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Detecting shocks: 
Outliers and breaks in time series 

Abstract 

A single outlier in a regression model can be detected by the effect of its deletion on the 
residual s irn of squares. An equivalent procedure is the simple intervention in which an 
extra parameter is added for the mean of the observation in question. Similarly, for 
unobserved components or structural time-series models, the effect of elaborations of the 
model on inferences can be investigated by the use of interventions involving a single 
parameter, such as trend or level changes. Because such time-series models contain more 
than one variance, the effect of the intervention is measured by the change in individual 
variances. 

We examine the effect on the estimated parameters of moving various kinds of 
intervention along the series. The horrendous computational problems involved are 
overcome by the use of score statistics combined with recent developments in filtering 
and smoothing. Interpretation of the resulting time-series plots of diagnostics is aided by 
simulation envelopes. 

Our procedures, illustrated with four example, permit keen insights into the fragility of 
inferences to specific shocks, such as outliers and level breaks. Although the emphasis is 
mostly on parameter estimation, forecast are also considered. Possible extensions include 
seasonal adjustment and detrending of series. @ 1997 Elsevier Science S.A. 
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The purpose of this paper is to develop powerful methods for detecting 
specific inadequacies in time-series models. We use the unobserved component 
or structural approach to time-series modelling, that is dynamic linear methods, 
to provide procedures which have much in common with the well-known 
diagnostics for multiple-regression models. A single outlier in a regression model 
can be detected by the effect of its deletion on the residual sum of squares. An 
equivalent procedure is the simple intervention in which an extra parameter is 
added for the mean of the observation in question. The effect on the residual sum 
of squares is identical in the two cases. Similarly, for unobserved-component 
time-series models, the effect of changes in the data on the model can be 
investigated by the use of interventions corresponding to physically identifiable 
features involving a single parameter, such as trend or level changes. Because 
these time-series models include more than one variance, the effect of the 
intervention is measured by the effect on the individual variances, which we call 
the parameters of the model, The paper describes the working out of this simple 
idea and illustrates it with examples. 

There is a large and growing literature on regression diagnostics, including 
the book length treatments of Cook and Weisberg (1982), Atkinson (1985) 
and Chatterjee and Hadi (1988), Recent review articles for the extension to 
generalized linear models are Davison and Tsai (1992) and O’Hara Hines and 
Carter (1993). Central to this literature is the distinction between outlier detec- 
tion and the influence of observations on specific inferences. There is likewise 
a large literature on the detection of outliers in time series, which is often taken 
to start with Fox (1972). The distinction made there between additive and 
innovation outliers is extended to multiple outliers by Bruce and Martin (1989) 
in a paper which, with its discussion, contains references to much of the 
literature on outliers in time series, for example, Muirhead (1986) and Tsay 
(1986). A more recent paper is Liung (1993). Chen and Liu (1993) study the joint 
estimation of parameters and df outliers, while Balke (1993) demonstrates the 
difficulty outlier detection methods can face in the presence of a shift in level. 
However, there has been appreciably less work on influential observations than 
on outlier detection. 

In regression models, an overall measure of the influence of an observation is 
Cook’s distance (Cook, 1977). Pefia (1990) obtains a similar measure for 
ARIMA models extended in PeEa (1991) to models including regression. For 
state-space models, Kohn and Ansley (1989) obtain studentized residuals and 
leverage measures analogous to those for regression models when the variance 
parameters are known. Harrison and West ( 1991) and Harrison and Veerapen 
(1993) extend these results to Bayesian and non-Bayesian deletion diagnostics 
and obtain a version of Cook’s distance. These results do not assume that all the 
variances are known, although it is crucial that the signal-to-noise ratios are 
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assumed given. Atkinson and Shephard (1996) use the rest&s to calculate 
deletion t-statistics for testing the influence of individual observations on regres- 
sion coefficients. Their examples concentrate on constructed variables for power 
transformation of the time series. 

Our approach is based on inspecting plausibly interesting and interpretable 
departures, some of which are related to those examined by the more conven- 
tional diagnostics. These departures are generated by a generalized form of 
intervention analysis. In sta ard intervention analysis interest is in the effect of 
a known exogenous change the model. For example, Box and Tiao (1975) use 
an ARMA model to analyse the effect of the opening of a freeway in 1960, and of 
changes in the design of car engines in 1966, on the level of ozone in Los Angeles. 
A second example is given by arvey and Durbin (1986) in which the interest is 
in the effect on the number of car drivers killed of legislation which became 
effective at the end of January 1983. 

Although Harvey and Durbin, unlike Box and Tiao, use unobserved-compon- 
ent time-series models, the principle is the same in that these methods assume 
that the specific times of intervention or of shock to the system are known. 
A more recent development among time-series econometricians has been the 
attempt to detect the time of specific shocks in series, for example, the appendix 
to McCulloch and Tsay (1993) lists events that might have effected the world 
market in oil. More generally, following Perron (8989) and Rappoport and 
Reichlin (1989), there has been a significant effort to identify the time of 
slowdown in the growth rate of GDP in the US. Most of the work has focussed 
on univariate autoregressive models and the use of non-standard asymptotic 
theory to look at the maximum of breakpoint statistics over the whole sample. 
An example of recent work is Christian0 (1992), who references much of the 
literature. Our purpose is the more general diagnostic one of determining 
whether inferences from the model, specifically parameter estimates and fore- 
casts, are fragile, i.e. is they respond significantly to changes in the fitted model. 
To achieve this we use an intervention for each unobserved component and 
examine the effect as the intervention is moved along the series. Thus, for the 
irregular component of the model we look at the effect of modelling a single 
additive outlier at each time point. 

Plausible departures from the model are given in Section 2. Since unobserved 
components models have ARIMA representations, our methods have an 
ARIMA interpretation. We argue that an advantage of our methods is that 
single identifiable causes for departures are more easily identified than by the 
procedures for ARIMA models which tend to smear departures in one compon- 
ent into diagnostics for several aspects of the model. In Section 3 we discuss how 
to assess the effect of the shock. Possible measures include the change in 
log-likelihood or “ie change in the estimated parameter. For inferential pur- 
poses we work with a marginal-likelihood function. Since we look at up to four 
forms of intervention for each time point, it is clearly not possible to re-estimate 
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the parameters for each intervention. We therefore use a score statistic which 
avoids such re-estimation. From this we derive a one-step estimate of the effect 
of the intervention on the parameter. The statistical significance of these esti- 
mates is assessed by plots incorporating simulation envelopes, The details of the 
derivation of the score function and one-step estimates are given in Section 4. 
Also, in Section 4 we present a brief comparison of our scaled one-step estimator 
with the t-statistic found by running each intervention along the series. The 
t-statistic is improved by use of the one-step estimate to adjust the estimated 
variance for the effect of the intervention. 

In standard regression models, the effect of the addition of an extra variable 
can be assessed by the use of an added-variable plot in which the residuals of the 
response are plotted against the residuals of the extra variable. Both sets of 
residuals are from regression on all variables already in the model. Regression of 
one set of residuals on the other yields the coefficient for the new variable in the 
multiple-regression model containing all variables, together with its associated 
t-test. Related, although more complicated, results for unobserved component 
models are given in Section 4.1. The combination of these results for added 
variables with the results on score tests provides elegant and speedy methods for 
the calculation of the simulation envelopes and stresses the relationship with 
diagnostics for regression models. These results are illustrated with an analysis 
of data on US exports to Latin America. Properties of the simulation envelope 
are investigated in Section 5. Further examples are in Section 6. In Section 7 we 
consider the effect of shocks on forecasts and the paper concludes in Section 
8 with a few comments on unsolved problems. 

2. Interwting directions 

The unobserved component or Gaussian state-space model has proved to be 
a useful tool for handling linear and many non-linear time-series models. Book 
length treatments of the subject include West and Harrison (i989), who prefer 
the name dynamic linear models (Harvey, 1989 especially Ch. 3) and, from an 
engineering perspective, Anderson and Moore (1979). General expressions for 
the measurement and transition equations are given in Section 4. The model for 
the observations yt may contain regression variables and, indeed, this is how the 
shocks are introduced in Section 4. In all our examples, yt contains an irregular 
component. In addition, there may be level, slope, seasonal or other components 
such as cycles. To test how fragile the estimated model is, we modify one of the 
components, or introduce a new one, and see whether there are changes in 
important features of the fitted model. In particular, tests for stability to shocks 
in those components which are included, are determined from the effect of the 
addition of regression variables of the form shown in Fig. 1. We calculate the 
effect of moving each regression variables along the series, so adding one extra 
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Fig. 1. Added variables for interventions modelling: (a) an additive outlier; (b) a level break; (c) 
a slope change and (d) seasonal change. . 1 

parameter to the model at each time point in turn, and see how the fit of the 
model changes as a result of this extra parameter. A large decrease in the 
estimate of one of the variances associated with the measurement or transition 
equations indicates sensitivity of the model to the intervention. Suppose, for 
example, there were an unusually large level break in the series at t = 16. The 
fitted model would then have an inflated value of the variance for the stochastic 
level. The addition of the regression variable of Fig. fb at t = 16 would 
dramatically reduce the variance, which would also be somewhat reduced by 
adding the variable at t = 15 or 17. However, introducing the variable at 
appreciably larger or smaller values of t would have no, or a negligible, effect. 

