
Improving Data Scientist Efficiency with Provenance

Jingmei Hu
Harvard University

Cambridge, MA, USA

Jiwon Joung
University of Michigan

Ann Arbor, MI, USA

Maia Jacobs
Harvard University

Cambridge, MA, USA

Krzysztof Z. Gajos
Harvard University

Cambridge, MA, USA

Margo I. Seltzer
University of British Columbia

Vancouver, BC, Canada

ABSTRACT

Data scientists frequently analyze data by writing scripts. We con-

ducted a contextual inquiry with interdisciplinary researchers,

which revealed that parameter tuning is a highly iterative process

and that debugging is time-consuming. As analysis scripts evolve

and become more complex, analysts have difficulty conceptualizing

their workflow. In particular, after editing a script, it becomes diffi-

cult to determine precisely which code blocks depend on the edit.

Consequently, scientists frequently re-run entire scripts instead

of re-running only the necessary parts. We present ProvBuild, a

tool that leverages language-level provenance to streamline the

debugging process by reducing programmer cognitive load and

decreasing subsequent runtimes, leading to an overall reduction

in elapsed debugging time. ProvBuild uses provenance to track de-

pendencies in a script. When an analyst debugs a script, ProvBuild

generates a simplified script that contains only the information

necessary to debug a particular problem. We demonstrate that de-

bugging the simplified script lowers a programmer’s cognitive load

and permits faster re-execution when testing changes. The com-

bination of reduced cognitive load and shorter runtime reduces

the time necessary to debug a script. We quantitatively and qual-

itatively show that even though ProvBuild introduces overhead

during a script’s first execution, it is a more efficient way for users

to debug and tune complex workflows. ProvBuild demonstrates

a novel use of language-level provenance, in which it is used to

proactively improve programmer productively rather than merely

providing a way to retroactively gain insight into a body of code.

CCS CONCEPTS

• Software and its engineering→ Software development tech-

niques.

KEYWORDS

Provenance, incremental execution, dependency tracking, data anal-

ysis

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00
https://doi.org/10.1145/3377811.3380366

ACM Reference Format:

Jingmei Hu, Jiwon Joung, Maia Jacobs, Krzysztof Z. Gajos, and Margo I.

Seltzer. 2020. Improving Data Scientist Efficiency with Provenance. In 42nd

International Conference on Software Engineering (ICSE ’20), May 23–29,

2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 12 pages. https:

//doi.org/10.1145/3377811.3380366

1 INTRODUCTION

Researchers across a wide range of disciplines routinely parse, trans-

form and process data by writing data analysis scripts. Scripts are

a convenient and flexible way for data scientists to decompose a

data processing procedure into steps, including preprocessing data

input, training models, tuning arguments or parameters, adding

new analysis functions, and propagating changes through to other

data. By some estimates, millions of people write scripts to conduct

data analysis tasks. However, only a small portion are professional

software engineers [52].

It is standard for researchers to arrange their scripts and data

into a pipeline [3], which typically consists of reading data from

more than one input, analyzing and ingesting data with multiple

processing steps and producing one or more outputs. We conducted

a contextual inquiry with five research scientists at a large research

university to understand common data processing procedures and

the pain points of analysis pipeline development. While each par-

ticipant struggled with a unique set of challenges, a few problems

were common to all. All participants used an iterative process based

on editing, executing, and evaluating. In particular, researchers re-

peatedly changed parameters and reran scripts until they arrived at

“good” parameter settings. Parameter tuning accounted for the ma-

jority of development time. Although in theory each edit required

re-executing only dependent portions of the analysis pipeline, in

practice, researchers defaulted to rerunning the entire scripts, be-

cause it was not obvious how to rerun only the necessary parts. This

procedure was both time-consuming and cognitively demanding.

Efficiently tuning model parameters is an open problem [49].

Tuning time grows exponentially as program dimensionality in-

creases [51]. Rerunning a pipeline after modifying a script techni-

cally requires rerunning only the dependent (downstream) compo-

nents. However, identifying these dependencies requires reasoning

about the entire workflow, which is complex and inconvenient. Con-

sequently, researchers usually rerun entire workflows after each

change. As a result, each iteration takes more time than is strictly

necessary. Thus, tuning parameters and debugging can take hours.

A tool that optimizes this process has the potential to increase

researcher efficiency.

1086

2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE)

Authorized licensed use limited to: Harvard Library. Downloaded on August 31,2021 at 17:12:24 UTC from IEEE Xplore. Restrictions apply.

To address this inefficiency, we developed ProvBuild, a data anal-

ysis environment that uses change impact analysis [4] to improve

the iterative editing process in script-based workflow pipelines by

harnessing a script’s provenance. In particular, we use language-

level provenance [13], which records information about every line

of code executed by a script, including variable names, variable

values, function definitions, function calls and their parameters, and

the relationships among all these objects [37]. ProvBuild demon-

strates a novel use of such provenance. Traditionally, provenance

tools have been used for visualizing workflows (e.g., [7, 45, 48])

explaining the results of relational queries [9, 10, 19], or recording

system behavior [5, 36, 42]. In contrast, ProvBuild uses provenance

to improve programmer productivity. ProvBuild obtains provenance

using noWorkflow [44], a Python-based provenance capture tool.

Using the provenance information, ProvBuild identifies dependen-

cies between inputs, program statements, functions, variables, and

outputs, allowing it to precisely identify the sections of a script that

must be re-executed to correctly update results after a modification.

ProvBuild then generates a customized script, the ProvScript, that

contains only those sections affected by a modification. We hypoth-

esized that this streamlined script would allow users to reason more

easily and quickly about the consequences of their edits incurring

less cognitive load and allowing users to complete their job more

quickly. We evaluated this hypothesis in multiple ways.

First, we evaluated ProvBuild in a controlled laboratory exper-

iment with 21 participants who performed a series of debugging

tasks with and without ProvBuild. Next, we ran benchmarks to

quantify howmuch time ProvBuild saved during script re-execution.

Finally, we evaluated ProvBuild in another user study. In this real-

world deployment study, we gave 12 participants access to ProvBuild

for a week and used surveys to assess ProvBuild’s utility. We asked

participants how and when they chose to use ProvBuild in their

daily work.

The contributions of this paper are:

• A novel use of language-level provenance. Provenance is

used proactively to improve programmer productivity rather

than merely providing a way to retroactively gain insight

into a body of code. ProvBuild is the first debugging tool to

leverage language-level provenance to reduce cognitive load

and execution time.

• A quantitative experiment demonstrating that ProvBuild

shortens re-execution time using stored provenance.

• A controlled lab study demonstrating that users prefer pro-

gramming with ProvBuild to programming without it, that

they complete programming tasks more quickly, and that

ProvBuild reduces their cognitive load.

• A real-world deployment study where users explained that

ProvBuild saved them time, helped them understand their

workflow, and provided more immediate results.

Section 2 describes our contextual inquiry that led to the devel-

opment of Provbuild. Section 3 presents ProvBuild’s design and

implementation. Sections 4-7 describe and report the results of

our various evaluations. Discussion, related work and conclusions

follow in Sections 8-10.

2 PROBLEM FORMATION

ProvBuild is the result of a contextual inquiry into how researchers

interact with their data. Using the contextual inquiry method [6],

we conducted a field study with five researchers at a large research

university. The researchers’ areas of expertise included applied

mathematics, computer science, geography, applied physics, and

clinical biology.

We began by interviewing each participant about the specifics of

their data analysis tasks taken from their own research projects and

the steps they take in performing these tasks. Then, two researchers

observed participants with minimal interference as they executed

these takes. We took notes on how they executed their analysis (e.g.,

by typing commands to an interpreter or running a script), what

they did when they encountered a surprising or unexpected result,

and how they evaluated changes they made. We also asked them

explicitly to verbally express any frustration with their process;

afterward we asked them what sorts of tools might reduce that

frustration.

After comparing the individual researchers’ notes, we drew two

main conclusions. First, users spent significant time re-executing

scripts during the data analysis process, and parameter tuning ac-

counts for the majority of development time. Three participants

mentioned that they had to run scripts multiple times to identify

appropriate patterns, engineer features, and train models. Some

also stated that it required a great deal of effort to produce a desired

output. They reported that tuning model parameters was time-

consuming, because the process involved manually re-running

whole scripts for each parameter combination. Although changes

in the middle of an analysis pipeline do not require executing state-

ments prior to the change, users report that it was difficult to iden-

tify which parts of a script were affected by a change; doing so

required too much effort. The researchers tended to treat the data

analysis pipeline as a discrete, indivisible unit. After editing a script,

our subjects all simply reran their entire pipeline.

