition Provenance

Deployment Provenance

Execution Provenance

ProvBuild ProvScript

Run interactively

(user interacts)

Figure 1: ProvBuild Architecture.

code. To the best of our knowledge, ProvBuild is a novel applica-
tion of change impact analysis and it is the first debugging tool to
leverage language-level provenance to reduce cognitive load and
execution time.

2 PROVBUILD: PIPELINE DEBUGGING USING
PROVENANCE

ProvBuild utilizes noWorkflow [5] to collect language-level prove-
nance [3] to record the actions a script takes and the dependencies
between these actions, variables, values and functions. Provbuild
uses these dependencies to identify precisely the parts of a script
affected by a user’s debugging. It then produces a shortened script,
called the ProvScript, that contains only those parts of the script nec-
essary to debug the original script. This shortened script provides
two benefits: 1) it makes it easier for the user to reason about the
script and the effect of a user’s modification to it, and 2) it reduces
the re-execution time.

ProvBuild consists of a backend engine (Figure 1) and a user in-
terface (Figure 2). The interface allows users to debug functions or
variables on the simplified ProvScript and seamlessly merge those
modifications back into the original script. To facilitate evaluation,
the ProvBuild prototype interface supports both conventional edit-
ing (i.e., editing on the entire script) and the ProvBuild provenance-
driven editing of a ProvScript. In either case, the user begins by
selecting the mode of interaction (conventional or ProvBuild) and
identifying the script with which they are working. In ProvBuild
mode, the interface activates the provenance tracking backend.

Users interact with their scripts through the three main modules
shown in Figure 2.

• Search: The user inputs the name of the function or variable
to edit (see (1) in Figure 2). ProvBuild extracts the object’s
dependencies based on the stored provenance information
and generates a ProvScript containing only code pertaining
to the chosen object.

266

2020 IEEE/ACM 42nd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)

Authorized licensed use limited to: Harvard Library. Downloaded on August 31,2021 at 17:11:17 UTC from IEEE Xplore. Restrictions apply.

ICSE ’20 Companion, October 5–11, 2020, Seoul, Republic of Korea Jingmei Hu, Jiwon Joung, Maia Jacobs, Krzysztof Z. Gajos, and Margo I. Seltzer

Figure 2: The ProvBuild interface features four boxes. We
assume that all user scripts write to an output file. The
blue box displays the contents of this output file. The yel-
low box displays the original script for user reference and
the black box displays the ProvScript. The grey box displays
terminal output, such as errors and print statements. The
sidebar on the left provides easy access to the user com-
mands. In ProvBuild mode, the user specifies the target, ei-
ther a function or variable, to change/debug. After editing
the ProvScript, the user runs it and examines the output.
When the user is satisfied with the output, the user merges
the changes into the original script. At this point, the yellow
box updates to contain the revised script; the user can then
select another object to edit.

• Execute: Instead of running the original script, ProvBuild
executes the shortened ProvScript for the user (see (2) in
Figure 2). This reduces run time.

• Merge: ProvBuild allows users to easily merge edits from
the ProvScript into the original file (see (3) in Figure 2).

When used in conventional mode, the interface is similar to
common modern text editors. Users simply edit their scripts and
re-execute them in their entirety.

3 RESULTS
We conducted three studies to evaluate ProvBuild’s performance,
effectiveness, and usability. First, we evaluated ProvBuild in a con-
trolled laboratory experiment with 21 participants who performed a
series of debugging tasks with and without ProvBuild, demonstrat-
ing that users prefer programming with ProvBuild to programming
without it, that they complete programming tasks more quickly,
and that ProvBuild reduces their cognitive load. Next, we ran bench-
marks to quantify how much time ProvBuild saved during script
re-execution, demonstrating that ProvBuild shortens re-execution
time using stored provenance. Finally, we evaluated ProvBuild in
a real-world deployment with 12 participants who accessed to
ProvBuild for a week. We asked participants how and when they
chose to use ProvBuild in their daily work and used surveys to as-
sess ProvBuild’s utility, where users explained that ProvBuild saved
them time, helped them understand their workflow, and provided
more immediate results.