For regression models with independent errors the irregular intervention 
clearly corresponds to deletion of an observation. But with the more compli- 
cated error structure of time-series models, outliers affect neighbouring observa- 
tions. Consider, for example, the effect of an additive outlier on an ARIMA 
model (Fox, 1972). Suppose that the model is a random wak. Then differencing 
will be necessary to obtain white noise. The result is that the additive outlier will 
be smeared over two adjacent time points. Similarly, digerencing twice to 
remove a stochastic linear trend will spread the outlier over three time points. 
This effect is noticeable in the plots of the ‘leave-k-out’ diagnostics of Bruce and 
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Martin. The argument of the preceding paragraph on the effect of the variable 
for the change in level indicates that some of our diagnostics may also be subject 
to some smearing. We show in Section 4 that this effect is reduced by using the 
one-step estimates of the changes in the parameters due to the shocks. 

The result of our analysis for any particular shock is a time-series plot 
accompanied by a simulation envelope. Plots of a similar type, but without 
envelopes, are given by Harvey and Koopman (1992) who estimate the residuals 
for the measurement and transition equations. The relationship between the two 
procedures is explored in Section 4. Harvey and Koopman rely on aggregate 
statistics, such as the skewness and kurtosis tests of normality and their combi- 
nation in the Bowman-Shenton statistic (Bowman and Shenton, 1975), to 
provide tests of statistical significance. In line with the approach of regression 
diagnostics, we focus instead of statistics associated with individual observa- 
tions and specific features of the data or model. 

3. Measuring the effect of shocks 

Let the parameter of interest be 6, which is a vector function of the variances 
in the measurement and transition equations, and let 0 be its maximum-likeli- 
hood estimator. It is the value of 0 which controls the rate of discounting of past 
observations. We want to measure the effect on the estimation of 0 of the 
intervention modelled by inclusion of the regression variable with coefficient fi. 
One possibility, in line with the approach to added and constructed variables in 
regression, is to calculate the t-statistic for b. It is however not clear that this is 
the most appropriate quantity. The i-statistic may be expected to be more 
informative about how the estimate of p changes near the intervention than it is 
about changes in the estimate of 0. For the remainder of this section we focus on 
estimation of 6. The close relationship between the t-statistic and changes in the 
estimate of 0 due to the intervention is described in Section 4.1, with some 
numerical assessment of the relationship in Section 4.3. 

There is, however, an inferential complication. We require to make inferences 
about the time-series parameter 8 in the presence of the nuisance parameter p, It 
is clearly possible to work with the profile-log-likelihood found by maximizing 
over p for given 6. But unless p and 0 are approximately orthogonal (Cox and 
Reid, 1987) a biased estimate of 0 will result. This is certainly the case for 
unobserved components models (Shephard, 1993b). 

Instead we could 

(I) employ a Bayesian argument to place a diffuse prior on the coefficient p and 
integrate cut leading to a new likelihood function; 

(2) construct a marginal-likelihood function (Tunnicliffe Wilson, 1989). 
(3) derive the modified profile-likelihood function. 
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For the class of models we are considering (Gaussian unobserved components 
models with explanatory variables) the three approaches mercifully yield an 
identical solution. 

Let the variable applied at time t be of thejth type, perhaps one of the four of 
Fig. 1. To stress the connection with deletion diagnostics in regression we call 
the estimate of the parameter from the marginal-likelihood &, J3. If the maxi- 
mized log-likelihood for the unperturbed model is L(8), the difference in the 
log-likelihood due to addition of the explanatory variable is 

L(t, j)(b,. j)) - L(@. 
Because L,,,J.) is a marginal-log-likelihood this QifFerence can be positive or 
negative: the standard asymptotic chi-squared distribution does not apply. 
Calculation of (1) requires estimation of the parameter ott.jl. Unfortunately, the 
estimation of the parameters in an unobserved components model is the com- 
putationally most intensive step, involving many passes of the Kalman filter. We 
therefore work with a score version of the difference in log-likelihoods which 
avoids re-estimation of the parameters for each combination of t and j. 

Let the score for the marginal-log-likelihood be 

with the corresponding definition for s(6) as a derivative of L(O). Then the 
change or difference in scores due to the intervention evaluated at some 0 is 

The second term on the right-hand side of (2) is identically zero when 6 = 2. 
Although these scores are of interest, they are relatively highly correlated across 
the various elements of 0. A more nearly orthogonal set of variables is obtained 
from the one-step estimates of the parameters 

In (3)](g) is the observed information found from the numerical matrix of second 
derivatives from the likelihood fitting. Explicit expressions for the score and 
one-step estimates for vector 0 are given in the next section. For plotting we 
standardize the one-step estimates to give Wald-like t-statistics for the elements 
of 6l.j) (for example, Cox and Hinkley, 1974, p. 314). 

The empirical distribution of 8t.j) can be found by simulation using 8 as the 
true parameter value to generate new series ytk) for k from 1 to K. The 
maximum-likelihood estimate of 6 for this simulation is &) and we can find the 
simulated one-step estimate a$,;, from C~:li, 
#“I and 8 = &? 

{ak)> given by (2) when the data are 
H owever, we avoid calculation of @) by noting that ctt,jl(@) is 

the difference of two scores. If the model is correctly specified and the sample size 
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is large, its log-likelihood will be approximately quadratic, with the same 
curvature as that of its simulated versions. Thus, the two scores will be approx- 
imately linear in 0 with the same slope so that, on taking differences, the precise 
value of 0 used to evaluate the scores is not important. So, from (3), we take the 
empirical distribution of 

qj, = 8 + j- ‘(@c;;,)#), 9 (4) 

but now ~(~~(6) is, in general, not equal to zero. We stress the importance of this 
simple approximation which makes feasible the calculation of simulation envel- 
opes for the computationally intensive methods of this paper. 

The models we analyse in this paper can be placed into the Gaussian 
state-space form 

y, = z*a, + E,, 2, = T&q- 1 + ?yt, t = 1, . . . , n, 

a0 1 &I - w%, f39 4 - NQ, w, 4 - w9 QA (6) 

where Y, denotes the information available at time t. Here erO/ YO, (EJ and (q,) are 
independent of one another for all t and s and the initial conditions a0 and PO 
are known. We will assume, for simplicity of exposition, that all the parameters 
which index this model are in the H, and Qt matrices. Then the score can be 
derived in two stages, following Koopman and Shephard (1992), who exploit an 
argument similar to that leading to the EM algorithm. First a Kalman filter is 
run through the data 

a,,lI, = Tl+lat~,-l + Kh, P 1 + 111 = n+lP,,l- 1G + Qr+l, 

4 Yt =: - z&4,,- 13 4 = w,,, - z + 4, 

K, = L-lP,,,- AK’, L, = Tt+* - K,Z,, t = 1, . . . ,n* (7) 

storing only ut, &-’ and K,. In our implementation this is followed by the 
disturbance smoother of Koopman (1993) which is passed through the data, 
starting with qE = 0 and N, = 0 and letting 

e, = F;- ’ v, - Kir,, r,_ 1 = IT;&- l v, “t Lir;, 

D, = Ftel + KiN,K,, N,_l = Z:F,-‘Z, + LiN,L,, t = n, . . . ,l. (8) 

In (8) e,, rtml, D, and N,-r have a simple intuitive interpretation: H,e, is the 
smoothed estimate of Ed and Qr,- 1 the corresponding estimate for qt. The mean 



A.C. Atkinson et d. / Jomad of Econometrics 80 (199,7! 387422 385 

squared errors are, respectively, Hr - H&Hi and Qt - 
recursive calculations yieid the score function which has 

which is one of the oopman and Shephard results. 
As the disturbance smoother only involves the multiplication of typically 

sparse vectors and matrices it tends to be much more rapid than the conven- 
tional smoothing algorithms. Usually, it takes about the same time as does the 
Kalman filter for a forward pass. 