Second, researchers placed a high premium on ease of adop-

tion when considering new tools. During interviews, participants

expressed interest in a tool that would reduce inefficiencies sur-

rounding data processing. However, this interest was qualified by

hesitations about the overhead of learning and adopting a new

tool. We concluded that familiarity and usability must be first class

considerations in addressing the re-execution inefficiency.

3 PROVBUILD: PIPELINE DEBUGGING USING
PROVENANCE

We designed and developed ProvBuild to address the challenges we

discovered in our contextual inquiry. ProvBuild leverages language-

level provenance collected by noWorkflow [37], which uses pro-

gram slicing [56] to record every action taken in a script and the

dependencies between objects, such as variables, values, and func-

tions. Using these data dependencies, when a user modifies a script,

ProvBuild identifies precisely which script statements must be re-

executed to produce new results. ProvBuild constructs a shortened

script, called a ProvScript, that reduces re-execution time and makes

it easier to reason about the effect of a user’smodification. ProvBuild

consists of a backend engine (Figure 1, Section 3.3) and a user in-

terface (Figure 3, Section 3.5).

1087

Authorized licensed use limited to: Harvard Library. Downloaded on August 31,2021 at 17:12:24 UTC from IEEE Xplore. Restrictions apply.

Figure 1: ProvBuild Architecture.

3.1 The User View

When a user begins tuning or debugging a script, they upload

their script to ProvBuild. Using the frontend GUI, described in

Section 3.5, they select the function, output, or variable they are

debugging/tuning. (For the rest of the section, we refer to this as

the target.) ProvBuild then generates a ProvScript, which contains

only the code necessary to produce the target. The example shown

in Figure 2 illustrates this procedure. Imagine that a user wishes to

debug the baz function. The baz function affects lines 9 and 14 only,
since c contains the return value of baz (line 9), which is then used
to compute e in line 14. ProvBuild treats variables a, b, d, and f as
constants, since their values do not depend on baz and do not need
to be recomputed. ProvBuild extracts the appropriate values for

them from the provenance and assigns those values to the variables

in the resulting ProvScript.

Without ProvBuild, users typically rerun the entire script after

each edit; with ProvBuild, users run the automatically generated

ProvScript after an edit. In the example, ProvBuild inserts four

lines at the top of the ProvScript assigning the constant values of

a, b, d, and f, inserts the definition of function baz, and includes
the dependent lines (7 and 8). ProvBuild ignores the definition

of functions foo and bar, because they are irrelevant and do not
depend on bar. As such, the resulting ProvScript contains only
the code necessary to test changes to baz. The shortened script
minimizes re-execution time and isolates the code being debugged,

making it easier to reason about how modifications affect their

pipeline. Users need not modify their current debugging or tuning

behavior, since ProvBuild hides the provenance-driven optimization

process behind the user interface and presents them with a simpler

editing task.

3.2 Provenance Collection

Figure 1 depicts ProvBuild’s high-level architecture. ProvBuild cap-

tures provenance using noWorkflow [37, 44], an open source prove-

nance collection tool for Python. noWorkflow uses a combination

of static and dynamic analysis to capture three types of provenance

[18]. Definition provenance is a record of all global variables and

function definitions, calls, and arguments in a script. Deployment

provenance includes the execution environment and library depen-

dencies. Execution provenance accumulates while a script runs and

can be either coarse-grain or fine-grain. Coarse-grain provenance

includes information about every function invocation (the function,

its arguments, and the return value) and file accesses. noWorkflow

original script # ProvScript
[1] def foo(var): [1] a = 10
[2] return var [2] b = 20
[3] def bar(var): [3] d = 3
[4] return var*3 [4] f = 204
[5] def baz(var1,var2): [5] def baz(var1,var2):
[6] return var1+var2 #####L5
[7] a = foo(10) [6] return var1+var2
[8] b = foo(20) #####L6
[9] c = baz(a,b) [7] c = baz(a,b) #####L9
[10] if a % 2 == 0: [8] e = b + c #####L15
[11] d = foo(3)
[12] else:
[13] d = bar(2)
[14] e = b + c
[15] f = b * 10
[16] for i in range(1,5):
[17] f += foo(1)

Figure 2: Comparison between an original script and the

ProvScript.

uses program slicing [56] to capture fine-grain provenance, such

as control flows and variables and their dependencies.

Although ProvBuild currently works with provenance captured

by noWorkflow, there is nothing in its design that precludes it

from working with other language-level provenance capture sys-

tems, such as R’s RDataTracker [34]. We leave development of a

provenance-capture-agnostic version of ProvBuild to future work.

ProvBuild analyzes the fine-grain provenance to construct a de-

pendency graph, which identifies the parts of the script on which a

particular edit depends. It then produces the ProvScript by travers-

ing the dependency graph, assigning variables concrete values

where possible and computed values otherwise. We discuss this in

more detail in the next section.

3.3 Dependency Exploration

ProvBuild’s backend consists of two main parts: (1) dependency

exploration and (2) script merging. We discuss dependency explo-

ration here and script merging in the next section.

The key to ProvBuild lies in its ability to construct an accurate de-

pendency graph. Some components of the dependency graph appear

in the provenance while others do not. The following paragraphs,

which address function definitions and control flow, describe the

different strategies employed in constructing a provenance graph

in which we can explore dependencies.

3.3.1 Function Definitions. There are two kinds of functions that

the ProvScript might need: those appearing in the script (which

are part of the definition provenance) and those that come from

imported libraries. ProvBuild identifies the necessary subset of the

the functions appearing in the script using the function invocation

information in the provenance. Rather than identifying precisely

which functions are needed from libraries, we retain all import

statements from the original script in the ProvScript.

1088

Authorized licensed use limited to: Harvard Library. Downloaded on August 31,2021 at 17:12:24 UTC from IEEE Xplore. Restrictions apply.

3.3.2 Control Flow. There are aspects of a script that ProvBuild

needs to construct for the ProvScript that are not recorded in the

provenance. For example, noWorkflow provenance does not fully

capture conditional control flow, because provenance is an execu-

tion record, and any specific execution follows only one clause of

an if-elif-else statement. However, ProvBuild needs to include
all conditional clauses in a ProvScript to ensure that re-execution

is correct. ProvBuild accomplishes this using static analysis of the

original script. During this static analysis, it creates a pseudo func-

tion for the the entire conditional expression (i.e., including all

conditions). When ProvBuild needs to include a conditional expres-

sion in the ProvScript, it includes the pseudo function instead of

including just the single clause from the actual execution.

Consider the following. In the original script in Figure 2, a is
even, so foo always executes on line 11 and bar never does. The
execution provenance records the use of foo but not bar, which
appears only in the definition provenance. Now, let’s say that a user

is interested in tuning the value of a (i.e., change the argument to
foo from 10 to 9). When they re-execute, noWorkflow’s execution
provenance indicates that foo is the only function that depends on
x. ProvBuild observes that a conditional appears in the ProvScript
and includes the full conditional clause as shown in the following

code, so that re-execution produces the correct result, even when a
is odd during a later execution.

ProvScript
[1] ... # variable b, c, e, f assignments
[2] def foo(var): #####L1
[3] return var #####L2
[4] def bar(var): #####L3
[5] return var*3 #####L4
[6] a = foo(9) #####L7
[7] if a % 2 == 0: #####L10
[8] d = foo(3) #####L11
[9] else: #####L12
[10] d = bar(2) #####L13

Proactively including every possible function definition could lead

to an overly complicated ProvScript. Instead, ProvBuild uses itera-

tive exception handling to identify only those function definitions

needed for a particular execution. The iterative exception handling

happens only when executing statements in a conditional that ei-

ther were not executed the first time or require loading of additional

functions. ProvBuild initially relies on the execution provenance; in

the example, the ProvScript includes only foo’s definition. If the user
makes the value of a odd and re-executes, the ProvScript throws
a NameError exception when it encounters the invocation of bar.
ProvBuild catches the exception, extracts the necessary function

definition from the original script, and regenerates the ProvScript

with the additional function. ProvBuild continues catching such

exceptions, regenerating the ProvScript each time, until script exe-

cution completes without the NameError exception. The ProvScript
is a superset of a program slice and our iterative dynamic trapping

ensures that we are not missing necessary parts of the program.

