Quantifying Carbon Cycle-Climate Feedbacks

Jonathan Moch

Mentors: Thomas Froelicher, Keith Rodgers, and Jorge Sarmiento

Feedbacks Overview

- Feeback = amplification or suppression of an initial input into a complex system
- Positive or negative
 - E.g.: Permafrost melt, CO₂ fertilization
- Objective: Deconstruct Carbon Cycle –climate feedbacks
- Useful for comparing models and getting at mechanisms

MULTI-MODEL AVERAGES AND ASSESSED RANGES FOR SURFACE WARMING

Terminology

- $\alpha = K / ppm CO_2$
 - Linear transient climate sensitivity
- $\beta = GtC / ppm CO_2$
 - Sensitivity of carbon uptake to atmospheric CO₂
- $\gamma = GtC / K$
 - Sensitivity of carbon uptake to temperature change

Beta Land

1% Concentration Scenario Alpha Progression

Influence of Starting Point on Transient Ocean Gamma

Conclusions

- ESM2M relatively unresponsive
- Feedback factors are not actually linear
- Regressions yield different results from instantaneous slope when started from different points
- Regional differences appear to converge after spin-up
 - Less clear on a global scale
- Larger magnitude β and γ if ignore spin-up, smaller α
- Intra-model uncertainty much smaller than inter-model uncertainty
 - Might make a difference on the margins