4.1. Algebra of added variables 

Suppose we now change the model to 

&r - w, W), utt - W4 QA w 
where the prior is now independent of E, and qs for all t and s. Usually, SO and 
sO may be taken to be a matrix and vector of zeros, respectively. Here X, allows 
the introduction of explanatory variables, and hence interventions, into the 
model. 

At first sight it seems that if we wish to manipulate the filtered and smoothed 
quantities, or the corresponding score, for this new model we have to re-run 
both (7) and (8), followed by recalculation of (9). However, this is not the ease. 
Use of the auxiliary recursions of de Song (1989) circumvents this necessity. His 
recursions have a number of parts. The first part, the auxiliary filter, corrects the 
old run of the Kalman filter for the presence of the new explanatory variables, It 
does this by first computing 

EpIYt=bt=S~‘s, and E(B-b,)(B-b,)‘lY,=S;-‘, 

where Sr and s, are found recursively through 

W) 

5, = s,-1 + V:Ft-‘u,, St = St_1 f Vi&-‘I/t, 

vr = - X, - &%I,-,, &+I,r = TtA,,-, +&I/,, t = 1, .-. ,fl. 

starting with AllO = T1cro. 
The auxiliary filter is the generalization to time-series models of the catcu- 

lations leading to the added variable plot for regression models mentioned in 
Section 1. There the effect of a new regression variable Xt was found by first 
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calculating its residual after regression on the other variables. Regrzssion of the 
residuals of yt on these new residuals provided quantities for the adjustment of 
the fitted model for inclusion of the extra variable. The same intuition applies to 
the auxiliary filter. We re-run the Kalman filter not on y,, but instead on - &. 

he model is now 

- Xtj = Ztc$ +E,, rcf = T,z?_~ --k,&, t- 1, . . . . n, j= J, . . . . p, 

(121 
that is each vector of the matrix X, is fitted by the old model. This generates the 
sequence of innovations which are stacked as v/t, each with mean square error 
Ft and Kalman gain K,. They are unchanged from the old Kalman filter because 
the dynamics of the model are, not altered and so do not have to be recomputed. 
Having run both J+ and - X, through the filter, the estimate of /3 is then 6t. This 
follows from the standard theory of generalized least squares as I.+ and V/t are the 
recursive residuals from the two fits. It is useful to note that if yt and p are 
univariate then all of these recursions, except for A, + 11t, will be scalar. As 
A l + ,,I is a vector and is formed by multiplying sparse matrices and vectors it will 
not take long to run: running through this filter is computationally trivial. Here 
only Vt will need to be stored for later use by the auxiliary smoother. 

8n its own, this result allows the efficient computation of the t-statistic for p, 
for testing whether the intervention is significant. This was mentioned in Section 
3 and will be discussed at some length next. 

The estimates from the old Kalman filter a, + ilr and P, + lIr can now be 
corrected for the effect of introducing the regression variables. The new values 
will be indicated by *. They take on the form 

4% IIt = at + tit + 4 + &, 
t = 1, . . . ,n. 

PI”, tit = f't + IIt - At + ,,,&A: ,- IIt 

These quantities will be useful later when we discuss the fragility of forecasts, but 
for now we turn our attention to correcting the disturbance smoother. 

The second part of de Jong’s recursions, the auxiliary smoother, has the form 

Et=Ft~‘Vt-K~Rt, R,-1 =ZjE,+ TiR,, t=n, . . ..I 

starting with & = 0. Again & and R,- l have a simple intuitive interpretation. 
I&& and Q,R,_ 1 are the smoothed estimates of Et and qr_ 1 using - X, as the 
observations. 

If, in an obvious notation, we write the new smoothing quantities for the 
model which includes the explanatory variables as ef, RF, IIf and N,$ then 

* 
et = et + Elbn, $_ 1 = rt- 1 + Rt-J41, 

DF = Dt -I&S,%;, N:Dl = Nt-l - R,-,S;‘R;+ 
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These simple expressions mean that the sccre for the marginal-log-Ii 
when X, is the jth intervention at time t is 

which implies 

a log ~,,,~,(e) a log ~(8) 
aOi - a& 

To gain some insight into the meaning of this expression it is useful to return 
PIFy, being urnvariate and /3 being scalar. Then tP = b,lS, ‘I2 is the t-statistic for 
the significance of the intervention which is being assessed. The change in the 
score (13) becomes 4 

There are a number of general points to be made about this expression. First, 

does not depend on the data, only on the form or ‘design’ of the intervention. 
Hence, the first part of the expression is a scaIed and relocated versipn of the 
squared t-statistic. 

The second term is rather different. Although it is a multiple of the t-statistic, 
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depends on the data and the form of the intervention. For time-invariant 
models, this is a function of 1 e, E, and C r, _ t R, _ r. 

To understand these expressions in more detail we focus on time invariant 
models. Further, the scalar H will depend only on a single parameter which we 
take as 6i. All the other elements of 0 will be related to 9. We will assume Q is 
diagonal and that 0 k+ 1 relates onIy to the (k)th element of the diagonal. This 
setup will be true in all our applied work. If, for a moment, we focus onelements 
of 0 which correspond to H then 

where tz = (C e,E,/x Ef)/S, l/2 and SE = z:= 1 Ef . Of course t$ is a scaled 
version of the regression coefficient of e, on Et, that is of the old smoothed 
estimate of Ed on the new one when the intervention is included in the model. If 
the intervention has little effect the change in the score will be just (ta - 1)2 as 
tj should be close to one. When the effect is more pronounced, the score statistic 
may be far from this value. 

In the same manner 

a log &t. jda) _ a log L(o) 
ah. 1 

R(k) 

gives the corresponding score for the Q parameters. Here we have defined 

In these expressions, rt_ 1 and R,_ 1 represent scaled smoothed estimates of 
qr before and after the intervention. The same logic applies to them, and their 
effect, as applied above for e, and E,. 

4.2. One-step re-estimation 

The central theme of this paper is the assessment of the fragility, or lack of 
robustness, of the inferences from the data analysis to small changes in the 
specification of the model. In time-series modelling these will be mainly deter- 
mined by the value of the estimated parameters Ht and Q,, for they control the 
rate of discounting and so influence forecasting, seasonal adjustment, detrend- 
ing, etc. To focus attention on these parameters we argued in Section 3 that we 
transform from the scores into one-step scoring estimates of 0. If we writeJO) to 
denote the observed information matrix at 8, then we will be interested in the 
distance 
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or more precisely its scaled analogue 

where the superscripts denote elements of vectors and matrices. Recall that 
j- ‘(0) will be a byproduct from an optimizing algorithm for f&ding 0 tend so 
its presence does not add much to the complexity of our diagnostic statistics, 
Our intention is to graph the elements of dft,n against t, for each value of j 
which indexes the type of intervention, and discuss their usefulness in assessing 
fragility. 

4.2. I. Example. Latin-American exports 
TO see the form these diagnostic quantities take, we re-examine the data on 

US exports to Latin-America discussed in Burman (1985), Bruce and Martin 
( 1989) and Harvey and Koopman ( 1992). To make the problem harder we foI low 
the last of these authors and work at the quarterly, rather than monthly, level of 
aggregation - leaving the data ranging from 66Ql to 8364. The logarithms of 
the raw series are plotted in Fig. 2a. 
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Fig. 2. Latin-American exports: (a) data;(b) innovations from the fitted model;(c) auxiliary residuals 
for the irregular component; (d) auxiliary residuals for a slope change. 
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A natural model to apply to these quarterly data is the local linear trend with 
additive evolving seasonal component. However, when this model is estimated, 
the seasonal component turns out to be fixed and the variance of the level 
component is estimated as zero. The local-linear trend model thus reduces to 
a smooth trend model 

Yt = I4 + I5 + &I, Et - NID(O, OZ), 

PC =/h-1 + pr-1, 

where J+ is understood to mean a fixed seasonal pattern. 
This smoothed trend model is used in a variety of contexts by Theil and Wage 

(19441, Kitagawa (1981), Gersch and Kitagawa (1983) and Ng and Young (1990) 
and is discussed in Harvey (1989 p. 286). Wecker and Ansley (1983) show that it 
corresponds to fitting a cubic spline. 