3.3.3 Constructing the Provenance Graph. Given a target, we di-

vide the execution provenance of a script into upstream provenance,

everything on which the target depends, and downstream prove-

nance, everything that depends on the target. If we view execution

provenance as a graph, ProvBuild collects upstream provenance

by selecting the ancestors of the target and captures downstream

provenance by selecting the target’s descendents.While most prove-

nance systems avoid cycles in provenance graphs, noWorkflow al-

lows them, and they require special attention. Consider the original

script (lines 15–17) in Figure 2. Assume that the user is interested

in the derivation of the value of f. The provenance indicates that x
depends on both lines 15 and 17. However, neither noWorkflow’s

static nor dynamic analysis identify that it also depends on the

values of i that occur in line 16.
ProvBuild performs its own loop analysis to address this omis-

sion. It creates upstream provenance for variables dependent upon

loop iterators. So, when ProvBuild constructs the ProvScript for the

example above, it includes the iterator i in the upstream provenance
of f.
ProvBuild also uses the dynamically collected upstream and

downstream provenance to track implicit dependencies. Consider

the original script (lines 7–9). Function baz takes foo’s return values
a and b as parameters. This means that c depends on foo implicitly
and baz explicitly. Thus, changing baz requires rerunning only line
9 and its downstream, while changing foo requires rerunning all
three lines and their downstream. ProvBuild includes all implicit

function and variable relationship in the ProvScript.

Validity. Considering only deterministic programs, letM be the
point of the first modification. Assuming that noWorkflow cap-

tures all dependencies, the ProvScript reproduces the state from

the original execution prior toM . Consider the two cases concern-
ing provenance that depends onM : 1) Dependencies that existed
in the original execution are, by definition, carried over into the

ProvScript; 2) Dependencies that did not appear in the original exe-

cution, must be the result of a conditional expression in the original

script; the ProvScript incorporates all clauses for every such con-

ditional encountered. ProvBuild constructs the transitive closure

of the dependencies in the program, ensuring that the resulting

ProvScript is correct.

3.4 Script Merging

Users can edit the simpler ProvScript directly, and ProvBuild auto-

matically merges those changes back into the original script. After

merging, future ProvScripts are based on the new, merged version

of the file.

To merge successfully, ProvBuild maintains a record of the differ-

ences between the original script and the ProvScript. We annotate

each line in the ProvScript with comments that explicitly map the

line to its corresponding line in the original file. For example, in the

following ProvScript, ProvBuild adds comments beginning with the

special ##### token, since the definition of function baz and the
assignments of variable z in lines 5, 7, 8 and 9 are inherited from
the original script. The assignments in lines 1–4 are inserted by

ProvBuild, not the user, so they are not marked.

ProvScript (After user edits)
[1] a = 10
[2] b = 20
[3] d = 3
[4] f = 204
[5] def baz(var1,var2): #####L5

1089

Authorized licensed use limited to: Harvard Library. Downloaded on August 31,2021 at 17:12:24 UTC from IEEE Xplore. Restrictions apply.

Figure 3: The ProvBuild interface features four boxes. We

assume that all user scripts write to an output file. The blue

box displays the contents of this output file. The yellow box

displays the original script for user reference and the black

box displays the ProvScript. The grey box displays termi-

nal output, such as errors and print statements. The side-

bar on the left provides easy access to the user commands.

In ProvBuild mode, the user specifies the target, either a

function or variable, to change/debbug. After editing the

ProvScript, the user runs it, and examines the output. When

the user is satisfied with the output, the user merges the

changes into the original script. At this point, the yellow box

updates to contain the revised script; the user can then select

another object to edit.

[6] var1 = var1 + 1
[7] return var1+var2 #####L6
[8] c = baz(a,b) #####L9
[9] #####L15

New lines in the ProvScript (e.g., line 6), contain no added markers,

while deleted lines (e.g., line 9) appear as a line with the marker

of the deleted line, but no code. The information provided by the

markers enables ProvBuild to correctly merge changes into the

original script.

These comment characters are incidental to our prototype. We

used them to avoid making changes to the underlying editor. A

real deployment would implement tracking in the editor, making

it invisible to the user. There are standard techniques for such

tracking [31, 35].

3.5 Interface Design

Our interface allows users to debug functions or variables on a

simplified version of an original script and seamlessly merge those

modifications back into the original script. To facilitate evaluation,

the ProvBuild prototype interface supports both conventional edit-

ing (i.e., editing on the entire script) and the ProvBuild provenance-

driven editing of a ProvScript. In either case, the user begins by

selecting the mode of interaction (conventional or ProvBuild) and

identifying the script with which they are working. In ProvBuild

mode, the interface activates the provenance tracking backend.

ProvBuild is designed to abstract the provenance-driven incre-

mental build process away from the user. Users interact with their

scripts through the three main modules shown in Figure 3. Each

module is explained in more detail below.

• Search: The user inputs the name of the function or variable

to edit (see (1) in Figure 3). ProvBuild extracts the object’s

dependencies based on the stored provenance information

and generates a ProvScript containing only code pertaining

to the chosen object.

• Execute: Instead of running the original script, ProvBuild

executes the shortened ProvScript for the user (see (2) in

Figure 3). This reduces run time.

• Merge: ProvBuild allows users to easily merge edits from

the ProvScript into the original file (see (3) in Figure 3).

When used in conventional mode, the interface is similar to

common modern text editors. Users simply edit their scripts and

re-execute them in their entirety.

4 RESEARCH QUESTIONS

We conducted three studies to evaluate ProvBuild’s performance,

effectiveness, and usability. Our goal is to answer the following

four research questions (RQ):

• RQ1: How well can ProvBuild improve debugging efficiency

in basic programming tasks?

• RQ2: How much overhead does noWorkflow introduce dur-

ing initial script execution?

• RQ3: How much speedup does ProvBuild produce when

re-executing a script after a modification?

• RQ4: In real-world settings, how do data scientists use Prov-

Build in their daily work, and what benefits and challenges

do they experience?

We address RQ1 using the results of a controlled experiment in-

volving a lab setting with scripts constructed specifically for the

experiment. We address RQ2 and RQ3 using quantitative measures

of ProvBuild runtime and overhead. We conducted another user

study involving data scientists using ProvBuild on their own analy-

sis scripts in the wild to answer RQ4.

5 STUDY 1: CONTROLLED LABORATORY
EXPERIMENT

To answer RQ1, we conducted a controlled lab study to quantify

ProvBuild’s ability to reduce the time to complete a task and to

obtain empirical insights into real-world challenges. We asked par-

ticipants to perform a series of debugging tasks with and without

ProvBuild and evaluated their behavior both qualitatively and quan-

titatively. The study design was driven by the following hypotheses:

• Hypothesis 1: ProvBuildwill decrease task completion

time. Since the ProvScript is shorter than the original file

and its re-execution time is shorter, users will complete the

tasks more quickly.

• Hypothesis 2: ProvBuild will decrease users’ cognitive

load. Cognitive load is the total amount of working memory

resources being used. Because ProvBuild removes irrelevant

1090

Authorized licensed use limited to: Harvard Library. Downloaded on August 31,2021 at 17:12:24 UTC from IEEE Xplore. Restrictions apply.

Average Task Completion Time

Task Difficulty
Easy Hard

C
om

pl
et

io
n

Ti
m

e
(s

ec
on

ds
)

0

100

200

300

400

500

296

359 383

487 Programming Tool
ProvBuild
Conventional

Figure 4: Average task completion time for easy and hard

tasks sorted by tool.

code, reasoning about code in ProvScript will be less taxing

for users.

• Hypothesis 3: Participantswill showmore positive sub-

jective responses when programming with ProvBuild.

Participants will report that their experience is better when

using ProvBuild than when using a standard code editor.

5.1 Participants and Apparatus

We used snowball sampling [21] to recruit participants from multi-

ple fields including computer science, electrical engineering, applied

physics, and applied mathematics. 21 volunteers participated in the

study (14 men, 7 women; 21− 28 years old,M = 24.3, 2 undergradu-
ate students, 11 graduate students, 8 professional data scientists).

All had some experience programming in Python and had worked

on at least one data analysis project.

We conducted all trials in the same room using a Macbook Pro

laptop running macOS. The ProvBuild interface ran in the Google

Chrome browser.

5.2 Procedure

Each experiment started with a basic demographic and technical

background survey. Next, participants were given instructions on

how to edit in each mode (ProvBuild and Conventional mode). They

then engaged in one practice round with each tool. The practice

tasks were similar to the tasks given during the main study and let

the participants familiarize themselves with the interface.

Finally, each participant completed a series of four debugging

tasks. These tasks were modeled after common data analysis proce-

dures. For each task, participants were asked to minimally modify

a script to a get specified desired output. The task conditions con-

sisted of programming modes (ProvBuild and Conventional) and

difficulty levels (Easy and Hard). We designed the two difficulty

levels of tasks and validated their difficulties (Q9) in the user study

(Section 5.4.1). Easy tasks about math calculation and matrix trans-

formation contained fewer than 100 lines of code; hard tasks about

model training and parameter tuning contained nearly 300 lines of

code. The task orderings were counterbalanced both in the order

of programming mode and difficulty level.