Study 1: Controlled Laboratory Experiment: We conducted
a controlled lab study to quantify ProvBuild’s ability to reduce the
time to complete a task and to obtain insight into real-world chal-
lenges. We asked 21 participants to perform a series of debugging

tasks with and without ProvBuild. After each tasks, we examined
their digital memorization behavior to evaluate cognitive load and
gave them a questionnaire with NASA-TLX standard questions,
which evaluate perceived workload [4], and questions about their
perceived self-efficacy, subjective assessment of ease of use, and
effectiveness. We found that after programming with ProvBuild,
participants had significantly shorter average completion time
(𝐹 (1, 20) = 66.64, raw 𝑝 < 0.0001, adjusted 𝑝 < 0.0003) and greater
number recall accuracy (𝐹 (1, 20) = 16.00, raw 𝑝 = 0.0007, ad-
justed 𝑝 = 0.0014), and also reported being more satisfied overall
(𝐹 (1, 20) = 7.42, raw 𝑝 = 0.0131, adjusted 𝑝 = 0.0131). Those main
effect were statistically significant.

Study 2: PerformanceEvaluation:We collected Python scripts
from published works, compared script length and running times
with and without ProvBuild to evaluate performance. noWorkflow
introduces overhead during dynamic provenance tracking, which
caused execution time to increase dramatically, in the best case, by
only 56%, but in the worst case by around a factor of 30. However,
ProvBuild still saves time in later debugging phases. We measured
ProvBuild’s performance after making three types of changes: 1)
directly altering script output, 2) altering an input file or input
variable, and 3) modifying the parameter of a function in the script.
The speedup inherently depends on the length of the code path
following the edit and ranges from a factor of 1.78 to 39.31. The
resulting ProvScripts retained, on average, 77% and 58% of the lines
of the original script, respectively, while the speed-ups averaged
1.23X and 2.46X, respectively.

Study 3: Deployment in the wild: We conducted a real-world
deployment to evaluate ProvBuild’s usefulness and efficacy for data
scientists from different domains. We gave participants access to
ProvBuild for one week, which allowed them to explore and use
the tool for Python debugging in their daily work. We used surveys
to obtain feedback from 12 participants. All participants chose to
use ProvBuild at least once, while four participants used it more
than once in a one-week period. Participants mentioned different
benefits and several concerns after their use with ProvBuild. They
expressed a preference for using ProvBuild and mentioned that
ProvBuild improves the debugging process mainly by reducing pro-
gramming time, allowing users to find dependencies and understand
their workflow more easily, reducing the need for memorization.
They also addressed issues we knew about (e.g., initial run time)
or that could be easily addressed (e.g., integration with Jupyter).
Participants did not report any significant barriers to independent
use of ProvBuild.

REFERENCES
[1] Robert S. Arnold. 1996. Software Change Impact Analysis. IEEE Computer Society

Press, Los Alamitos, CA, USA.
[2] James Cheney, Amal Ahmed, and Umut a. Acar. 2011. Provenance As Dependency

Analysis. Mathematical. Structures in Comp. Sci. 21, 6 (Dec. 2011), 1301–1337.
[3] Juliana Freire, David Koop, Emanuele Santos, and Cláudio T Silva. 2008. Prove-

nance for computational tasks: A survey. Computing in Science & Engineering 10,
3 (2008), 11–21.

[4] Sandra G Hart. [n.d.]. NASA-task load index (NASA-TLX); 20 years later. Proceed-
ings of the Human Factors and Ergonomics Society Annual Meeting ([n. d.]).

[5] LeonardoMurta, Vanessa Braganholo, Fernando Chirigati, David Koop, and Juliana
Freire. 2015. noWorkflow: Capturing and Analyzing Provenance of Scripts. In
Provenance and Annotation of Data and Processes. Springer International Publishing,
Cham, 71–83.

267

Authorized licensed use limited to: Harvard Library. Downloaded on August 31,2021 at 17:11:17 UTC from IEEE Xplore. Restrictions apply.