The estimated parameters and standard diagnostics are 

loz& = - 2.88, lOT& = - 3.49, 

r-1 0.012 - 0.0038 
3 = 

- 0.0038 > 0.036 ’ 

s = - 0.22, K = 4.75, N(& = 9.50, Q&) = 6.9. (16) 

Notice that we have chosen to take the logarithms of the standard deviations to 
form the parameterization & = loga, and & = logo<. This is to improve the 
sampling behaviour of #? and to avoid negative variances in the one-step 
procedure (14). We use the notation 107~ in preference to log5 to emphasize 
that, in (16), j is the information for 8 rather than for cp, and as. Also in (16) the 
aggregate statistics S and K are the estimated third and fourth moments 
measuring the skewness and kurtosis of the innovations and N is the normality 
test due to Bowmans and Shenton (1975). These statistics, often used to assess if 
there are any outliers in the model, are based on the scaled innovations 
displayed in Fig. 2b. It is this graph which most time-series modellers use to 
assess whether there are any problems with their fitted model. For these data the 
Box-Ljung Q-statistic (Ljung and Box, 11978) takes on a satisfactory value. 
There does not seem to be any systematic departure of the observed series from 
the model, such as would be indicated by residual correlation. 

An interesting feature of the fitted model is that the observed information 
matrix suggests that 6; is quite poorly determined (note that the usual t-statistic 
to test if crt = 0 is not appropriate here - see Harvey (1989, Section 5.1.2) and 
Shephard (l993a). This is not surprising for there is a very small sample size. 
Another interesting feature ofj- ‘(8) is that it is quite near to being diagonal, 
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which means the transformation from the scores to the one-step re-estimated 
parameters is not very important here. In the next section we will see examples 
where this is not true: use of the parameters, rather than the scores, leads to 
appreciably sharper inferences. 

The analysis of Fig. 2b is not straightforward for anyone but a very experi- 
enced time-series modeller. The negative outliers at f = 13 and 24, which are 
quite clearly additive outliers from Fig. 2a, appear as negative shocks. The 
adjustments of the fitted model to these shocks in both cases causes equally large 
positive shocks at the next time period - indeed, the largest absolute-scaled 
innovation is at time 25! This confusing type of shape is even more obscure when 
there is a slope change. Candidate times for a slope shock are around 35,45,60 
and 70. These are shown by clusters of negative innovations from 35 to 39 and 
61 to 67 and positive ones from 69 to the end of the sample. The possible slope 
change at time 45 is not at all clear from Fig. 2b. 

Although it is possible to glean a great deal of information from Fig. 2b, it 
takes a good deal of experience to be able to exploit it to the full. The problems 
of looking at innovation plots become much more severe when more involved 
models are fitted, such as some of those looked at in Section 6. 

Harvey and Koopman (1992) suggest a plot which does aid the modeller, 
indicating ways of removing some of the difficulties of interpretation of plots 
such as Fig. 2b. Their idea is to plot the smoothed estimates of zt and ct. They 
call these the auxiliary residuals. They are shown for the Latin-American export 
series in Figs. 2c and d. It is certainly the case-that Fig. 2c shows the additive 
outliers in a clearer way. This would allow the modeller to include simple 
dummy variables to take out these problem observations. Interpretation of Fig 
26 to yield information about shocks to the slope is more difficult. The problem 
is that the smoothed series for & is much more serially correlated than that for q: 
Harvey and Koopman (1992) prove that these smoothed values follow an 
ARIMA(2,0,0) process if the data actually follow the model we have fitted. It is 
not clear from Fig. 26 where the most effective site for a slape intervmtion 
would be - the series is so smooth that precise location of the shock is difhcult. 
A further problem is that it is not immediately clear how these smoothed values 
related to the way 8 is estimated. Hence, we may remove a point with high values 
of auxiliary residuals to find it has little effect on the estimated parameters. 

In contrast, our analysis focuses on the fragility of the estimated results to 
changes in the fitted model and we measure this by looking at a,,,,, given by (15). 
The departures, or interventions, will be irregular shocks and slope breaks. 
These will be fitted for every possible time period, that is 2n different explana- 
tory variables will be used. For each of these we record the one-step movements 
in the parameter estimates. These are displayed for the export data in Fig. 3. The 
figures give results for both types of intervention and both elements of &~,J~. We 
call the plots of the parameter movements for logo, against the slope changs 
and log a, against shocks, ‘cross plots’. 
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Fig. 3. Latin-American exports: (a) n(l, t), the scaled estimated change in the irregular parameter, 
for the series of outlier interventions; (b) rl(l, r) for slope interventions - a ‘cross’ plot; (c) 43, t), the 
scaled estimated change in the slope parameter for the outlier intervention - another &cross’ plot; (d) 
43, t) for ?he slope intervention. 

For the moment focus on Figs. 3a and d. Fig. 3s assesses the one-step 
movement in the parameter associated with t& the measurement error variance, 
as a result of fitting an additive outlier intervention. It suggests strongly that the 
13th and 24th observations are indeed the important additive outliers. 

Likewise, Fig. 3d assesses the one-step movement associated with C: and 
indicates that the most important slope breaks probably take place near obser- 
vations 35-37 and 51-63. It is difficult to time these changes more precisely 
- external information would have to be used for this purpose. The other 
possible slope break takes place right at the end of the sample and will thus be 
very important when assessing the forecasts from the fitted model. 

The unscaled differences (14) behind the relocated and scaled quantities 
shown in Fig. 3a, the values of which are not given here, imply that if an additive 
outlier regressor is added to the model at observation 13 then the one-step 
re-estimated parameter will move from loToE = - 2.88 to Iogx, 1) = - 3.28, . . 
where the notation indicates both observation number, 13, and intervention 
type: 1 denotes the additive outlier. In contrast, the cross-plot Fig. 3c gives 
log~Ib.*, = - 3.49, suggesting no move at all. When we re-estimate the model 
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using this intervention we actually achieve 

which shows the one-step procedure has overestimated the change slightly but 
has picked up the most important features of this outlier - that it affects the 
estimate of a:, but not that of 0;. 

The other important additive outlier seems to be at observation 24. T 
corresponding numbers are 

The one-step procedure predicts a slightly smaller decrease in the estimate of cz 
than is associated with the 13th observation: however, the values of & are 
virtually identical in the two cases. Thus, the procedure is able to pick up the 
major features of the effect of t e shock. Although this may not entirely 
satisfactory for some purposes it is probably satisfactory for a diagnostic 
statistic. Indeed, over-estimation of the effect of deletion of observations is 
a standard feature of diagnostics for non-linear models. Examples for the shifted 
power transformation, given by Atkinson (t986), show that interesting obscwa- 
tions are correctly identified, even if the precise values of deletion statistics are 
not given. 

If both additive outliers are removed then 

IO?& = -- 3.40, lO~?r{ = - 3.43, 

A-1 0.0105 
J = 

- 0.00348 

s- - 0.34, K = 4.16, I@) = 5.32, Q&;) = US. (17) 

Comparison of (17) with (16) shows that the model is now more tightly specified, 
in that the signal-to-noise ratio has risen considerably and that there is no 
longer significant evidence against normality. 

As we have mentioned, the location and importance of a slope intervention is 
much less clear cut than that of the additive outlier. Fig. 3d indicates three 
candidate locations. The first is between observations 35 and 37, the second 
between 61 and 63 and the third at 70. To investigate the properties of our 
method, we proceed by fitting alll three in turn - putting the slope investigations 
at 36,62 and 70. 
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We find that 

where the estimates are now for the third kind of intervention. 
These numbers suggest that the problem of overestimation which we encoun- 

tered for the additive outliers is more of a problem here: in particular, the effect 
of observation 36 is indicated as appreciable by the one-step method but is 
shown to be negligible when the parameter is re-estimated. However, the two 
other cases are more suggestive. Importantly, we again find that the C$ para- 
meter is not predicted to move significantly and that this prediction turns out to 
be accurate. This suggests our procedure may give a clearer picture of the 
difference between additive outiiers and breaks than do previous methods. 

The analysis of the graphs for the slope change suggests that there is only 
tentative evidence to suggest that the estimator of logo6 is fragile. We have 
attempted to find places where slope breaks are likely to change this estimator, 
but it would seem that the changes which do occur are only small. 

Perhaps this is not surprising. The series has an appreciable number of 
periods where the slope seems to change, so a stochastic slope model is 
appropriate: modifying the model to remove one of these periods should not 
change the parameter estimates too dramatically. Of course, things would be 
rather different if the series had one or two periods where sharp changes in slope 
dominated changes at all the other times in the sample. 