Participants were given ten minutes to complete each task, with

instructions to complete each task as quickly and accurately as

possible. We timed each task from the moment the participant

Average Cognitive Load Test Accuracy

Task Difficulty
Easy Hard

Ac
cu

ra
cy

 (%
)

0

10

20

30

40

50

60

70

80 75

59.1 60.9

50.5

Programming Tool
ProvBuild
Conventional

Figure 5: Average cognitive load test accuracy for easy and

hard tasks sorted by tool.

began reading the script to the moment she verbally expressed

completion. Most participants completed each task comfortably

within the time limit. If the participant was unable to complete the

task within the 10 minute limit, we recorded the result as unfinished.

In the ProvBuild programming mode, participants had the option

to identify functions or variables they wanted to modify thereby

generating a ProvScript as shown in Figure 3. After generating a

ProvScript, participants could modify and execute that ProvScript

instead of working with the original script. After participants ob-

tained the desired output, they triggered the merge module to

integrate changes from the ProvScript back into the original file.

In the Conventional programming mode participants edited the

original script using a text editor and checked results by executing

the whole script.

To evaluate cognitive load, we examined their digital memo-

rization behaviors [14, 55] in each task: we asked participants to

memorize ten random numbers in one minute before each task.

Upon task completion, participants were asked to recall the num-

bers. If participants were able to recall more numbers, this was

indicative of lighter cognitive load during task completion. After

completing each task, the participants were given a final question-

naire asking them to respond on a 7-point Likert scale. The first six

questions were the NASA-TLX standard questions, which evaluate

perceived workload [25, 26] and provide subjective ratings along

six subscales: Mental Demands, Physical Demands, Temporal De-

mands, Own Performance, Effort Level and Frustration Level [24].

The remaining three questions evaluated the user’s perceived self-

efficacy and subjective assessment of ease of use and effectiveness.

At the end of the experiment, participants were asked whether they

had any feedback concerning ProvBuild. Each participant spent

approximately 60 minutes completing the experiment.

5.3 Data Analysis

This was a within-subjects study with two factors: task difficulty

{easy, hard}, and programming tool {Conventional, ProvBuild} and

the following measures:

• Completion time.We measured the completion time from

the moment they started reading the script to the moment

they declared that they were done. For participants who

1091

Authorized licensed use limited to: Harvard Library. Downloaded on August 31,2021 at 17:12:24 UTC from IEEE Xplore. Restrictions apply.

Table 1: Summary of the results. ProvBuild and Conventional columns represent the average experiment results under both

task difficulty in the corresponding editing modes. All nine subjective measures were reported on a 7-point Likert scale, while

self-reported preference is reported as the sum of nine responses; lower indicating higher preference. We used the Holm’s

sequentially-rejective Bonferroni procedure since we tested multiple simultaneous hypotheses. We report both raw and ad-

justed p-values. Statistically significant results are marked with an asterisk.

Hypothesis ProvBuild Conventional Raw p-values Adjusted p-values Sig.?

H1 Completion time 339.70s 423.18s <0.0001 <0.0003 *

H2 Accuracy on cognitive load test 68.09% 54.79% = 0.0007 = 0.0014 *

H3 Self-reported preference 25.98 30.05 = 0.0131 = 0.0131 *

Table 2: Detailed subjective results of the NASA-TLX standard questions and subjective assessment questions. The answerwere

rated on a 7-point Likert scale. ∗means the main effect for tools is statistically significant (p < 0.05)

Questions ProvBuild Conventional p-values Sig.?

1. How much mental and perceptual activity was required? (1 = low, 7 = high) 3.81 4.34 0.0237 *

2. How much physical activity was required? (1 = low, 7 = high) 1.84 1.78 0.6849

3. How much time pressure did you feel due to the pace at which the tasks

or task elements occurred? (1 = low, 7 = high)
3.09 3.66 0.0482 *

4. How successful were you in performing the task?

How satisfied were you with your performance? (1 = low, 7 = high)
6.00 5.41 0.0837

5. How hard did you have to work (mentally and physically)

to accomplish your level of performance? (1 = easy, 7 = hard)
3.52 3.96 0.1049

6. How irritated, stressed, and annoyed versus content, relaxed,

and complacent did you feel during the task? (1 = relaxed, 7 = stressed)
3.22 3.66 0.0798

7. How confident were you about your answer(s)? (1 = low, 7 = high) 6.07 5.59 0.2308

8. How hard (irritating) was it to use the tool? (1 = easy, 7 = hard) 2.88 3.96 0.0101 *

9. How hard was it for you to accomplish this task? (1 = easy, 7 = hard) 3.41 3.91 0.1003

were unable to complete the task within the 10 minute time

limit, we recorded their time as 10 minutes1.

• Accuracy on cognitive load test.We asked participants to

memorize ten random numbers and recall the numbers after

each task. We interpreted recall accuracy as a measure of

cognitive load (more numbers recalled correctly indicating

lighter cognitive load).

• Self-reported subjective measures. After each task, we

asked participants six questions relating to their perceived

workload and three subjective assessment questions. We

computed the sum of all nine subjective responses with

the same response order (lower indicates better) as the self-

reported subjective measure (two items were reverse coded

for analysis such that lower number always indicated a more

positive response).

To guard against Type I errors due to multiple hypotheses being

tested, we applied the Holm’s sequentially-rejective Bonferroni

procedure [27, 47] to the analyses, which introduces fewer Type II

errors than the more common simple Bonferroni correction. We

report both raw and adjusted p-values.

During evaluation, we first summed all nine subjective responses

to assess whether participants had an overall preference for either

1Because more participants failed to finish in time using Conventional mode rather
than ProvBuild mode, trimming the completion time to 10 minutes for incomplete
tasks did not unfairly advantage ProvBuild during analysis.

mode (two items were reverse coded for analysis). We then con-

ducted a statistical analysis of each question separately.

5.4 Study Results

5.4.1 Main Analyses. The main results are summarized in Table 1.

Everyone who completed a task in the allotted 10 minutes did so

correctly. However, 1 of the 21 participants did not finish an easy

task with either programming tool. 3 of the 21 participants did not

finish a hard task with the Conventional mode while only one did

not finish with ProvBuild.

We validated task difficulty to ensure that the Provbuild and

Conventional tasks were comparable (Q9): there is no significant

difficulty difference between the two easy tasks (averaged difficulty

rating 3.23 on a 7-point Likert scale, F (1, 20) = 0.5333, p = 0.4737)
and two hard tasks (averaged difficulty rating 4.07 on a 7-point

Likert scale, F (1, 20) = 2.3343, p = 0.1422), respectively.
As shown in Figure 4, participants had statistically significant

shorter average completion time (F (1, 20) = 66.64, raw p < 0.0001,
adjusted p < 0.0003) using ProvBuild (M = 339.70 seconds) than
using the Conventional mode (M = 423.18 seconds). Hypothesis 1
was supported. ProvBuild decreased average task completion time

and significantly improved programming efficiency in both task

difficulty levels.

Participants had greater number recall accuracy after program-

ming with ProvBuild (M = 68.09%) than after using the Conven-
tional mode (M = 54.79%) as shown in Figure 5. This main effect

1092

Authorized licensed use limited to: Harvard Library. Downloaded on August 31,2021 at 17:12:24 UTC from IEEE Xplore. Restrictions apply.

was statistically significant (F (1, 20) = 16.00, raw p = 0.0007, ad-
justed p = 0.0014). These results support Hypothesis 2 and indicate
that ProvBuild was able to lighten cognitive load. In other words,

ProvBuild is less taxing on the user’s mental resources.

Participants also reported being more satisfied overall after pro-

gramming with ProvBuild (M = 25.97, lower is better) than with
the Conventional mode (M = 30.05). The difference was statistically
significant (F (1, 20) = 7.42, raw p = 0.0131, adjusted p = 0.0131).
Hypothesis 3 was supported by our subjective data analysis: par-

ticipants overall preferred ProvBuild over conventional processing

methods.

Also, those who preferred Conventional mode commonly stated

their preference was due to the fact that they were more familiar

with the Conventional programmingmethod thanwith ProvBuild. 5

of the 21 participants indicated that they felt it was more convenient

to program with ProvBuild in the latter tasks as they became more

familiar with the interface.

5.4.2 Additional Analyses. Table 2 presents the detailed subjective

results. These self-reported results demonstrate that the partici-

pants experienced significantly less mental effort (Q1, F (1, 20) =
3.3727,p = 0.0237) and felt less time pressure (Q3, F (1, 20) = 4.4268,
p = 0.0482) when using ProvBuild. Participants also felt that the
tasks were significantly easier and less irritating to use ProvBuild

than the Conventional interface (Q8, F (1, 20) = 8.0769, p = 0.0101).
When using ProvBuild, participants also experienced relatively

lower levels of irritation regarding the coding task (Q6, F (1, 20) =
3.4069, p = 0.0798) and higher levels of perceived success in task
completion (Q4, F (1, 20) = 3.3140, p = 0.0837). These differences
are marginally significant (p < 0.10).

6 STUDY 2: PERFORMANCE EVALUATION

To answer our performance-related research questions (RQ2 and

RQ3), we ran benchmarks on a Ubuntu 18.04 LTS computer with

Core i5 3.5GHz CPUs 16GB ofmemory, runningwith Python 2.7 and

SQLite 3.15 (noWorkflow’s storage engine). noWorkflow introduces

three sources of overhead. It’s possible that a different provenance

capture mechanism would produce lower overheads, but analysis of

different capture mechanisms is outside the scope of this study. First,

noWorkflow initializes its data storage prior to script execution in a

preprocessing step. Second, during initial script execution for which

we collect provenance, noWorkflow’s dynamic analysis introduces

overhead. Third, noWorkflowwrites its provenance data to a SQLite

database during execution; SQLite is not a terribly performant

database. We report these overheads in Table 3. Note that we ran

an unmodified version of noWorkflow in this study. As ProvBuild

does not depend on all the functionality of noWorkflow, it’s likely

that a streamlined implementation of noWorkflow could reduce the

overhead.

6.1 Initialization Slowdown

To quantify ProvBuild’s overhead (RQ1), we collected Python scripts

from published work and compared script length and running times

with and without ProvBuild. Dataverse is a platform for publishing

data sets used in research publications [29]. We used its program-

matic API [38] to obtain real-world Python scripts. We queried Har-

vard University’s public Dataverse instance [39] for every archived

data set containing Python scripts. We then downloaded the 92

published data sets including Python code. Unfortunately, many

of the archived data sets were missing key files. Only 54 of the

92 contained both scripts and the accompanying data. Of those 54

scripts, only eleven ran to completion as published.

Table 3 shows the breakdown in running time. Execution time

increases dramatically, in the best case, by only 56%, but in the worst

case by around a factor of 30. The majority of this overhead is due to

noWorkflow’s dynamic provenance tracking.Writing provenance to

the database also adds significant overhead (column Storage Time).

Other provenance tracking solutions [34] keep provenance in main

memory and write it persistently after execution; this approach

seems attractive. As we will see in Section 7, users did voice concern

over the initial run time, but not enough to prevent them from using

ProvBuild.

6.2 Debugging Speedup

To demonstrate how ProvBuild can ultimately increase develop-

ment efficiency (RQ2), we measured ProvBuild’s performance after

making three types of changes to each of the eleven scripts from

Table 3. A Class A change directly alters script output, e.g., chang-

ing the format of the output. A Class B change alters an input file

or input variable. A Class C change modifies the parameter of a

function in the script, e.g., changing the value of a model parameter.

For those eleven scripts, we randomly selected one of each type of

change and measured how long it took to execute the ProvScript

produced by ProvBuild.

The speedup inherently depends on the length of the code path

following the edit. As Class A changes affect only the output stage

of analysis, ProvBuild often generates significantly shorter scripts

and produces significant speedup. For our eleven scripts, these

speedups ranged from a factor of 1.78 to 39.31 (i.e., the ProvScript

ran almost 40 times faster than the full script). Table 3 shows that

the ProvScripts generated from Class A changes had 74% fewer lines

of code, on average. Class B and Class C changes induce smaller

speedups. The resulting ProvScripts retained, on average, 77% and

58% of the lines of the original script, respectively, while the speed-

ups averaged 1.23X and 2.46X, respectively. ProvBuild explores

the dependencies downstream of the edits. Speed-ups are smaller,

because ProvBuild must retain all the downstream dependencies;

the earlier in the script a modification is made, the more of the script

must be retained for re-execution, producing longer re-execution

times. Even in the worst case (Class B), we attain some speedup.

In all three classes, ProvBuild is able to use stored provenance to

shorten run time.

7 STUDY 3: DEPLOYMENT IN THEWILD

We conducted another user study to evaluate ProvBuild’s useful-

ness (RQ4) and efficacy for data scientists from different domains.

The study was a real-world deployment of the system in which

participants could choose when and how to use the tool. We ran

this field study to see if participants would choose ProvBuild in

real scenarios in place of other tools available to them. We used

surveys to obtain feedback from participants. Participants received

no incentive to use ProvBuild; feedback was solicited only after they

used it. We approached the 21 participants from the prior study, and

1093

Authorized licensed use limited to: Harvard Library. Downloaded on August 31,2021 at 17:12:24 UTC from IEEE Xplore. Restrictions apply.

Table 3: Comparison of running times and lines of code of data analysis script executedwithout ProvBuild andwith it, averaged

over 5 runs (variances negligible)

Script

#
LOC

Original

Exec time

Runtimes w/ noWorkflow Class A Class B Class C

Pre-

processing

Exec

time

Storage

time
LOC

Re-exec time

(Speedup)
LOC

Re-exec time

(Speedup)
LOC

Re-exec time

(Speedup)

1 137 0.19 11.12 1.57 1.06 13 0.03 (6.33x) 123 0.12 (1.58x) 90 0.07 (2.71x)

2 121 2.68 6.92 4.18 3.69 33 1.08 (2.48x) 110 2.10 (1.28x) 68 1.32 (2.03x)

3 57 4.42 15.14 124.03 6.24 12 1.05 (4.24x) 20 4.01 (1.10x) 16 2.00 (2.21x)

4 61 6.29 8.72 97.26 326.85 10 0.16 (39.31x) 29 5.81 (1.08x) 28 3.65 (1.72x)

5 543 7.25 14.06 14.64 5.88 72 1.43 (5.07x) 486 5.29 (1.37x) 182 2.15 (3.37x)

6 51 20.15 2.87 337.97 1520.11 26 11.30 (1.78x) 40 17.73 (1.14x) 37 13.21 (1.53x)

7 230 69.61 11.32 1540.81 2023.65 40 22.91 (3.04x) 178 60.47 (1.15x) 106 42.30 (1.64x)

8 854 78.73 63.47 298.88 39.45 76 14.24 (5.53x) 783 63.99 (1.23x) 576 33.40 (2.36x)

9 222 81.00 22.98 1917.23 3815.01 26 6.41 (12.64x) 184 67.30 (1.20x) 163 13.95 (5.81x)

10 102 129.12 1.89 4017.26 2914.30 92 56.61 (2.28x) 97 103.46 (1.25x) 94 82.04 (1.57x)

11 175 140.71 2.22 2835.34 2109.23 41 13.10 (10.74x) 127 118.35 (1.19x) 92 68.24 (2.06x)

12 of them (8 men, 4 women) agreed to participate in this study. The

details of the study were revealed only once a participant agreed to

participate.

7.1 Procedure and Data Analysis

We gave participants access to ProvBuild for one week. This allowed

them to explore and use the tool for Python debugging in their daily

work. We intentionally gave participants complete latitude about

when they used ProvBuild. At the end of each day, we asked the

following survey questions to understand if and how participants

chose to use ProvBuild: (1) Did you use ProvBuild today? If so, what

were you trying to accomplished by using it? (2) When you used

ProvBuild, what did you like about it? (3) Did you have any problems

using ProvBuild? If so, please describe them. (4) Are you inclined to

use ProvBuild again?Why? (5) Would you recommend ProvBuild to

others, why? These five questions were all free-response questions

with no character limit requirement. We asked them daily and only

required them to answer on the days that they had chosen to use

ProvBuild.

To analyze the collected data, we utilized qualitative data anal-

ysis methods [22] and performed the iterative inductive analysis

[12]. Two researchers first independently clustered the data and

open coded the dataset into themes. Themes included commonly

mentioned benefits and common challenges. Next, the researchers

collaboratively reviewed the data, compared codes, identified emer-

gent themes and discussed discrepancies to develop a mutually

agreed upon set of themes. They then performed an additional

round of independent coding and verified the emergent themes and

associated transcript segments.

7.2 Study Results

In this study, we collected 18 surveys from 12 participants. All

participants chose to use ProvBuild at least once, while four par-

ticipants used it more than once in a one-week period. 11 out of

12 participants indicated that they would use ProvBuild in the fu-

ture (Q4). Participants reported a large number of programming

scenarios in which they used ProvBuild in their daily work. One

common situation was script debugging and parameter tuning. Par-

ticipants used ProvBuild to debug “simple Python scripts” (P12) and

multiple scripts with “complicated dependencies” (P1), or “finely tune

parameters in code” (P9). Several participants focused more on writ-

ing scripts for model training, while some were working on math

calculations in Python.