In Section 4.1 we derived a relationship between the change in score due to 
the intervention and the t-statistic ta for that intervention. This t-statistic can be 
calculated at each time point for each intervention, as is the qcaled distance given 
by (15), and so can provide an alternative diagnostic procedure. In this section 
we give some numerical results of a comparison between these alternatives, 
using the Latin-American export data. 

The l-statistic was written in Section 4.1 as t, = b&3,!? There are several 
versions which might bc of interest depending on how Sn is estimated. We 
consider two. The first uses the global estimate of SR, not adjusted in any way for 



the effect of the intervention. In the second the variances ~0~~~s~~ 
e one-step correction given in (14). Hn Section 4.1 w 
tervention has little efkct, the change in the score 

approxitm?ly - (ta - I)2. The t-statistic here could be written more fuufly as 
t&J) to st :SS dependence on both the time and nature of the ~~t~~~~t~o~. 
Then the comparisons take the form of index plots of the scaled distances c&,~~ 
(I 5) and of - (t&j) - I}2. A slight complication is that the scales of the two 
quantities are diRerent. We scale the plots of the distan s by the standard 
deviation of the distances estimated from the H values in 
values of - (& - 1)2 are scaled by the estimated standard deviation for t 
statistic using adjusted estimates of the variances. This choice exhibits the 
changes due to the effect of the intervention ow the estimation of SR, the 
numerator of the statistic bR being the same in both plots. 

Fig. 4a reproduces Fig. 3a with the addition of the index plot of - (tip - 1)’ 
for the unadjusted statistic. Although the patteru is similar, the values of our 
distances for the two outliers are greater than those of the function of the 
unadjusted t-statistic. However, as Fig. 4b shows, use of our one-step approxi- 
mation to the change in variance leads to a function of the adjusted t-statistic 

(d) 

Fig. 4. Latin-American exports: (a)(O) d( t, t), (0) - (tP - 1)’ from the unadjusted t-statistic for the 
series of outlier interventions; (b) as (a) but with one-step adjustment of the parameters in the 
f-statistic; (c)(a), d(3, t), (0) - (ta - 1)” from the unadjusted t-statistic for the series of do 
interventions; (d) as (c) but with one-step adjustment of the parameters in the t-stat&x. 
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which is similar to our distance. A similar pattern is shown for the slope 
intervention in Figs. 4c and d. Again, for the larger values, adjustment leads to 
a function of the t-statistic which behaves very like our distance. There are 
however some interesting differences, both around observation 30 and at the 
end of the series, where our distance seems to pick up the change in slope visible 
in Fig. 2a which is not detected by the t-statistic. 

Figures such as these cannot provide a complete comparison of the power of 
the two procedures. It is however clear that, because of the scaling of the 
n values, a procedure with low power would tend to have fewer extreme values, 
whether large or small, than a procedure with higher power, an effect which is 
visible in the plots of the adjusted and unadjusted statistics. The comparison 
raises questions about the t-statistic in which the elements of Sn are fully 
re-estimated, rather than through an approximation as here. But these results do 
show both that the distances we have derived are comparable in performance 
with the t-statistic and that our derivation leads to a useful one-step procedure 
for updating estimates of variance. Finally, the notation t&j), with the absence 
of a superscript i, stresses that the E-statistic solely measures the effect of thejth 
intervention. There is no source of information like that in the cross-plots of 
Figs. 3b and c. 

5. Simulation of intervention measures 

Although the plots of fl&J - 0 are scaled by an estimator of the standard 
error of 8, and hence the scales in Fig. 3 are suggestive, the distribution Of d4l.j) is 
unknown. In regression diagnostics a similar type of problem exists when 
Cook’s statistic is used (Atkinson, 1985, p, 25). There, simulation envelopes are 
often employed to give some impression of likely scatter. Here we follow 
a similar path, 

As outlined in Section 3, we simulate a new time series y(@ = typ), . . . , y$“))’ 
using $ as the true value and record the value of $0; y(‘)). If n is large then the 
log-likelihood should be approximately quadratic. In turn, this means that the 
distance this new score moves when we change the model is 

will be an asymptotically valid (as n + 00) replication from the distribution we 
require. Hence, we can produce a Monte-Carlo sample of 

@j) = p lLWi(@;- 1 (Q a log L(t, j)(R Y9 
. ( a0 

- s(@ y@') , 
> 
? 

where k = 1, .., ,K, (18) 
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and so asymptotically appropriate pointwise bounds on the plotted distance 
measures. 

At first sight the computations involved in producing these 
horrendous. However, as the parameters are always fixed at most 0 
Kalman filter and smoothing algorithms have only to be run once for 
Ft, K,, E,, D, and Nt do not depend on the data. As these are the most c 
some parts of the computations these replkations can be competed very 
quickly. 

We use the K replications to construct pointwise one-sided confidence inter- 
vals. The probability of inclusion in the resulting confidence enve of all, or 
all but a specified number, of the vector of measures for the whole pie could 
be found, if required, by simulation method similar to those of Flack and Flares 
(1989). One-sided envelopes are appropriate as we introduce new features 
into the model in order to reduce the variation in, for example, the irregular or 
slope components. Typically, we will want to display 95 and 99% intervals. 
Table 1 gives some values of K and of M, the order-statistic corresponding to 
these two levels. Increasing K (and so M) can be expected to increase the 
precision of the bounds. The main di culty with M being large is the require- 
ment to store and sort a large number of replications for each value of t as the 
simulation goes through 1 to pa. If K is small the simulation envelopes for 
d:tgjI will tend to be quite ragged as we run through the index L We can increase 
the smoothness of this line by increasing K, but a more sensible procedure is to 
exploit a smoothing algorithm to iron out some of the kinks. 

The simulation envelopes for regression introduced by Atkinson (1981) took 
K as 19. in a study of mixed model analysis of variance Dempster et al. (1984) 

Table I 
Monte-Carlo enveIopes: Replication size K arid ordx statistics M. The probabilities ax 
1 - M/(K + I). Numerical results are averages of 100 medians of samples ofhO from the exponential 
distribution 

K M Estimated bound 

99% 
99 1 4.977 

399 4 4.713 
999 10 4.636 

1999 20 4.628 
Population bound 4605 

95% 
99 5 3.0411 

399 20 3.027 
999 SO 3.001 

I999 100 3.004 
Population bound 2.996 
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took K = 119 and compared the results with those for K = 8000. Hal1 and 
Titterington (1989) give results on properties of Monte-Carlo tests, in&ding 
dependence on K, for statistics which are asymptotically pivotal. In our case the 
effect of increasing K and exploiting a smoothing algorithm can be gleaned from 
Figs. 5 and 6 which display 95% and 99% envelopes for &, 1), equation (IQ, the 
statistic which assesses how far the irregular variance moves when an additive 
outlier regressor is included in the model. Fig. 5 gives the raw envelopes for 
K = 99, 199 and 999. The corresponding envelopes for these values of K using 
a smoothing algorithm (the S-Plus function ‘lowess’) are displayed in Fig. 6. 

A feature of these smoothed en*;elopes is that they become narrower as 
K increases. To investigate this phenomenon a small simulation experiment was 

Fig. 5. Latin-American exports: simulation enwelopes for the distance cl(1, t) with an outlier inter- 
vention: (a) K = W, (b) K = 199; (c) K = 999. 
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Fig. 6. Latin-American exports; smoothed versions of the envelopes of Fig. 4: (a) K = 9% (b) 
K = 199; (c) K = 999. 

performed, the results of which are summarized in Table 1 and Fig. 7. This 
phenomenon is not apparent in the results of Dempster et al. (1984) who were 
sampling from the normal distribution. Since the distribution of the scores is 
skewed, we sampled from the unit exponential distribution. To mimic the e 
of median-based smoothing on a series, 60 independent observations were taken 
and the median calculated. This was repeated 100 times for eight combinati 
of K and AI. The boxplots in Fig. 7 and the means in Table 1 show that 
envelopes can be expected to become less extreme as K increases. The fin&i 
population values ‘are the percentage points of the exponential dist~~uti~~: 
log 20 for the 95% limit and log 100 for that at 99%. One other theoretical check 
on these results is for K = 99 and R4 = 1, when the median of the extreme Order 
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Fig. 7. Dependence of smoothed envelopes on simulation size K: medians of samples of 60 from the 
exponential distribution: (a) 1% envelope; (b) 5% envelope. 
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Fig. 8. Latin-American exports: (a) d(l, t) for the outlier inkrvention; (b) 43, t) for the slope 
intervention: the envelopes are for K = 399. 

statistic is given by - log{ 1 - (O.S)*‘K) = 4.965, agreeing with the simulated 
value. Of course, our statistics are not independent and do no? have an exponen- 
tial distribution, nor is smoothing identical with calculating a median. But these 
results provide some qualitative explanation of the phenomenon. Taken to,- 
gether with envelopes for values of K other than those of Fig. 6, they do suggest 



that envelopes constructed using 399 replications and smoothing tend to yiel 
most of the important features of the shape of the curves. This is what we will use 
in the rest of this paper. 