7.2.1 ProvBuild Benefits. Participants mentioned ten different ben-

efits of using ProvBuild. The most frequent benefits, mentioned

by nine participants, were that ProvBuild saved programming

time and allowed users to find code dependencies more easily:

“It helps find all the dependent code pieces when you target a spe-

cific problem, which greatly saves time and reduces errors.” (P1) “It

explicitly tells me the dependence of certain functions and data. It

runs really fast.” (P3) “It speeds up calculations by storing file data

within the code.” (P11) Another respondents reported “it really saves

programming time (both execution time and thinking time)” (P8).

ProvBuild is also considered particularly beneficial for under-

standing project workflow, mentioned by six participants: “I like

that it cut down on the amount of code I have to learn and understand.”

(P9) “It can provide the part that I want to rerun, so I don’t need to do

the whole preprocessing every time.” (P2) “It would help with complex

programming workflow.” (P7)

ProvBuild reduces the need for memorization of the details

in a workflow by providing shortened scripts, which makes pro-

gramming and debugging easier. Five participants mentioned this

benefit, which also supports Hypothesis 2 from Section 5, in real-

world studies: “I love this because it can keep the records of the old

files and I don’t need to remember the workflow of all my programs.

The only thing I need to decide is which part of the program needs to

be changed.” (P6)

Another common benefit mentioned by seven participants is its

usefulness. It “simplifies” (P4) the debugging process and “shortens”

(P2) program scripts: “It’s really easy to make changes in old scripts in

order to match newmodels.” (P6) “I think it’s useful to debug programs

with complicated steps.” (P4)

Three participants explicitly mentioned that ProvBuild provides

intermediate results to facilitate programming process: “When

1094

Authorized licensed use limited to: Harvard Library. Downloaded on August 31,2021 at 17:12:24 UTC from IEEE Xplore. Restrictions apply.

I do math in Python, I often need to print all variables to find the

problem and I forget to do that sometimes. With ProvBuild, I can check

those constants in every step and it really helps” (P8) “I like the idea

of considering the intermediate results as constants. Most of the time,

I only care about the follow-up calculation after those values.” (P4)

Overall, participants expressed a preference for using ProvBuild

and mentioned that ProvBuild improves the debugging process

mainly by reducing programming time, allowing users to find de-

pendencies and understand their workflow more easily, reducing

the need for memorization. Participants do not report any signifi-

cant barriers to independent use.

7.2.2 ProvBuild Challenges. Participants also raised several con-

cerns after their use with ProvBuild. The predominant concern

stated by five participants was the slow initial run time relative

to running without ProvBuild: “The initial execution with ProvBuild

takes longer than I expected, especially when the training files are

large. However, once I finish the first run, it ultimately saves time. I

would like to continue to use ProvBuild for future debugging.” (P2) “I

found that the initialization of ProvBuild takes a bit longer. I guess it

needs to trace everything and keep the records.” (P7)

While ProvBuild was able to generate a new simplified script, two

participants were concerned about its “accuracy” (P2) and complete-

ness: “ProvBuild may have limitation in tracking the provenance of

program execution, which may return an incomplete relevant code seg-

ment.” (P12) Although some participants expressed concern about

the validity of ProvBuild, no one in this study obtained incomplete

or incorrect results.

Two participants explicitly mentioned that ProvBuild should

supportmultiple types of search targets: “I couldn’t search for a

variable that was a function argument.” (P10) “It seems like ProvBuild

can only search for global variables.” (P2)

Further concerns about ProvBuild are its scalability “to process

a large project.” (P5) and “memory usage”(P6).

Finally, since the participants have their own programming

styles, one of them asked “is it possible to show some visualiza-

tion from ProvBuild?” (P3), while another wondered that “it would

be better if it works with Jupyter.” (P4)

Overall, we found these criticisms encouraging in that they ad-

dressed issues we knew about (e.g., initial run time) or that could be

easily addressed (e.g., integration with Jupyter). Convincing users

that ProvBuild produces correct results is an interesting challenge

to address in future work.

8 DISCUSSION

ProvBuild allows data scientists to perform basic data analysis

routine with lower completion time and less cognitive load, thereby

increasing their programming efficiency. Although its provenance

capture system increases initial runtime, participants found the

cost-benefit trade-off worthwhile, demonstrating that its utility

compensated for the increased initial runtime.

Threats to Validity. Regarding internal validity, user perfor-

mance on the controlled experiments might depend on a user’s

ability to comprehend unfamiliar code. To mitigate this threat, we

did within-subject experiments testing each participant under all

conditions; the independent evaluation reduces errors associated

with individual differences. A remaining challenge is to design a

study that is rigorously controlled, but allows users to work on

code with which they are already familiar.

Participants of the deployment study may have been inclined

to answer favorably, since we were asking about their experience

using ProvBuild. To reduce such bias, we used impersonal surveys,

rather than face-to-face interviews.

The greatest external threat to validity is our assumption that

noWorkflow captures provenance correctly. Its use in reproduction

studies suggests that the community believes it to be appropriate for

reproducing computation, which is effectively howwe use it [17, 37].

It is also possible that we have not identified all instances in which

the provenance does not capture all the information necessary to

produce a complete and correct ProvScript. Should such situations

arise, our experience suggests that the tools we’ve developed make

it possible to easily collect additional information.

Limitation and FutureWork. ProvBuild’s initial runtime over-

head might pose an obstacle to adoption, so our immediate plans

including changing or improving the provenance collection strategy,

disabling parts of the provenance capture that are unnecessary for

this application, and tuning the remaining parts of it. RDataTracker-

lite is an R tool similar to noWorkflow [34], which showed that

capturing only the detail needed for ProvBuild reduces overhead by

roughly 50%. Integration with a widely-used IDE, such as Eclipse, or

other interactive computational environments, such as Jupyter [30],

will also facilitate adoption. While ProvBuild is currently Python-

specific, it relies only on the provenance output and the ability

to parse the input source code. It should be straight forward to

adapt it to other languages that have provenance-tracking sup-

port, e.g., R [34]. We also believe it is possible for these language-

specific capture tools to produce provenance in a language-agnostic

form, which would make it possible to develop a language-agnostic

ProvBuild. In the longer term, we are looking for other opportuni-

ties to leverage provenance to help programmers streamline their

development process.

Data Availability. ProvBuild is available on the open-access

repository Zenodo [28].

9 RELATEDWORK

Make [15] is a build automation tool that uses static analysis to
execute only those steps of a build process that depend upon modi-

fications. Rather than using provenance, make uses Makefiles to
explicitly keep track of file targets, inter-file dependencies, and com-

mand sequences. Users build Makefiles manually or use additional
tools, e.g., autoconf [16, 54], to produce them. make is similar to
ProvBuild in its ability to reduce re-execution time. However, make
does not address the cognitive load issue nor does it help users

identify problems more efficiently.

StarFlow is a make-like tool that tracks data dependencies in
Python at function-call granularity [3]. The dependency tracking

procedure for StarFlow uses static analysis, dynamic analysis, and

optional user annotations for specifying function inputs and out-

puts. ProvBuild extends this work by removing the need for anno-

tations to track dependencies. Like make, StarFlow does nothing to
reduce cognitive load.

IncPy is a custom, open-source Python interpreter that performs

automatic memoization and persistent dependency management

1095

Authorized licensed use limited to: Harvard Library. Downloaded on August 31,2021 at 17:12:24 UTC from IEEE Xplore. Restrictions apply.

at the function call level. IncPy automatically sends function calls,

inputs, and outputs to a persistent on-disk cache immediately before

the target program is about to return from a function call [23]. By

automatically caching and reusing the results of function calls,

IncPy enables programmers to iterate more quickly on their scripts,

in a manner similar to ProvBuild. We wanted to compare IncPy

re-execution times with those of ProvBuild; unfortunately IncPy

has not been maintained, and we were unable to get it to run on

modern Python scripts.

Similar to IncPy, Joblib is a dynamic analysis tool that transpar-

ently caches arbitrary Python objects to avoid unnecessary com-

putation in Python [53]. IncPy and Joblib are similar to ProvBuild

in the re-execution part, but they do not track dependencies other

than functional ones and also do not address cognitive load.

ProvBuild uses both static and dynamic change impact analy-

sis (CIA) [4]. Generally, CIA identifies the potential consequences

of a change and estimates how to propagate the ramifications of

that change. Static CIA analyzes the syntax, semantics, and change

histories of a program without directly executing it [43, 50]. Dy-

namic change impact analysis captures information by executing

programs on a real or virtual processor and utilizes dynamic infor-

mation about program behavior to determine the potential effects

of a change [32, 33, 40, 41]. CIA has been used in large and evolving

industrial software systems [2] to evaluate test suites when a soft-

ware system changes [46], compare large programs with different

version to highlight changes [8], and analyze change propagation in

large software systems and architectures [20]. Professional software

engineers leverage CIA to estimate large software project changes.