Now to consider the use of the envelopes in making inferences, rather tha 
properties of the envelopes themselves. Fig. 8 shows the raw staaistics for 
additive outliers and slope breaks along with their smoothed 95 and 
envelopes. They suggest that the additive outlier points at I3 and 24 are the most 
important departures from our model. They are a considerable distance out&k 
the 99% envelope. The slope breaks, on the other hand, are much less crucial. 
Fig. 8b indicates that all the candidate points are within lthe 99% interval and so 
it is not obvious that the model will be fragile to changes in slope. As we saw 
earlier, this was the conciusion we came to when we actually did put slope 
interventions into the model and re-estimated fhe parameters. 

6.1. Purse data 

The monthly numbers of purse, in English handbag, snatchings in Hyde Park, 
Chicago, given by Reed (1987) are discussed by Harvey (1989, pp. 89-W), who 
fits a local-level model: the data are given on p* 516. The discrete observations 
range from 3 to 36, perhaps large enough for use of a continuous transfo~~t~o~ 
to normality. Atkinson and Shephard (1996) model the se&s after first kans- 
forming by taking logarithms. We follow their approach. 

The local-level model is yt = pr + E,, ,Y~ = pp_ 1 _t PJ,, with estimated para- 
meters 

lOT& = - 0.931, lay-#] = - 2.11, 

*-1 0.011 - 0.010 
J = ( - 0.010 > 0.11 ’ 

while the diagnostics take on the values 

S = - OS9, K = 3.96, M(Xq) = 6.80, Q&) = 4.74. 

The logarithmic transformation is rejected by the normality statistics - the 
5% point of 2; is 5.99. This rejection of normality is mainly caused by t 
existence of the two additive outliers at times 15 and 60. These are ahe two 
smallest readings, both equal to three, which either precede or follow a much 
larger value. The two outliers are shown distinctly by Fig. 9a which displays the 
d (t, 1), corresponding to the fitting of an additive outlier. The implied one-step 



412 A.C. Atkinson et al. / Journal of Econometrks 80 (1997} 387-422 

I I I 
20 4Q eo I 1 I I 0 20 40 60 

observation numbw Ibl observation number 

io io $0 
obsewation number 

Fig. 9. Purse data: (a) effect of an additive outlier; (b) effect of the intervention for a break in level; (c) 
d(2, t) for the level break when the two additive outliers are accommodated. 

and fully iterated parameter estimates for these two cases are 

This shows good agreement between the one-step and iterated parameter 
estimates, As would be expected, the outlier intervention has little effect on si 
but an appreciable effect on at corresponding to identification of one of the two 
additive outliers. 
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The evidence for a level shift, given in Fig. 9b, is much more subtle, due to 
potential confounding of additive outliers and level breaks. There seems to 
evidence for the fragility of lox& for a level shift intervention may change this 
value. However, at this stage we must be careful for the undoubted increase in 
the level of the series has come immediately after the additive outlier. The 
apparent level break may become less important when we remove the additive 
outher at time 15. To check this we refit the model to the data witb the two 
additive outlier regressors included. The new estimates are 

lo?& = - 1.11 loy&! = - 2.07, 

a-1 
( 

0.008 - 0.01 1 
3 = 

- 0.011 ) 0.145 ’ 

s= - 0.1 I, K = 2.85, IQ;) = 0.20, Qr,,($) = 4+8. 

There is thus, as would be expected, a further decrease in c$ However, there is 
virtually no change in at. Conventional aggregate statistics indicate that this is a 
good model. But we still need to look for a level change to check the implication of 
Fig. 9b. The statistics for the level change when the two outliers are removed are 
given in Fig. 9c. This picture is very interesting. Now the level change is slightly 
under the 1% bound. More importantly, &22.21 is no longer solely outstandingly 
large and so it is unclear whether we should remove this feature from the data. 
Our own prejudice is to tend to leave these kinds of characteristics in the data 
and not to remove problem points unless there is substantial evidence for such 
removal. The reason for this is that we do not want to overmanipulate the data 
- which is obviously a tempting thing to do in such diagnostic analyses. 

6.2. Coal cunsumption 

A series on the quarterly consumption of coal in the UK from 6041 to 83Q4 
is analysed in Harvey ( 1989, pp. 2,961. The coal users are classified as ‘other final 
users’, a category including public administration, commerce and agriculture. 
The series shows a continual fall as the UK diversified its energy sources and 
a strong seasonal pattern, which seems quite steady. After taking a logarkhmic 
transformation we fitted a model with a stochastic trend, trigonometric seasonat 
and an additive irregular component. The fitted model has fixed, that is non- 
stochastic, slope and seasonal terms. The presence of fixed terms is not unusual 
in applied work and, indeed, arose in the seasonal component of our mode1 for 
the Latin-American export data. The rest of the model has 

lOT& = - 2.19, loTo,, = - 3.36, 

*- 1 J = 
( 

0.009 - 0.004 
- 0.004 > 0.125 ’ 

S = - 0.74, K = 4.45, N($) = 16.5, Qr,,(#;) = 6.11. 
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We will assess the effect on this fitted model of the addition of level and 
additive outlier interventions. Figs. 10a and b give our new statistics for these 
features of the data. From the first of these plots there seems strong evidence for 
additive outliers at 37 and 39. The movements around the 60th observation, the 
7444 value, are a little more difficuh to analyse. There seems substantial 
evidence for a level break at this time - not only from Fig. 1Ob bur visual 
inspection of the raw data is suggestive of this. However, there may also be some 
additive outliers around this point, which corresponds to a major strike in the 
British coal mining industry and the resultant turbulence of the re-stocking 
period. Our modelling approach is to deal first with major difficulties, leaving 
the details until later. As a result we refit the model taking out the additive 
outiiers at observations 37 and 39 and fitting a level change at 60. The corres- 
ponding new parameter estimates and aggregate diagnostics are 

loY, = - 2.28, IO~C,] = - 3.43, 

4-1 0.008 - 0.005 
J = 

( - 0.0005 > 0.113 ’ 

S = - 0.0366, K = 0.128, N($) = 0.1645, Qro($) = 6.52. 

t I J 
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Fig. 10. Coal consumption: (a) effect of an additive outlier; (b) eflect of the intervention for a break in 
level; (c) effect of a further additive outlier and (d) effect of a second break in levei when two outlie1 
interventions and one level break are already included in the model. 
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The addition of these three interventions thus produces a model with si 
parameter values which however now satisfies the normality tests. In particular, 
the value of the Bowman-Shenton ?atistic is reduced to one-tenth of its 
previously significant value. To check the details we recalculate the two dia 
tic plots as shown in Figs. 1Oc and d. The plot for the level break is tra~sfQ~ed 
dramatically - it is now virtually structure free: addition of a second change in 
level close to observation 6Q causes a slight increase in the estimated parameter, 
which is possible since we are using a marginal likelihood. Qtherwise there is 
a negligible decrease. In Fig. 1Oc there is still some evidence of an additive outlier 
at observation 61, but the significance of the evidence is appreciably reduced 
from that shown in Fig. 10a before the level intervention was introduced. 

6.3. The problem of the Nile 

Cobb (1978) gives a series of readings on the annual volume of discharge from 
the Nile River at Aswan, Egypt for the years 1871-1970. He uses the data to 
illustrate a conditional technique for inference about a change point. Later 
analyses include those of Carlstein (1988) and of Bake (1993). All three conclude 
that a permanent decline in volume has taken place from 1899 onwards. It is 
surprising that none of them detect the outlier for 1913, observation 43, which is 
clearly visible from the time-series plot Fig. 1 la. 

For the moment we disregard the level shift and outlier and fit an unobserved 
component model with a stochastic level and an irregular component. The 
estimated parameters and standard diagnostics are 

10yi& = 4.81, 1G61 = 3.64, 

*-1 0.0101 - 0.0263 
J = 

- 0.0263 > 0.188 ’ 

s= - 0.07, K = 0.25, IV($) = 0.34, Q&) = 13.64. (1% 

Although the value for Q is a little large, it is not significantly so. Despite the 
outlier a$: d the omitted level break, the aggregate statistics give no indication of 
departures from normality. Some time-series analysts would therefore conclude 
that this was a satisfactory model. 