To the best of our knowledge, ProvBuild is a novel application of

CIA, using it to improve runtime and cognitive load during data

analysis development tasks.

Incremental compilation and self-adjusting computation are tech-

niques that attempt to save time by recomputing only those outputs

that depend on changed data [1, 11]. Most of these techniques rely

on dependency graphs that record a computation’s data and control

dependencies so the change-propagation algorithm can identify

sections that are affected by a user modification and rebuild only

these relevant portions. The major result of change propagation is

to incrementally build the script. It is similar to our work, while

ProvBuild also directly improves the user programming experience.

10 CONCLUSION

ProvBuild is a novel use of language-level provenance that stream-

lines the iterative development process by allowing a developer

to focus only on the code that the programmer is debugging. We

use provenance to construct a dependency graph and generate a

simplified script containing only those code blocks pertaining to a

user-specified function or variable. This accomplishes three things.

First, it helps users avoid unnecessary changes to their script (which

frequently introduce new bugs [57]). Second, it makes it easier to

identify and reason about code modifications that are necessary to

correctly achieve a goal. Third, it reduces execution time and users’

cognitive load, because only a portion of the original script is run

at each iteration. Together, these reduce the time and effort it takes

to debug data analysis pipelines. The results of the quantitative

evaluation and the user feedback show that ProvBuild can be an

easy, effective, and efficient tool for data scientists who use scripts

to process and analyze data. To the best of our knowledge, this is

the first time language-level provenance has been used to address

programmer efficiency.

ACKNOWLEDGMENTS

Thank you to Elisa Baniassad and Claire LeGoues for providing

extraordinarily useful feedback and advice on earlier versions of

this work. We also thank the anonymous reviewers for their useful

feedback, which greatly improved this paper. This research was sup-

ported by NSF award #1450277 and the U.S. Air Force and DARPA

under contract FA8750-16-C-0045. We acknowledge the support of

the Natural Sciences and Engineering Research Council of Canada

(NSERC). Cette recherche a été financée par le Conseil de recherches

en sciences naturelles et en génie du Canada (CRSNG).

REFERENCES
[1] Umut A. Acar. 2009. Self-adjusting Computation: (an Overview). In Proceedings of

the 2009 ACM SIGPLANWorkshop on Partial Evaluation and ProgramManipulation
(PEPM ’09). ACM, New York, NY, USA, 1–6. https://doi.org/10.1145/1480945.
1480946

[2] Mithun Acharya and Brian Robinson. 2011. Practical Change Impact Analysis
Based on Static Program Slicing for Industrial Software Systems. In Proceedings
of the 33rd International Conference on Software Engineering (ICSE ’11). ACM, New
York, NY, USA, 746–755. https://doi.org/10.1145/1985793.1985898

[3] Elaine Angelino, Daniel Yamins, and Margo Seltzer. 2010. StarFlow: A script-
centric data analysis environment. In Proceedings of the 3rd International Prove-
nance and Annotation Workshop (IPAW 2010). Lecture Notes in Computer Science,
Vol. 6378. Springer Berlin Heidelberg, Troy, NY, USA, 236–250.

[4] Robert S. Arnold. 1996. Software Change Impact Analysis. IEEE Computer Society
Press, Los Alamitos, CA, USA.

[5] Adam Bates, Dave (Jing) Tian, Kevin R.B. Butler, and Thomas Moyer. 2015.
Trustworthy Whole-System Provenance for the Linux Kernel. In 24th USENIX
Security Symposium (USENIX Security 15). USENIX Association, Washington,
D.C., 319–334. https://www.usenix.org/conference/usenixsecurity15/technical-
sessions/presentation/bates

[6] Hugh Beyer and Karen Holtzblatt. 1997. Contextual Design: Defining Customer-
Centered Systems. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[7] Michelle A Borkin, Chelsea S Yeh, Madelaine Boyd, Peter Macko, KZ Gajos, M
Seltzer, and H Pfister. 2013. Evaluation of filesystem provenance visualization
tools. IEEE transactions on visualization and computer graphics 19, 12 (2013),
2476–2485.

[8] L. C. Briand, Y. Labiche, and L. O’Sullivan. 2003. Impact Analysis and Change
Management of UML Models. In Proceedings of the International Conference on
Software Maintenance (ICSM ’03). IEEE Computer Society, Washington, DC, USA,
256–.

[9] Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. 2000. Data provenance:
Some basic issues. In FSTTCS 2000: International Conference on Foundations of
Software Technology and Theoretical Computer Science. Springer Berlin Heidelberg,
Springer Berlin Heidelberg, Berlin, Heidelberg, 87–93.

[10] Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan. 2001. Why and Where:
A Characterization of Data Provenance. In Proceedings of the 8th International
Conference on Database Theory (ICDT ’01). Springer-Verlag, Berlin, Heidelberg,
316–330.

[11] Magnus Carlsson. 2002. Monads for Incremental Computing. In Proceedings of the
Seventh ACM SIGPLAN International Conference on Functional Programming (ICFP
’02). ACM, New York, NY, USA, 26–35. https://doi.org/10.1145/581478.581482

[12] Kathy Charmaz and Linda L Belgrave. 2012. Qualitative interviewing and grounded
theory analysis. SAGE Publications Inc., 347–366. https://doi.org/10.4135/
9781452218403.n25

[13] James Cheney, Amal Ahmed, and Umut a. Acar. 2011. Provenance As Dependency
Analysis. Mathematical. Structures in Comp. Sci. 21, 6 (Dec. 2011), 1301–1337.
https://doi.org/10.1017/S0960129511000211

[14] Cary Deck and Salar Jahedi. 2015. The effect of cognitive load on economic
decision making: A survey and new experiments. European Economic Review 78
(2015), 97–119. https://doi.org/10.1016/j.euroecorev.2015.05.004

[15] Stuart I Feldman. 1979. Make - A program for maintaining computer programs.
Software: Practice and experience 9, 4 (1979), 255–265.

[16] Inc. Free Software Foundation. 2016. Autoconf. https://www.gnu.org/software/
autoconf/. Accessed Aug 16, 2019.

1096

Authorized licensed use limited to: Harvard Library. Downloaded on August 31,2021 at 17:12:24 UTC from IEEE Xplore. Restrictions apply.

[17] Juliana Freire and Fernando Chirigati. 2018. Provenance and the Different Flavors
of Reproducibility. IEEE Data Eng. Bull. 41, 1 (2018), 15–26.

[18] Juliana Freire, David Koop, Emanuele Santos, and Cláudio T Silva. 2008. Prove-
nance for computational tasks: A survey. Computing in Science & Engineering 10,
3 (2008), 11–21. https://doi.org/10.1109/MCSE.2008.79

[19] Boris Glavic, Gustavo Alonso, Renée J. Miller, and Laura M. Haas. 2010. TRAMP:
Understanding the Behavior of Schema Mappings through Provenance. Proc.
VLDB Endow. 3, 1âĂŞ2 (Sept. 2010), 1314âĂŞ1325. https://doi.org/10.14778/
1920841.1921003

[20] Arda Goknil, Ivan Kurtev, and Klaas van den Berg. 2016. A Rule-Based Change
Impact Analysis Approach in Software Architecture for Requirements Changes.
CoRR abs/1608.02757 (2016). arXiv:1608.02757

[21] Leo A Goodman. 1961. Snowball sampling. The Annals of Mathematical Statistics
32, 1 (1961), 148–170. https://doi.org/10.1214/aoms/1177705148

[22] Jaber F Gubrium, James A Holstein, Amir B Marvasti, and Karyn D McKinney.
2012. The SAGE Handbook of Interview Research: The Complexity of the Craft.
SAGE Publications, Thousand Oaks, CA.

[23] Philip J. Guo and Dawson Engler. 2011. Using Automatic Persistent Memoization
to Facilitate Data Analysis Scripting. In Proceedings of the 2011 International
Symposium on Software Testing and Analysis (ISSTA ’11). ACM, New York, NY,
USA, 287–297. https://doi.org/10.1145/2001420.2001455

[24] Eija Haapalainen, SeungJun Kim, Jodi F. Forlizzi, and Anind K. Dey. 2010. Psycho-
physiological Measures for Assessing Cognitive Load. In Proceedings of the 12th
ACM International Conference on Ubiquitous Computing (UbiComp ’10). ACM,
New York, NY, USA, 301–310. https://doi.org/10.1145/1864349.1864395

[25] Sandra G Hart. 2006. NASA-task load index (NASA-TLX); 20 years later. Proceed-
ings of the Human Factors and Ergonomics Society Annual Meeting 50, 9 (2006),
904–908. https://doi.org/10.1177/154193120605000909

[26] Sandra G Hart and Lowell E Staveland. 1988. Development of NASA-TLX (Task
Load Index): Results of empirical and theoretical research. Human mental work-
load 1, 3 (1988), 139–183.