We now apply our diagnostic procedure to these data. Fig. 1 lb indicates two 
additive outliers, one at 1887 and the other the already discussed outlier at 1913. 
Fig. 1 lc shows very clearly that a level intervention is required between 1897 
and 1900, an interval including 1899 which was reported as a level shift in the 
earlier papers. If these three interventions are included and the model refitted the 
variance for the stochastic level becomes zero so that the model becomes 
deterministis with added white noise. 
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Fig. 11. The problem of the Nile: (a) annual flow at Aswan in cubic kilometres; (b) effect of an 
additive outlicr; (c) effect of the intervention for n break in level. 

A survey of analyses of the Nile data is given by MacNeill et al. (1991), who 
analyse three closely related series using ARMA models. For Cobb’s data they 
also obtain white noise plus a level shift in 1899, but only for data up to 1907. 
Thereafter they find non-zero serial correlation. However, they fail to identify 
the outlier at 1913, which may perhaps be interacting with their detrending 
procedure to give the impression of correlation. 

As well as technical statistical matters, MacNeill et al. (1991) give a brief 
histor;* of the Nile and of the economic and political importance of its waters fo-i, 
irrigation, Their preferred explanation for the level shift around 1899 is that this 
is the date of the start of condruction of the first Aswan dam. The relatively 
small dam cannot itself have had much effect on the flow of the river but, they 
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argue, activities related to building the dam did lead to improve s of 
measuring the flow and SO to 8 reduction in earlier over-optimistic estimates of 
the annual volume of water. 

Much of time-series modelling is motivated by the desire to produce a forecast 
of future observations and a measure of their likely precision. In this section we 
extend the use of the statistics developed and illustrated in the last three sections 
so that they are fully focused on the task of forecasting. This allows us to assess 
which features of the model are crucial in determining the forecasts. 

Forecasts in state-space models are determined by a,,,, while the associated 
precision is a function of P,,,. As we vary the model these terms will change to 
unlaft,i). When the parameter values 0 are constant the model changes can 
assessed by simply running an auxiliary Kalman filter, Eq. (11). I-Iowever, this 
will be a misleading assessment of the effect a change in the model will have on 
the forecast, for the change will also influence the parameter estimates themsel- 
ves, 

The implication of this discussion is that we define 

then measure the distance 

a nlra - Gltt(f.j, rT) 

as a first-order Taylor approximation to the fully iterated movement in the 
states, It is difficult to make analytic progress on the actual term &Q,&%, 
although it is easily obtained by numerical differentiation. Unlike all the other 
terms in (20) this term does not depend on the type of intervention being used. It 
thus has to be calculated only once for all assessments of the sensitivity of the 
forecast. A similar argument can be made for the change in the mean square 
error of the estimate of a,,, P,,,,E. 

The forecasts themselves will be straightforward transformations of a,+ 

9” + vltt = &t+uL+.,L+,-I . . . T,+l~n~nr v = 192, . . . 

and so will, in general, depend on the forecast horizon v, although not for 
a local-level model. The difficulty with this is that we then have to decide what 
horizons are important so that we can plot them. This will be very dependent on 
the modelling task. In typical situations we suggest that we should look at both 
short and long horizons as these wilt focus on the robustness of Lath types of 
forecasts. 
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Similar types of arguments apply for the measure’of accuracy of the forecasts. 
Here one could see if changing the model aflows an important tightening of the 
model specification, thus constricting the forecast interval. Some of these points 
will be illustrated by reconsidering the data on the Nile time series. 

7.1. Exmple: the problem of the Nile revisited 

Fig. 12a Plots 4,pz - %ln(f.j. 8) for the outlier intervention. Fig. 12b is the same 
plot for the level break. The discounting of the time-series model means that 
almost all the activity in the plot is at the end of the series. Figs. 12~ and d, on the 
other hand, give the additional term which reflects the effect the changes in the 
parameters have on the forecasts. These terms dominate the ones shown in the 
previous figures. The influence of the additive outhers and level breaks is very 
clear from these pictures which are just resealed versions of Fig. Il. The signs in 
the figures are determined purely by the sign of &I,,,,,/%. Fig. 13 gives the 
corresponding graphs for the forecasts which are, from (20), the sums of the 
refevant panels of Figs. 11 and 12. In practice, this is the most convenient and 
useful of these graphs as the forecast is of direct interest. Further, y, tends to be 
univariate (as in the examples in this paper), even if the state 01~ is multivariate. 

0 

lb) okaruation numbsr 

(c) 
0 20 

(d) obmva!ian numbar 

Fig. 12. The problem of the Nile: components of the diagnostic change in forecast, equation (20): 
&range of state due to (a) the outlier intervention and (b) a change in level; change of parameter 
estimate due to (c) the outlier intervention and (d) a change in Ievel. 
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Fig. 13. The problem of the Nile: effects on the forecast of (a) an irregular intervention and (b) the 
intervention for a change in level. 

This paper addresses the issue GT how modelfess should check the sensitivity 
of their fitted models to possible shocks. We have exploited a new type of 
intervention analysis to suggest inr2resting directions for investigation and used 
score statistics and simulation envelopes to form a scaled distance to assess the 
importance of the interventions. 

Our four empirical illustrations exhibit the problems of confounding and 
masking. In the purse data the adilitive outlier was confounded with a possible 
level shift to give a slightly misleading suggestion of the importance of the level 
break. The opposite effect, that of masking, was detected in the coal series where 
a coal strike increased the rate of decline in the size of the industry and led to 
a series of additive outliers in the catchup period as industry re-stocked. It is 
conceptually possible, as a referee has suggested, to extend our methods to the 
simultaneous investigation of two departures. However, we would not be happy 
with such a form of analysis unless there were some prior grounds for expecting 
several departures: a feature of unobserved components models is that t 
already allow for flexibility in the evolution of state values. Although we had 
success with all our sets of data by dealing with one feature and then tackling the 
next, it is nevertheless clear that there can be empirical problems where this 
strategy may fail. 

The use of simulation envelopes requires a smoothing algorithm if the amount 
of computing is to be kept within reasonable limits. Our choice was the S-plus 
function ‘lowess’ (Becker et al., 1988, p. 497) with the parameterfwhich controls 
the fraction of data used in smoothing equal to 0.35. Although we experimented 
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with values off for our examples, we did not experiment with other smoothers. 
‘Ihe widespread application of our method would seem to require a robust 
smoothing aIgorithm which can carry out this part of the analysis in an 
automatic and satisfactory way - in particular, in a way that automatically 
selects the bandwidth. 

One advantage of the approach advocated in this paper is that it is straight- 
forward to accommodate types of intervention other than those shown in Fig+ 1. 
For example, Atkinson et al. (1994) apply a switching intervention to the 
analysis of the data on coal consumption discussed in Section 6.2. This models 
a situation in which lost consumption, perhaps due to a strike, is recovered in 
the following time period. Several examples are analysed, in an GRIMA frame- 
work, by Wu et al. (1993). Atkinson et al. (1994) find that two spaced-switch 
interventions of the form . . . , 0, 0, - 1, 0, 1, 0, 0, . . . explain the structure visible 
in Fig. 9a. A second advantage of our approach is that it can be extended in 
a relatively straightforward manner to deal with multivariate modeIs. 0f course, 
there would be a higher computational demand, but the complexity of the 
diagnostics should grow only linearly with the dimension of the series. 

A further generalization is to non-Gaussian, linear state-space models where 
the linear structure of the model is maintained, but the normality assumption is 
dropped. An example is the stochastic volatility model of Harvey et al. (1994), 
which is a multivariate time-series model with changing scale. The implication of 
this is that the Kalman filter no longer delivers the likelihood function, but 
rather a quasi-likelihood. However, the score vector computed by the Koopman 
and Shephard (1992) algorithm remains the derivative of the log-quasi-likeli- 
hood. Thus the approach of this paper can still be used. Of course, the simulated 
envelopes would have to be drawn from the correct non-Gaussian density. 

Acknowledgemeslts 

Financial support from the ESRC is gratefully acknowledged by N. Shephard. 
The computations were done on equipment funded, in part, by a grant from the 
SERC to A.C. Atkinson. We thank OIa Elerian for research assistance. 