[27] S. Holm. 1979. A simple sequentially rejective multiple test procedure. Scandina-
vian Journal of Statistics 6, 65-70 (1979), 1979.

[28] Jingmei Hu. 2020. CrystalMei/ProvBuild: ProvBuild Code for ICSE’20 (2020.1.27).
https://doi.org/10.5281/zenodo.3628097

[29] Gary King. 2007. An Introduction to the Dataverse Network as an Infrastructure
for Data Sharing. Sociological Methods and Research 36 (2007). https://doi.org/10.
1177/0049124107306660

[30] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica B Hamrick, Jason
Grout, Sylvain Corlay, and et al. 2016. Jupyter Notebooks - a publishing format for
reproducible computational workflows. In Positioning and Power in Academic Pub-
lishing: Players, Agents and Agendas, 20th International Conference on Electronic
Publishing. IOS Press, Göttingen, Germany, 87–90. https://doi.org/10.3233/978-
1-61499-649-1-87

[31] BW Lampson. 1976. Bravo Manual in the Alto User’s Handbook. Xerox Palo Alto
Research Center (1976).

[32] James Law and Gregg Rothermel. 2003. Incremental dynamic impact analysis for
evolving software systems. In Proceedings of the 14th International Symposium
on Software Reliability Engineering, 2003. ISSRE 2003. IEEE Computer Society,
Denver, CO, USA, 430–441. https://doi.org/10.1109/ISSRE.2003.1251064

[33] James Law and Gregg Rothermel. 2003. Whole Program Path-Based Dynamic
Impact Analysis. In Proceedings of the 25th International Conference on Software
Engineering (ICSE ’03). IEEE Computer Society, Washington, DC, USA, 308–318.

[34] Barbara Lerner, Emery Boose, and Luis Perez. 2018. Using Introspection to
Collect Provenance in R. Informatics 5, 1 (2018), 12. https://doi.org/10.3390/
informatics5010012

[35] Ian A. Macleod. 1977. Design and implementation of a display oriented text
editor. Software: Practice and Experience 7, 6 (1977), 771–778. https://doi.org/10.
1002/spe.4380070611

[36] Kiran-KumarMuniswamy-Reddy, David A. Holland, Uri Braun, andMargo Seltzer.
2006. Provenance-aware Storage Systems. In Proceedings of the Annual Conference
on USENIX ’06 Annual Technical Conference (ATEC ’06). USENIX Association,
Berkeley, CA, USA, 4–4.

[37] Leonardo Murta, Vanessa Braganholo, Fernando Chirigati, David Koop, and Ju-
liana Freire. 2015. noWorkflow: Capturing and Analyzing Provenance of Scripts.
In Provenance and Annotation of Data and Processes. Springer International Pub-
lishing, Cham, 71–83.

[38] The President & Fellows of Harvard College. 2015. API Guide. http://guides.
dataverse.org/en/4.2/api/. Accessed Aug 7, 2018.

[39] The President & Fellows of Harvard College. 2017. Harvard Dataverse. https:
//dataverse.harvard.edu/. Accessed Aug 7, 2018.

[40] AlessandroOrso, TaweesupApiwattanapong, andMary JeanHarrold. 2003. Lever-
aging Field Data for Impact Analysis and Regression Testing. In Proceedings of the
9th European Software Engineering Conference Held Jointly with 11th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (ESEC/FSE-
11). ACM, New York, NY, USA, 128–137. https://doi.org/10.1145/940071.940089

[41] Alessandro Orso, Taweesup Apiwattanapong, James Law, Gregg Rothermel, and
Mary Jean Harrold. 2004. An Empirical Comparison of Dynamic Impact Analy-
sis Algorithms. In Proceedings of the 26th International Conference on Software
Engineering (ICSE ’04). IEEE Computer Society, Washington, DC, USA, 491–500.

[42] Thomas Pasquier, Xueyuan Han, Mark Goldstein, Thomas Moyer, David Ey-
ers, Margo Seltzer, and Jean Bacon. 2017. Practical Whole-System Provenance
Capture. In Proceedings of the 2017 Symposium on Cloud Computing (SoCC
âĂŹ17). Association for Computing Machinery, New York, NY, USA, 405âĂŞ418.
https://doi.org/10.1145/3127479.3129249

[43] Maksym Petrenko and Václav Rajlich. 2009. Variable granularity for improving
precision of impact analysis. In The 17th IEEE International Conference on Program
Comprehension, ICPC 2009, Vancouver, British Columbia, Canada, May 17-19, 2009.
IEEE Computer Society, Vancouver, BC, Canada, 10–19. https://doi.org/10.1109/
ICPC.2009.5090023

[44] João Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and Juliana Freire.
2017. noWorkflow: A Tool for Collecting, Analyzing, and Managing Provenance
from Python Scripts. Proc. VLDB Endow. 10, 12 (2017), 1841–1844. https://doi.
org/10.14778/3137765.3137789

[45] E. D. Ragan, A. Endert, J. Sanyal, and J. Chen. 2016. Characterizing Provenance in
Visualization and Data Analysis: An Organizational Framework of Provenance
Types and Purposes. IEEE Transactions on Visualization and Computer Graphics
22, 1 (Jan 2016), 31–40. https://doi.org/10.1109/TVCG.2015.2467551

[46] Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G. Ryder, and Ophelia Chesley. 2004.
Chianti: A Tool for Change Impact Analysis of Java Programs. In Proceedings
of the 19th Annual ACM SIGPLAN Conference on Object-oriented Programming,
Systems, Languages, and Applications (OOPSLA ’04). ACM, New York, NY, USA,
432–448. https://doi.org/10.1145/1028976.1029012

[47] Juliet P. Shaffer. 1995. Multiple Hypothesis-Testing. Annual Review of Psychology
46 (1995), 561–584.

[48] ClÃąudio T. Silva, Erik Anderson, Emanuele Santos, and Juliana Freire. 2011.
Using VisTrails and Provenance for Teaching Scientific Visualization. Computer
Graphics Forum 30, 1 (2011), 75–84. https://doi.org/10.1111/j.1467-8659.2010.
01830.x

[49] Leslie N. Smith. 2018. A disciplined approach to neural network hyper-
parameters: Part 1 – learning rate, batch size, momentum, and weight decay.
arXiv:cs.LG/1803.09820

[50] Xiaobing Sun, Bixin Li, Chuanqi Tao, Wanzhi Wen, and Sai Zhang. 2010. Change
Impact Analysis Based on a Taxonomy of Change Types. In Proceedings of the
2010 IEEE 34th Annual Computer Software and Applications Conference (COMPSAC
’10). IEEE Computer Society, Washington, DC, USA, 373–382. https://doi.org/10.
1109/COMPSAC.2010.45

[51] D. J.J. Toal, N.W. Bressloff, A. J. Keane, and C.M.E. Holden. 2011. The development
of a hybridized particle swarm for kriging hyperparameter tuning. Engineering
Optimization 43, 6 (2011), 675–699. https://doi.org/10.1080/0305215X.2010.508524

[52] Wil MP Van der Aalst. 2014. Data Scientist: The Engineer of the Future. In
Enterprise Interoperability VI. Springer International Publishing, Cham, 13–26.

[53] G Varoquaux and O Grisel. 2009. Joblib: running Python function as pipeline
jobs. packages. python. org/joblib.

[54] Gary V. Vaughan and Thomas Tromey. 2000. GNU Autoconf, Automake and
Libtool. New Riders Publishing, Thousand Oaks, CA, USA.

[55] Adrian Ward, Kristen Duke, Ayelet Gneezy, and Maarte Bos. 2017. Brain Drain:
The Mere Presence of One’s Own Smartphone Reduces Available Cognitive
Capacity. Journal of the Association for Consumer Research 2, 2 (2017), 140–154.
https://doi.org/10.1086/691462

[56] Mark Weiser. 1981. Program Slicing. In Proceedings of the 5th International
Conference on Software Engineering (ICSE ’81). IEEE Computer Society, Piscataway,
NJ, USA, 439–449.

[57] Zuoning Yin, Ding Yuan, Yuanyuan Zhou, Shankar Pasupathy, and Lakshmi
Bairavasundaram. 2011. How Do Fixes Become Bugs?. In Proceedings of the 19th
ACM SIGSOFT Symposium and the 13th European Conference on Foundations of
Software Engineering (ESEC/FSE ’11). ACM, New York, NY, USA, 26–36. https:
//doi.org/10.1145/2025113.2025121

1097

Authorized licensed use limited to: Harvard Library. Downloaded on August 31,2021 at 17:12:24 UTC from IEEE Xplore. Restrictions apply.