Anderson, B.D.O., Moore, J.B., 1979. Optimal Filtering. Prentice-Hall, Englewood Cliffs, NJ. 
Atkinson, AC., 1981. Two graphical displays for influential and outlying observations in regression. 

Biometrika 68, 13-20. 
Atkinson, AC., 1985. Plots, Transformations, and Regression. Oxford University Press, Oxford. 
Atkinson, AC., 1986. Diagnostic tests for transformations. Technometrics 28, 29-37. 
Atkinson, A.C., Koopman, S.J., Shephard, N., 1994. Outliers and switches in time series. In: 

Huskova, M. (Ed.), Proceedings of the Fifth Prague Symposium on Asymptotic Statistics, 
Prague, Artia, pp. 3548. 



Atkinson, AC., Shephard, N., 1996. Deletion diagnostics for transformation of time series. Journal 
of Forecasting 15, to appear. 

Balke, N.S., 1993. Detecting level shifts in time series. Journal of Business and Economic Statistics 
11,81-92. 

Becker, R.A., Chambers, C., Wilks, A-R., 1988. The New S Language. Wadsworth and Brooks/Cole, 
Pacific Grove, CA. 

Bowman, K.Q., Shenton, L.R., 1975. Qmnibus test contours for departures from normality based an 
,/b, and 6,. Biometrika 62, 24350. 

Box, G.E.P., Tiao, G.C., 1975. Intervention analysis with applications to economic and environ- 
mental problems. Journal of the American Statistical Association 70, 70-79. 

Bruce, A.G., lvlartin, R.D., 1989. Leave-k-out diagnostics for time series (with discussion). Journal of 
the Royal Statistical Society, Series B 51, 363-424. 

Burman, P.J., 1985. Report on ASA fellowship 1984-5. Technical report, Statistical Researeb 
Division, US Bureau of the Census, Washington, DC. 

Carlstein, E., 1988. Nonparametric change-point estimation. Biometrika 16, 188-197. 
Chatterjee, S., Hadi, AS., 1988. Sensitivity Analysis in Linear Regression. Wiley, New York. 
Chen, C., Liu, L.-M., 1993. Joint estimation of model parameters and outlier elfects in time series. 

Journal of the American Statistical Association 88, 284-297. 
Christiano, L.J., 1992. Searching for a break in GDP. Journal of Business and Economic Statistics 

10,23U-257. 
Cobb, G.W., 1978. The problem of the Nile: conditional solution to a change point probIcm. 

Biometrika 65,243-251. 
Cook, R.D., 1977, detection of influential observations in linear regression. Technometrics 19,15-18. 
Cook, R.D., Weisberg, S., 1982. Residuals and Influence in Regression. Chapman and Hall, London. 
Cox, D.R., Hinkley, D.V., 1974. Theoretical Statistics. Chapman Hall, London. 
Cox, D.R., Reid, N., 1987. Parameter orthogonality and approximate conditional inference (with 

discussion). Journal of the Royal Statistical Society, Series B 49, l-39. 
Davison, AX., Tsai, C.-L. 1992. Regression model diagnostics. International Statistical Review 60, 

337-353. 
de Jong, P., 1989. Smoothing and interpolation with the state space model. Journal of the American 

Statistical Association 84, 1085-88. 
Dempster, A.P., Selwyn, MR., Patel. CM., Roth, A.J., 1984. Statistical and computational aspects of 

mixed model analysis. Applied Statistics 33, 203-214. 
Flack, V.F., Flares, R.A., 1989. Using simulated envelopes in the evaluation of normal probability 

plots of regression residuals. Technometrics 3 1, 219-225. 
Fox, A.J., 1972. Outliers in time series. Journal of the Royal Statistical Society, Series B 34,350-363. 
Gersch, W., Mitagawa, G., 1983. The prediction of time series with trends and seasonalities. Journal 

of Business and Economic Statistics i, 253-264. 
Hall, P., Titterington, D.M., 1989. The effect of simulation order on level accuracy and power of 

Monte Carlo tests. Journal of the Royal Statistical Society, Series B 51,459467. 
Harrison, P.J., Veerapen, P.P., 1993. Incorporating and deleting information in dynamic models. In: 

Rao, T.S. (Ed.), Developments in Time Series Analysis: in Honour of Maurice B. Priestley. 
Chapman and Hall, London, pp. 37-49. 

Harrison, J., West, M., 1991. Dynamic linear model diagnostics. Biometrika ?8,797-888. 
Harvey, AC., 1989. Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge 

University Press, Cambridge. 
Harvey, AC., Durbin, J., 1986. The effects of seat belt legislation on British road casualities: a case 

study in structural time series modelling (with di.3cussion). Journal of the Royal Statistical 
Society, Series A 149, 187-227. 

Harvey, AC., Koopman, S.J., 1992. Diagnostic checkin; of unobserved components time series 
models. Journal of Business and Economic Statistics 1% 377-389. 



422 A.C. Atkimorz et al. ,/ Jourml qfEconometrics 80 (1997) 387422 

arvey, AC., Ruiz, E., Shephard, N., 1994. Multivariate stochastic variance models. Review of 
Economic Studies 41, 247-264. 

Kitagawa, G., 1981. A nonstationary time series model and its fitting by a recursive filter. Journal of 
Time Series Analysis 2, 103-I 16. 

Kohn, R., Ansley, CF., 1989. A fast algorithm for signal extraction, influence and cross-validation in 
state space models. Biometrika 76, 65--79. 

Koopman, S.J., 1993. Disturbance smoother for state space models. Biometrika 80, 117-126. 
Koopman, S.J., Shephard, N., 1992. The exact score for time series models in state space form. 

Biomet rika 79, 823-826. 
Ljung, GM., 1993. On outlier detection in time series. Journal of the Royal Statistical Society, Series 

B 55,559-567. 
Ljung, GM., Box, G.E.P., 1978. On a measure of lack of fit in time series models. Biometrika 65, 

297-303. 
MlcNeilf, LB., Tang, SM., Jandhyala, V.K., 1991. A search for the source of the Nile’s change- 

points. Environmetrics 2, 341-375. 
McCulloch, ME., Tsay, R.S., 1993. Bayesian inference and prediction for mean and variance shifts in 

autoregressive time series. Journal of the American Statistical Association S&968-978. 
Muirhead, CR., 1986. Distinguishing outlier types in time series. Journal of the Royal Statistical 

Society, Series B 48, 39-47. 
Ng, C.N., Young, PC., 1990. Recursive estimation and forecasting of non-stationary time series. 

Journal of Forecasting 9, 173-204. 
O’Hara Hines, R.J., Carter, EM., 1993. Improved added variable and partial residual plots for the 

detection of influential observations in generalized linear models. Applied Statistics 42, 3-20. 
Peiia, D., 1990. Infhtential observations in time series. Journal of Economic and Business Statistics 8, 

235-241. 
Peiia, D., 1991. Measuring influence in dynamic regression models. Technometrics 33, 93-101. 
Perron, P., 1989. The great crash, the oil price shock and the unit root hypothesis. Econometrica 57, 

1361-1401. f 
Rappoport, P., Reichfin, L., 1989. Segmented trends and non-stationary time series. Economic 

Journal 99, 168-l 77. 
Weed, D., 1987. Whistlestop: a community alternative for crime prevention. Ph.D. Thesis, Depart- 

ment of Sociology, Northwestern University, Chicago. 
Shephard, N., 1993a. Distribution of the ML estimator of a MA(B) and a local level model. 

Econometric Theory 9,377-401. 
Shephard, N,, 1993b. Maximum likelihood estimation of regression models with stochastic trend 

components. Journal of the American Statistical Association 88, 590-595. 
Theil, EL, Wage, S., 1964. Some observations on adaptive forecasting. Management Science 10, 

198-206. 
Tsay, B.S., 1986. Time series model specification in the presence of outliers. Journal of the American 

Statistical Association 81, 132-141. 
Tunnicliffe Wilson, G., 1989. On the use of margi likelihood in time series model estimation. 

Journal of the Royal Statistical Society, Series 1, 15-27. 
Wecker, WE., Ansley, CF. 1983. The signal extraction approach to nonlinear regression and spline 

smoothing. Journal of the American Statistical Association 78, 81-X9. 
West, M., Harrison, P.J., 1989. Bayesian Forecasting and Dynamic Models. Springer, New York. 
Wu, L.S.-Y., Hosking, J.R.M., Ravishanker, 1993. Reallocation outliers in time series. Applied 

Statistics 42, 301-313. 


